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Abstract

This paper benchmarks and improves existing GPU matrix multiplication algorithms specialized
for Kronecker-sparse matrices, whose sparsity patterns are described by Kronecker products. These
matrices have recently gained popularity as replacements for dense matrices in neural networks
because they preserve accuracy while using fewer parameters. We present the first energy and
time benchmarks for the multiplication with such matrices, helping users identify scenarios where
Kronecker-sparse matrices are more time- and energy-efficient than their dense counterparts. Our
benchmark also reveals that specialized implementations spend up to 50% of their total runtime on
memory rewriting operations. To address the challenge of reducing memory transfers, we introduce a
new so-called tiling strategy adapted to the Kronecker-sparsity structure, which reduces reads and
writes between levels of GPU memory. We implement this tiling strategy in a new CUDA kernel
that achieves a median speed-up of ×1.4, while also cutting energy consumption by 15%. We further
demonstrate the broader impact of our results by applying the new kernel to accelerate transformer
inference.

1 Introduction
Accelerating the inference and training of deep neural networks is a major challenge given their constantly
growing resource requirements. At the very heart of neural network efficiency is the acceleration of matrix
multiplication on GPU, which is one of the main operation during both training and inference. For
instance, in a forward pass of vision transformers (ViT) [6], between 30% and 60% of the total time is
spent in fully-connected layers doing matrix multiplications (see Appendix B.6 for details). One key
approach to speed up computation is to enforce sparsity constraints on certain weight matrices in the
model and to rely on sparse software libraries to perform the matrix-vector multiplications [9].

Among various forms of sparsity, butterfly sparsity has emerged as a promising approach for constructing
efficient neural networks [4]. Butterfly matrices are structured matrices that can be expressed as products
of sparse factors with specific sparsity patterns [8, 13, 15, 25, 26], offering sub-quadratic theoretical matrix
multiplication complexity. The fast algorithms associated to important linear transforms, such as the
Discrete Fourier Transform (DFT) and the Hadamard Transform, heavily exploit this structure [2]. See
Figure 1 for an example of the decomposition of the DFT matrix into a product of Kronecker-sparse
matrices, in dimension 16.

In this work, we focus on the fundamental building blocks of butterfly matrices: their sparse factors
with sparsity patterns defined by Kronecker products. Specifically, these factors have supports of the
form Sπ = Ia ⊗ 1b×c ⊗ Id, where ⊗ is the Kronecker product, In denotes the n× n identity matrix, 1n×m

is an n×m matrix of ones, and π = (a, b, c, d) is a tuple of integers defining the sparsity pattern (see
Definition 2.1 and Figure 2). We introduce the term Kronecker-sparse matrices to refer to these sparse
factors with Kronecker product-based supports.

We introduce the term Kronecker-sparse matrices to precisely capture the computational structures
that contribute to the efficiency of butterfly matrices. Existing definitions of butterfly matrices are often
either too restrictive—applying only to square matrices with dyadic dimensions [2, 20]—or too general,
encompassing dense matrices [15]. However, all definitions agree that butterfly matrices are products of
matrices with Kronecker constraints on their supports. Therefore, we focus on these Kronecker-sparse
matrices in this paper.
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W = × × ×
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Figure 1: Example of butterfly factorization W = K1 . . .KL, for L = 4. Here, the factor Kℓ ∈ RN×N

(with N = 2L) has support Sℓ = I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ . This corresponds to the butterfly factorization of
the Discrete Fourier Transform matrix W, up to a permutation of its column indices.

In practice, the goal is to reparameterize a dense fully-connected layer W as a product of Kronecker-
sparse matrices W = K1 . . .KL while having (i) at least the same accuracy for the learning task at hand,
(ii) less parameters to store, and (iii) an accelerated inference and training phase. Previous works mostly
focused on (i) and (ii) [3, 4, 15, 20]. This work tackles (iii).

Main contributions. (i) We assess for the first time the time- and energy-efficiency of PyTorch
GPU algorithms for multiplying a batch of vectors with a Kronecker-sparse matrix, including algorithms
specialized for Kronecker-sparsity relying on efficient libraries for batch GEMM1, block-sparse matrix
multiplication and tensor contraction. The benchmark is easy to adapt to include future implementations,
and can be used by users to identify situations where Kronecker-sparse matrices can be beneficial.

(ii) The benchmark reveals that specialized implementations spend up to 50% of their total runtime
on GPU memory rewriting operations. To address this, we design a new tiling strategy, with tiles adapted
to Kronecker-sparsity, implemented in a new open-source2 CUDA kernel. This reduces the transfers
between the different levels of GPU memory, achieving a median speed-up factor of ×1.4 in float-precision
while also cutting energy consumption by a median of 15%. We also demonstrate the broader impact of
our results by showing how the new kernel can be used to speed up the inference of transformers.

(iii) We introduce a heuristic based on theoretical and empirical findings that helps to decide whether a
Kronecker-sparsity pattern (a, b, c, d) will be time- and energy-efficient compared to its dense counterpart.
This rule, based on the ratio (b+ c)/bc, paves the way for designing more efficient Kronecker-sparse neural
networks in the future, for instance by selecting the most efficient pattern (a, b, c, d) among those with
the same number of non-zeros.

Outline. Section 2 introduces the framework to study Kronecker-sparse matrix multiplication, and
describes existing GPU algorithms on PyTorch. Section 3 assesses the cost of GPU memory access in
these baselines. Section 4 explains how the new CUDA kernel reduces the memory transfer compared to
previous existing implementations. Section 5 benchmarks the execution time and energy consumption of
existing PyTorch GPU algorithms, and the new kernel, for the multiplication with a Kronecker-sparse
matrix. Section 6 concretely illustrates broader implications of this work: the new kernel can be used to
speed up the inference of neural networks.

2 Background on Kronecker-sparse matrices
We call a Kronecker-sparse matrix any matrix whose support is given by a particular Kronecker product,
in line with the building blocks of widespread butterfly matrices [2, 3, 4, 7, 12, 15, 15, 20]. Let us
emphasize that this Kronecker structure is imposed only on the support, not on the values of the weights.

Definition 2.1 (Kronecker-sparse matrix). A Kronecker-sparsity pattern (or simply Kronecker pattern)
is a tuple π := (a, b, c, d) ∈ (N>0)

4. A π-Kronecker-sparse matrix (or simply Kronecker-sparse matrix
when π is clear from the context) is a matrix K ∈ Rabd×acd satisfying supp(K) ⊆ supp(Sπ), where
Sπ := Ia⊗1b×c⊗Id (see Figure 2) and where supp(M) := {(i, j),Mi,j ̸= 0}. The set of π-Kronecker-sparse
matrices is denoted Σπ.

