
HAL Id: hal-04584450
https://hal.science/hal-04584450v2

Preprint submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Make Inference Faster: Efficient GPU Memory
Management for Butterfly Sparse Matrix Multiplication

Antoine Gonon, Léon Zheng, Pascal Carrivain, Quoc-Tung Le

To cite this version:
Antoine Gonon, Léon Zheng, Pascal Carrivain, Quoc-Tung Le. Make Inference Faster: Efficient GPU
Memory Management for Butterfly Sparse Matrix Multiplication. 2024. �hal-04584450v2�

https://hal.science/hal-04584450v2
https://hal.archives-ouvertes.fr


Make Inference Faster:
Efficient GPU Memory Management for Butterfly

Sparse Matrix Multiplication

Antoine Gonon∗

Univ Lyon, EnsL, UCBL,
CNRS, Inria, LIP

Léon Zheng∗

valeo.ai,
Univ Lyon, EnsL, UCBL,

CNRS, Inria, LIP

Pascal Carrivain∗

Univ Lyon, EnsL, UCBL,
CNRS, Inria, LIP

Quoc-Tung Le
Univ Lyon, EnsL, UCBL,

CNRS, Inria, LIP

Abstract

This paper is the first to assess the state of existing sparse matrix multiplication
algorithms on GPU for the butterfly structure, a promising form of sparsity. This is
achieved through a comprehensive benchmark that can be easily modified to add a
new implementation. The goal is to provide a simple tool for users to select the
optimal implementation based on their settings. Using this benchmark, we find
that existing implementations spend up to 50% of their total runtime on memory
rewriting operations. We show that these memory operations can be optimized
by introducing a new CUDA kernel that minimizes the transfers between the
different levels of GPU memory, achieving a median speed-up factor of×1.4 while
also reducing energy consumption (median of ×0.85). We also demonstrate the
broader significance of our results by showing how the new kernel can speed up
the inference of neural networks.

1 Introduction

Accelerating the inference and training of deep neural networks is a major challenge given their
constantly growing resource requirements. At the very heart of this is the acceleration of matrix
multiplication on GPU, which is one of the main operation during training and inference. For instance,
in a forward pass of vision transformers (ViTs) [Dosovitskiy et al., 2020], between 30% and 60% of
the total time is spent in linear layers (see Appendix B.6 for details). One key approach that aims to
accelerate computations is by enforcing sparsity constraints on certain weight matrices in the model.

The butterfly matrices have emerged as a promising form of sparse matrices: approximating a matrix
by a product of butterfly factors can be done using an efficient algorithm that outperforms gradient
descent, with some guarantees of reconstruction if the target matrix admits exactly or approximately
a butterfly factorization [Le et al., 2022, Zheng et al., 2023, Le, 2023]; butterfly matrices can be
quantized more efficiently than by naive rounding [Gribonval et al., 2023]; and butterfly matrices have
a nearly linear theoretical complexity for matrix-vector multiplication. The latter is precisely why
many linear operators, such as the Discrete Fourier Transform (DFT) or the Hadamard Transform,
have fast algorithms: they can be written as butterfly matrices, allowing for fast implementations of
these operators. This nearly linear theoretical complexity for matrix-vector multiplication comes

∗Equal contribution

Preprint. Under review.



from the definition of a butterfly matrix W: it must admits a factorization W = B1 . . .BL, called
butterfly factorization, where each factor Bℓ has some specific structured sparsity pattern (support of
the matrix) with an associated small theoretical multiplication complexity. In general, the support
of a butterfly factor is of the form of Sπ = Ia ⊗ 1b×c ⊗ Id (Figure 2) for some tuple of integers
π = (a, b, c, d), where ⊗ denotes the Kronecker product, 1m×n is the matrix of size m× n full of
ones, and In is the identity matrix of size n, see Definition 2.1 below [Lin et al., 2021, Le, 2023]. A
concrete example is given in Figure 1.

W = × × ×

B1 B2 B3 B4

Figure 1: Example of butterfly factorization W = B1 . . .BL, for L = 4. Here, the factor Bℓ ∈
RN×N (with N = 2L) has support Sℓ = I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ . This corresponds to the butterfly
factorization of the Discrete Fourier Transform matrix W, up to a permutation of its column indices.
In practice, the goal is to replace weight matrices of neural networks by butterfly matrices W =
B1 . . .BL while having (i) at least the same accuracy for the learning task at hand, (ii) less parameters
to store, and (iii) an accelerated inference and training phase. To the best of our knowledge, previous
works mostly focused on (i) and (ii) [Vahid et al., 2020, Lin et al., 2021, Dao et al., 2022a,b]. This
paper is the first2 to extensively study the time efficiency of these butterfly networks.

Main contributions. (i) The first contribution is to assess for the first time the efficiency of many
baseline PyTorch GPU implementations for multiplying a batch of vectors with a butterfly matrix,
including those that rely on existing efficient routines for batch GEMM3, block-sparse matrix
multiplication and tensor contraction. The goal is to provide a benchmark that can be easily adapted
to include a new implementation, and that can be used to select the best implementation for given
settings.

(ii) The existing implementations call high-performance libraries from Python. However, Python
lacks routines to explicitly control the GPU memory transfers, and because of that, we find with our
benchmark that existing implementations spend up to 50% of their total runtime on GPU memory
rewriting operations. To address this, we release a new open-source CUDA kernel that minimizes the
transfers between the different levels of GPU memory, achieving a median speed-up factor of ×1.4
in float-precision while also improving energy efficiency with a median reduction factor of ×0.85.
We further show that the new kernel gets more and more advantageous when the relative number of
memory rewritings increases. We also demonstrate the broader significance of our results by showing
how the new kernel can accelerate the inference of neural networks.

Outline. Section 2 introduces the framework to study butterfly matrix multiplication, and describes
baseline GPU implementations on PyTorch. Section 3 assesses for the first time the cost of GPU
memory access in these baselines. Section 4 explains how the new CUDA kernel reduces the memory
transfer compared to previous existing implementations. Section 5 benchmarks the execution time
and the energy consumption of baseline GPU implementations on PyTorch, and the new kernel, for
the multiplication with a single butterfly factor. Section 6 concretely illustrates broader implications
of this work: the new kernel can be used to speed up the inference of neural networks.

2 Background on butterfly factorization

We adopt the definition of butterfly matrices stemming from Lin et al. [2021] and mathematically
formalized in Le [2023]. To the best of our knowledge, it captures all the variants of butterfly
factorizations that have been empirically tested for deep neural networks in the literature [Dao et al.,
2019, 2022a,b, Vahid et al., 2020, Lin et al., 2021, Fu et al., 2023]. Details about this unification are
given for the curious readers in Appendix C.2.

2See Appendix A for the only numerical reports we found in the literature.
3GEMM stands for General Matrix Multiplication.

2



Definition 2.1 (Butterfly factor, architecture and matrix). Given a tuple π := (a, b, c, d) ∈ (N>0)
4,

a matrix B ∈ Rabd×acd is called a π-butterfly factor (or simply factor when π is clear from the
context) if supp(B) ⊆ supp(Sπ), where Sπ := Ia ⊗ 1b×c ⊗ Id (see Figure 2) and where supp(M)
denotes the support of a matrix M, i.e., the subset of indices (i, j) for which the entries of M at (i, j)
is nonzero. The set of π-butterfly factors is denoted Σπ .

Figure 2: A π-butterfly factor with π = (a, b, c, d) is a block-diagonal matrix with a blocks, where
each block itself is a block matrix composed by b× c diagonal matrices of size d× d.

A butterfly architecture of depth L ∈ N>0 is a sequence β = (πℓ)
L
ℓ=1 of patterns πℓ =

(aℓ, bℓ, cℓ, dℓ) ∈ (N>0)
4 satisfying the following compatibility condition4: aℓcℓdℓ = aℓ+1bℓ+1dℓ+1

for ℓ ∈ {1, . . . , L− 1}. A matrix W is called a butterfly matrix if there exists a butterfly architecture
β = (πℓ)

L
ℓ=1 with associated πℓ-butterfly factors Bℓ such that W = B1 . . .BL.

Therefore, a π-butterfly factor is sparse and structured. It has at most abcd nonzero entries when
π = (a, b, c, d), which yields a sparsity ratio abcd

a2bcd2 = 1
ad , since it is of size abd× acd.

2.1 Generic algorithm for butterfly sparse matrix multiplication

Algorithm 1 is a generic algorithm tailored to the butterfly sparsity, allowing for the multiplication
of a batch of vectors with a single π-butterfly factor. It generalizes to general butterfly patterns
π = (a, b, c, d) the one suggested by Dao et al. [2022b] in the specific cases a = 1 or d = 1.

