
HAL Id: hal-04584429
https://hal.science/hal-04584429

Preprint submitted on 23 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

A Branch-Cut-And-Price approach for the Two-Echelon
Vehicle Routing Problem with Drones

Sylvain Lichau, Ruslan Sadykov, Julien François, Rémy Dupas

To cite this version:
Sylvain Lichau, Ruslan Sadykov, Julien François, Rémy Dupas. A Branch-Cut-And-Price approach
for the Two-Echelon Vehicle Routing Problem with Drones. 2024. �hal-04584429�

https://hal.science/hal-04584429
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr


A Branch-Cut-And-Price approach for the Two-Echelon Vehicle Routing

Problem with Drones

Sylvain Lichau
Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France,

Email: sylvain.lichau@u-bordeaux.fr
Ruslan Sadykov

Univ. Bordeaux, CNRS, INRIA, Bordeaux INP, IMB, UMR 5251, F-33400 Talence, France
Julien François

Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France,
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Abstract

In this paper, we propose a new set-partitioning model for the two-echelon
vehicle routing problem with drones (2E-VRP-D), where partial routes
corresponding to drone movements are enumerated using an efficient dy-
namic program. To solve the model we use an exact branch-cut-and-price
algorithm, and a labelling algorithm for the pricing problem both based
on state-of-the art literature. We also propose an adaptation of the well-
known rounded capacity cuts for this problem, as well as pre-processing
methods to reduce the size of the problem. In addition, this paper presents
an effective heuristic branch-cut-and-price, based on the exact branch-cut-
and-price algorithm. Extensive computational experiments are presented,
showing that the exact algorithm can solve all the instances from the
literature on the 2E-VRP-D, and almost multiply by four the size of the
clustered instances solved optimally. Sensitivity analysis is also conducted
for the proposed improvements.

1 Introduction

In recent years, the explosion in e-commerce and the ever-growing concentration
of populations in cities have led to a drastic increase of demand for home deliv-
eries, overloading last mile logistics. To overcome this challenge, incorporating
drones in deliveries is a promising solution. In addition to paralleling deliveries,
enabling customers to receive their packages faster, using drones would also de-
crease costs for the provider (Wang, 2015). It would also decrease the pollution
emitted by truck routes, drones being less polluting than trucks. By reducing
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the number of customers delivered by trucks in cities, and in particular on small
roads, the traffic congestion would decrease significantly.

Numerous drone delivery pilot projects have been successfully completed and
many delivery companies are trying to integrate drones to deliveries. One of
the first successful implementation of a couple drone/truck delivery, to our
knowledge, has been established in France in 2016, to a difficult-to-reach area
(DPDgroup, 2016). In urban area, in 2017 a pilot project named Vans & drones
was conducted in Zürich (Roca-Riu and Menendez, 2019), which combined
drones and vans to test on-demand delivery. In 10 days, 50 packages were
successfully delivered, and the delay was always lower than two hours. Swiss
Post has permanently established the use of drones to transfer blood samples
between hospitals in Lugano, Zürich and Bern (Post, 2023). More recently,
Amazon is claiming that they will start using drone deliveries in Italy, the UK
and the US by the end of 2024 (Amazon, 2023).

Despite the positive impact of drone-assisted delivery and the existence of some
real-word applications, certain difficulties remain in terms of implementation as
it might bring this new technology very close to the public. Drone use raises
security issues as the drone must be completely foolproof and ready to face any
problem, such as extreme weather, technical default, breakdown, signal loss or
even attacks. Drones are also subject to prohibited air zone and other legal
restrictions (Lin et al., 2018). Finally, public risk beliefs, such as privacy inva-
sions or injuring people due to malfunction, are also an important obstacle to
the implementation of drone deliveries on large scales, in particular in urban
areas (Zhu, 2019). Garg et al. (2023) provides a literature review over the po-
tential benefits, challenges, and limitations of the usage of drones in last mile
delivery.

Due to the potential evolution of public opinion, regulation and technology,
it is of first importance to understand how deliveries with drones will impact
cities and how to design them in the best possible way. In line with these fu-
ture developments, the field of operations research is tackling several variants
of drone delivery problems, as reviewed in (Macrina et al., 2020) and (Chung
et al., 2020). Researchers are considering different truck-drone cooperation. In
the classic vehicle routing problem with drones (VRP-D), each truck is paired
with a single drone that delivers a single customer leaving and merging only
when the truck is parked at a customer. Many different cooperation systems
exist, leading to a large variety of problems.

In this paper we study the Two-Echelon Vehicle Routing Problem with Drones
(2E-VRP-D). In this problem a set of vehicles and a set of drones have to serve
a set of customers from a depot. The aim is to minimize the total duration of
the routes. We have chosen to focus on this problem because it is sufficiently
generic to correspond to several real-world situations, whereas encompassing
the following set of requirements:
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• Each truck contains an adjustable number of drones. The useful capacity
of the trucks depends of the number of carried drones, each drone and
its necessary equipment having a weight. Carrying several drones on a
truck rather than just one can be easily implemented, while having an
important impact on the delivery.

• Full synchronization exists between the truck and the drone. Indeed, a
model where drones can change truck en route will be hard to implement
on a real-world application, for security and responsibility reasons. A
drone can fly only when its assigned truck is stationed at a customer,
so as to achieve a compromise between simplicity and efficiency in the
proposed model. Furthermore, the drones can operate multiple round
trips from the same customer. Choosing the number of drones carried for
each vehicle enables us to balance the total number of drones, the weight
taken by the drones in a truck and the efficiency of the route.

• Each drone has a limited capacity and can only carry one package per
flight. One package per drone is realistic as it is more secure than allow-
ing a drone to carry several packages at the same time. It also reduces the
payload, enabling longer flight. With removable batteries, drones can be
instantaneously recharged when reaching the truck. Carrying a sufficient
number of batteries for deliveries does not entail any particular transport
constraints. Static truck when drones are flying allows close range moni-
toring in case of problems. A battery limits the maximal flight distance,
dependent of the payload. It is assumed that drones are fully recharged
upon reaching the truck.

• Each customer is characterized by a demand, a deadline, its availability
for drone delivery and a service time dependent on the means of transport.
The service at a customer delivered by a vehicle happens in parallel with
the deliveries made by drones from this customer.

This is not the usual cooperation system between trucks and drones, but it can
be argued that it enables an operator to remain near the drones to monitor
them, or in case of an accident. For these reasons we think that the 2E-VRP-
D is a highly topical and realistic problem as it is easy to implement in the
delivery process. It is related to the two-echelon vehicle routing problem (2E-
VRP), see (Sluijk et al., 2023), as we can consider the deliveries of the trucks
as a first echelon, and the deliveries of the drones as a second echelon. In this
context, Zhou et al. (2023) recently proposed a branch-and-price approach that
optimally solves instances of up to 30 customers in less than 3 hours for the 2E-
VRP-D. Given that real-world last mile delivery problems commonly contain a
higher number of customers to serve it is necessary to be able to solve larger
instances in a reasonable time. In this paper we propose a branch-cut-and-
price algorithm for the 2E-VRP-D using recent advances from the well-known
capacitated vehicle routing problem (CVRP). The main contributions of this
paper are as follows:
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• A new branch-cut-and-price approach based on the enumeration of the
partial routes corresponding to drone movements in the subproblems and
modelled as scheduling problems, and solved using an efficient dynamic
program and state-of-the-art components. The algorithm is strengthened
by an adaptation of the rounded capacity cuts to better suit this problem,
by taking into account the drones weight in the truck. We also propose pre-
processing methods to eliminate dominated and infeasible the enumerated
partial routes to efficiently reduce the subproblems size without excluding
optimal solutions.

• A heuristic branch-cut-and-price based on the restriction of the subprob-
lem solution. This heuristic is particularly efficient for instances where
customers are close to each other. In this setting, drones flying from
a parked customer c can reach many customers. We say c has a large
drone-neighborhood. Moreover, in this setting, the drone-neighborhoods
are highly interconnected, meaning that a customer can be reached by
drone by many different customers.

• Extensive experiments are conducted on the instances and show that our
methods can solve clustered instances with up to 120 customers, increasing
greatly the size of the solved instances from the literature. We also show
the benefit of the improvements proposed. Six new sets of medium-size
instances with 40, 100, 120, 130, 140 and 150 customers extending the
dataset of small-size instances proposed in (Zhou et al., 2023) and based
on (Chen et al., 2021), (Solomon, 1987) and (Gehring and Homberger,
1999).

In section 2, we present a literature review mainly focusing on exact methods to
solve vehicle routing problems with drones. In section 3, we define the problem
we are addressing. In section 4, we present the pricing problem and how we
solve it. In section 5, we present our approach, providing details on the branch-
and-cut algorithm and on improvements we use. In section 6, we present the
heuristic branch-cut-and-price. Finally, in section 7, we provide computational
experiments highlighting the strength of our method.

2 Litterature review

The vehicle routing problem with drones (VRPD) class of problem is a variant
of the classic vehicle routing problem (VRP) that integrates drones in the deliv-
eries. This section is separated in two parts, the first one will cover the variants
of the travelling salesman problem (TSP) (i.e. single tour), and the second the
variants of the VRP (i.e. multiple tours).