A π-Kronecker-sparse factor is sparse and structured. For π = (a, b, c, d), it has at most abcd nonzero
entries, which yields a sparsity ratio abcd

a2bcd2 = 1
ad since it is of size abd× acd. Kronecker-sparse matrices

can represent a wide variety of matrices that have been used to train neural networks, as shown in Table 1.
1GEMM stands for General Matrix Multiplication.
2The code is available at https://github.com/PascalCarrivain/ksmm.
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Figure 2: A π-Kronecker-sparse matrix with π = (a, b, c, d) is a block-diagonal matrix with a blocks,
where each block itself is a block matrix composed by b× c diagonal matrices of size d× d. The colored
cells correspond to the nonzeros. We color the cells with different colors to indicate that the corresponding
weights are free to take different values.

Table 1: Examples of matrices used in neural networks, which can be expressed in terms of products of
Kronecker-sparse matrices. For a matrix of the form W = K1 . . .KL, the column "Kronecker patterns"
describes the list of Kronecker-sparsity patterns πℓ = (a, b, c, d) for each Kronecker-sparse matrix Kℓ.

Matrix size Kronecker patterns

Dense M ×N (1,M,N, 1)
Low-rank M ×N (1,M, r, 1), (1, r,N, 1)
Square dyadic [2, 20] N ×N with N = 2L (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1

Kaleidoscope [4] N ×N with N = 2L (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1 ∪ (2L−ℓ, 2, 2, 2ℓ−1)Lℓ=1

Block butterfly [3] N ×N with N = 2Lt (2ℓ−1, 2t, 2t, 2L−ℓ)Lℓ=1

Monarch [4, 7] M ×N (1,M/p,min(M,N)/p, p), (p,min(M,N)/p,N/p, 1)
Deformable butterfly [15] M ×N with M = a1b1d1, N = aLcLdL (aℓ, bℓ, cℓ, dℓ)

L
ℓ=1 s.t. aℓcℓdℓ = aℓ+1bℓ+1dℓ+1.

2.1 Existing PyTorch GPU implementations
Notations. X ∈ RB×N is the input matrix (batch size B, input dimension N). Σπ is the set of matrices
with Kronecker-sparsity pattern π = (a, b, c, d) (Definition 2.1). 0m×n is the m × n matrix filled with
zeros. For integers a ≤ b, Ja, bK := {a, a+ 1, . . . , b}. For a matrix M, M[I, :] is the submatrix restricted
to rows I, and M[I, J ] is the restriction to rows I and columns J . Matrix transposition is represented by
⊤. Matrix indices start at zero.

All existing GPU implementations specialized for Kronecker-sparsity build on Algo-
rithm 1, an algorithm tailored to Kronecker-sparsity that decomposes the multiplication with a Kronecker-
sparse matrix K as a permutation of the input (line 3), a multiplication with a permuted representation
K̃ of K (line 2), and a final permutation of the result (line 1). The permutations are performed to reduce
to a multiplication with K̃, which is more computationally efficient on GPU as it is block-diagonal with
dense sub-blocks. Algorithm 1 generalizes to general Kronecker-sparsity patterns π = (a, b, c, d) the
algorithm suggested by Dao et al. [4] in the specific cases a = 1 or d = 1. We now describe the concrete
PyTorch GPU implementations. More details are given in appendix (Appendix D.1) and the full code is
available online at https://github.com/PascalCarrivain/ksmm.

Algorithm 1 Kronecker-sparse matrix
multiplication

Input: π,X, K̃ := P⊤KQ⊤ with K ∈
Σπ, P := (Ia ⊗ Pb,d), Q :=

(Ia ⊗Pc,d)
⊤ cf. (1)

Output: Y = XK⊤ ∈ RB×M

1: X̃← XQ⊤

2: Ỹ ← X̃K̃⊤

3: Y ← ỸP⊤

Algorithm 2 Equivalent formulation for new tiling strategy

Input: π = (a, b, c, d), K ∈ Σπ, X ∈ RB×N (N := acd)
Output: Y = XK⊤ ∈ RB×M (M := abd)
1: Y ← 0B×M

2: for (i, j) ∈ J0, a− 1K× J0, d− 1K do
3: col←

{
iNa + j + ℓd | ℓ ∈ J0, c− 1K

}
4: row←

{
iMa + j + kd | k ∈ J0, b− 1K

}
5: Y[:, row]← X[:, col]K⊤[col, row]
6: end for
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bmm and bsr implementations. The first implementations we consider are the one Dao et al. [4],
that we call bmm, and a new one that we call bsr. Note that the original bmm implementation from
Dao et al. [4] only works for a pattern π = (a, b, c, d) satisfying a = 1 or d = 1. We extend it to
the general case. Both bmm and bsr implement Algorithm 1 as specified by Table 2. For the multiplication
with K̃ (line 2 in Algorithm 1), bmm relies on batched GEMM NVIDIA routines called through torch.bmm,
while bsr relies on the PyTorch block-sparse library.

bmm bsr

Storage format for K̃ 3D-tensor of shape (ad, b, c)
2D-tensor of shape (abd, acd) stored in

BSR3 format
Line 1 of Algorithm 1 torch.reshape
Line 2 of Algorithm 1 torch.bmm torch.nn.functional.linear
Line 3 of Algorithm 1 torch.reshape

Table 2: Differences in the implementation of Algorithm 1 between bmm and bsr.

einsum implementation. We propose a new PyTorch implementation specialized for Kronecker-
sparsity using tensor contractions [19], inspired by the other specialized implementation4 given in Dao
et al. [4]. It stores the nonzero entries of K ∈ Σπ with a 4D-tensor B_einsum of shape (a, b, c, d), in such
a way that the slice B_einsum[i, :, :, j] for (i, j) ∈ J0, a− 1K× J0, d− 1K stores the entries of K[row, col]
where row, col are defined in lines 3 and 4 of Algorithm 2 (Algorithm 2 will be discussed in details in
Section 4). The batched matrix multiplication operations at line 5 are then implemented using Einstein
summation between this 4D-tensor and a reshaped input tensor.

The above implementations (bmm, bsr, einsum) are specialized for Kronecker-sparsity. We also compare
them to the following generic implementations (dense and sparse) that ignore the Kronecker-sparsity.

dense implementation. This ignores the sparsity of K, by storing all its entries, including zeros, in
a tensor of shape (M,N). The multiplication is done with torch.nn.functional.linear, the default
PyTorch implementation for linear layers.

sparse implementation. This exploits the sparsity of K but not its structure (recall that the
sparsity pattern is not arbitrary, but structured as Kronecker products, see Definition 2.1). The nonzero
entries of the factor K are saved in a tensor stored in the Compressed Sparse Row (CSR) format, and the
matrix multiplication is done with torch.nn.functional.linear.