Algorithm 1 Butterfly sparse matrix multiplication

Input: π = (a, b, c, d), B ∈ Σπ , X ∈ RK×N (N := acd)
Output: Y = XB⊤ ∈ RK×M (M := abd)

1: Y ← 0K×M

2: for (i, j) ∈ J0, a− 1K× J0, d− 1K do
3: col←

{
iNa + j + ℓd | ℓ ∈ J0, c− 1K

}
4: row←

{
iMa + j + kd | k ∈ J0, b− 1K

}
5: Y[:, row]← X[:, col]B⊤[col, row]
6: end for

Algorithm 2 Equivalent formulation

Input: π,X, B̃ := P⊤BQ⊤ with
B ∈ Σπ, P := (Ia ⊗ Pb,d),
Q := (Ia ⊗Pc,d)

⊤ cf. (1)
Output: Y = XB⊤ ∈ RK×M

1: X̃← XQ⊤

2: Ỹ ← X̃B̃⊤

3: Y ← ỸP⊤

Notations. X ∈ RK×N is the input matrix (batch size K, input dimension N ). Σπ is the set of
matrices with butterfly pattern π = (a, b, c, d) (Definition 2.1). 0m×n is the m × n matrix filled
with zeros. For integers a ≤ b, Ja, bK := {a, a+ 1, . . . , b}. For a matrix M, M[I, :] is the submatrix
restricted to rows I , and M[I, J ] is the restriction to rows I and columns J . Matrix transposition is
represented by ⊤. Matrix indices start at zero.

Theoretical complexity. It is not hard to see that the theoretical complexity of Algorithm 1, defined
as the number of scalar multiplications, is Kabcd, for a batch size K and a pattern π = (a, b, c, d).

On Algorithm 1, and the equivalent Algorithm 2. When d = 1, the butterfly factor B is block-
diagonal with a dense blocks, as can be seen from Figure 2. In this special case, Algorithm 1
loops over each of these blocks, given by B[row, col], where the subsets row and col are indexed
by i ∈ J0, a − 1K in Algorithm 1, and performs the matrix multiplication with the corresponding
submatrix of X. The general case d ≥ 1 is similar: the butterfly factor B is, up to permutation

4The compatibility condition ensures that the output dimension of Bℓ+1 matches the input dimension of Bℓ

so that the product B1 . . .BL is well-defined.

3



Figure 3: Illustration of Algorithm 1 for sparsity pattern π = (2, 3, 2, 3) and batch size K = 8. The
subsets of rows and columns (row1, col1) are associated with the values (i, j) = (0, 1) in the “for"
loop of Algorithm 1, whereas (row2, col2) are associated with (i, j) = (1, 1).

operations, block-diagonal with ad dense blocks, and Algorithm 1 loops over each of these
dense blocks, given by B[row, col] with row and col defined in lines 3 and 4. See Figure 3 for an
illustration. More precisely, for any π = (a, b, c, d), denoting π̃ = (ad, b, c, 1), we have:

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)
⊤︸ ︷︷ ︸

:=Q

= PSπ̃Q, (1)

where Pp,q for two integers p, q is the so-called (p, q) perfect shuffle permutation matrix of size
pq × pq [Van Loan, 2000] (see Appendix C.1 for details). Therefore, for any B ∈ Σπ, we have
B = PB̃Q with B̃ := P⊤BQ⊤ ∈ Σπ̃ , i.e., B̃ is block-diagonal with ad dense blocks of size b× c.
Algorithm 1 loops over each of the ad dense submatrices B[row, col] and accumulates the result
in Y. Many concrete implementations of Algorithm 1 presented below are based on the equivalent
formulation Y = XB⊤ = XQ⊤B̃⊤P⊤: they directly store B̃⊤ instead of B⊤, permute the inputs
with Q, multiply with B̃⊤, and repermute with P, which corresponds to Algorithm 2.

2.2 Baseline GPU implementations

We now describe concrete baseline GPU implementations of Algorithms 1 and 2. The exact codes
are given in Appendix D.1.

bmm and bsr implementations. We consider the bmm implementation from Dao et al. [2022b], and
we also propose a new implementation bsr. Note that the original bmm implementation from Dao
et al. [2022b] only works for a pattern π = (a, b, c, d) satisfying a = 1 or d = 1. We extend
it to the general case. Both bmm and bsr implement Algorithm 2 as specified by Table 1. For the
multiplication with B̃ (line 2 in Algorithm 2), bmm relies on batched GEMM NVIDIA routines called
through torch.bmm, while bsr relies on the PyTorch block-sparse library.

bmm bsr

Storage format for B̃ 3D-tensor of shape (ad, b, c)
2D-tensor of shape (abd, acd)

stored in BSR5 format
Line 1 of Algorithm 2 torch.reshape
Line 2 of Algorithm 2 torch.bmm torch.nn.functional.linear
Line 3 of Algorithm 2 torch.reshape

Table 1: Differences in the implementation of Algorithm 2 between bmm and bsr.

einsum implementation. We propose a new baseline implementing Algorithm 1 with tensor
contractions, using the einops library [Rogozhnikov, 2021]. It stores the nonzero entries of B ∈ Σπ

with a 4D-tensor B_einsum of shape (a, b, c, d), in such a way that the slice B_einsum[i, :, :, j] for
(i, j) ∈ J0, a− 1K× J0, d− 1K stores the entries of B[row, col] where row, col are defined in lines
3 and 4 of Algorithm 1. The batched matrix multiplication operations at line 5 are then implemented
using Einstein summation between this 4D-tensor and a reshaped input tensor.

The above implementations (bmm, bsr, einsum) can be compared to the two following generic
implementations (dense and sparse) that ignore the butterfly sparsity.

dense implementation. This ignores the sparsity of the butterfly factor B, by storing all
its entries, including zeros, in a tensor of shape (M,N). The multiplication is done with
torch.nn.functional.linear, the default PyTorch implementation for linear layers.

4



sparse implementation. This exploits the sparsity of the butterfly factor B but not its structure (re-
call that the sparsity pattern is not arbitrary, but structured as Kronecker products, see Definition 2.1).
The nonzero entries of the factor B are saved in a tensor stored in the Compressed Sparse Row (CSR)
format, and the matrix multiplication is done with torch.nn.functional.linear.

Batch-size-first vs. batch-size-last. The entries of the input X ∈ RK×N can be stored either in a
PyTorch tensor X_bsf of shape (K,N), or in a PyTorch tensor X_bsl of shape (N,K), in such a
way that the entries of the row X[k, :] are stored in the slices X_bsf[k, :] and X_bsl[:, k]. Because of
PyTorch’s row-major convention, the tensor X_bsf stores in contiguous memory the entries of each
row X[k, :], as opposed to X_bsl that store contiguously the entries of each column X[:, i]. These
two different memory layouts are called batch-size-first and batch-size-last6 in this paper. Note that
the tensor saving the output Y = XB⊤ will always be in the same memory layout as the input tensor.
All the implementations above can be implemented in both ways. While the main point of the paper
is to compare the implementations, we will also study the effect of this memory layout convention.

3 Memory accesses in baseline implementations

While it is not clear what the tensor contraction einsum implementation is exactly doing underneath,
the implementations bmm and bsr explicitly perform permutation operations corresponding to P and
Q (lines 1 and 3 in Algorithm 2) to be able to use high-performance multiplication routines for the
multiplication with B̃ (line 2 in Algorithm 2). This paper assesses for the first time the cost of these
memory operations in practice, as we now discuss.

Importance of data transfers. GPU memory management plays a critical role in optimizing
performance. Memory in a GPU is organized hierarchically, with global memory being the largest
and slowest, followed by shared memory, and finally registers, which are the smallest and fastest
[NVIDIA, 2024, Sec. 2.3]. By default, data resides in the global memory of the GPU. Each thread
of the GPU runs a kernel that reads data from global memory into registers, performs register-
level computations, and writes the results back to global memory. Therefore, when operations are
bottlenecked by memory accesses, it is critical to minimize data transfers between global memory,
shared memory, and registers to obtain an efficient GPU implementation [NVIDIA, 2024, Sec. 5.3].

Data transfers in baseline implementations. In this paper, we argue that the baseline bmm, bsr
and einsum implementations for butterfly multiplication require performing several passes between
global memory and registers that can account for a large proportion of the total runtime in practice.
This suggests that there is room for improvement in the memory accesses of these implementations.

Matrix 
multiplication Permutation

Matrix 
multiplicationPermutation

shape (ad, c, b)shape (ad, K, c)

Global memory

Butterfly 
adapted reading

Butterfly 
adapted writing

shape (K, acd) shape (ad, K, b) shape (K, abd) shape (K, acd) shape (ad, c, b) shape (K, abd)

Registers

(K, c)

(c, b)

(K, c)

(c, b)
ad

(K, b) (K, b)
ad

Shared memory

Figure 4: Data flow between the different levels of GPU memory for the bmm implementation
(Section 2.2) from Dao et al. [2022b] and the new kernel (Section 4).

6By analogy with the recent PyTorch optimization channels last that moves the channels dimension to the
last position for convolutional layers.

5



Let us focus on bmm, as we will find it to be faster than einsum and bsr. The data flow of bmm is
illustrated in Figure 4. There is one pass between the global memory and the registers to perform the
permutation with P (line 3 in Algorithm 2), one for the multiplication with B̃ (line 2), and another
one for the permutation with Q (line 1).