2.1 Drones integrated in TSP

The interest to incorporate drones into routing problem emerged with the work
of Murray and Chu (2015), in which a drone and a truck cooperate to solve a
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TSP-like problem called the flying sidekick travelling salesman problem (FSTSP).
They presented a MIP model and two heuristics to solve the problem with up
to 10 customers. Various extensions were proposed, as in (Agatz et al., 2018)
that allowed trucks to wait for the drones at the nodes and proposed a MILP
and two heuristics based on the route-first, cluster-second method to solve the
problem. The authors also analyse experimentally the time saving achieved by
the use of a truck paired with a drone versus a truck alone. Bouman et al.
(2018) used a dynamic program to solve the TSP-D up to 20 customers. They
also showed that decreasing the number of customers visited by a truck while
the drone was flying significantly decreased the computation time, without de-
creasing the quality of the solution significantly. Yang et al. (2023) consider
the robust drone-truck delivery problem, where a truck and a drone have to
deliver customers to maximize a profit function under truck routes uncertainty.
The uncertainty is considered on the duration of the truck arcs, due to network
congestion. They propose a branch and price algorithm to solve instances with
up to 40 customers.
To improve the efficiency of the cooperation even further, researchers have stud-
ied the use of several drones on the truck. In (Karak and Abdelghany, 2019)
the authors propose the “Hybrid Vehicle-Drone Routing Problem” (HVDRP),
where a single vehicle carries a fleet of drones performing pickup and delivery
operations. They propose a MIP formulation along with 3 heuristics to solve
the problem. Murray and Raj (2020) introduced the “Multiple Flying Sidekicks
travelling Salesman Problem” (mFSTSP), which is an extension with several ve-
hicles of the FSTSP. It considers an arbitrary number of heterogeneous drones
that may be deployed from the depot or from the delivery truck. They provide a
MIP formulation solving instances with at most 8 customers, as well as a heuris-
tic approach. Kang and Lee (2021) introduce the Heterogeneous Drone-Truck
Routing Problem (HDTRP), where drones with different speeds and batteries
are setup on a truck, and can fly only when the truck is parked at a customer.
They propose a MILP formulation as well as a branch-and-cut algorithm to
solve up to 50 customers instances optimally.

2.2 Drones integrated in VRP

The use of drones with a set of trucks was first introduced in (Wang et al.,
2017), which presents the Vehicle Routing Problem with Drones (VRPD), where
multiple trucks are equipped with drones to serve a set of customers. In this
problem, the drones carried by a truck can deliver one parcel per flight, and
the truck can move between the launch and the retrieval of its drones. The
authors analyse different worst-case scenarios and provide upper bounds on the
savings induced by the use of drone. The work is extended in (Wang and Sheu,
2019), but the drones can operate multiple deliveries per trip and the drone-
truck assignment is open. The authors propose a branch-and-price algorithm
to solve up to 13 customers. They also provide a sensitivity analysis over the
maximal authorized flying duration of the drones. Poikonen et al. (2017) con-
sider the battery of the drones, a different metric for the drones and the trucks,
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as well as a cost objective function. They provide theoretical results regard-
ing the VRPD. Di Puglia Pugliese and Guerriero (2017) present the first MIP
model for an extension of the VRP-D called the vehicle-drone routing problem
with time windows (VDRPTW), which also considers multiple drones per truck,
time windows and truck capacity. They also provide a numerical study compar-
ing VRP to VRP-D. They analyse that drone is only useful when the drone’s
transportation cost is lower than the truck’s transportation cost. This work is
extended in (Di Puglia Pugliese et al., 2020) where the authors present a MIP
model solving up to 15 customers instances. They also compare VRP, VRP-D
and routing problem with drones (RPD), where the drones deliver customers
directly from the depot, on their CO2 emission and traffic congestion. Sacra-
mento et al. (2019) address an extension of the VRP-D where the drones can
return to the depot directly. They present an adaptative large neighborhood
search and with a MIP model. In (Schermer et al., 2019), the authors consider
the Vehicle Routing Problem and En Route Operation (VRPDERO), where a
drone can be launched and retrieved on a moving truck. They propose a MIP
model and a heuristic. In (Kitjacharoenchai et al., 2020) the objective function
is to minimize the total completion time. A truck can only launch or retrieve
a single drone upon reaching a node. A drone can deliver multiple customers
before returning to its assigned truck. The authors propose a mixed integer
non-linear program (MINLP) and solve instances up to 9 customers optimally.
Tamke and Buscher (2021) proposed a branch-and-cut algorithm for the VRP-
D without truck capacity solving up to 30 customers instances. The work is
extended in (Tamke and Buscher, 2023), where the speed at which a drone per-
forms a flight must be selected from a discrete set, and influence the energy
consumption. The authors propose a MIP model along with valid inequalities
and preprocessing methods to accelerate the solving. They solve instances with
20 customers optimally, and find feasible solutions on 50 customers instances
with a heuristic version of their MIP.
Although the VRPD and its extensions are the most studied, other works re-
lated to the integration of drones in vehicle routing problems are also considered.
Ulmer and Thomas (2018) consider a dynamic variant, the Same-Day Delivery
Routing Problem with Heterogeneous Fleets of drones and vehicles (SDDPHF),
where customers requests arrive while the vehicles are already on the road.
Drones make deliveries from the depot, serving a single customer before coming
back to the depot. The authors present a policy function approximation, to
decide whether a request is fulfilled by a drone or a vehicle. Kitjacharoenchai
et al. (2019) introduce the multiple travelling salesman problem with drones
(mTSPD), where multiple vehicles and drones deliver a set of customers from a
depot. They do not limit the number of drones on a vehicle and the truck-drone
assignment is open ( i.e. the launch and retrieve operations can be operated by
different trucks). The authors propose a MIP model solving instances with up
to 9 customers instances and a heuristic. Dukkanci et al. (2021) proposes the
Energy Minimizing and Range Constrained Drone Delivery Problem (ERDDP)
where trucks move from the depot to parking spots. Drones can fly from a park-
ing spot or from the depot to deliver a single customer. The objective function
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minimizes a cost function over the energy spent, and the operational costs. The
drone speed directly impacts its energy consumption, and is considered a deci-
sion variable. The authors conduct a parametric analysis over the number of
vehicles used. Meng et al. (2023) introduce the multi-visit drone routing prob-
lem for pickup and delivery services (MDRP-PD), propose a MIP and a two-
stage heuristic based on simulated annealing. Zhou et al. (2023) presented the
two-echelon vehicle routing problem with drones (2E-VRP-D). We recall that
in this problem, the number of drones on a truck is a decision variable, which
is allowing for a better use of the drone fleet. The drones can only fly when
their assigned truck is parked at a nearby client. To solve the problem, they
presented a MIP, a branch and price and a heuristic. They managed to solve
up to 30 clients to optimality. A very similar problem is studied in (Yin et al.,
2024), which consider the routing of vehicle-and-drone cooperative to deliver
blood products to hospitals. The main difference between the two problems is
the objective function, as Yin et al. (2024) penalise the squared weighted arrival
time at each hospital. They use a Benders-decomposition column-generation al-
gorithm to solve instances up to 45 customers.
To give an overview of the literature regarding exact approaches for drones inte-
grated in VRP, we present a summary table. Let us first recall notation for the
vehicle routing problems with drones introduced in (Tamke and Buscher, 2021).
The criteria are the following: number of trucks (#t), number of drones per
truck (#d), drone-truck assignment (dta) i.e. whether the drone has an assigned
truck or not, launch and retrieve operations (lro), drone range (ran), drone ca-
pacity (cap), and objective function (obj). Most criteria are self-explanatory.
In the table 1, the keyword ’return’ refers to the ability of a truck to return to
an already visited customer. The keyword ’loops’ refers to the ability of a drone
to operate loop operation, in which the start and end location of the flight is
the same.
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Criterion Value Description Criterion Value Description
#t 1 single truck ran t time

m multiple trucks d distance
#d 1 single drone n number of nodes

m multiple drones e energy consumption
u unlimited number u unrestricted

dta f fixed m multiple modes
o open cap 1 single customer

lro a return and loops allowed m multiple customers
p return and loops prohibited
l only loops allowed

obj min ct minimize completion time
min tc minimize total costs
min wt minimize customer waiting times
bi-obj minimize total costs and completion time
min max ct minimize maximum completion time
min total ct minimize total completion time

Table 1: Classification criteria for delivery systems with truck-drone cooperation. (Tamke and Buscher, 2021)

Using the notation defined in Table 1, we present Table 2, providing information
about the problem studied, the exact resolutions method and the results of
different paper considering the integration of drones to vehicle routing problems.
The Approach are abbrebivated as follows: BP stands for branch-and-price, BC
for branch-and-cut and BCP for branch-and-cut-and-price.
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3 Formulation

We now introduce the addressed problem. The 2E-VRP-D was first defined in
(Zhou et al., 2023). In this problem a set of vehicles denotedKv = {1, ..., kv} and
a set of drones Kd = {1, ..., kd} have to serve a set of customers V = {1, ..., n}
from a depot 0. Let D = {0, ...,Γ} be the set of all possible numbers of drones
a vehicle can carry. The following assumptions are made:
(a) Both drones and vehicles deliver packages, but some customers can not be

delivered by drones.
(b) A drone is limited by its capacity and its battery but is fully recharged

upon reaching the vehicle.
(c) A drone can only carry one package per flight, and is synchronised with a

single assigned vehicle.
(d) A drone can fly only when its vehicle is parked at a customer, but can

take off multiple times from the same customer.
(e) The vehicle total capacity is noted Q. The vehicle payload is impacted

by the amount of carried drones, each drone and its necessary equipment
having a weight qd1 .

(f) The vehicle service time at a customer and the drone deliveries from this
customer happen in parallel.

We define Ki, i ∈ V , the drone-reachable neighborhood of i, as the set of
customers that can be delivered by drone from i. We call a drone schedule an
ordered set of round trips of the drones from a customer. The problem is defined
by the complete symmetric directed graph G = (V+, A), where V+ = {0} ∪ V
is the set of vertices and A = {(i, j) | i, j ∈ V+, i ̸= j} is the set of arcs. A
customer i ∈ V has a demand qi, a vehicle service time svi , a drone service
time sdi and a deadline d̄i, which is the latest date a vehicle can arrive to serve
the customer i. Travelling time between two nodes i, j ∈ V+ is noted cvi,j for a

vehicle and cdi,j for a drone.