2.2 Memory layout convention
Batch-size-first vs. batch-size-last. The entries of the input X ∈ RB×N can be stored either in a
PyTorch tensor X_bsf of shape (B,N), or in a PyTorch tensor X_bsl of shape (N,B), in such a way that
the entries of the row X[k, :] are stored in the slices X_bsf[k, :] and X_bsl[:, k]. Because of PyTorch’s
row-major convention, the tensor X_bsf stores in contiguous memory the entries of each row X[k, :], as
opposed to X_bsl that store contiguously the entries of each column X[:, i]. These two different memory
layouts are called batch-size-first and batch-size-last5 in this paper. Note that the tensor saving the output
Y = XK⊤ will always be in the same memory layout as the input tensor. All the implementations above
can be implemented in both ways. While the main point of the paper is to compare the implementations,
we will also study the effect of this memory layout convention.

3 Memory accesses in baseline implementations
The specialized implementations bmm and bsr explicitly perform permutation operations corresponding
to lines 1 and 3 in Algorithm 1 (see Table 2) to be able to use high-performance multiplication routines
for the multiplication with the block-diagonal matrix K̃ (line 2 in Algorithm 1). This paper assesses for
the first time the cost of these memory operations in practice, as we now discuss.

Importance of data transfers. GPU memory management plays a critical role in optimizing
performance. Memory in a GPU is organized hierarchically, with global memory being the largest and
slowest, followed by shared memory, and finally registers, which are the smallest and fastest [18, Sec. 2.3].
By default, data resides in the global memory of the GPU. Each thread of the GPU runs a kernel that

4See their repository github.com/HazyResearch/fly.
5By analogy with the recent PyTorch optimization channels last that moves the channels dimension to the last position

for convolutional layers.
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reads data from global memory into registers, performs register-level computations, and writes the results
back to global memory. Therefore, when operations are bottlenecked by memory accesses, it is critical to
minimize data transfers between global memory, shared memory, and registers to obtain an efficient GPU
implementation [18, Sec. 5.3].

Data transfers in baseline implementations. In this paper, we argue that the baseline bmm, bsr
and einsum implementations for Kronecker-sparse matrix multiplication require performing several passes
between global memory and registers that can account for a large proportion of the total runtime in practice.
This suggests that there is room for improvement in the memory accesses of these implementations.

Matrix 
multiplication Permutation

Matrix 
multiplicationPermutation

Global memory

Butterfly 
adapted reading

Butterfly 
adapted writing

Registers

ad ad

Shared memory

K_bmmX_bsf X_perm Y_perm Y_bsf Y_bsfX_bsf K_kernel

shape(ad, B, c) shape(ad, c, b)
shape(ad, c, b)shape(ad, B, b) shape(B, abd) shape(B, abd)shape(B, acd) shape(B, acd)

(B,c) (B,c)

(c,b) (c,b)

(B,b) (B,b)

Figure 3: Data flow between the different levels of GPU memory for the bmm implementation (Section 2.1)
from [4] and the new kernel (Section 4).

Let us focus on bmm, as we will find it to be faster than einsum and bsr. The data flow of bmm is
illustrated in Figure 3. There is one pass between the global memory and the registers to perform the
permutation with P (line 3 in Algorithm 1), one for the multiplication with K̃ (line 2), and another one
for the permutation with Q (line 1).

Estimated time for memory rewritings in bmm. We benchmark the relative time spent on
memory rewritings in bmm, which is, as we will find out later (Section 5), the fastest of the baseline
implementations. We find that the memory rewritings can take up to 45% of the total runtime6.
This can be seen by looking at the y-axis in Figure 4 (see Appendix B.2 for details on the experiments).
We will explain in Section 4 why we plot as a function of the ratio (b+ c)/bc. We conclude that it is
crucial to optimize the data transfers between the different levels of GPU memory to improve current
implementations.
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for several π = (a, b, c, d). We regroup patterns by their value of (b + c)/(bc), and plot a boxplot to
summarize the corresponding measurements.

6Regardless of the memory layout convention, batch-size-first or batch-size-last.
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acd   abdK
K

B   acd B   abd

Figure 5: Illustration of Algorithm 2 for sparsity pattern π = (2, 3, 2, 3) and batch size B = 8. The
subsets of rows and columns (row1, col1) are associated with the values (i, j) = (0, 1) in the “for" loop of
Algorithm 2, whereas (row2, col2) are associated with (i, j) = (1, 1).

4 A novel tiling strategy for Kronecker-sparse matrix multiplica-
tion with reduced memory transfers

All existing specialized implementations are based on the Algorithm 1 that we introduced in Section 2.1. In
Section 4.1, we start by introducing a novel mathematically equivalent reformulation of the multiplication
algorithm, Algorithm 2, which corresponds to a new tiling strategy. This strategy allows us to implement
the multiplication in a single CUDA kernel, as described in Section 4.2. We then theoretically analyze
the memory operations of this new implementation and compare it to existing implementations in
Section 4.3. In particular, we exhibit a heuristic to identify efficient Kronecker-sparsity patterns, that will
be empirically confirmed later (Section 5).

4.1 A new tiling strategy for Kronecker-sparse matrix multiplication
We propose a new tiling strategy to reduce the cost associated with memory operations. Tiling consists
of splitting the matrices into smaller submatrices, or tiles, and constructing the result by accumulating
the intermediary results obtained on each of these tiles [16, 18]. Our tiling strategy comes from our
mathematically equivalent reformulation of Algorithm 1 into Algorithm 2, as we now explain.

On Algorithm 2, and why it is equivalent to Algorithm 1. When d = 1, the Kronecker-sparse
matrix K is block-diagonal with a dense blocks, as it can be seen from Figure 2. In this special case,
Algorithm 2 loops over each of these blocks, given by K[row, col], where the subsets row and col are
indexed by i ∈ J0, a− 1K in Algorithm 2, and performs the matrix multiplication with the corresponding
submatrix of X. The general case d ≥ 1 is similar: the Kronecker-sparse matrix K is, up
to permutation operations, block-diagonal with ad dense blocks, and Algorithm 2 loops over
each of these dense blocks, given by K[row, col] with row and col defined in lines 3 and 4. See
Figure 5 for an illustration. More precisely, the support Sπ associated with a Kronecker-sparsity pattern
π = (a, b, c, d) can be reduced to the pattern π̃ = (ad, b, c, 1), corresponding to a block-diagonal matrix
with ad dense blocks of size b× c, by permutations:

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)
⊤︸ ︷︷ ︸

:=Q

= PSπ̃Q, (1)

where Pp,q for two integers p, q is the so-called (p, q) perfect shuffle permutation matrix of size pq×pq [21]
(see Appendix C for details). Therefore, for any K ∈ Σπ, we have K = PK̃Q with K̃ := P⊤KQ⊤ ∈ Σπ̃

that is block-diagonal with ad dense blocks of size b× c. This shows that Algorithm 2 is equivalent to
Algorithm 1.

Existing matrix multiplication algorithms specialized to Kronecker-sparsity such as bmm and bsr
implement Algorithm 1: they directly store K̃⊤ instead of K⊤, permute the inputs with Q, multiply
with K̃⊤, and repermute with P, resulting in three passes between the global memory and the registers
(Figure 3) and a high cost in memory operations.