Doing at least three passes between the global memory and the registers is necessary for any
implementation that performs all the multiplications X[:, col]B⊤[col, row] (line 5 in Algorithm 1,
or equivalently line 2 in Algorithm 2) by calling high-performance libraries from common Python
interfaces (PyTorch, Tensorflow). Indeed, calling multiplication routines from Python requires in
general having the entries of X[:, col] and B⊤[col, row] stored contiguously in global memory.
This is not the case of the entries of X[:, col] when X ∈ RK×N is directly stored contiguously in
a 2D-tensor of shape (K,N) or (N,K), and when d > 1, because the indices in col are equally
spaced by d (see line 4 in Algorithm 2). And this is the only memory layout that we can assume
for the entries of X when the matrix multiplication is a part of a larger pipeline, such as in a neural
network. Therefore, a first pass between the global memory and the registers is required to write
the entries of X[:, col] contiguously in global memory, see Figure 4. Similarly, the result of the
multiplication Y[:, row] = X[:, col]B⊤[col, row], as returned by an efficient routine called from
Python, will in general be stored contiguously in global memory for each pair (row, col). But indices
in row are equally spaced by d: this requires another pass to rewrite them equally spaced by d in the
final output 2D-tensor storing all the entries of Y contiguously in memory. With the pass implied
by the actual multiplication routine, this results in three passes between the global memory and the
registers (Figure 4).

Estimated time for memory rewritings in bmm. To the best of our knowledge, this paper is the
first to discuss the practical cost of memory rewritings in baseline implementations such as bmm. For
input and output dimensions N and M , and a batch size K, the memory rewritings of X[:, col] and
Y[:, row] for all pairs (row, col) (Algorithm 1) concern KN +KM coefficients to be moved in
memory: each coefficient of the input and output tensors is moved exactly once. The total number of
scalar multiplications performed when computing the products Y[:, row] = X[:, col]B⊤[col, row]
for all (row, col) (Algorithm 1) is equal to K × #nnz (batch size times the number of nonzero in B).

Figure 5 reports time estimates for memory rewritings in the bmm implementation (see Appendix B.2
for more details on the experimental protocol). It shows that the relative time spent on memory
rewritings increases with the ratio

number of memory rewritings
number of scalar multiplications

=
KN +KM

K × #nnz
=

b+ c

bc
(2)

where the last equality holds in the case of a butterfly factor with sparsity pattern π = (a, b, c, d),
since N = acd, M = abd and #nnz = abcd in this case. Figure 5 shows that these memory
rewritings can take up to 45% of the total runtime.7 In conclusion, it is crucial to optimize the
data transfers between the different levels of GPU memory to improve current implementations.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

(b + c) / (bc)

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

Figure 5: Estimated relative time spent on memory rewritings in bmm for the multiplication with
B ∈ Σπ , for several π = (a, b, c, d). We regroup patterns by their value of (b+ c)/(bc), and plot a
boxplot to summarize the corresponding measurements.

7Regardless of the memory layout convention, batch-size-first or batch-size-last.

6



4 New CUDA kernel with reduced memory transfers

For better management of memory accesses, we need to go to a lower level than Python. This is
where the new CUDA kernel comes in. It has the minimum possible number of back and forth
between global memory and registers thanks to custom read and write phases between global and
shared memory, tailored to butterfly sparsity. These new read and write phases allow to perform a
single back and forth between the different levels of memory, as shown in Figure 4.

Implementation. The reading phase loads the entries of X[:, col] directly from the global memory
by accessing non-contiguous columns of X equally spaced by d (see Figure 3), and stores them
contiguously in shared memory. Since we are still loading entire columns of X, the reading phase is
expected to be more efficient if the entries in the same column are contiguous in memory, in order to
ensure that most of the memory accesses remain contiguous and efficient. This will only be the case
when X is stored with the batch-size-last memory layout (as defined in Section 2.2). When in shared
memory, the kernel implements the classic tile matrix multiplication algorithm8 [Li et al., 2019,
Boehm, 2022, NVIDIA, 2023a,b, 2024] to compute each product X[:, col]B⊤[col, row] for each
subsets row, col in Algorithm 1. Once these products are computed, the kernel again has a custom
writing phase from shared to global memory, rewriting the results that are stored contiguously in
shared memory, to non-contiguous locations in global memory, because each submatrix Y[:, row]
corresponds to non-consecutive columns of the output Y (see Figure 3). This writing phase is also
expected to be more efficient in the batch-size-last memory layout, ensuring the entries of a same
column of Y[:, row], and thus the write operations, to be contiguous in memory.

Comparison with other baseline implementations. This new kernel has fewer global memory
accesses compared to the baselines einsum, bsr and bmm, because it only reads each coefficient of X
and B once and writes the result of the multiplication Y once, while those baseline implementations
read X and Y twice and rewrite them once (to permute them). It also has fewer global memory
accesses compared to the dense implementation (Section 2.2), since the dense implementation
also reads the zero entries of B and the corresponding coefficients of X, while our kernel does not.
Compared to the generic sparse implementation, we have the same number of memory accesses,
but the sparse implementation is agnostic to the sparsity structure of B, so it is expected to be less
efficient since the memory accesses are not tailored to the known location of the nonzero entries.

5 Benchmarking the multiplication by a single butterfly factor

We perform the first benchmark of different implementations for butterfly matrix multiplication, at
the finest granularity, where we measure the time for the multiplication with a single butterfly factor
B. In particular, we validate numerically the benefits of reducing the memory transfers in the kernel
implementation, compared to the baselines einsum, bsr and bmm.

Protocol. The benchmark is run in float-precision on a subset of 600 sparsity patterns π =
(a, b, c, d) in α × β × β × α, with α := {1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128}, β :=
{48, 64, 96, 128, 192, 256, 384, 512, 768, 1024}, such that b = c or b = 4c or c = 4b. These
patterns correspond to dimensions of butterfly factors B ∈ RM×N with (M,N) = (abd, acd) that
could be used in neural networks. We choose as batch size K = 128 × 196 = 25088, which is
standard as it corresponds to the effective batch size for linear layers in ViTs where the number of
sequences per batch is 128, and the number of tokens per sequence is 196. Further details are given
in Appendix B.1.

Implementations specialized to butterfly sparsity improves over generic implementations. The
first line of Table 2 shows that at least one of the implementations specialized to the butterfly structure
among kernel, bmm, einsum and bsr improves over the generic dense and sparse implementation,
which do not take into account the butterfly sparsity. The speedup increases with the matrix size, see
Appendix B.3.

The baseline bmm is faster than the other baselines einsum and bsr. This is shown in the second
line of Table 2, where the bmm implementation improves over min(einsum, bsr) in 93% of the tested
cases. The speedup increases with the matrix size, see Appendix B.4. Therefore, when comparing

8Classical optimizations are used, as detailed in Appendix D.2.

7



Table 2: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 (denoted by
time(algo1) < time(algo2)), and the median acceleration factor in such cases (that is, the median
ratio time of algo2

time of algo1 ). For each implementation, we take the minimum time between the batch-size-first
and the batch-size-last memory layout.

min time

kernel
bmm

einsum
bsr

 < min time
(
dense
sparse

)
time(bmm) < min time

einsum
bsr

dense
sparse

 time(kernel) < min time


bmm

einsum
bsr

dense
sparse


99.67% (×6.57) 92.66% (×1.37) 88.10% (×1.39)

the new kernel implementation to other baselines, we will mainly focus on the comparison between
bmm and kernel.

The new kernel implementation is faster than existing baselines. The third row of Table 2 shows
that kernel is faster than all other baselines in 88% of the tested patterns. This empirically validates
the benefits of the reduced memory transfer in the kernel implementation. In the following, we
provide further details on the influence of the memory layout (batch-size-first vs. batch-size-last)
on this improvement. Additionally, we analyze the patterns π = (a, b, c, d) for which the kernel
outperforms baseline implementations.

0.
01

0.
00

2

0.
00

3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

b + c
bc

1
0.9

2

3

m
in

 ti
m

e(
bm

m
, e

in
su

m
, b

sr
)

di
vi

de
d 

by
 ti

m
e(

ke
rn

el
)

Figure 6: Time speedup factor of kernel com-
pared to min(bmm, einsum, bsr). For each im-
plementation, we take the minimum time between
the batch-size-first and batch-size-last memory
layouts. We regroup the patterns by their value of
(b+ c)/(bc), and plot a boxplot to summarize the
corresponding measurements.

d(b + c) / (bc)e
n
e
rg

y
(k

e
rn

e
l)

/m
in

 e
n
e
rg

y
(b

m
m

, 
e
in

su
m

, 
d
e
n
se

)

10 3 10 2 10 1 100
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Figure 7: Energy consumed by kernel com-
pared to the minimum consumed by bmm,
einsum and bsr. For each implementation, we
take the minimum energy consumed between
the batch-size-first and batch-size-last memory
layouts. We regroup patterns by their value of
d(b+ c)/(bc).

Impact of the memory layout. For baseline implementations, switching to batch-size-last yields a
high systematic speedup for sparse, high variability in the speedup of bsr, and essentially no impact
to negative impact for the other methods, see Appendix B.5 for numerical results. The important
part is that it has no impact on bmm, and since bmm is the fastest baseline implementation (Table 2),
switching to batch-size-last has no impact on the best of the baseline implementations. However, it
yields a systematic speedup (about×2) for the kernel implementation. This acceleration is expected,
since the batch-size-last memory layout allows for more efficient memory accesses in the kernel
implementation, as detailed in Section 4.