We now present our mathematical formulation of the problem. Let Rd, d ∈ D,
be the set of all feasible routes of a vehicle carrying d drones. For every d ∈ D,
every i ∈ V , and every subset K ⊆ Ki, let S

d
iK be the set of all optimal drone

schedule serving the set of customers K with d drones from the customer i.
Set Sd

iK may contain several schedules, because the arrival date of the truck
at customer i may vary and the customers have deadlines, hence the optimal
solution may not be feasible for a given truck arrival date. Note that set Sd

iK

contains the Pareto front minimizing the maximal drone schedule duration, and
maximizing the maximal truck arrival date. Let bri,j be equal to one if and only

if the vehicle moves from i to j in route r ∈ Rd. Let ars be equal to one if and
only if the drones follow drone schedule s ∈ Sd

iK when the vehicle is parked at
customer i ∈ V in route r. Let variable λr, r ∈ Rd, d ∈ D be equal to 1 if the
route r is used in the solution and 0 otherwise. We also define the following
additional variables :

xd
ij — an integer variable which is equal to the number of times a vehicle
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with d ∈ D drones travels between node i ∈ V+ and node j ∈ V+, i < j,
regardless of the order of visit.

yd — a continuous variable which is equal to the total truck immobility time
in routes of vehicles with d drones.

zdj — a binary variable which is equal to one if and only if a vehicle with d
drones sends a drone to visit customer j ∈ V .

ud — the integer variable which is equal to the number of used vehicles with
d drones.

Variables with superscript d belong to subproblem d ∈ D.
Using the previous notations, a set partitioning formulation is presented in two
parts. The first part (i.e. equations (2) to (4)) uses the additional variables
to model the problem. The second part (i.e. equations ‘(5) to (8)) maps the
variable λr to the additional variables.

min
∑
d∈D

∑
i∈V+

∑
j∈V+

cvi,j × xd
ij + yd

 (1)

s.t.
∑
d∈D

i−1∑
j=1

1

2
xd
ji +

n∑
j=i+1

1

2
xd
ij + zdi

 = 1, ∀i ∈ V, (2)

∑
d∈D

ud ≤ kv, (3)∑
d∈D

dud ≤ kd, (4)

xd
ij =

∑
r∈Rd

(brij + brji)× λr, ∀d ∈ D, i, j ∈ V+, i < j, (5)

yd =
∑
r∈Rd

∑
j∈V

∑
K∈Kj

∑
s∈Sd

jK

(ms × ars)× λr, ∀d ∈ D, ∀i ∈ V, (6)

zdi =
∑
r∈Rd

∑
j∈V

∑
K∈Kj :

i∈K

∑
s∈Sd

jK

ars × λr, ∀d ∈ D, ∀i ∈ V (7)

ud =
∑
r∈Rd

∑
j∈V

br0j × λr, ∀d ∈ D, (8)

λr ∈ {0, 1}, ∀d ∈ D, ∀r ∈ Rd. (9)

The objective function (1) and constraints (2)–(4) belong to the master. The ob-
jective function (1) minimizes the total duration of the routes. The constraints
(2) ensure that each customer is visited exactly once. The constraints (3) and
(4) verify that the solution uses a feasible number of trucks and drones. The
constraints (5)–(8) define the mapping between the additional variables and the
route variables.Note that additional variables are used mainly for the clarity

11



of the formulation and can be eliminated from the formulation using relations
(5)–(8).

4 Pricing subproblem

We design the pricing subproblems as Resource Constrained Shortest Path Prob-
lem (RCSPP), where a feasible solution is a feasible route for the 2E-VRP-D.
The objective of this problem is to find the shortest path between a source and
a sink in a graph where each arc consumes resources and requires that the re-
maining resources lie between lower and upper limits.
We solve the subproblems using the bucket graph labelling algorithm presented
in (Sadykov et al., 2021). The algorithm tries to extend partial paths called
labels to form complete paths. Given their set of accumulated resources, labels
are stored and extended according to so-called buckets, helping greatly with
dominance checks. This algorithm supports ng-paths relaxation as well as the
presence of limited rank-1 cuts.
We model a RCSP problem for each d ∈ D, in a graph defined as follows. Let
Gd = (Vd,Ad) be a directed graph, where Vd = V+ ∪ V ′

+, with V ′
+ a copy of

V+. Set Ad = AdT ∪AdD with AdT the set of arcs representing a truck delivery
possible with d drones and AdD the set of arcs representing possible drone de-
liveries with d drones. The source of the graph is node 0′ and the sink is node 0.
Arcs in AdD go from a vertex i ∈ V to the vertex i′ ∈ V ′, which is the copy of i.
Let Sd

iK be the set of drone routes with d drone, delivering the set of customers
K ⊆ Ki from i. For each i ∈ V , each possible subset K ⊆ Ki, and each drone
routes s ∈ Sd

iK , we define an arc in set AdD, labelled (i, i′)s. Let ars be equal
to one if and only if route r ∈ Rd follows this arc, i.e., the drones follow drone
route s ∈ Sd

iK in route r when the vehicle is positioned at customer i ∈ V . Arcs
in AdT go from a vertex i′ ∈ V ′

+ to a vertex j ∈ V +. Let bri,j be equal to one if

and only if route r ∈ Rd follows arc (i′, j). Note that the prime is omitted in
the notation without ambiguity, as there is no arc between i and j with i, j ∈ V+.
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Figure 1: Example of a subproblem graph Gd

Figure (1) shows an example of a subproblem graph. We represented only
three arcs from i ∈ V to i′ ∈ V ′ for clarity, but there should be an arc for all
s ∈ Sd

iK ,∀K ⊆ Ki.

4.1 Resources for the pricing subproblem

In our model, we use 2 resources, the duration βd of a route, and the capacity
βc of a truck, and we define a pricing subproblem for each d ∈ D. The objective
function is the minimization of the reduced cost. The reduced cost of a route r
with a cost cr is given by: c̄r = cr −

∑
i∈V

αir × πi − λv
0 − dr × λd

0 where αir is

equal to one if and only if customer i is visited in the route r, dr the number of
drones used in route r, πi are the dual variables associated with constraints (2),
λv
0 is the dual variable associated with constraint (3) and λd

0 is dual variable
associated with constraint (4).
Let [la,r, ua,r] be the resource feasibility interval, for each a ∈ Ad and r ∈
{βc, βd}, i.e. the accumulated resource r has to belong lay in the interval
[la,r, ua,r] to travel through arc a. Let qa,r be the consumption of resource
r on arc a. For the resource capacity we set:

la,βc
= 0 ∀a ∈ Ad (10)

ua,βc
= Q− d× qd1 ∀a ∈ Ad (11)

qa,βc =


0 ∀a = (i, 0), i ∈ V ′

qj ∀a = (i, j), i ∈ V ′
+, j ∈ V∑

k∈K

qk ∀a = (i, i′)s, i ∈ V, i′ ∈ V ′,K ∈ Ki, s ∈ Sd
iK

(12)

The truck starts with a remaining capacity equal to Q− d× qd1 . The remaining
capacity of a truck must lie between 0 and Q−d×qd1 on every arcs of the graph.
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The consumption of remaining capacity is set to the demand of the customer
served, or the sum of the demand of the customers delivered if the arc represents
a drone route (i.e. a = (i, i′)i ∈ V, i′ ∈ V ′), or 0 if the destination of the arc is
node 0.
Let ās be the maximal starting time of a solution s that will be formally defined
in section (4.2.1). For the resource duration we set:

la,βd
= 0 ∀a ∈ Ad (13)

ua,βd
=

{
d̄j ∀a = (i, j), i ∈ V ′

+, j ∈ V+

ās ∀a = (i, i′)s, i ∈ V, i′ ∈ V ′,K ∈ Ki, s ∈ Sd
iK

(14)

qa,βd
=

{
cvi,j ∀a = (i, j), i ∈ V ′

+, j ∈ V+

max (svi ,ms) ∀a = (i, i′)s, i ∈ V, i′ ∈ V ′,K ∈ Ki, s ∈ Sd
iK

(15)

The truck starts at time 0. A truck arc delivering a customer can only be used
if the accumulated duration lie between 0 and the customer’s deadline. A drone
arc delivering a set of customers can only be used if the accumulated duration
lie between 0 and the drone route’s maximum starting time. The duration
consumption of a drone arc is the maximum between the service time in truck
at customer i and the duration of the drone route, which are operated in parallel.

4.2 Drone routes enumeration

We enumerate all the feasible drone routes that might belong to an optimal so-
lution. Therefore we must calculate the optimal drone routes from all customers
i ∈ V such that f̄d

i = 1, for any number of drones on the truck d ∈ [1, ...,Γ],
and for all sets of available customers, K ⊆ Ki. Because of customers deadline,
the optimal drone route delivering the set K depends on the truck arrival time
at i. Let Ti = [cv0,i, ..., d̄i] be the set of all possible arrival times of a truck at
customer i.