Instead, we will rather implement the tiling strategy described in Algorithm 2 by splitting the matrices
into blocks as pictured in Figure 5, and incrementally accumulating the result. The key is that this
tiling strategy allows us to implement our algorithm in a single CUDA kernel, resulting in fewer memory
transfers between the different levels of GPU memory. This is illustrated in Figure 3.
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4.2 Implementation of the new kernel
We implement Algorithm 2 in a single CUDA kernel exploiting tiling (Figure 5). The kernel performs the
multiplications X[:, col]K⊤[col, row] in parallel for all the pairs (row, col), as defined in Algorithm 2. To
perform one of these multiplication, the kernel starts by reading into global memory the entries in X[:, col]
and K⊤[col, row], and load them into shared memory. Then, it performs the multiplication, which
involves passing the data from shared memory to registers, performing the multiplication, and storing the
result in shared memory. The kernel then reads the result from shared memory and accumulates it in the
output stored in global memory. Standard CUDA optimizations are applied, see Appendix D.2 for details.

4.3 Efficiency analysis and comparison with existing implementations
Comparing memory operations with other baseline implementations. Thanks to tiling, we
were able to implement the multiplication in a single kernel, implying a single pass between the global
memory and the registers. This contrasts with the three back and forths made by the implementations of
Algorithm 1: one pass between the global memory and the registers to perform the permutation with P
(line 3 in Algorithm 1), one for the multiplication with K̃ (line 2), and another one for the permutation
with Q (line 1). Concretely, the new kernel only reads once each coefficient of X, and writes once the
result of the multiplication Y, while those baseline implementations read twice both X and Y, and
rewrite them once (to permute them). This is illustrated in Figure 3.

The new kernel has also fewer global memory accesses than the non-specialized dense implementation
(Section 2.1), since the dense implementation also reads the zero entries of K and the corresponding
coefficients of X, while our kernel does not.

Finally, compared to the generic sparse implementation, while the new kernel has the same number
of memory access, it is expected to be more efficient as it the kernel is aware (and tailored) to the
Kronecker-sparsity structure while the sparse implementation is agnostic to it.

A theoretical analysis of when the new kernel is expected to be more efficient. Since
the new kernel has reduced memory operations, we expect it to be more efficient when there is large
proportion of time spent on memory operations in the implementations of Algorithm 1. Consider input
and output dimensions N,M and a batch-size B. The permutations of the input and the output (lines 3
and 1 in Algorithm 1) require moving all the entries of the input and output tensors in memory, that
is BN + BM entries. The number of scalar multiplications in line 1 of Algorithm 1 is B ×#nnz (the
batch-size times the number of nonzero in K). For a Kronecker-sparse matrix with sparsity pattern
π = (a, b, c, d), we have N = acd, M = abd and #nnz = abcd. Therefore, the ratio of the number of
memory rewritings over the number of scalar multiplications is:

number of memory rewritings
number of scalar multiplications

=
BN +BM

B ×#nnz
=

b+ c

bc
. (2)

These theoretical considerations suggest that (b+ c)/bc is a good proxy for the relative time spent on
memory rewritings by the implementations of Algorithm 1. This is empirically confirmed in Figure 4
where we observe a positive correlation.

Implication for neural network design. Since our new kernel reduces the cost of memory
rewritings, the Kronecker-sparsity patterns with a large value of (b+ c)/(bc) will benefit the most from
our new implementation. This will be empirically confirmed in Section 5. An important consequence of
this is that it provides a heuristic to identify efficient Kronecker-sparsity patterns and therefore to help
designing efficient Kronecker-sparse neural networks.

5 Benchmarking the multiplication with a Kronecker-sparse ma-
trix

We now benchmark the different implementations described so far for Kronecker-sparse matrix multi-
plication. In particular, we validate numerically the benefits of the new kernel implementation, with
improved memory transfers, compared to the baselines einsum, bsr and bmm.

Protocol. The benchmark is run in float-precision on a subset of 600 sparsity patterns π = (a, b, c, d) in
α×β×β×α, with α := {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128}, β := {48, 64, 96, 128, 192, 256, 384, 512, 768, 1024},
such that b = c or b = 4c or c = 4b. These patterns correspond to dimensions of Kronecker-sparse matrices
K ∈ RM×N with (M,N) = (abd, acd) in the linear layers of Transformers (up projection for b = 4c, down
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projection for c = 4b, fully-connected layers for b = c) and more generally in any neural network. We
choose as batch size B = 128× 196 = 25088, a standard effective batch size for fully-connected layers in
ViTs, corresponding to a number of sequences per batch equal to 128, multiplied by a number of tokens
per sequence equal to 196. Further details are given in Appendix B.1.

Table 3: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 (denoted by
time(algo1) < time(algo2)), and the median acceleration factor in such cases (that is, the median ratio
time of algo2
time of algo1 ). For each implementation, we take the minimum time between the batch-size-first and the
batch-size-last memory layout.

min time


kernel
bmm

einsum
bsr

 < min time
(
dense
sparse

)
time(bmm) < min time


einsum
bsr

dense
sparse

 time(kernel) < min time


bmm

einsum
bsr

dense
sparse


99.67% (×6.57) 92.66% (×1.37) 88.10% (×1.39)

Implementations specialized to Kronecker-sparsity improves over generic implemen-
tations. The first line of Table 3 shows that at least one of the implementations specialized to the
Kronecker structure among kernel, bmm, einsum and bsr improves over the generic dense and sparse
implementation, which do not take into account the Kronecker-sparsity. The speedup increases with the
matrix size, see Appendix B.3.

The baseline bmm is faster than the other baselines einsum and bsr. This is shown in the
second line of Table 3, where the bmm implementation improves over min(einsum, bsr) in 93% of the
tested cases. The speedup increases with the matrix size, see Appendix B.4. Therefore, when comparing
the new kernel implementation to other baselines, we will mainly focus on the comparison between bmm
and kernel.

The new kernel implementation is faster than existing baselines. The third row of Table 3
shows that kernel is faster than all other baselines in 88% of the tested patterns. This empirically
validates the benefits of the reduced memory transfer in the kernel implementation. In the following, we
provide further details on the influence of the memory layout (batch-size-first vs. batch-size-last) on this
improvement. Additionally, we analyze the patterns π = (a, b, c, d) for which the kernel outperforms
baseline implementations.
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Figure 6: Time speedup factor of kernel compared
to min(bmm, einsum, bsr). For each implementation,
we take the minimum time between the batch-size-
first and batch-size-last memory layouts. We regroup
the patterns by their value of (b+ c)/(bc), and plot
a boxplot to summarize the corresponding measure-
ments.
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patterns by their value of d(b+ c)/(bc).