Analyzing the cases where kernel outperforms baselines. As seen in Section 4, the kernel has
an improved memory access design compared to the rest of the baselines. Figure 6 confirms this
experimentally: the kernel implementation becomes increasingly time-efficient compared to
the baseline implementations as the relative number of memory accesses increases, i.e. when the

8



following ratio increases (introduced in (2))

number of memory rewritings
number of scalar multiplications

= (b+ c)/(bc).

The kernel improves on energy efficiency. For sparsity patterns π = (a, b, c, d), the integer d
corresponds to the distance between two columns of the butterfly factor with the same set of nonzero
entries. When d is large, the memory rewritings made by bmm are likely to be more expensive as
the columns in the same set col of Algorithm 1 are further away from each other. In practice, we
observe the kernel to be more and more energy-efficient as the relative number of memory rewritings
(b+ c)/bc times the cost d of these memory rewritings increases, as shown in Figure 7. Overall, the
median energy reduction factor is ×0.85, and the new kernel improves the energy consumption in
72% of the tested cases. See Appendix B.1 for details about the measurements. This is particularly
noteworthy as it demonstrates that the kernel not only achieves higher time efficiency but also
reduces energy consumption compared to other baselines. This dual advantage makes the kernel
an effective solution for improving both performance and sustainability.

6 Broader implications for neural networks: accelerating inference

The inference of neural networks is claimed to represent 90% of the cost of machine learning at
scale according to independent reports from both NVIDIA [HPCwire, 2019] and Amazon Web
Services [Jeff Barr, 2019]. We now investigate whether replacing fully-connected layers by butterfly
matrices accelerates the inference. While the same could also apply to other architectures, we will
consider Vision Transformers (ViTs) [Dosovitskiy et al., 2020]. We find that the computational cost
of fully-connected layers is significant in such architectures: depending on the size of the ViT, from
30% to 60% of the total time in a forward pass is spent in fully-connected layers (see Appendix B.6
for details).

Protocol. We benchmark in float-precision various components of a ViT-S/16 architecture: a linear
layer with bias, an MLP with non-linear activation and/or normalization layers, a multi-head attention
module, etc. As in Dao et al. [2022b], the matrices that are replaced by a butterfly matrix are the
weight matrices of linear layers in feed-forward network modules, and the projection matrices for
keys, queries and values in multi-head attention modules. We focus on batch-size-first as it is the
default convention in PyTorch9. Details and some additional results are given in Appendix B.7.

Results. We denote by time(fully-connected) the inference time without butterfly matrices
(and therefore, with the standard PyTorch implementation). Table 3 shows that time(kernel) <
time(bmm) < time(fully-connected) over all the different submodules. This concretely shows
that using butterfly matrices and the kernel implementation accelerates the inference of
standard neural networks.

Table 3: Acceleration of submodules of a ViT-S/16 using butterfly matrices.
time(bmm)

time(fully-connected)
time(kernel)

time(fully-connected)

Linear N ×N 0.82 0.50
Feed-forward network 0.91 0.77
Multi-head attention 0.87 0.79
Block 0.90 0.78
Butterfly ViT-S/16 0.89 0.78

7 Conclusion

This work is the first to evaluate the efficiency of existing butterfly sparse matrix multiplication
algorithms on the GPU. Our benchmark shows that baseline implementations require costly memory
rewrites in global memory, which are not negligible in practice. The proposed new CUDA kernel
significantly reduces the cost of global memory accesses. Specifically, this new kernel is faster than

9The insertion of butterfly matrices in the batch-size-last memory layout would a priori require a careful
implementation of the rest of the operations, that are for now optimized in batch-size-first in PyTorch.

9



previous baseline implementations, with a median reduction factor of ×0.85. We also show how it
can be used to accelerate the inference of neural networks.

Perspectives. While we have focused on optimizing memory management, the multiplication part
of our kernel may still have room for improvement, especially in half-precision. We hope this will
encourage work in that direction. The new kernel is particularly performant in batch-size-last. We
hope this will lead to further efforts in the batch-size-first setting and encourage revisiting other
common operations in neural networks within the batch-size-last configuration. A translation of our
kernel into OpenCL could enable it to run on AMD hardware and other platforms. We also hope that
our benchmark will serve as a baseline for comparing butterfly implementations on other hardware:
CPU, Intelligence Processing Unit, FPGA, etc.

Acknowledgments

This work was supported in part by the AllegroAssai ANR-19-CHIA-0009, by the NuSCAP ANR-
20-CE48-0014 projects of the French Agence Nationale de la Recherche and by the SHARP ANR
project ANR-23-PEIA-0008 in the context of the France 2030 program.

The authors thank the Blaise Pascal Center for the computational means. It uses the SIDUS [Quemener
and Corvellec, 2013] solution developed by Emmanuel Quemener.

We would also like to thank Patrick Pérez, Gilles Puy, Elisa Riccietti, Nicolas Brisebarre, and Rémi
Gribonval for their useful feedback, and Emmanuel Quemener for reserving computing resources for
us while we ran our experiments.

References
Simon Boehm. How to optimize a CUDA matmul kernel for cuBLAS-like performance: A worklog,

2022. https://siboehm.com/articles/22/CUDA-MMM [Accessed: April 2024].

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In ICML, 2019.

Tri Dao, Beidi Chen, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. In ICLR, 2022a.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In ICML, 2022b.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022c.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Daniel Y Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch mixer: A simple
sub-quadratic GEMM-based architecture. In NeurIPS, 2023.

Rémi Gribonval, Theo Mary, and Elisa Riccietti. Optimal quantization of rank-one matrices in
floating-point arithmetic—with applications to butterfly factorizations. preprint, 2023. URL
https://inria.hal.science/hal-04125381.

HPCwire. AWS Upgrades its GPU-Backed AI Inference Platform. https://www.hpcwire.com/
2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/, March 2019.
Accessed: [April 2024].

Jeff Barr. Amazon EC2 Update – Inf1 Instances with AWS Inferentia Chips for High Performance
Cost-Effective Inferencing. aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-ins
tances-with-aws-inferentia-chips-for-high-performance-cost-effective-inf
erencing, 2019. Accessed: [April 2024].

10

https://siboehm.com/articles/22/CUDA-MMM
https://inria.hal.science/hal-04125381
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing
aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing
aws.amazon.com/blogs/aws/amazon-ec2-update-inf1-instances-with-aws-inferentia-chips-for-high-performance-cost-effective-inferencing


Quoc-Tung Le. Algorithmic and theoretical aspects of sparse deep neural networks. PhD thesis,
2023. URL https://inria.hal.science/tel-04329531.

Quoc-Tung Le, Léon Zheng, Elisa Riccietti, and Rémi Gribonval. Fast learning of fast transforms,
with guarantees. In ICASSP, 2022.

Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. A coordinated tiling and
batching framework for efficient GEMM on GPUs. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, 2019.

Rui Lin, Jie Ran, King Hung Chiu, Graziano Chesi, and Ngai Wong. Deformable butterfly: A highly
structured and sparse linear transform. In NeurIPS, 2021.

NVIDIA. Efficient GEMM in CUDA: documentation, 2023a. https://github.com/NVIDIA/cu
tlass/blob/main/media/docs/efficient_gemm.md [Accessed: April 2024].

NVIDIA. Matrix multiplication background user’s guide, 2023b. https://docs.nvidia.com/
deeplearning/performance/dl-performance-matrix-multiplication/index.html
[Accessed: April 2024].

NVIDIA. CUDA C++ programming guide, 2024. https://docs.nvidia.com/cuda/cuda-c-p
rogramming-guide/index.html [Accessed: April 2024].

E. Quemener and M. Corvellec. SIDUS—the Solution for Extreme Deduplication of an Operating
System. Linux Journal, 2013.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
ICLR, 2021.

Keivan Alizadeh Vahid, Anish Prabhu, Ali Farhadi, and Mohammad Rastegari. Butterfly transform:
An efficient FFT based neural architecture design. In CVPR, 2020.

Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and applied
mathematics, 123(1-2):85–100, 2000.

Phil Wang. Scaled dot-product attention implementation, 2024a. https://docs.nvidia.com/
deeplearning/performance/dl-performance-matrix-multiplication/index.html
[Accessed: April 2024].

Phil Wang. Simple ViT implementation, 2024b. https://github.com/lucidrains/vit-pytor
ch/blob/main/vit_pytorch/simple_vit.py [Accessed: April 2024].

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In CVPR, 2022.

Léon Zheng, Elisa Riccietti, and Rémi Gribonval. Efficient identification of butterfly sparse matrix
factorizations. SIAM Journal on Mathematics of Data Science, 5(1):22–49, 2023.

11

https://inria.hal.science/tel-04329531
https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md
https://github.com/NVIDIA/cutlass/blob/main/media/docs/efficient_gemm.md
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/simple_vit.py
https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/simple_vit.py


Appendices

A Related works

We now review the numerical results we found in the literature about time efficiency of existing
algorithms for sparse butterfly matrix multiplication.

It is reported in Dao et al. [2022b] that some butterfly networks were twice faster to train than their
dense counterparts for image classification and language modeling, without additional information.