4.2.1 Scheduling problem

Since the drones can only deliver one customer before going back to the truck,
and they are automatically fully recharged when reaching the truck, we can
model the drone routing problem for a truck with d drones arrived at a customer
i at time a ∈ Ti and delivering set K ⊆ Ki customers as a scheduling problem
with d parallel identical machines, |K| jobs with deadlines, a unique global
release date a and minimizing the makespan. The notation of the scheduling
problem is P |d̄j |Cmax (Graham et al., 1979). Note that the global release date
a does not appear in the notation, since the release date is unique for all the
jobs, the machines will start working at time a. Hence, with a simple trick on
the deadlines, we can get rid of the global release date.
In this scheduling problem, if there exists an optimal solution of the problem,
there always exists an optimal solution without waiting time. Hence increasing
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a can only increase the makespan of a solution. Therefore, if an optimal solution
s∗ at time a remains feasible at time a+∆, with ∆ > 0 then s∗ is also an optimal
solution at time a+∆. In other word, an optimal schedule can be optimal for
a range of elements of Ti. We model the problem as follows:
Let J i

K be the set of jobs where each job represents the delivery of a customer
K ⊆ Ki by drone from i ∈ V . We note pt the processing time of the job t ∈ J i

K ,
vt the customer it delivers and d̄t its deadline. We set pt = cdi,vt + sdvt + cdvt,i. To
keep the consistency with the definition of deadline in the 2E-VRP-D, we set
d̄t = d̄vt + sdvt + cdvt,i − a.
As mentioned earlier, the set of solutions for a given i ∈ V, d ∈ D,K ⊆ Ki

is noted Sd
iK . For s ∈ Sd

iK , let ms be its makespan, i.e. its completion time
minus its starting time, Cs

t be the completion time of a job t ∈ J i
K and ās be its

maximal starting time i.e. ās = min
t∈Ji

K

(d̄t − Cs
t ). Hence, s remains optimal and

feasible for all a′ ∈ [a, ās] and we don’t have to calculate other optimal solutions
in the interval.

4.2.2 Scheduling algorithm

We use a dynamic program to find all the solutions in a Sd
iK , i ∈ V, d ∈ D,K ⊆

Ki. Because we solve a whole set Sd
iK , we have to find the solution for all a ∈ Ti.

Hence we must find the Pareto front minimizing the makespan and maximizing
the maximal starting time. The idea of the dynamic program is to check all
possible combinations of solution of problems with fewer machines and subsets
of jobs.
First we solve S1

iK ∀i ∈ V+,K ∈ Ki using the Jackson’s rule, also known as the
Earliest Deadline First (Jackson, 1955), (Stankovic et al., 1998), and checking
that the schedule is feasible; otherwise there is no solution in S1

iK . Note that
|S1

iK | ≤ 1. Let K ⊆ Ki, s ∈ Sd
iK and Z be the set of jobs done on one of

the machines of s. ∃u ∈ S1
iZ and ∃v ∈ Sd−1

iK\Z such that by combining u and

v, we obtain s. We write s = (u, v). We have, m(u,v) = max(mu,mv) and
ā(u,v) = min(āu, āv).

Sd
iK = {(u, v)|u ∈ S1

iZ , v ∈ Sd−1
iK\Z ,∀s ∈ Sd

iK ,ms < m(u,v) ⇒ ās < ā(u,v)(1),∀Z ⊆ K}
(16)

The condition (1) ensure that Sd
iK contains the Pareto front minimizing ms and

maximizing ās. To avoid symmetries, we set the machine running set Z to be
the bottleneck machine inducing the makespan. This enable us to only check
sets Z such that

∑
t∈Z

pt ≥ 1
d×

∑
t∈K

pt, because the makespan of a feasible solution

can not be lower than 1
d ×

∑
t∈K

pt.

|{Z ⊆ K}| = 2|K|, hence the complexity of this dynamic program is exponential
in |K|. The algorithm is output sensitive, as the output size can be exponential
over the input size. The complexity of this algorithm is polynomial, O(n3)
where n is the size of its output. (n schedules to calculate, for each we check
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each combination of schedule with 1 machine and with n-1 machine: O(n2))

4.2.3 Criteria for valid arcs elimination

In this section, we introduce two criteria that allow us to perform preprocessing
to eliminate infeasible and dominated arcs in AdD, from a subproblem graphs
G, d ∈ D.

• Any arc in Sd
iK , d ∈ D, i ∈ V,K ⊆ Ki is infeasible if the total payload

is higher than the truck capacity, i.e. qi + d × qd1 +
∑
k∈K

qk > Q because

the scheduling solution is not feasible in the routing problem, thus the arc
representing this schedule is infeasible.

• Let a truck with d drones be parked at customer i. If there is a faster
route (combining truck and drones) delivering set of customers K than
delivering all of them by drone from i (i.e. using an appropriate drone
schedule in Sd

iK), then we know that the corresponding solution in Sd
iK

will not be used in any optimal solution and we can remove it safely.

i

j

l

k

i

j

l

k

Figure 2: Example of an application of SPR criterion

In the figure 2 we see an example of an application of the SPR criterion.
In the left side a single drone delivers customers j,k,l from customer l. In
the right side a drone delivers j from i then the truck moves to customer
k and then the drone delivers l from k. The duration of the left partial
solution is longer than the duration of the right side. It is not sufficient
to remove S1

i{jkl}, indeed we also need to verify that the right solution is
feasible regardless of where the vehicle moves. This will be explained in
detail in the following section. The SPR criterion generalize and tackle
such solutions.
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More formally, for a given i ∈ V+, d ∈ D, K ∈ Ki and j ∈ V \K ∪ {i},
let SPR(d, i,K, j) be the duration of the shortest partial route from i to
j using a truck equipped with d drones and delivering either by drone or
by truck the customers of set K. If for any feasible j, SPR(d, i,K, j) <
ms + cvi,j , s will not be used in an optimal solution.
We consider the following set of feasible j:{

j ∈ V+ \K ∪ {i}|
(
cv0,i +max(svi ,ms) + cvi,j < d̄j

)
∧

(
qi + d× qd1 + qj +

∑
k∈K

qk ≤ Q

)}
(17)

In our computational experiment and because checking this criterion would
be too time consuming, we only consider special cases where the truck is
only allowed to visit a single customer of K, and the others must be de-
livered by drone. This criterion let us remove up to 90% of the arcs in G1,
61% in G2 and 6% in G3.

5 Branch-cut-and-price algorithm

Because it would be impractical to enumerate the set Rd, d ∈ D due to its
exponential size over the number of customers we solve this formulation using
a column and cut generation approach. We use a similar branch-and-cut-and-
price (BCP) as in (Pessoa et al., 2020), with the following features. The BCP
algorithm iteratively generates new variables (columns) to improve a linear pro-
gramming (LP) relaxation of an integer program. Branching decisions are made
based on the LP solution and cutting planes are added to strengthen the re-
laxation. Two primal heuristics are used in branch and bounds nodes. The
first heuristic consists in solving the restricted master problem using a MIP
solver and a time limit. The second heuristic is called the diving heuristic,
where columns with largest fractional values are iteratively set to one and the
remaining problem is solved using column generation.

5.1 Column generation

We use three-stage column generation. The pricing is solved using heuristic la-
belling algorithms in the two first stages as in (Sadykov et al., 2021), and using
the exact labelling dynamic algorithm as in (Pessoa et al., 2020) and (Sadykov
et al., 2021). The first two stages generate at most 30 columns, and the last
stage at most 150. Automatic dual price smoothing stabilization is used, as in
(Pessoa et al., 2018) to help the convergence of the process. The bucket-arc
elimination procedure is also used, removing arcs proven not to belong to any
optimal solution. After each call, we use a route enumeration technique similar
to (Baldacci et al., 2008), which tries to enumerate all improving routes for a
subproblem, and if it succeeds, the future pricing problems are solved by inspec-
tion of the enumerated routes. Furthermore, if the number of enumerated routes
in all subproblem is less than a certain threshold (we use 5000 as threshold), all
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the routes are added to the restricted master problem, and solved by the MIP
solver.

5.2 Cutting planes

5.2.1 Adapted rounded capacity cuts

The rounded capacity cuts were first introduced in (Laporte and Nobert, 1983)
for the constrained vehicle routing problem (CVRP). Let C ⊂ V and let hr be
the number of times r ∈ Rd visits C i.e.

hr =
1

2
×

∑
i∈V+\C

∑
j∈C

brmin(i,j),max(i,j) +
∑

i∈V+\C

∑
K∈Ki:

K∩C ̸=∅

∑
s∈Sd

iK

ars ∀d ∈ D, r ∈ Rd

(18)
These valid inequalities can be formulated as follows:∑

d∈D

∑
r∈Rd:

λr × hr ≥
⌈∑

i∈C qi

Q

⌉
, C ⊂ V (19)

However, because in this problem the drones take a large amount of the truck’s
capacity (about 20% per drone in the instances), we must take them into ac-

count. Let k =
⌊

Q
qd1

⌋
, and adapt the rounded capacity cuts as follows:∑

d∈D

∑
r∈Rd:

λr × hr × (k − d) ≥
⌈∑

i∈C qi

qd1

⌉
, C ⊂ V (20)

We will refer to these cuts as adapted rounded capacity cuts (ARCC). To sepa-
rate the ARCC we use the greedy construction heuristic from (Lysgaard et al.,
2004).

Algorithm 1 Separation for the adapted rounded capacity cuts

Require: t ∈ R
for i ∈ V do

C ← {i}
while C ̸= V do

C ← C ∪ {argmax
j∈V \C

(
violation(C ∪ {j})

)
}

if violation(C) > t then
addCut(C)

We describe the separation algorithm in Algorithm (1), where t is a user-defined
threshold, the function violation(C) calculates the difference between the right-
hand side and the left-hand side in constraints (20) for set C and addCut(C)
add the valid inequality to the problem. The algorithm can be explained as
follows: starting with a single customer in the set, while not all customers are
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in the set, we add a customer that is not already in the set and that maximizes
the violation. If the violation of the set exceeds the threshold, we add the
corresponding cut to the linear program. We generate at most 100 cuts per
round.

5.2.2 Limited memory rank-one cuts

We use limited memory rank-one cuts (lm-R1C) similar to (Pecin et al., 2017),
(Pessoa et al., 2020). The R1C uses a Chvátal-Gomory rounding on a weighted
sum of a subset of constraints (2). When the coefficients are all equal, these
cuts are called Subset-Row cuts (Jepsen et al., 2008).
The R1C are defined as follows. Let C ⊂ V+, with multipliers 0 < ρi < 1 ∀i ∈
C and let hr

i be the number of time the vertex i is visited in route r:

hr
i =

1

2

∑
j∈C

brmin(i,j),max(i,j) +
∑

j∈V+\C

∑
K∈Kj :

i∈K

∑
s∈Sd

jK

ars ∀d ∈ D, r ∈ Rd (21)

The following equation is a valid inequalities:

∑
d∈D

∑
r∈Rd

⌊
ρi
∑
i∈C

hr
i

⌋
λr ≤

⌊∑
i∈C

ρi

⌋
(22)

Because the R1C are non-robust constraints, we use the lm-R1C instead, where

the set C is paired with a memory set M such that C ⊆M ⊆ V+.