Impact of the memory layout. For baseline implementations, switching to batch-size-last yields a
high systematic speedup for sparse, high variability in the speedup of bsr, and essentially no impact to
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negative impact for the other methods, see Appendix B.5 for numerical results. The important part is
that it has no impact on bmm, and since bmm is the fastest baseline implementation (Table 3), switching to
batch-size-last has no impact on the best of the baseline implementations. However, it yields a systematic
speedup (about ×2) for the kernel implementation. This acceleration is expected, since the batch-size-last
memory layout allows for more efficient memory accesses in the kernel implementation, as detailed in
Section 4.

Analyzing the cases where kernel outperforms baselines. As seen in Section 4, the kernel
has an improved memory access design compared to the rest of the baselines, and it is expected to
improve them the most when the ratio (b+ c)/bc is large (see (2)). Figure 6 confirms this experimentally:
the kernel implementation becomes increasingly time-efficient compared to the baseline
implementations as (b+ c)/bc increases.

The kernel improves on energy efficiency. Overall, the median energy reduction factor is ×0.85,
and the new kernel improves the energy consumption in 72% of the tested cases. The energy measurements
are done with the software pyJoules. More details about the measurements are in Appendix B.1. It
demonstrates that the kernel not only achieves higher time efficiency but also reduces energy
consumption compared to other baselines. This twofold advantage makes the kernel an effective
solution for improving both performance and sustainability.

A proxy for the energy spent on memory rewritings in the baseline implementations.
Figure 7 shows further that the energy efficiency of the kernel increases with the value of d(b+ c)/(bc).
We now give a theoretical explanation for this. For a sparsity pattern π = (a, b, c, d), we already discussed
that the ratio (b+ c)/bc is a good proxy of the relative time spent on memory rewritings in practice (see
(2)). Since the columns to be rewritten contiguously (i.e., the columns in col from Algorithm 2) are
equally spaced by d, the energy spent on memory rewritings is expected to increase with d. Multiplying
the ratio (b+ c)/bc by d can serve as a theoretical proxy for the energy spent on memory rewritings. This
is empirically confirmed by the results in Figure 7.

6 Broader implications for neural networks: accelerating inference
The inference of neural networks is claimed to represent 90% of the cost of machine learning at scale
according to independent reports from both NVIDIA [10] and Amazon Web Services [11]. We now
investigate whether replacing fully-connected layers by products of Kronecker-sparse matrices accelerates
the inference. While the same could also apply to other architectures, we will consider Vision Transformers
(ViTs) [6]. We find that the computational cost of fully-connected layers is significant in such architectures:
depending on the size of the ViT, from 30% to 60% of the total time in a forward pass is spent in
fully-connected layers (see Appendix B.6 for details).

Protocol. We benchmark in float-precision various components of a ViT-S/16 architecture: a linear
layer with bias, an MLP with non-linear activation and/or normalization layers, a multi-head attention
module, etc. As in Dao et al. [4], we replace by a product of two Kronecker-sparse matrices the weight
matrices of linear layers in feed-forward network modules, and the projection matrices for keys, queries
and values in multi-head attention modules. We focus on batch-size-first as it is the default convention in
PyTorch7. Details and some additional results are given in Appendix B.7.

Results. We denote by time(fully-connected) the inference time with dense matrices (and there-
fore, with the standard PyTorch implementation). Table 4 shows that time(kernel) < time(bmm) <
time(fully-connected) over all the different submodules. This concretely shows that using
Kronecker-sparse matrices and the kernel implementation accelerates the inference of
standard neural networks.

Table 4: Acceleration of submodules of a ViT-S/16 using Kronecker-sparse matrices.

time(bmm)
time(fully-connected)

time(kernel)
time(fully-connected)

Linear N ×N 0.82 0.50
Feed-forward network 0.91 0.77
Multi-head attention 0.87 0.79
Block 0.90 0.78
Kronecker-sparse ViT-S/16 0.89 0.78

7The insertion of Kronecker-sparse matrices in the batch-size-last memory layout would a priori require a careful
implementation of the rest of the operations in batch-size-last, that are for now optimized in batch-size-first in PyTorch.
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7 Conclusion
This work evaluates the efficiency of existing Kronecker-sparse matrix multiplication algorithms on GPU.
The benchmark shows that baseline implementations require costly memory rewrites in global memory,
which can account up to half of the execution time in practice. To address this, we propose a new tiling
strategy that we implement in a single CUDA kernel. This implies reduced memory transfers between the
different levels of the GPU. In practice, this new kernel is faster than previous specialized implementations,
while also decreasing energy consumption. Moreover, we provide a simple heuristic to choose Kronecker
sparsity patterns (a, b, c, d) that are particularly efficient for this implementation. Finally, we show how
the kernel can be used to accelerate the inference of neural networks.

Perspectives. The heuristic provided to identify situations where the kernel is expected to be efficient
paves the way to new research directions to design efficient Kronecker-sparse neural network architectures.

While we have focused on finding a new tiling strategy to optimize memory management, the part
where we multiply the tiles in our kernel may still have room for improvement, especially in half-precision.
We hope this will encourage work in that direction.

This paper has also demonstrated that some operations (the generic sparse matrix multiplication of
PyTorch, and the new kernel, see Figure 12) are particularly performant in batch-size-last. This paves the
way to revisit other common operations in neural networks within the batch-size-last memory layout.

Finally, translating our kernel into OpenCL could enable it to run on AMD hardware and other
platforms. We also hope that our benchmark will serve as a baseline for comparing Kronecker-sparse
implementations on other hardware, such as CPU, Intelligence Processing Unit, FPGA, etc.
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Appendices

A Related works
We now review the numerical results we found in the literature about time efficiency of existing algorithms
for Kronecker-sparse matrix multiplication.

It is reported in Dao et al. [4] that replacing dense matrices by a product of two Kronecker-sparse
matrices led to a twice faster training for image classification and language modeling.

In Fu et al. [7] is reported an acceleration of X 7→W−1(K⊙WX) where K is some dense weight
matrix, ⊙ is the element-wise multiplication, and W is the DFT matrix (which admits a factorization in
Kronecker-sparse matrices), as soon as the dimensions of W are at least equal to 4096.

Our study is complementary to these observations: we extensively benchmark the efficiency of the
Kronecker-sparse matrix multiplication alone.

B Experiments

B.1 Details on the experiments
The pytorch package version is 2.2 and pytorch-cuda is 12.1.

Matrix sizes. In all our experiments with matrices, we set the batch size to B = 128× 196 = 25088,
a very standard choice for ViTs, as this quantity corresponds to the standard number of tokens per
sequence (192) multiplied by the standard number of sequences in a batch of inputs (128). When dealing
with a batch of images in neural networks, we choose the standard choice of batch size B = 128.

Matrix entries. The coordinates of any Kronecker-sparse matrix K ∈ Rabd×acd with sparsity pattern
(a, b, c, d) are drawn i.i.d. uniformly in [− 1√

c
, 1√

c
], corresponding to the initialization used for training

in Dao et al. [4]. The coordinates of the inputs X are drawn i.i.d. according to a standard normal
distribution N (0, 1).