In Fu et al. [2023] is reported an acceleration of X 7→W−1(K ⊙WX) where K is some dense
weight matrix, ⊙ is the element-wise multiplication, and W is the DFT matrix (which admits a
butterfly factorization), as soon as the dimensions of W are at least equal to 4096.

These results do not provide extensive information on the efficiency of sparse butterfly matrix
multiplication, motivating the benchmark in this paper.

B Experiments

B.1 Details on the experiments

The pytorch package version is 2.2 and pytorch-cuda is 12.1.

Matrix sizes. In all our experiments with matrices, we set the batch size to K = 128× 196 = 25088,
a very standard choice for ViTs, as this quantity corresponds to the standard number of tokens per
sequence (192) multiplied by the standard number of sequences in a batch of inputs (128). When
dealing with a batch of images in neural networks, we choose the standard choice of batch size
K = 128.

Matrix entries. The coordinates of any butterfly factor B ∈ Rabd×acd with sparsity pattern (a, b, c, d)
are drawn i.i.d. uniformly in [− 1√

c
, 1√

c
], as for the initialization chosen for training in Dao et al.

[2022b], while the coordinates of the inputs X are drawn i.i.d. according to a standard normal
distribution N (0, 1).

Benchmarking time execution. All the experiments measuring the time execution of the implementa-
tions (Tables 2, 3, 4 and 7, Figures 5 to 6 and 9 to 17) are done on a single NVIDIA A100-PCIE-40GB
GPU on an Intel(R) Xeon(R) Silver 4215R CPU @ 3.20GHz with 377G of memory. The full bench-
mark took approximately 3 days in an isolated environment, ensuring that no other processes were
running concurrently.

Measurements are done using the PyTorch tool torch.utils.benchmark.Timer. The medians
are computed on at least 10 measurements of 10 runs. In 94.2% of the cases, we have an interquartile
range (IQR) that is at least 100 times smaller than the median (resp. 98% for 50 times smaller, and
99.7% for 10 times smaller).

Benchmarking energy consumption. Measurements of the energy consumption (Figure 7) is done
on a single NVIDIA Tesla V100-PCIE-16GB GPU on an Intel(R) Xeon(R) Silver 4215R CPU @
3.20GHz with 754G of memory. The full benchmark took approximately 1.5 days in an isolated
environment. Measurements are made using the pyJoules software toolkit. The medians are computed
on at 10 measurements of at least 16 runs. In 96% of the cases, the IQR is at least 10 times smaller
than the median, and in all the cases, it is 5 times smaller.

Patterns benchmarked for time measurements (Section 5). The considered patterns are generated
by the Python code written in Figure 8. In all the cases, we only consider patterns (a, b, c, d) with
b = c or b = 4c or c = 4d to have an input size N and an output size M such that N = M or
N = 4M or M = 4N . This choice is motivated by the fact that fully-connected layers in ViTs
satisfy have input and output sizes satisfying these constraints.

The first "for" loop in Figure 8 generates a wide range of patterns (a, b, c, d) with a = 1, as this
represents the simplest scenario. Indeed, the case a > 1 simply corresponds to the case a = 1 but
repeated a times in parallel.

12



The second "for" loop in Figure 8 generates patterns with a > 1 offering fewer choices for d to keep
the benchmark concise in terms of execution time. This loop also imposes additional conditions
on b and c (line 28 of the code) that we now explain. Many graphs are plotted based on the ratio
(b+ c)/bc, as introduced in Equation (2). Because of that, our goal was to include as many distinct
ratios (b+ c)/bc as possible while keeping the benchmark brief. We excluded certain (b, c) values
because they resulted in a ratio that was very close to one already in the benchmark and were more
computationally intensive.

1 import itertools
2

3 batch_size = 25_088
4 size_limit = 2_147_483_647
5

6 a_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]
7 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
8 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
9 d_list1 = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128]

10 d_list2 = [4, 16, 64]
11

12 def get_patterns_benchmark ():
13 patterns_list = []
14

15 def add_pattern(a, b, c, d):
16 if batch_size * a * c * d <= size_limit and \
17 batch_size * a * b * d <= size_limit and \
18 a * b * c * d <= size_limit:
19 patterns_list.append ((a, b, c, d))
20

21 for b, c, d in itertools.product(b_list , c_list , d_list1):
22 a = 1
23 if (b == c or b == 4 * c or c == 4 * b):
24 add_pattern(a, b, c, d)
25

26 for a, b, c, d in itertools.product(a_list , b_list , c_list ,
d_list2):

27 if a != 1 and \
28 (b, c) not in [(1024 , 256), (256, 1024) , (128, 512), (512,

128), (64, 256), (256, 64)] and \
29 (b == c or b == 4 * c or c == 4 * b):
30 add_pattern(a, b, c, d)
31

32 return patterns_list

Figure 8: Python code to generate the patterns benchmarked for the execution time in the numerical
experiments of Section 5.

Patterns benchmarked for energy measurements (Section 5). For the energy measurements, the
goal is to have diverse sparsity patterns (a, b, c, d) corresponding to many different ratios d(b+ c)/bc
to observe the trend in Figure 7, while keeping the benchmark as short as possible. We chose to
consider the cartesian product of

1 a_list = [1, 4, 16, 32, 64]
2 b_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
3 c_list = [48, 64, 96, 128, 192, 256, 384, 512, 768, 1024]
4 d_list = [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64]

by skipping as in Figure 8 all the patterns with

1 (b,c) in [(1024 , 256) , (256 , 1024) , (128 , 512) , (512 , 128) ,
(64 , 256) , (256 , 64)]

and also all the patterns such that

13



1 b != c and b != 4 * c and c != 4 * b

for the same reasons as the ones explained above in the case of the benchmark on the time execution.

Details on boxplots. In all boxplots (Figures 5 to 7 and 9 to 17), the orange line corresponds to the
median, the boxes to the first and third quartile and the whiskers to the 5th and the 95th percentile.
Outliers are not represented on the graph.

B.2 Estimating the time for memory rewritings in the bmm implementation (Section 3)

Protocol. Given a pattern π = (a, b, c, d) and an input X ∈ RK×acd for some batch size K, we
first measure the time ∆t to compute Y := XB⊤ using the bmm implementation. Then, we measure
the time ∆t̃ to perform only the multiplication operations Y[:, row] = X[:, col]B⊤[col, row] in the
bmm implementation (line 2 of Algorithm 2). Therefore, the estimated relative time to perform the
memory rewritings of lines 1 and 3 of Algorithm 2 is simply ∆t−∆t̃

∆t .

Results. Figure 5, which is replicated in the left part of Figure 9, shows that the relative time spent
doing memory rewritings in bmm increases with the ratio (b+ c)/(bc), in the batch-size-first memory
layout. Figure 9 shows that this is similar for both batch-size-first and batch-size-last.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

(a) Batch-size-first (same as Figure 5).

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

(b) Batch-size-last.

Figure 9: Estimated relative time spent on memory rewritings in bmm for the multiplication with
B ∈ Σπ , for several π = (a, b, c, d). We regroup patterns by their value of (b+ c)/(bc), and plot a
boxplot to summarize the corresponding measurements.

B.3 Details on min time(kernel, bmm, bsr, einsum) vs. min time(dense, sparse) (Section 5)

Figure 10 shows that the speed-up factor of implementations specialized to the butterfly sparsity
(kernel, bmm, bsr, einsum) over the generic dense and sparse implementations increases with
the matrix size M ×N . We recall that M = acd and N = abd for a butterfly factor with pattern
π = (a, b, c, d).

B.4 Details on time(bmm) vs. min time(bsr, einsum) (Section 5)

Figure 11 shows that for a sufficient large matrix size M × N , we always have time(bmm) < min
time(bsr, einsum), i.e., the bmm implementation is the most efficient among all baseline implementa-
tions (bmm, einsum, bsr).

14



104 105 106 107 108 109 1010

M × N

100

101
m

in
 ti

m
e(

de
ns

e,
 sp

ar
se

)
di

vi
de

d 
by

m
in

 ti
m

e(
ke

rn
el

, b
m

m
, e

in
su

m
, b

sr
)

Figure 10: Speed-up factor of min time(kernel,
bmm, bsr, einsum) compared to min time(dense,
sparse) as a function of the matrix size M ×N .

104 105 106 107 108 109 1010

M × N

1

0.8

0.9

2

m
in

 ti
m

e(
ei

ns
um

, b
sr

)
di

vi
de

d 
by

 ti
m

e(
bm

m
)

Figure 11: Speed-up factor of time(bmm) com-
pared to min time(einsum, bsr) as a function of
the matrix size M ×N .

B.5 Details on the impact of the memory layout (Section 5)

Figure 12 shows the impact of the memory layout on the execution time of each implementation.

kernel bmm einsum bsr dense sparse

1

10

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

Ti
m

e 
ba

tc
h-

siz
e-

fir
st

 / 
Ti

m
e 

ba
tc

h-
siz

e-
la

st

Figure 12: Boxplots of the ratio time of batch-size-first
time of batch-size-last .