⌊
ρi
∑
i∈C

hr
i

⌋
in

equation (22) is replaced by α(C,M, ρ, P ) and is calculated during the pricing
computation as in algorithm 2.

Algorithm 2 α(C,M, ρ, P = (v0 = 0, v1, ..., vk, vk + 1 = 0′))

α← 0, s← 0
for i = 1 to k do

if (vi−1, vi) /∈M then
s← 0

if vi ∈ C then
s← s+ ρvi
if s ≥ 1 then

s← s− 1, α← α+ 1

return α

If the partial path P leaves the set M , all previous visits are forgotten, leading
to an easier to compute but smaller coefficient. Note that if M = V , the lm-R1C
are equivalent to the R1C. To separate those cuts, we find a violated constraint,
and we calculate its minimal memory set such that the limited memory R1C
has the same violation.
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5.3 Branching

We obtain branching candidates from: the total number of drones (
∑
d∈D

d×ud),

the total number of trucks (
∑
d∈D

ud), the number of trucks with d drones (vari-

ables u) and the truck travel variables (variables x).

We use a multi-phase strong branching procedure, similar to (Pecin et al., 2017),
to choose the most promising branching candidate. The idea is to spend more
time evaluating branching variables in the lowest depth of the branch-and-bound
tree where each selection has a greater impact on the overall time, and spend
less time as the depth increases, taking advantage of the history of previous
evaluations.

In the first phase, half the candidates are chosen from history from previous
calls of the strong branching procedure, while the others are chosen in a bal-
anced way from all the branching strategies based on the distance between its
value and the closest integer value. The candidates with the largest distances
are selected.
In the second phase, selected candidates from the first phase are evaluated by
solving the current restricted master linear program modified for each candi-
date, without column generation. We select the candidates using the product
rule (Achterberg, 2007).
In the third phase, selected candidates from the second phase are evaluated by
solving the restricted master linear program modified for each candidate, with
heuristic column generation but without cut generation. We select the best
candidate using the product rule.

6 Heuristic branch-cut-and-price

In this section, we propose a heuristic branch-cut-and-price based on the reduc-
tion of the size of the subproblems graphs. It has four parameters :

Γh — The maximum number of drones a truck can carry.

wh — The maximum number of customers that can be delivered by drone
from a customer in a scheduling.

kh — The maximum number of drone-reachable neighbors kept. Only the kh
closest drone-reachable neighbors are kept.

ph — The number of schedule with earliest deadline kept for each Sd
iK .
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Γh decreases the number of subproblems. wh and kh reduce the number of
drones arcs in each subproblems graphs. Note that the difference between wh

and kh is that kh control which customer can be delivered by drone from a parked
vehicle, while wh controls how many customers can be delivered by drone from
a parked vehicle. Finally, ph reduces number of schedule and therefore the num-
ber of arcs in subproblems with multiple drones.
Let Kk

i be the set of the k closest to i customers in Ki. More formally, Kk
i ⊆ Ki,

|Kk
i | = k and ∀k ∈ Kk

i , k
′ ∈ Ki \ Kk

i , c
d
ik ≤ cdik′ . Let Sdp

iK be the set of the ph
solutions from Sd

iK with earliest deadlines. To apply these rules, we transform
each subproblems graphs Gd = (Vd,Ad), d ∈ [1, ...,Γ] with Ad = AT ∪AD from
the exact branch-cut-and-price subproblems graphs as follows: we create the
graphs Gdh = (Vd

h,Ad
h), d ∈ [1, ...,Γh], where Vd

h = Vd and Ad
h = AT ∪ {(i, i′)s ∈

AD,∀K ⊂ Kkh
i , s ∈ Sdph

iK : |K| ≤ wh}

7 Computational experiments

7.1 Configuration

Our algorithms such as the dynamic program for the enumeration, the separa-
tion algorithm for the ARCC and the SPR criterion are coded in C++. We also
used:

• IBM ILOG CPLEX 20.1 as the LP solver in the relaxed restricted master
problem and as the solver for the enumerated MIPs.

• The generic branch-cut-and-price code from (Sadykov and Vanderbeck,
2021), with automatic dual price smoothing stabilization from (Pessoa
et al., 2018), primal heuristics from (Sadykov et al., 2019). We also use
the labelling algorithm code from (Sadykov et al., 2021).

The experiments presented in this paper were carried out:

• Using the PlaFRIM experimental testbed, supported by Inria, CNRS
(LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil
Régional d’Aquitaine (see https://www.plafrim.fr).

• Running on 2.6 GHz 2x 18-core Cascade Lake Intel Xeon Skylake Gold
6240 CPU using a single thread with 5.3 Go memory.

7.2 Instances

To measure the performance of our algorithm, we used and extended the sets of
instances from (Zhou et al., 2023), which is composed of modified instances from
(Chen et al., 2021), and from (Solomon, 1987). In all these instances, the trucks
and the drones follow the same distance metric. We also used clustered instances
from (Gehring and Homberger, 1999) to experiment on larger instances, as they
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are an extension of the Solomon (1987) instances. The maximal drone capacity
is set to 10 kg as in (Chen et al., 2021), the service times with drone are set to
sdi = ⌊0.5svi ⌋ , i ∈ V .
In the instances proposed in (Chen et al., 2021), an additional

⌊
0.2× |V |

⌋
cus-

tomers are randomly selected to be unavailable for drone delivery. Table 3
describes the different data sets. For each data set, we give the name of the
instances (Instances) where X is the id of a particular instance of the set, the
number of instances in the set (Size), the customer positioning (Pos), the dis-
tance metric (Dist), the original authors of the instances (Authors), the capacity
of the vehicle (Q), the maximum number of drones allowed on a vehicle (Γ),
the total number of vehicles (kv) and the total number of drones (kd). In col-
umn (Pos), ”rand” stands for ”random”, and ”clust” for ”clustered”. In column
(Dist), ”eucl” stands for ”euclidean”.

Instances |V | Size Pos Dist Authors Q Γ kv kd
Small-Size Instances

Cardiff 10 X 10 20 rand real Chen et al. (2021)* 170 2 4 4
Cardiff 15 X 15 20 rand real Chen et al. (2021) 170 2 5 5
Cardiff 25 X 25 20 rand real Chen et al. (2021) 200 3 5 10
c10X 35 35 9 clust eucl Solomon (1987) 250 3 5 10

Medium-Size Instances
Cardiff 40 X 40 20 rand real Chen et al. (2021)* 200 3 5 10
c10X 100 100 9 clust eucl Solomon (1987) 250 3 14 28
120 C1 2 X 120 10 clust eucl Gehring and Homberger (1999) 250 3 40 60
130 C1 2 X 130 10 clust eucl Gehring and Homberger (1999) 250 3 40 60
140 C1 2 X 140 10 clust eucl Gehring and Homberger (1999) 250 3 40 60
150 C1 2 X 150 10 clust eucl Gehring and Homberger (1999) 250 3 40 60

Table 3: Instances sets and their characteristics

Note that the set with 10 customers and the set with 40 customers are marked
with ’*’ as they are not in (Chen et al., 2021), but are derived from sets with
larger number of customers from(Chen et al., 2021), namely 15 and 50, by keep-
ing only the 10 and 40 first customers.
The instances c10X N are the 100-customers clustered instances called c10X in
(Solomon, 1987), restricted to the N first customers. We categorize instances
with 35 or fewer customers as small, while instances with more than 35 cus-
tomers will be referred to as medium. The instances N C1 2 X are the 200-
customer clustered instances called C1 2 X in (Gehring and Homberger, 1999),
restricted to the firstN customers.

7.3 Results

In this section we present all the results obtained by setting the computation
time limit at three hours per instance. Unless specified otherwise, the ARCC
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and the SPR criterion are used. To measure the difficulty of an instance more
precisely, we introduce K̂ = max

i∈V
|Ki| the largest drone-reachable neighborhood

of an instance, and |Amax| = max
d∈D
|Ad| the maximum number of arcs in a sub-

problem graph. |Amax| is extremely dependent on K̂, as the number of arcs in
a subproblem graph is exponential in the size of the drone-reachable neighbor-
hoods. Gap is calculated as follows: PB−DB

DB , with PB the primal bound and
DP the dual bound.
We present in the first subsection a comparison with the state-of-the-art re-
sults on the small-size instances. In the second subsection, we present the
performance of our algorithm on medium size instances. In a third section, we
present the results of the heuristic branch-cut-and-price on instances with large
drone-reachable neighborhoods.

7.3.1 Performance of the exact BCP on the small-size instances

Table 4 shows the summary of the performance of our algorithm on the small-
size instances and a comparison with the results obtained in (Zhou et al., 2023).
The comparison is fair, as we use a computer with similar speed. For each data
set, we give the name of the set (Instances), the number of instances solved
optimally over the total number instances in the dataset (Solved), the average
time in seconds required to solve the instances of the dataset (Time), the average
number of nodes processed in the branch-cut-and-price algorithm (Nodes), and
the maximum number of arcs in the subproblems graphs (|Amax|).