Benchmarking time execution. All the experiments measuring time execution of a Kronecker-
sparse matrix multiplication algorithm (Tables 3, 4, 5 and 8, Figures 4, 6 and 9 to 17) are performed on a
NVIDIA A100-PCIE-40GB GPU associated with an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with
377G of memory. The full benchmark took approximately 3 days in an isolated environment, ensuring
that no other processes were running concurrently.

Measurements are done using the PyTorch tool torch.utils.benchmark.Timer. The medians are
computed on at least 10 measurements of 10 runs. In 94.2% of the cases, we have an interquartile range
(IQR) that is at least 100 times smaller than the median (resp. 98% for 50 times smaller, and 99.7% for
10 times smaller).

Benchmarking energy consumption. Measurements of the energy consumption (Figure 7) is
done on a NVIDIA Tesla V100-PCIE-16GB GPU associated with an Intel(R) Xeon(R) Silver 4215R
CPU @ 3.20GHz with 754G of memory. The full benchmark took approximately 1.5 days in an isolated
environment. Measurements are made using the pyJoules software toolkit. The medians are computed on
10 measurements of at least 16 runs. In 96% of the cases, the IQR is at least 10 times smaller than the
median, and 5 times smaller in all the cases.

Kronecker-sparsity patterns benchmarked for time measurements (Section 5). The
considered patterns are generated by the Python code written in Figure 8. In all the cases, we only
consider patterns (a, b, c, d) with b = c or b = 4c or c = 4d to have an input size N and an output size M
such that N = M or N = 4M or M = 4N . This choice is motivated by the fact that fully-connected
layers in ViTs satisfy have input and output sizes satisfying these constraints.

The first "for" loop in Figure 8 generates a wide range of patterns (a, b, c, d) with a = 1, as this
represents the simplest scenario. Indeed, the case a > 1 simply corresponds to repeating a times the case
a = 1 in parallel.

The second "for" loop in Figure 8 generates patterns with a > 1 offering fewer choices for d to keep
the benchmark concise in terms of execution time. This loop also imposes additional conditions on b and
c (line 28 of the code) that we now explain. Many graphs are plotted based on the ratio (b+ c)/bc, as
introduced in Equation (2). Because of that, our goal was to include as many distinct ratios (b+ c)/bc as
possible while keeping the benchmark brief. We excluded certain (b, c) values because they resulted in a
ratio that was very close to one already in the benchmark and were more computationally intensive.
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1 import itertools
2

3 batch_size = 25_088
4 size_limit = 2_147_483_647
5

6 a_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]
7 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
8 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
9 d_list1 = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]

10 d_list2 = [4, 16, 64]
11

12 def get_patterns_benchmark ():
13 patterns_list = []
14

15 def add_pattern(a, b, c, d):
16 if batch_size * a * c * d <= size_limit and \
17 batch_size * a * b * d <= size_limit and \
18 a * b * c * d <= size_limit:
19 patterns_list.append ((a, b, c, d))
20

21 for b, c, d in itertools.product(b_list , c_list , d_list1):
22 a = 1
23 if (b == c or b == 4 * c or c == 4 * b):
24 add_pattern(a, b, c, d)
25

26 for a, b, c, d in itertools.product(a_list , b_list , c_list , d_list2):
27 if a != 1 and \
28 (b, c) not in [(1024 , 256), (256, 1024) , (128, 512), (512, 128),

(64, 256), (256, 64)] and \
29 (b == c or b == 4 * c or c == 4 * b):
30 add_pattern(a, b, c, d)
31

32 return patterns_list

Figure 8: Python code to generate the patterns benchmarked for the execution time in the numerical
experiments of Section 5.

Patterns benchmarked for energy measurements (Section 5). For the energy measurements,
the goal is to have diverse sparsity patterns (a, b, c, d) corresponding to many different ratios d(b+ c)/bc
to observe the trend in Figure 7, while keeping the benchmark as short as possible. We chose to consider
the cartesian product of

1 a_list = [1, 4, 16, 32, 64]
2 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
3 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
4 d_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

by skipping as in Figure 8 all the patterns with

1 (b,c) in [(1024 , 256) , (256 , 1024) , (128 , 512) , (512 , 128) , (64 , 256)
, (256 , 64)]

and also all the patterns such that

1 b != c and b != 4 * c and c != 4 * b

for the same reasons as explained above for time measurements.
Details on boxplots. In all boxplots (Figures 4, 6 to 7 and 9 to 17), the orange line corresponds to

the median, the boxes to the first and third quartile and the whiskers to the 5th and the 95th percentile.
Outliers are not represented on the graph.
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B.2 Estimating the time for memory rewritings in the bmm implementation
(Section 3)

Protocol. Given a Kronecker-sparsity pattern π = (a, b, c, d), an associated π-Kronecker-sparse matrix
K (Definition 2.1) and an input X ∈ RB×acd for some batch size B, we first measure the time ∆t to
compute Y := XK⊤ using the bmm implementation. Then, we measure the time ∆t̃ to perform only
the multiplication operations Y[:, row] = X[:, col]K⊤[col, row] in the bmm implementation (line 2 of
Algorithm 1). Therefore, the estimated relative time to perform the memory rewritings of lines 1 and 3 of
Algorithm 1 is simply ∆t−∆t̃

∆t .
Results. Figure 4, which is replicated in the left part of Figure 9, shows that the relative time spent

doing memory rewritings in bmm increases with the ratio (b+ c)/(bc), in the batch-size-first memory layout.
Figure 9 shows that this is similar for both batch-size-first and batch-size-last.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

(a) Batch-size-first (same as Figure 4).
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(b) Batch-size-last.

Figure 9: Estimated relative time spent on memory rewritings in bmm for the multiplication with K ∈ Σπ,
for several π = (a, b, c, d). We regroup patterns by their value of (b + c)/(bc), and plot a boxplot to
summarize the corresponding measurements.

B.3 Details on min time(kernel, bmm, bsr, einsum) vs. min time(dense, sparse)
(Section 5)

Figure 10 shows that the speed-up factor of implementations specialized to the Kronecker-sparsity (kernel,
bmm, bsr, einsum) over the generic dense and sparse implementations increases with the matrix size
M ×N . We recall that M = acd and N = abd for a Kronecker-sparse matrix with pattern π = (a, b, c, d).

B.4 Details on time(bmm) vs. min time(bsr, einsum) (Section 5)
Figure 11 shows that for a sufficient large matrix size M ×N , we always have time(bmm) < min time(bsr,
einsum), i.e., the bmm implementation is the most efficient among all baseline implementations (bmm,
einsum, bsr).
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Figure 10: Speed-up factor of min time(kernel, bmm,
bsr, einsum) compared to min time(dense, sparse)
as a function of the matrix size M ×N .
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Figure 11: Speed-up factor of time(bmm) compared
to min time(einsum, bsr) as a function of the matrix
size M ×N .