Table 4 shows the percentage of patterns for which the kernel implementation improves over all
baseline implementations, either in the batch-size-first or the batch-size-last memory layout. When
restricting all implementations to the batch-size-first layout, the kernel still improves on 20% of the
tested patterns despite non-contiguous memory accesses (Section 4).

Table 4: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 (denoted by
time(algo1) < time(algo2)), and the median acceleration factor in such cases (that is, the median
ratio time of algo2

time of algo1 ).

time(kernel) < min time(bmm, einsum, bsr, dense, sparse)

Batch-size-first 20.0% (×1.28)
Batch-size-last 88.1% (×1.39)

15



B.6 Time spent in linear layers in vision transformers

This section gives a numerical lower bound estimate on the time spent in fully-connected layers in a
Vision Transformer (ViT).

Results. Table 5 shows that, for different ViTs, the fraction of computation time solely dedicated to
linear layers in feed-forward network modules varies between 31% and 53% in half-precision, and
46% and 61% in float-precision. This proportion increases with the size of the architecture. This
shows that a non-negligible amount of ViTs inference is dedicated to fully-connected layers. Note
that the time for the fully-connected linear layers in the multi-head attention module is not included
in our measurements, so our estimate is only a lower bound on the time effectively devoted to all
fully-connected layers in transformer architectures.

Table 5: Median execution times (ms) of the forward pass in a ViT, and the forward pass in an MLP
containing only all the linear layers involved in the feed-forward network modules of the ViT. The
latter is reported with its ratio over the first. FP16 is half-precision, FP32 is float-precision.

ARCHITECTURE FP16 (S) FP32 (S)

COMPLETE LINEAR IN FFNS COMPLETE LINEAR IN FFNS

VIT-S/16 0.014 0.0046 (31%) 0.090 0.04 (46%)
VIT-B/16 0.036 0.015 (42%) 0.30 0.16 (54%)
VIT-L/16 0.11 0.050 (46%) 1.0 0.58 (58%)
VIT-H/14 0.31 0.16 (53%) 2.6 1.6 (61%)

Details on the estimation. The transformer architecture is composed of a sequence of transformer
blocks, where each block contains a multi-head attention module and a feed-forward network module.
The feed-forward network module is an MLP with one hidden layer of neurons, involving two
fully-connected linear layers. Table 5 reports the time to perform sequentially all the fully-connected
linear layers (without biases) appearing in feed-forward network modules of the considered ViT. This
is compared to the total forward time of the transformer network. This is expected to yield a lower
bound since we did not measure the time spent in fully-connected linear layers in the multi-head
attention module.

Experimental settings. The architecture ViT-S/16 corresponds to the one in Zhai et al. [2022],
while the architecture ViT-B/16, ViT-L/16 and ViT-H/14 correspond to those in Dosovitskiy et al.
[2020]. Input images are of size 224 × 224. In float-precision, the PyTorch implementation of
ViT architecture are taken from Wang [2024b]. In half-precision, the considered implementation
of the transformer architecture uses FlashAttention Dao et al. [2022c] to compute the scaled dot
product attention, like in Wang [2024a]. The MLP containing only the linear layers of the feed-
forward modules in the transformer architecture is implemented using torch.nn.Sequential and
torch.nn.Linear. Experiments are done on a single A100-40GB GPU on AMD EPYC 7742 64-
Core Processor. Measurements are done using the PyTorch tool torch.utils.benchmark.Timer
for benchmarking. The image batch size is set at 128.

B.7 Details on the acceleration of the inference of a ViT (Section 6)

Chosen butterfly matrices. The weight matrices are replaced by butterfly matrices associated to
the following butterfly architectures of depth 2 (Definition 2.1): (1, 192, 48, 2), (2, 48, 192, 1) for the
size N × N , (1, 768, 192, 2), (6, 64, 64, 1) for the size 4N × N , (1, 768, 192, 2), (6, 64, 64, 1) for
the size 4N ×N .

Additional results. Table 6 provides additional results to Table 3 on linear submodules of a ViT-S/16.

16



Table 6: Acceleration of submodules of a ViT-S/16 using butterfly matrices.
time(bmm)

time(fully-connected)
time(kernel)

time(fully-connected)

Linear N ×N 0.82 0.50
Linear N ×N + bias 0.97 0.66
Linear 4N ×N 0.80 0.78
Linear 4N ×N + bias 0.93 0.90
Linear N × 4N 0.91 0.58
Linear N × 4N + bias 0.94 0.61

B.8 Additional results in half-precision

For the sake of completeness we perform the benchmark described in Section 5 in half-precision. The
equivalent of Table 2, Figure 6, Figures 9 to 12 in half-precision are Table 7, Figure 13, Figures 14
to 17, respectively. Note that just as Figure 6, the Figure 13 only considers sparsity patterns for which
min time(kernel, bmm, bsr, einsum) < min time(dense, sparse). This corresponds to 87% of the
tested patterns in half-precision, cf. Table 7.

Table 7: Percentage out of 600 patterns (a, b, c, d) where algo1 is faster than the algo2 in half-
precision (denoted by time(algo1) < time(algo2)), and the median acceleration factor in such cases
(that is, the median ratio time of algo2

time of algo1 ). For each implementation, we take the minimum time between
the batch-size-first and the batch-size-last memory layout. Experiments are carried in half-precision.

min time

kernel
bmm

einsum
bsr

 < min time
(
dense
sparse

)
time(bmm) < min time

einsum
bsr

dense
sparse

 time(kernel) < min time


bmm

einsum
bsr

dense
sparse


86.95% (×8.45) 83.22% (×1.83) 36.69% (×1.46)

0.
01

0.
00

2

0.
00

3

0.
00

4
0.

00
5

0.
00

6
0.

00
7

0.
00

8
0.

00
9

0.
02

0.
03

0.
04

b + c
bc

1

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

m
in

 ti
m

e(
bm

m
, e

in
su

m
, b

sr
)

di
vi

de
d 

by
 ti

m
e(

ke
rn

el
)

Figure 13: Speedup factor of kernel compared to min(bmm, einsum, bsr) in half-precision. For
each implementation, we take the minimum time between the batch-size-first and the batch-size-last
memory layout. We regroup the (a, b, c, d) patterns by their value of (b+ c)/(bc), and use a boxplot
to summarize the corresponding measurements. Experiments are carried in half-precision.

17



0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.3

0.4

0.5

0.6

0.7

0.8

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

(a) Batch-size-first.

0.
01

0.
00

2

0.
00

3

0.
00

4

0.
00

5
0.

00
6

0.
00

7
0.

00
8

0.
00

9

0.
02

0.
03

0.
04

b + c
bc

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e 

tim
e 

in
 m

em
or

y
re

wr
iti

ng
s i

n 
bm

m

(b) Batch-size-last.
Figure 14: Estimated relative time spent on memory rewritings in bmm for the multiplication with
B ∈ Σπ , for several π = (a, b, c, d). We regroup patterns by their value of (b+ c)/(bc), and plot a
boxplot to summarize the corresponding measurements. Experiments are carried in half-precision.

104 105 106 107 108 109 1010

M × N

100

101

m
in

 ti
m

e(
de

ns
e,

 sp
ar

se
)

di
vi

de
d 

by
m

in
 ti

m
e(

ke
rn

el
, b

m
m

, e
in

su
m

, b
sr

)

Figure 15: Speed-up factor of min time(kernel,
bmm, bsr, einsum) compared to min time(dense,
sparse) vs. the matrix size M×N . Experiments
are carried in half-precision.

104 105 106 107 108 109 1010

M × N

1

0.6
0.7
0.8
0.9

2

3

4

5

m
in

 ti
m

e(
ei

ns
um

, b
sr

)
di

vi
de

d 
by

 ti
m

e(
bm

m
)

Figure 16: Speed-up factor of time(bmm) com-
pared to min time(einsum, bsr) vs. the matrix
size M × N . Experiments are carried in half-
precision.

kernel bmm einsum bsr dense sparse

1

10

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.9

2

3

4
5
6
7
8
9

20

Ti
m

e 
ba

tc
h-

siz
e-

fir
st

 / 
Ti

m
e 

ba
tc

h-
siz

e-
la

st

Figure 17: Boxplots of the ratio time of batch-size-first
time of batch-size-last in half-precision.

18



C Theoretical results

C.1 Details on perfect shuffle permutations

The goal is to prove Equation (1), which we recall here for convenience:

Sπ = (Ia ⊗Pb,d)︸ ︷︷ ︸
:=P

(Iad ⊗ 1b×c)︸ ︷︷ ︸
=Sπ̃

(Ia ⊗Pc,d)
⊤︸ ︷︷ ︸

:=Q

= PSπ̃Q,

where the matrix Pp,q is the so-called (p, q) perfect shuffle permutation introduced below. To prove
this formula, we will use the next lemma.
Lemma C.1. For any positive integers b, c, d:

Pb,d
⊤(1b×c ⊗ Id)Pc,d = Id ⊗ 1b×c,

where Pp,q denotes the (p, q) perfect shuffle of r := pq [Van Loan, 2000], which is the permutation
matrix of size r × r defined as:

Pp,q :=


Ir[R0, :]
Ir[R1, :]

...
Ir[Rq−1, :]

 , (3)

where Ri := {i+ qj | j ∈ J0, p− 1K} for i ∈ J0, q − 1K.