Instances Zhou et al. Our
Solved Time (s) Solved Time (s) Nodes |Amax|

Cardiff 10 X 20/20 0.4 20/20 0.57 1 217
Cardiff 15 X 20/20 0.7 20/20 1.33 1 993
Cardiff 25 X 15/20 3561.5 20/20 86.25 2.5 5207
c10X 35 4/9 7408 9/9 556.30 8.12 2490

Table 4: Average exact performance comparison given small-size instances

Our branch-price-and-cut algorithm can solve the small-size instances very effi-
ciently, indeed it solves all instances featured in (Zhou et al., 2023), including
10 solved for the first time. The computation time is improved by a factor 13
for the largest instances of the set. The number of nodes processed is very low.
Our algorithm solves any of the small-size instances in less than half an hour.
Therefore we increase the difficulty of the instances, by adding customers.

7.3.2 Performance of the exact BCP on the medium-size instances

Table 5 shows the summary of the performance of our algorithm on the medium-
size instances. For each data set, we give the name of the set (Instances), the
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maximum number of arcs in the subproblems graphs (|Amax|) of all instances,
the average maximal size of drone-reachable neighborhood (K̂), the number of
instances solved optimally over the total number instances (Solved), the number
of instances for which no feasible solution has been found (No Sol), the average
Gap of the instances for which a feasible solution has been found, the aver-
age time in seconds required to solve the instances of the dataset (Time) and
the average number of nodes processed in the branch-cut-and-price algorithm
(Nodes). The detailed results can be found in table 11, table 12 and table 13 in
Appendix A.

Instances |Amax| K̂ Solved No Sol Gap Time (s) Nodes
Cardiff 40 X 78422.55 13 9/20 6 3.12 6241.96 12.2
c10X 100 19009.23 11 8/9 0 0.14 3134.03 30.4
120 C1 2 X 14931.50 3 7/10 3 0 4430.94 58.8
130 C1 2 X 17615.80 4 5/10 4 0.07 7081.01 77.4
140 C1 2 X 20367.80 4 3/10 4 0.27 8229.01 84.3
150 C1 2 X 23332.80 4 2/10 4 0.45 9384.44 107.8

Table 5: Average exact performance comparison given medium-size instances

The size of the drone-reachable neighborhood has a heavy impact on the num-
ber of arcs of the subproblems graphs, which strongly affect calculation time.
Therefore, the size of the drone-reachable neighborhood should be considered
when measuring the size of an instance. Our algorithm is particularly efficient to
solve clustered instances: we solve most clustered instances with 120 customers
and some with up to 150 customers. It is worth mentioning that in Gehring and
Homberger (1999) instances, due to the weight of the packages, less than 50%
of the customers are available for drone delivery, leading to very small drone-
reachable neighborhoods. Increasing the number of customers in Gehring and
Homberger (1999) instances slightly increases the gap, the number of processed
nodes, and decreases the number of instances solved to optimality. However
with randomized instances, the performance of our method deteriorates much
faster. Already with 40 customers the algorithm can only find optimal solu-
tions for half of the Chen et al. (2021) instances and cannot find any feasible
solution for 6 instances. This can be explain by the large and highly intercon-
nected drone-reachable neighborhoods in the randomized instances. Note that
instances Cardiff 40 X in addition of having a high number of arcs in average,
also have great disparity among the instances of the set, as the standard de-
viation of the maximum number of arc in a subproblem graph is 61705.8. In
Cardiff 40 X instances, we only solve less than half instances. Due to the ex-
tremely high number of arcs, solving a node is slow. To obtain good quality
solutions, we propose to use the heuristic defined in section 6.
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7.3.3 Performance of the heuristic BCP on the random medium-size
instances

To evaluate the performance of the proposed heuristic, we tested several differ-
ent settings, which are reported in Table 6. The last row of the table corresponds
to the performance of the exact BCP algorithm. In the absence of results in
the literature, we compare all the results obtained by both the exact BCP and
the heuristic BCP, and retain the BKS from one of these methods. The average
gap between the heuristic solution and the BKS is then calculated as follows:
PB−BKS

BKS , with PB the primal bound and BKS the best known solution value
(Gap BKS).
Table 6 shows the summary of the performance of our heuristic branch-cut-
and-price on the Chen et al. (2021) instances, with different sets of parameters.
For each set of parameters Γh, wh, kh and ph we give the average number of
arcs in the largest subproblem of each instance (|Amax|), the average number
of nodes processed in the branch-cut-and-price algorithm (Nodes), the average
gap between the best known solution and the solution found in percentage for
the instances where a solution was found (Gap BKS), the number of instances
for which the solver reached the time limit (Time lim), the number of instances
for which the solver was not able to find a feasible solution (No sol) and the
average time solving time in seconds (Time). When the value of ph is inf, it
means the parameter is left unrestricted. The detailed results can be found in
table 14 in Appendix A.
Note that the maximum authorized number of drones per truck in these in-
stances is 3, and the largest drone-neighborhood is 15, hence setting the related
parameters to these values is similar to leaving them unrestricted.

Γh wh kh ph |Amax| Time lim No sol Gap BKS Time (s) Nodes
2 2 2 1 1796.30 0 0 4 392.72 5
2 3 3 1 1937.20 0 0 2.09 510.60 7.1
2 5 5 1 2641.55 0 0 1.05 360.44 5.6
2 8 5 1 6250.15 6 0 0.74 3738.86 19.4
3 5 3 1 2490.50 0 0 0.85 681.09 9.7
3 5 5 1 2664.95 0 0 0.67 381.38 5.4
3 5 5 inf 2773.70 0 0 0.67 348.23 5.1
3 8 5 1 6465.15 4 1 0.31 3496.81 25.2
3 8 5 inf 7767.95 6 2 0.26 3878.18 20.6
3 8 8 1 7088.75 6 2 0.18 4052.90 23.2
3 15 10 1 15222.95 5 0 0.04 4125.97 29.3
3 15 10 inf 78192.80 11 8 2.49 6203.80 12.5
3 15 15 1 43094.35 9 7 0.44 5625.45 13.5
3 15 15 inf 78422.55 11 6 1.89 6241.96 13

Table 6: Heuristic average performances given parameters on the Chen et al.
(2021) instances with 40 customers
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We can observe in table 6 that reducing the number of arcs in AdD with
d ∈ [1, ...,Γh] by decreasing wh or kh can significantly decrease computation
time, without decreasing the solutions quality much. For these instances, reduc-
ing Γh has a heavy negative impact on the gap BKS, without having a positive
impact on the computation time. It is worth mentioning that the heuristic with
parameters Γh = 3, wh = 15, kh = 10, ph = 1 gives a major improvement
compared to the exact method, as both the average gap and the average com-
putation time largely decrease. The heuristic with parameters Γh = 3, wh = 5,
kh = 5 , ph = 1 despite having a slightly larger gap has a very fast average
solving time of less than 10 minutes. Unrestricted parameter ph has a major
negative impact on the number of arcs and on the computation time, while
having no positive impact on the gap. That is why we set it to one in most
cases.

7.4 Sensitivity analysis

In this section we first present the impact of the ARCC and then we present
the impact of the SPR criterion. We use the concept of cut off values. Cut off
values are primal bound that the user provides to the algorithm, in order to
prune the branch and bound tree. We provide the best known solution as cut
off value. It can be use to prove the optimality of a solution, but here the goal is
to avoid random performance of the primal heuristics, so we can fairly compare
the performance with and without the tested improvement. Unless specified
otherwise, the ARCC and the SPR criterion are used. We recall that the gap
is calculated as follows: PB−DB

DB , with PB the primal bound and DP the dual
bound.

7.4.1 Impact of the adapted rounded capacity cuts

In this section, we present the impact of the adapted rounded capacity cuts. The
capacity constraint in the Chen et al. (2021) instances is not tight, as a large
proportion of the trucks capacity is not used in optimal solution, therefore the
ARCC are not useful on these instances, and the instances with 100 customers
are all solved within 10 minutes, most of them solved at root node. For these
reasons, we focus on the instances from Gehring and Homberger (1999) in this
section. As shown in table 5, within the three-hour limit, the exact branch-cut-
and-price does not find feasible solution for several instances of the Gehring and
Homberger (1999) datasets. To find accurate cut off values, we run the exact
BCP on these instances with a ten-hour time limit. However, we did not find
feasible solution for all instances with 150 customers. Therefore, we present
the results on the Gehring and Homberger (1999) instances with 120, 130 and
140 customers in table 7. We compare the performances with and without the
ARCC. Table 7 shows the summary of the experiments to measure the impact of
the ARCC. For each data set, we give the name of the set (Instances), whether
the ARCC were used or not (ARCC), the average gap obtained on instances
that are not solved optimally within the time limit (Gap), the average time in
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seconds required to solve the instances of the dataset (Time) and the average
number of nodes processed in the branch-cut-and-price algorithm (Nodes). Note
that the number of optimal solutions found is omitted as it is the same for both.
The detailed results can be found in the table 15 in Appendix A.

Instances ARCC Gap Time (s) Nodes
120 C1 2 X yes 0.12 2437.30 31.6
120 C1 2 X no 0.12 2451.13 40.6
130 C1 2 X yes 0.28 5784.12 88.2
130 C1 2 X no 0.30 5744.47 67.6
140 C1 2 X yes 0.56 5955.80 75.4
140 C1 2 X no 0.61 5925.10 72.6

Table 7: Average impact of the adapted rounded capacity cuts on the (Gehring
and Homberger, 1999) instances

We can observe on table 7 that the ARCC have a positive impact of the gap,
growing with the size of the instances. The ARCC have a negligible impact on
the computation time, this is due to the fact that the capacity constraints are
not very tight for these instances.