B.5 Details on the impact of the memory layout (Section 5)
Figure 12 shows the impact of the memory layout on the execution time of each implementation.
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Figure 12: Boxplots of the ratio time of batch-size-first
time of batch-size-last .

Table 5 shows the percentage of patterns for which the kernel implementation improves over all
baseline implementations, either in the batch-size-first or the batch-size-last memory layout. When
restricting all implementations to the batch-size-first layout, the kernel still improves on 20% of the
tested patterns despite non-contiguous memory accesses (Section 4).

Table 5: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 (denoted by
time(algo1) < time(algo2)), and the median acceleration factor in such cases (that is, the median ratio
time of algo2
time of algo1 ).

time(kernel) < min time(bmm, einsum, bsr, dense, sparse)

Batch-size-first 20.0% (×1.28)
Batch-size-last 88.1% (×1.39)
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B.6 Time spent in linear layers in vision transformers
This section gives a numerical lower bound estimate on the time spent in fully-connected layers in a
Vision Transformer (ViT).

Results. Table 6 shows that, for different ViTs, the fraction of computation time solely dedicated to
linear layers in feed-forward network modules varies between 31% and 53% in half-precision, and 46%
and 61% in float-precision. This proportion increases with the size of the architecture. This shows that a
non-negligible amount of ViTs inference is dedicated to fully-connected layers. Note that the time for the
fully-connected linear layers in the multi-head attention module is not included in our measurements,
so our estimate is only a lower bound on the time effectively devoted to all fully-connected layers in
transformer architectures.

Table 6: Median execution times (ms) of the forward pass in a ViT, and the forward pass in an MLP
containing only all the linear layers involved in the feed-forward network modules of the ViT. The latter
is reported with its ratio over the first. FP16 is half-precision, FP32 is float-precision.

Architecture fp16 (s) fp32 (s)

Complete Linear in FFNs Complete Linear in FFNs

ViT-S/16 0.014 0.0046 (31%) 0.090 0.04 (46%)
ViT-B/16 0.036 0.015 (42%) 0.30 0.16 (54%)
ViT-L/16 0.11 0.050 (46%) 1.0 0.58 (58%)
ViT-H/14 0.31 0.16 (53%) 2.6 1.6 (61%)

Details on the estimation. The transformer architecture is composed of a sequence of transformer
blocks, where each block contains a multi-head attention module and a feed-forward network module. The
feed-forward network module is an MLP with one hidden layer of neurons, involving two fully-connected
linear layers. Table 6 reports the time to perform sequentially all the fully-connected linear layers (without
biases) appearing in feed-forward network modules of the considered ViT. This is compared to the total
forward time of the transformer network. This is expected to yield a lower bound since we did not
measure the time spent in fully-connected linear layers in the multi-head attention module.

Experimental settings. The architecture ViT-S/16 corresponds to the one in [24], while the
architecture ViT-B/16, ViT-L/16 and ViT-H/14 correspond to those in [6]. Input images are of size
224× 224. In float-precision, the PyTorch implementation of ViT architecture are taken from [23]. In
half-precision, the considered implementation of the transformer architecture uses FlashAttention [5] to
compute the scaled dot product attention, like in [22]. The MLP containing only the linear layers of
the feed-forward modules in the transformer architecture is implemented using torch.nn.Sequential
and torch.nn.Linear. Experiments are done on a single A100-40GB GPU on AMD EPYC 7742 64-
Core Processor. Measurements are done using the PyTorch tool torch.utils.benchmark.Timer for
benchmarking. The image batch size is set at 128.

B.7 Details on the acceleration of the inference of a ViT (Section 6)
Chosen Kronecker-sparse matrices. The dense weight matrices are replaced by products of
two Kronecker-sparse matrices K1K2 (Definition 2.1) with respective sparsity patterns π1,π2 given
by: (1, 192, 48, 2), (2, 48, 192, 1) for the size N × N , (1, 768, 192, 2), (6, 64, 64, 1) for the size 4N × N ,
(1, 768, 192, 2), (6, 64, 64, 1) for the size 4N ×N .

Additional results. Table 7 provides additional results to Table 4 on linear submodules of a
ViT-S/16.
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Table 7: Acceleration of submodules of a ViT-S/16 using Kronecker-sparse matrices.

time(bmm)
time(fully-connected)

time(kernel)
time(fully-connected)

Linear N ×N 0.82 0.50
Linear N ×N + bias 0.97 0.66
Linear 4N ×N 0.80 0.78
Linear 4N ×N + bias 0.93 0.90
Linear N × 4N 0.91 0.58
Linear N × 4N + bias 0.94 0.61

B.8 Additional results in half-precision
For the sake of completeness we perform the benchmark described in Section 5 in half-precision. The
equivalent of Table 3, Figure 6, Figures 9 to 12 in half-precision are Table 8, Figure 13, Figures 14 to 17,
respectively. Note that just as Figure 6, the Figure 13 only considers sparsity patterns for which min
time(kernel, bmm, bsr, einsum) < min time(dense, sparse). This corresponds to 87% of the tested
patterns in half-precision, cf. Table 8.

Table 8: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 in half-precision
(denoted by time(algo1) < time(algo2)), and the median acceleration factor in such cases (that is, the
median ratio time of algo2

time of algo1 ). For each implementation, we take the minimum time between the batch-size-
first and the batch-size-last memory layout. Experiments are carried in half-precision.

min time


kernel
bmm

einsum
bsr

 < min time
(
dense
sparse

)
time(bmm) < min time


einsum
bsr

dense
sparse

 time(kernel) < min time


bmm

einsum
bsr

dense
sparse


86.95% (×8.45) 83.22% (×1.83) 36.69% (×1.46)
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Figure 13: Speedup factor of kernel compared to min(bmm, einsum, bsr) in half-precision. For each
implementation, we take the minimum time between the batch-size-first and the batch-size-last memory
layout. We regroup the (a, b, c, d) patterns by their value of (b+ c)/(bc), and use a boxplot to summarize
the corresponding measurements. Experiments are carried in half-precision.
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(a) Batch-size-first.
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Figure 14: Estimated relative time spent on memory rewritings in bmm for the multiplication with K ∈ Σπ,
for several π = (a, b, c, d). We regroup patterns by their value of (b + c)/(bc), and plot a boxplot to
summarize the corresponding measurements. Experiments are carried in half-precision.
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Figure 15: Speed-up factor of min time(kernel, bmm,
bsr, einsum) compared to min time(dense, sparse)
vs. the matrix size M ×N . Experiments are carried
in half-precision.

104 105 106 107 108 109 1010

M × N

1

0.6
0.7
0.8
0.9

2

3

4

5
m

in
 ti

m
e(

ei
ns

um
, b

sr
)

di
vi

de
d 

by
 ti

m
e(

bm
m

)

Figure 16: Speed-up factor of time(bmm) compared
to min time(einsum, bsr) vs. the matrix size M×N .
Experiments are carried in half-precision.