Proof of Lemma C.1. This is a direct consequence of a more general result claiming that the Kro-
necker product commutes up to some perfect shuffle permutation matrices [Van Loan, 2000, Section
1].

We now turn to the proof of Equation (1).

Proof of Equation (1). By definition, Sπ = Ia ⊗ 1b×c ⊗ Id when π = (a, b, c, d). By Lemma C.1,

Sπ = Ia ⊗ 1b×c ⊗ Id = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)
.

By the equality (AB) ⊗ (CD) = (A ⊗ C)(B ⊗D) for any matrices A,B,C,D of compatible
sizes, we get the result:

Sπ = Ia ⊗
(
Pb,d(Id ⊗ 1b×c)Pc,d

⊤
)

= (Ia ⊗Pb,d)
(
Ia ⊗

(
(Id ⊗ 1b×c)Pc,d

⊤
))

= (Ia ⊗Pb,d)(Ia ⊗ Id ⊗ 1b×c)(Ia ⊗Pc,d
⊤)

= (Ia ⊗Pb,d)(Iad ⊗ 1b×c)(Ia ⊗Pc,d
⊤).

C.2 Existing variants of butterfly factorization

Table 8 summarizes how Definition 2.1 [Lin et al., 2021, Le, 2023] captures all the variants of butterfly
factorizations that have been empirically tested for deep neural networks in the literature Dao et al.
[2019, 2022a,b], Vahid et al. [2020], Lin et al. [2021], Fu et al. [2023]. Note that the butterfly chain
that we consider from Dao et al. [2022b] is the one used in their actual implementation rather than
in their paper. A detailed explanation about this unification can be found in Chapter 6 of Le [2023],
except for the case of block butterfly Dao et al. [2022a]. We now deal with the latter: we explain why
block butterfly matrices are indeed covered by Definition 2.1.

Block butterfly matrices are covered by Definition 2.1.

Block butterfly factors [Dao et al., 2022a] are a direct generalization of square dyadic butterfly factors
[Dao et al., 2019]. Indeed, replacing each entry of a square dyadic butterfly factor by a block matrix
of size t× t gives a block butterfly factor (and in particular, the square dyadic butterfly factors are

19



Table 8: Definition 2.1 unifies the different factorizations tested for deep neural networks in the
literature, as documented in Lin et al. [2021], Le [2023]. The fact that it also captures block butterfly
matrices is new (Appendix C.2).

MATRIX SIZE BUTTERFLY ARCHITECTURE

DENSE M ×N (1,M,N, 1)
LOW-RANK M ×N (1,M, r, 1), (1, r,N, 1)
SQUARE DYADIC [DAO ET AL., 2019, VAHID ET AL., 2020] N ×N WITH N = 2L (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1

KALEIDOSCOPE [DAO ET AL., 2022B] N ×N WITH N = 2L CONCATENATE (2ℓ−1, 2, 2, 2L−ℓ)Lℓ=1 AND (2L−ℓ, 2, 2, 2ℓ−1)Lℓ=1

BLOCK BUTTERFLY [DAO ET AL., 2022A] N ×N WITH N = 2Lt (2ℓ−1, 2t, 2t, 2L−ℓ)Lℓ=1
MONARCH [DAO ET AL., 2022B, FU ET AL., 2023] M ×N (1,M/p,min(M,N)/p, p), (p,min(M,N)/p,N/p, 1)
DEFORMABLE BUTTERFLY [LIN ET AL., 2021] INTRODUCED THE GENERAL FRAMEWORK OF DEFINITION 2.1.

particular cases of block butterfly factors with block size 1× 1.) The support constraints of block
butterfly factors can be expressed by the following binary matrix [Dao et al., 2022a]:

S̃ℓ := I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ ⊗ 1t×t, ℓ = 1, . . . , L, (4)

where we have an additional parameter t in comparison to the tuples of butterfly factors (Definition 2.1)
to control the block size.

We argue that using a chain of block butterfly factors (4) is equivalent to using a chain of butterfly
factors in the sense of Definition 2.1. In order to prove that, we first introduce the set of matrices that
can be factorized according to the two alternative definitions.

Definition C.2 (Set of block butterfly matrices). Consider the chain of L block butterfly factors of
block size t, define BL,t

b := {
∏

ℓ=1,...,L Xℓ | supp(Xℓ) ⊆ supp(S̃ℓ)} (S̃ℓ is defined as in (4)) the
set of matrix admitting an exact factorization into block butterfly factors (shortened to block butterfly
matrices).

Definition C.3 (Set of butterfly matrices associated to a butterfly chain Θ := (tℓ)
L
ℓ=1). Consider a

butterfly chain Θ := (tℓ)
L
ℓ=1, we define BΘ := {

∏
ℓ=1,...,L Xℓ | supp(Xℓ) ⊆ supp(Stℓ)} the set of

matrix admitting an exact factorization into butterfly factors (shortened to butterfly matrices).

The equivalence between block butterfly factors and butterfly chain is shown in the following lemma:

Lemma C.4. Consider Θ := (tℓ)
L
ℓ=1 where tℓ := (2ℓ−1, 2t, 2t, 2L−ℓ), ℓ = 1, . . . , L, Θ is equivalent

to the chain of L block butterfly factors of block size t in the sense that there exists two permutation
matrices (P,Q) of size 2Lt× 2Lt such that:

BL,t
b = PBΘQ := {PBQ | B ∈ BΘ}.

In words, the two sets BL,t
b and BΘ are expressively equivalent up to permutation of rows and

columns.

Proof of Lemma C.4. Consider the permutation matrices:

Pℓ := I2ℓ−1 ⊗Tℓ Qℓ := I2ℓ ⊗T⊤
ℓ+1, ℓ = 1, . . . , L, (5)

where Tℓ (whose size is 2L−ℓ+1t× 2L−ℓ+1t) is the permutation matrix corresponding to the permu-
tation:(

1, t+ 1, . . . , (2L−ℓ+1 − 1)t+ 1, 2, t+ 2, . . . , (2L−ℓ+1 − 1)t+ 2, . . . , t, 2t, . . . , 2L−ℓ+1t
)
.

The proof relies on the following claim:

PℓS̃ℓQℓ = Stℓ , ∀ℓ = 1, . . . , L, (6)

which means that applying P,Q to the left and right of the ℓth block butterfly factors turn it into a
tℓ-butterfly factors. Before proving (6), we explain how we can finish the proof of Lemma C.4 based
on (6). Firstly, to prove the inclusion BL,t

b ⊆ P⊤
1 BΘQ⊤

ℓ , observe that:

Qℓ−1Pℓ = (I2ℓ ⊗T⊤
ℓ )(I2ℓ−1 ⊗Tℓ) = I2ℓ−1 ⊗ (T⊤

ℓ Tℓ) = I2ℓ−1 ⊗ I2L−ℓ+1t = I2Lt, (7)

20



where we use the identity (A ⊗B)(C ⊗D) = (AC) ⊗ (BD) (applicable only when the matrix
multiplication AC and BD is well-defined) and PP⊤ = I for any permutation matrix. Thus,
consider (X̃ℓ)ℓ=1,...,L a sequence of L block butterfly factors of block size t, we have:

X̃1X̃2 . . . X̃L
(7)
= (P⊤

1 P1)X̃1(Q1P2)X̃2 . . . (QL−1PL)X̃L(QLQ
⊤
L )

(6)
= P⊤

1 (P1X̃1Q1)︸ ︷︷ ︸
t1−butterfly factor

(P2X̃2Q2)︸ ︷︷ ︸
t2−butterfly factor

. . . (PLX̃LQL)︸ ︷︷ ︸
tL−butterfly factor

Q⊤
L ∈ P⊤

1 BΘQ⊤
L .

Therefore, BL,t
b ⊆ P⊤

1 BΘQ⊤
ℓ . Secondly, to see the other inclusion, from (6), we also have:

Sb
ℓ = P⊤

ℓ StℓQ
⊤
ℓ , ∀ℓ = 1, . . . , L. (8)

Similar to the proof of BL,t
b ⊆ P⊤

1 BΘQ⊤
L , we can consider (Xℓ)ℓ=1,...,L where Xℓ is a tℓ-butterfly

factor. We have:

P⊤
1 X1X2 . . .XLQ

⊤
ℓ

(7)
= P⊤

1 X1(P2Q1)
⊤X2 . . .XL−1(PLQL−1)

⊤Xb
LQ

⊤
L

(8)
= (P⊤

1 X1Q
⊤
1 )︸ ︷︷ ︸

1st block butterfly factor

. . . (P⊤
LXLQ

⊤
L )︸ ︷︷ ︸

Lth block butterfly factor

∈ BL,t
b .

Thus, P⊤
1 BΘQ⊤

ℓ ⊆ B
L,t
b . We can conclude that P⊤

1 BΘQ⊤
ℓ = BL,t

b and the pair of permutation
matrices (P⊤

1 ,Q
⊤
L ) satisfies Lemma C.4.