7.4.2 Impact of the shorter partial route criterion

In this section we study the impact of the shorter partial route criterion both
in terms of efficiency of the exact algorithm, and in terms of graph size. As the
instances from (Gehring and Homberger, 1999) have a small drone-reachable
neighborhood, this criterion does not have a significant impact on the number
of arcs. For this reason, we perform the sensibility analysis only for the medium-
size instances from (Chen et al., 2021) and (Solomon, 1987). We compare the
performances of the algorithm with and without the SPR criterion. We recall
that Gd is the directed graph representing the delivery possibilities for a truck
with d drones. Table 8 shows the summary of the experiments to measure the
impact of the SPR criterion on the medium-size instances. For each data set,
we give the name of the set (Instances), the number of arcs in subproblem graph
and the proportion of arcs compared to without the SPR criterion (|A1| ), (|A2|
), (|A3| ), the average Gap of the instances for which a feasible solution has been
found, the average time in seconds required to solve the instances of the dataset
(Time) and the average number of nodes processed in the branch-cut-and-price
algorithm (Nodes).
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Instances SPR |A1| |A2| |A3| Gap Time (s) Nodes
Cardiff 40 X yes 4449.15 ( 20%) 62169.85 ( 54%) 72709.35 ( 97%) 6.84 6376.47 10.7
Cardiff 40 X no 22597.45 (100%) 116217.80 (100%) 75056.20 (100%) 7.26 6318.14 8.8
c10X 100 yes 12902 ( 68%) 18298.67 ( 95%) 19009.23 (100%) 0 206.81 5.23
c10X 100 no 19079 (100%) 19326.56 (100%) 19009.23 (100%) 0 274.63 5.89

Table 8: Sensitivity analysis over SPR criterion

Note that using cut off values, the algorithm solves all c10X 100 instances to
optimality. The criterion removes a very large number of arc in G1 in both
cases, less in G2 and almost none in G3. It removes more arcs when instances
have larger drone-reachable neighborhood. For both data sets, the criterion
accelerates most solved instances. The unsolved instances gaps are decreased
of 0.5% in average. Note that although the criterion seems to have a negative
impact on computation time in the Cardiff 40 X instances, in fact, the time
decreases for 7 out of 9 instances solved optimally. Also the criterion decreases
the number of nodes in the c10X 100 instances. It is a positive impact, as it
improves convergence speed. The criterion increases the number of nodes in
instances Cardiff 40 X, which is also a positive result, as it is mainly due to
the number of nodes in instances where the optimal solution was not found,
demonstrating a faster node processing.

7.4.3 Impact of the restricted master heuristic

In this section, we present the impact of the restricted master heuristic. In this
experiment, cut off values are not provided to the solver.

Instances RMH Solved No Sol Gap Time Nodes
Cardiff 40 X yes 9/20 6 3.12 6241.96 12.2
Cardiff 40 X no 11/20 2 3.64 5621.62 39.0
c10X 100 yes 8/9 0 0.14 3134.03 30.4
c10X 100 no 8/9 1 0.00 4184.41 57.0
120 C1 2 X yes 7/10 3 0 4430.94 58.8
120 C1 2 X no 6/10 2 0.19 6116.54 132.40

Table 9: Sensitivity analysis over restricted master heuristic.

We can observe that the number of nodes increases drastically when the re-
stricted master heuristics are deactivated.

8 Conclusion

In this paper, we introduced a new branch-cut-and-price algorithm for the two-
echelon vehicle routing problem with drones, based on the enumeration of the
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drones round trips between customers and the vehicle parked at another cus-
tomer. We presented ways to improve the method by reducing the number
of drone trips enumerated, and by adapting the well-known rounded capacity
cuts, supported by sensitivity analysis. We also proposed an efficient heuristic
to tackle dense instances.
Extensive numerical experiments demonstrated the high efficiency of our method.
It allows for solving all instances of literature containing up to 35 customers im-
proving significantly computation times by a factor higher than 10 and optimally
solving 10 of them for the first time. We also proposed 6 new sets of instances
to promote research on VRP-D type problems. The experiments on our method
shows that we solve all but one clustered instance with 100 customers, and more
than half of the clustered instances with 120 customers. In the random dataset
with 40 customers and large drone-reachable neighborhood, 11 instances remain
open. To tackle these instances we proposed an heuristic branch-cut-and-price
based on the elimination of certain arcs in the subproblems, and using the exact
approach for solving. This approach shows great results, as the gaps with the
best known solutions are very small. We also show the improvement caused by
our adaptation of the rounded capacity cuts, and by the SPR criterion.
Testing these new instances highlighted some limitations of our branch-cut-
and-price approach. On the largest instances, the size of the sub-problem graph
becomes untractable due to the number of parallel arcs representing the drones
round trips possibilities which is exponential given the number of customers
that can be delivered by drone from a customer. A possible remedy is to model
the scheduling problem as a part of the RCSP, to avoid the explicit enumer-
ation of the scheduling solutions. This would require a special care for the
resources, as only one drone is responsible for the duration of the makespan.
In the same vein, it would be useful to find other rules of dominance for the
drones arcs. In order to increase the efficiency of our algorithm, another pos-
sible enhancement concerns the primal heuristic to quickly find good quality
primal bounds. It would also be very valuable to create instances more suit-
able for truck/drone deliveries, with different metrics for the drones and for the
trucks and realistic features regarding last miles delivery service. One could
also consider uncertainty for the travel with the truck. Comparing the gain us-
ing the 2E-VRP-D and the VRPD, on different sets of instances and objective
functions could also be very interesting. In addition, most public authorities at
national or metropolitan level are currently moving towards tighter regulation
of deliveries in city centers. In particular, more restrictions are being imposed
on access times for vehicles, and therefore also for customer deliveries. We could
integrate time window constraints with non-zero ready times into our model. In
particular, this extension will require a special care for the drones operations, as
drones might need to wait between round trips. Another perspective is to apply
this type of enumeration strategy to problems with a similar structure, such as
the park-and-loop vehicle routing problem for instance, in which the driver of a
vehicle parked at a client can make a walking tour to deliver nearby customers,
to avoid network congestion and use of gas.
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Appendix A Detailed computational experiments

In the next tables we present the detailed results of our experiments. We present
different information among: the name of the set (Instances), the maximum
number of arcs in the subproblem GΓ (|AΓ|) of all instances, the average max-
imal size of drone-reachable neighborhood (K̂), the number of instances solved
optimally over the total number instances (Solved), the number of instances
for which no feasible solution have been found (No Sol), the average Gap of
the instances for which a feasible solution have been found, the average time in
seconds required to solve the instances of the dataset (Time) and the average
number of nodes processed in the branch-cut-and-price algorithm (Nodes).

Table 10: Detailed performance of the exact algorithm on the
small-size instances

Instance |Amax| Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 10 01 217 0 0.72 1 1223.62 1223.62 0 0.79
Cardiff 10 02 134 0 0.447 1 1905.08 1905.08 0 0.49
Cardiff 10 03 147 0 0.543 1 1412.67 1412.67 0 0.6
Cardiff 10 04 136 0 0.572 1 1633.32 1633.32 0 0.62
Cardiff 10 05 136 0 0.436 1 1682.93 1682.93 0 0.48
Cardiff 10 06 155 0 0.591 1 1221.75 1221.75 0 0.65
Cardiff 10 07 129 0 0.473 1 1931.75 1931.75 0 0.52
Cardiff 10 08 143 0 0.615 1 1578.15 1578.15 0 0.67
Cardiff 10 09 126 0 0.456 1 2552.03 2552.03 0 0.49
Cardiff 10 10 125 0 0.46 1 2045.18 2045.18 0 0.5
Cardiff 10 11 137 0 0.424 1 2095.25 2095.25 0 0.46
Cardiff 10 12 161 0 0.578 1 1737.25 1737.25 0 0.63
Cardiff 10 13 136 0 0.5 1 1485.88 1485.88 0 0.57
Cardiff 10 14 125 0 0.441 1 1926.62 1926.62 0 0.5
Cardiff 10 15 202 0 0.479 1 1814.33 1814.33 0 0.53
Cardiff 10 16 148 0 0.602 1 1140.05 1140.05 0 0.69
Cardiff 10 17 129 0 0.449 1 1733.83 1733.83 0 0.5
Cardiff 10 18 137 0 0.456 1 1960.93 1960.93 0 0.51
Cardiff 10 19 136 0 0.478 1 1533.67 1533.67 0 0.53
Cardiff 10 20 135 0 0.502 1 1366.42 1366.42 0 0.59
Cardiff 15 01 993 0 3.59 1 1332 1332 0 3.66
Cardiff 15 02 383 0 0.773 1 1970.62 1970.62 0 0.83
Cardiff 15 03 292 0 1.099 1 1971.38 1971.38 0 1.19
Cardiff 15 04 320 0 0.799 1 2188.32 2188.32 0 0.84
Cardiff 15 05 311 0 0.727 1 1831.27 1831.27 0 0.79
Cardiff 15 06 408 0 1.395 1 1695.17 1695.17 0 1.5
Cardiff 15 07 318 0 0.755 1 2050.67 2050.67 0 0.82
Cardiff 15 08 318 0 1.091 1 1689.55 1689.55 0 1.17
Cardiff 15 09 322 0 0.687 1 2765.68 2765.68 0 0.74

Continued on next page
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Table 10: Detailed performance of the exact algorithm on the
small-size instances