C Details on perfect shuffle permutations
The goal is to prove Equation (1), which we recall here for convenience:

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)
⊤︸ ︷︷ ︸

:=Q

= PSπ̃Q,

where the matrix Pp,q is the so-called (p, q) perfect shuffle permutation introduced below. To prove this
formula, we will use the next lemma.

Lemma C.1. For any positive integers b, c, d:

Pb,d
⊤(1b×c ⊗ Id)Pc,d = Id ⊗ 1b×c,

where Pp,q denotes the (p, q) perfect shuffle of r := pq [21], which is the permutation matrix of size r × r
defined as:

Pp,q :=


Ir[R0, :]
Ir[R1, :]

...
Ir[Rq−1, :]

 , (3)
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Figure 17: Boxplots of the ratio time of batch-size-first
time of batch-size-last in half-precision.

where Ri := {i+ qj | j ∈ J0, p− 1K} for i ∈ J0, q − 1K.

Proof of Lemma C.1. This is a direct consequence of a more general result claiming that the Kronecker
product commutes up to some perfect shuffle permutation matrices [21, Section 1].

We now turn to the proof of Equation (1).

Proof of Equation (1). By definition, Sπ = Ia ⊗ 1b×c ⊗ Id when π = (a, b, c, d). By Lemma C.1,

Sπ = Ia ⊗ 1b×c ⊗ Id = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)
.

By the equality (AB)⊗ (CD) = (A⊗C)(B⊗D) for any matrices A,B,C,D of compatible sizes, we get
the result:

Sπ = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)

= (Ia ⊗Pb,d)
(
Ia ⊗

(
(Id ⊗ 1b×c)Pc,d

⊤
))

= (Ia ⊗Pb,d)(Ia ⊗ Id ⊗ 1b×c)(Ia ⊗Pc,d
⊤)

= (Ia ⊗Pb,d)(Iad ⊗ 1b×c)(Ia ⊗Pc,d
⊤).

D Implementations

D.1 Details on baseline GPU implementations
To keep it short, we only give the code in the case of the batch-size-first memory layout (except for dense
and sparse where the codes are small). The case of batch-size-last can simply be obtained by inverting
the first and last positions in all tensor reshapings.

einsum implementation. This implementation uses tensor contractions with the high-performance
einops library. The abcd nonzero entries of the Kronecker-sparse matrix K (Figure 2) are stored in a
PyTorch 4D-tensor K_einsum of shape (a, b, c, d). The implementation uses Einstein notations.

1 def kronecker_einsum(X_bsf , K_einsum):
2 X_perm = einops.rearrange(X_bsf , "... (a c d) -> ... a c d", a=a, c=c, d=d)
3 Y_perm = einops.einsum(X_perm , K_einsum , "... a c d, a b c d -> ... a b d")
4 Y_bsf = einops.rearrange(Y_perm , "... a b d-> ... (a b d)")
5 return Y_bsf
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The second line of this code does at the same time all the matrix multiplications Y[:, row] ← X[:
, col]K⊤[col, row] for all the pairs (row, col) in Algorithm 2.

bsr implementation. This is an implementation of Algorithm 1 using the high-performance Block
compressed Sparse Row (BSR) PyTorch library. The matrix K̃ is stored as a tensor K_bsr stored in the
BSR format.

1 def kronecker_bsr(X_bsf , K_bsr):
2 batch_size = X_bsf.shape [0]
3 X_perm = (
4 X_bsf.view(batch_size , a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size , a * c * d)
7 )
8 Y_perm = torch.nn.functional.linear(
9 X_perm , K_bsr

10 )
11 Y_bsf = (
12 Y_perm.view(batch_size , a, d, b)
13 .transpose(-1, -2)
14 .reshape(batch_size , a * b * d)
15 )
16 return Y_bsf

bmm implementation. This is an implementation of Algorithm 1 using the high-performance Block
compressed Sparse Row (BSR) PyTorch library. The matrix K̃ is stored as a tensor K_bsr stored in the
BSR format. This implementation using torch.bmm, which is based on high-performance batched matrix
multiplication NVIDIA routines. The non-zero entries of K̃ are stored in a four-dimensional PyTorch
tensor K_bmm of shape (a ∗ d, b, c).

1 def kronecker_bmm(X_bsf , K_bmm):
2 batch_size = X_bsf.shape [0]
3 X_perm = (
4 X_bsf.view(batch_size , a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size , a * d, c).
7 contiguous ().
8 transpose(0, 1)
9 )

10 Y_perm = torch.empty(batch_size , a * d, b, device=x.device , dtype=x.dtype).
transpose(0, 1)

11 Y_perm = torch.bmm(X_perm , K_bmm.transpose(-1, -2))
12 Y_bsf = (
13 Y_perm.transpose(0, 1)
14 .reshape(batch_size , a, d, b)
15 .transpose(-1, -2)
16 .reshape(batch_size , a * b * d)
17 )
18 return

dense implementation. This ignores the sparsity of the Kronecker-sparse matrix K, that is stored
as a dense matrix in a 2d-tensor K_dense.

batch-size-first: torch.nn.functional.linear(X_bsf, K_dense)
batch-size-last: torch.matmul(K_dense, X_bsl)
The implementation in batch-size-first is the default PyTorch implementation of a forward pass of a

linear layer. For batch-size-last, we had to choose an implementation since Pytorch uses batch-size-first by
default. We made our choice based on a small benchmark of different alternatives.

sparse implementation. This exploits the sparsity of the Kronecker-sparse matrix K but not its
structure (recall that the support are not arbitrary, they are structured since they must be expressed as
Kronecker products, see Definition 2.1).

batch-size-first: torch.nn.functional.linear(X_bsf, K_csr)
batch-size-last: torch.matmul(K_csr, X_bsl)
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D.2 Details on the kernel implementation
Classical optimizations that we build upon. The proposed implementation use vectorization as soon
as an operation can be vectorized. Concretely, the float4 and half2 vector types are used to mutualize
read/write operations [1, 16, 17, 18]. An epilogue [16] is also implemented to avoid writing in global
memory in a disorganized way. Indeed, after having accumulated the output in registers, each thread
has specific rows and columns of the output to write to global memory, and may finish its computation
before the others. To avoid that, the epilogue starts to write in the shared memory, in a disorganized
way, and then organize the writing from shared to global memory. Another implemented optimization is
double buffering [1, 14, 16, 17]: a thread block is always both computing the output of a tile, and loading
the next tile from global to shared memory. This allows us to hide some latency that arises when loading
from the global memory.

Note that as with any CUDA kernel, the constants (such as the number of threads) need to be tailored
to each specific case of use —here, each Kronecker-sparsity pattern π = (a, b, c, d)— and to each GPU.
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