Finally, it remains to prove (6). Using the identity: (A1⊗. . .⊗An)(B1⊗. . .⊗Bn)(C1⊗. . .⊗Cn) =
(A1B1C1)⊗ . . .⊗ (AnBnCn) (when AℓBℓCℓ, ℓ = 1, . . . , n makes sense), we have:

PℓS
b
ℓQℓ = (I2ℓ−1 ⊗Tℓ)(I2ℓ−1 ⊗ 12×2 ⊗ I2L−ℓ ⊗ 1t×t)(I2ℓ ⊗T⊤

ℓ+1)

= I2ℓ−1 ⊗ [Tℓ(12×2 ⊗ I2L−ℓ ⊗ 1t×t)(I2 ⊗T⊤
ℓ+1)],∀ℓ = 1, . . . , L.

Thus, it is sufficient to prove that:

Tℓ(12×2 ⊗ I2L−ℓ ⊗ 1t×t)(I2 ⊗T⊤
ℓ+1) = 12t×2t ⊗ I2L−ℓ ,∀ℓ = 1, . . . , L.

To show the equation above, we will use an ad-hoc argument. Note that the binary matrix 12×2 ⊗
I2L−ℓ ⊗ 1t×t has exactly 2L−ℓ different columns (resp. rows). If we partition them into 2L−ℓ groups
{1, . . . , 2L−ℓ} and label each of them by the partition they belong to, then the columns and rows will
have the form:

(1, . . . , 1︸ ︷︷ ︸
t times

, 2, . . . , 2︸ ︷︷ ︸
t times

, . . . , 2L−ℓ, . . . , 2L−ℓ︸ ︷︷ ︸
t times

, 1, . . . , 1︸ ︷︷ ︸
t times

, 2, . . . , 2︸ ︷︷ ︸
t times

, . . . , 2L−ℓ, . . . , 2L−ℓ︸ ︷︷ ︸
t times

).

This procedure of labeling can be visualized as in Figure 18 for a simple case where L− ℓ = 1 and
t = 3. To turn 12×2 ⊗ I2L−ℓ ⊗ 1t×t into 12t×2t ⊗ I2L−ℓ , the permutation matrices on the left and
right (in this case, Tℓ and I2 ⊗ T⊤

ℓ+1) need to permute the columns and rows such that the label
becomes:

(1, 2, . . . , 2L−ℓ︸ ︷︷ ︸
1st

, 1, 2, . . . , 2L−ℓ︸ ︷︷ ︸
2nd

, . . . , 1, 2, . . . , 2L−ℓ︸ ︷︷ ︸
2tth

).

It can be seen directly that Tℓ permutes the label of the rows correctly. For I2⊗T⊤
ℓ+1, this permutation

matrix permutes the columns in the first half and the second half separately (due to the Kronecker
product with I2) and each half is permuted by the permutation described in (5). Thanks to this
interpretation, it can be seen that I2 ⊗T⊤

ℓ+1 also permutes the label of the columns correctly as well.
This concludes the proof.

D Implementations

D.1 Details on baseline GPU implementations

To keep it short, we only give the code in the case of the batch-size-first memory layout (except for
dense and sparse where the codes are small). The case of batch-size-last can simply be obtained
by inverting the first and last positions in all tensor reshapings.

einsum implementation. This implementation uses tensor contractions with the high-performance
einops library. The abcd nonzero entries of the butterfly factor B (Figure 2) are stored in a PyTorch
4D-tensor B_einsum of shape (a, b, c, d). The implementation uses Einstein notations.

21



1 1 1 1 1 1

1

1

1

1

1

1

2 2 2 2 2 2

2

2

2

2

2

2

2 2 2 2 2 2

2

2

2

2

2

2

1 1 1 1 1 1

1

1

1

1

1

1

12×2 ⊗ I2 ⊗ 13×3 16×6 ⊗ I2

Figure 18: Illustration for the proof of (6). Green and white squares represent the 1s and 0s of the
binary matrices respectively.

1 def butterfly_einsum(X_bsf , B_einsum):
2 X_perm = einops.rearrange(X_bsf , "... (a c d) -> ... a c d", a=a,

c=c, d=d)
3 Y_perm = einops.einsum(X_perm , B_einsum , "... a c d, a b c d ->

... a b d")
4 Y_bsf = einops.rearrange(Y_perm , "... a b d-> ... (a b d)")
5 return Y_bsf

The second line of this code does at the same time all the matrix multiplications Y[:, row] ← X[:
, col]B⊤[col, row] for all the pairs (row, col) in Algorithm 1.

bsr implementation. This is an implementation of Algorithm 2 using the high-performance Block
compressed Sparse Row (BSR) PyTorch library. The matrix B̃ is stored as a tensor B_bsr stored in
the BSR format.

1 def butterfly_bsr(X_bsf , B_bsr):
2 batch_size = X_bsf.shape [0]
3 X_perm = (
4 X_bsf.view(batch_size , a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size , a * c * d)
7 )
8 Y_perm = torch.nn.functional.linear(
9 X_perm , B_bsr

10 )
11 Y_bsf = (
12 Y_perm.view(batch_size , a, d, b)
13 .transpose(-1, -2)
14 .reshape(batch_size , a * b * d)
15 )
16 return Y_bsf

bmm implementation. This is an implementation of Algorithm 2 using the high-performance Block
compressed Sparse Row (BSR) PyTorch library. The matrix B̃ is stored as a tensor B_bsr stored in
the BSR format. This implementation using torch.bmm, which is based on high-performance batched
matrix multiplication NVIDIA routines. The non-zero entries of B̃ are stored in a four-dimensional
PyTorch tensor B_bmm of shape (a ∗ d, b, c).

1 def butterfly_bmm(X_bsf , B_bmm):
2 batch_size = X_bsf.shape [0]
3 X_perm = (

22



4 X_bsf.view(batch_size , a, c, d)
5 .transpose(-1, -2)
6 .reshape(batch_size , a * d, c).
7 contiguous ().
8 transpose(0, 1)
9 )

10 Y_perm = torch.empty(batch_size , a * d, b, device=x.device , dtype=
x.dtype).transpose (0, 1)

11 Y_perm = torch.bmm(X_perm , B_bmm.transpose(-1, -2))
12 Y_bsf = (
13 Y_perm.transpose(0, 1)
14 .reshape(batch_size , a, d, b)
15 .transpose(-1, -2)
16 .reshape(batch_size , a * b * d)
17 )
18 return

dense implementation. This ignores the sparsity of the butterfly factor B, that is stored as a dense
matrix in a 2d-tensor B_dense.

batch-size-first: torch.nn.functional.linear(X_bsf, B_dense)

batch-size-last: torch.matmul(B_dense, X_bsl)

The implementation in batch-size-first is the default PyTorch implementation of a forward pass
of a linear layer. For batch-size-last, we had to choose an implementation since Pytorch uses
batch-size-first by default. We made our choice based on a small benchmark of different alternatives.

sparse implementation. This exploits the sparsity of the butterfly factor B but not its structure
(recall that the support are not arbitrary, they are structured since they must be expressed as Kronecker
products, see Definition 2.1).

batch-size-first: torch.nn.functional.linear(X_bsf, B_csr)

batch-size-last: torch.matmul(B_csr, X_bsl)

D.2 Details on the kernel implementation

Classical optimizations that we build upon. The proposed implementation use vectorization as
soon as an operation can be vectorized. Concretely, the float4 and half2 vector types are used to
mutualize read/write operations [NVIDIA, 2023b,a, 2024, Boehm, 2022]. An epilogue [NVIDIA,
2023a] is also implemented to avoid writing in global memory in a disorganized way. Indeed, after
having accumulated the output in registers, each thread has specific rows and columns of the output to
write to global memory, and may finish its computation before the others. To avoid that, the epilogue
starts to write in the shared memory, in a disorganized way, and then organize the writing from shared
to global memory. Another implemented optimization is double buffering NVIDIA [2023b,a], Boehm
[2022], Li et al. [2019]: a thread block is always both computing the output of a tile, and loading the
next tile from global to shared memory. This allows us to hide some latency that arises when loading
from the global memory.

Note that as with any CUDA kernel, the constants (such as the number of threads) need to be tailored
to each specific case of use —here, each butterfly sparsity pattern π = (a, b, c, d)— and to each GPU.

23


	Introduction
	Background on butterfly factorization
	Generic algorithm for butterfly sparse matrix multiplication
	Baseline GPU implementations

	Memory accesses in baseline implementations
	New CUDA kernel with reduced memory transfers
	Benchmarking the multiplication by a single butterfly factor
	Broader implications for neural networks: accelerating inference
	Conclusion
	Related works
	Experiments
	Details on the experiments
	Estimating the time for memory rewritings in the bmm implementation (sec:memory-transfer)
	Details on min time(kernel, bmm, bsr, einsum) vs. min time(dense, sparse) (sec:benchmark-existing)
	Details on time(bmm) vs. min time(bsr, einsum) (sec:benchmark-existing)
	Details on the impact of the memory layout (sec:benchmark-existing)
	Time spent in linear layers in vision transformers
	Details on the acceleration of the inference of a ViT (sec:coarserGranularities)
	Additional results in half-precision

	Theoretical results
	Details on perfect shuffle permutations
	Existing variants of butterfly factorization

	Implementations
	Details on baseline GPU implementations
	Details on the kernel implementation