Instance |Amax| Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 15 10 271 0 0.9 1 2984.98 2984.98 0 0.94
Cardiff 15 11 319 0 0.824 1 2242.98 2242.98 0 0.89
Cardiff 15 12 379 0 0.991 1 2155.83 2155.83 0 1.06
Cardiff 15 13 369 0 1.512 1 1606.55 1606.55 0 1.59
Cardiff 15 14 300 0 4.598 1 2369.88 2369.88 0 4.76
Cardiff 15 15 728 0 1.228 1 1883.45 1883.45 0 1.29
Cardiff 15 16 522 0 1.129 1 1756.85 1756.85 0 1.22
Cardiff 15 17 293 0 0.583 1 1858.17 1858.17 0 0.64
Cardiff 15 18 330 0 0.893 1 2288.73 2288.73 0 0.99
Cardiff 15 19 303 0 0.69 1 1762.17 1762.17 0 0.76
Cardiff 15 20 306 0 0.871 1 1697.1 1697.1 0 0.95
Cardiff 25 01 1622 0 78.333 1 2233.87 2233.87 0 78.81
Cardiff 25 02 1688 0.3 47.381 3 1979.95 1979.95 0 64.68
Cardiff 25 03 985 0.7 28.089 3 2389.7 2389.7 0 40.9
Cardiff 25 04 1280 5.8 31.931 3 2797.63 2797.63 0 66.87
Cardiff 25 05 1481 0 27.47 1 2062.97 2062.97 0 27.72
Cardiff 25 06 1140 0 24.194 1 2075.48 2075.48 0 24.52
Cardiff 25 07 1212 1.3 31.748 3 2112.6 2112.6 0 44.93
Cardiff 25 08 1119 0 20.74 1 2605.48 2605.48 0 20.91
Cardiff 25 09 1634 1.4 33.46 3 2055.22 2055.22 0 48.93
Cardiff 25 10 1605 2.7 75.233 5 2217.12 2217.12 0 296.04
Cardiff 25 11 5207 0.7 85.909 3 2051.12 2051.12 0 99.0
Cardiff 25 12 1245 7 18.103 5 4775.93 4775.93 0 157.68
Cardiff 25 13 2730 0 57.655 1 2248.63 2248.63 0 58.04
Cardiff 25 14 900 4 57.477 3 2530.68 2530.68 0 257.38
Cardiff 25 15 1240 0.7 35.323 3 2871.6 2871.6 0 51.14
Cardiff 25 16 1553 1.5 29.461 3 2503.27 2503.27 0 40.64
Cardiff 25 17 3780 0 65.629 1 2275.83 2275.83 0 65.9
Cardiff 25 18 922 0.6 56.438 3 2167.9 2167.9 0 125.93
Cardiff 25 19 1796 1.7 55.092 3 2257.8 2257.8 0 71.74
Cardiff 25 20 2449 0 82.744 1 2816.63 2816.63 0 83.14
c101 35 2460 0.7 20.556 3 1896.5 1896.5 0 113.09
c102 35 2460 0.5 27.488 5 1892.1 1892.1 0 729.18
c103 35 2460 0.6 17.262 3 1889.2 1889.2 0 32.16
c104 35 2472 0.8 50.63 25 1888.6 1888.6 0 1406.2
c105 35 2464 0.5 38.436 3 1896.5 1896.5 0 257.74
c106 35 2460 0.6 34.21 5 1896.5 1896.5 0 241.3
c107 35 2490 0.6 37.053 3 1896.5 1896.5 0 162.77
c108 35 2460 0.7 28.446 5 1893 1893 0 408.04
c109 35 2490 0.5 121.423 21 1893 1893 0 1656.22
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Note that the instance Cardiff 40 11 is not feasible under our assumptions.

Table 11: Detailed performance of the exact algorithm on instances
adapted from (Chen et al., 2021)

Instance |Amax| K̂ Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 40 01 13034 10 0.3 214.127 3 2931.88 2931.88 0 306.84
Cardiff 40 02 95883 14 20.1 92.803 37 3044.72 3217.42 5.7 10800
Cardiff 40 03 30318 12 2.7 168.228 3 2682.5 2682.5 0 351.02
Cardiff 40 04 169680 15 - 401.227 9 4292.31 - - 10800
Cardiff 40 05 25801 11 1.7 329.68 11 3770.9 3770.9 0 2141.71
Cardiff 40 06 26451 12 12.5 203.151 19 2909 2909 0 1633.04
Cardiff 40 07 89523 15 - 674.039 3 2093.42 - - 10800
Cardiff 40 08 9510 9 0.6 191.295 3 3834.02 3834.02 0 358.6
Cardiff 40 09 81734 14 35.1 381.086 11 3580.1 4484.18 25.3 10800
Cardiff 40 10 55913 14 1.3 171.288 3 2692.08 2692.08 0 573.32
Cardiff 40 11 48327 12 0 29.336 1 unfeasible unfeasible 0 30.12
Cardiff 40 12 38128 14 0.7 200.695 3 2642.87 2642.87 0 276.22
Cardiff 40 13 121649 14 21.9 196.029 23 2723.1 2913.13 7 10800
Cardiff 40 14 247124 15 - 1716.28 1 2236.37 - - 10800
Cardiff 40 15 33041 12 20.3 181.949 39 2606.74 2707.12 3.9 10800
Cardiff 40 16 153756 15 - 785.406 5 2927.97 - - 10800
Cardiff 40 17 24463 13 3.2 278.477 23 2733.69 2781.87 1.8 10800
Cardiff 40 18 93744 14 - 224.516 21 2707.07 - - 10800
Cardiff 40 19 10767 11 1.9 198.707 3 2784.05 2784.05 0 368.26
Cardiff 40 20 85341 14 - 214.132 23 2649.34 - - 10800

Table 12: Detailed performance of the exact algorithm on 100-
customer instances

Instance |Amax| Root Gap Root Time Nodes DB PB Gap Time (s)
c101 100 18845 0.3 88.031 5 5298.76 5298.76 0 643.78
c102 100 18845 0.4 86.379 7 5298.36 5298.36 0 751.62
c103 100 18898 0.4 104.734 43 5296.46 5296.46 0 4008.0
c104 100 20064 1.4 141.282 121 5274.95 5339.06 1.2 10800
c105 100 18849 0.3 90.378 19 5298.76 5298.76 0 3249.86
c106 100 18844 0.4 90.421 9 5298.76 5298.76 0 1144.6
c107 100 18875 0.3 80.05 5 5298.76 5298.76 0 769.38
c108 100 18845 0.4 93.02 15 5295.36 5295.36 0 1712.0
c109 100 19018 0.4 125.412 49 5295.16 5295.16 0 5127.0
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Table 13: Detailed performance of the exact algorithm on instances
from (Gehring and Homberger, 1999)

Instance |Amax| K̂ Root Gap Root Time Nodes DB PB Gap Time (s)
120 C1 2 1 14931 3 0.4 45.306 7 9090 9090 0 251.78
120 C1 2 2 14931 3 0.3 87.072 29 8920.5 8920.5 0 1827.92
120 C1 2 3 14931 3 1035 185.251 143 8815.06 - - 10800
120 C1 2 4 14931 3 1046.7 163.474 153 8728.17 - - 10800
120 C1 2 5 14931 3 0.5 58.236 19 8986.2 8986.2 0 1454.68
120 C1 2 6 14931 3 0.9 91.461 17 8988.4 8988.4 0 1899.7
120 C1 2 7 14931 3 0.5 67.444 29 8958.6 8958.6 0 2438.2
120 C1 2 8 14931 3 0.3 166.804 9 8817.9 8817.9 0 642.36
120 C1 2 9 14931 3 0.3 171.819 51 8790.62 8790.62 0 3394.73
120 C1 2 10 14931 3 1044.6 193.899 131 8741.16 - - 10800
130 C1 2 1 17614 4 0.6 61.628 11 9325.92 9325.92 0 744.67
130 C1 2 2 17614 4 0.3 105.671 11 9141.2 9141.2 0 787.67
130 C1 2 3 17614 4 1005.5 147.702 105 9054.61 - - 10800
130 C1 2 4 17617 4 1015.2 162.767 125 8973.53 - - 10800
130 C1 2 5 17614 4 0.5 87.648 29 9209.62 9209.62 0 3294.54
130 C1 2 6 17614 4 0.8 119.465 109 9222.4 9222.4 0 9784.0
130 C1 2 7 17614 4 0.6 122.121 21 9197.92 9197.92 0 2199.14
130 C1 2 8 17614 4 0.7 148.914 153 9053.06 9091.7 0.4 10800
130 C1 2 9 17614 4 1008.9 177.902 107 9029.23 - - 10800
130 C1 2 10 17614 4 1013.6 215.358 103 8985.44 - - 10800
140 C1 2 1 20366 4 0.6 82.444 51 9970.42 9970.42 0 2840.77
140 C1 2 2 20366 4 0.5 135.393 129 9786.12 9817.38 0.3 10800
140 C1 2 3 20366 4 931.4 192.591 125 9710.4 - - 10800
140 C1 2 4 20369 4 939 181.705 87 9632.6 - - 10800
140 C1 2 5 20366 4 0.4 94.988 25 9848.82 9848.82 0 1981.57
140 C1 2 6 20366 4 1.1 121.619 89 9812.82 9891.3 0.8 10800
140 C1 2 7 20366 4 0.3 152.451 21 9836.32 9836.32 0 1867.67
140 C1 2 8 20366 4 0.6 193.816 103 9707.63 9753.78 0.5 10800
140 C1 2 9 20366 4 933 215.832 107 9683.85 - - 10800
140 C1 2 10 20366 4 939.2 211.671 105 9636.41 - - 10800
150 C1 2 1 23331 4 0.4 95.102 35 10699.3 10699.3 0 1539.33
150 C1 2 2 23331 4 0.6 202.898 103 10551.2 10599.8 0.5 10800
150 C1 2 3 23331 4 1.6 160.827 137 10453.6 10611.5 1.5 10800
150 C1 2 4 23334 4 860.4 221.244 91 10425.2 - - 10800
150 C1 2 5 23331 4 0.6 107.043 123 10582.5 10628.2 0.4 10800
150 C1 2 6 23331 4 0.5 170.548 159 10561.4 10595.1 0.3 10800
150 C1 2 7 23331 4 0.5 131.694 113 10602.5 10602.5 0 5905.0
150 C1 2 8 23331 4 856.6 215.009 105 10468.6 - - 10800
150 C1 2 9 23331 4 860.5 236.564 105 10416.2 - - 10800
150 C1 2 10 23331 4 865 210.899 107 10381 - - 10800
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Table 13: Detailed performance of the exact algorithm on instances
from (Gehring and Homberger, 1999)

Instance |Amax| K̂ Root Gap Root Time Nodes DB PB Gap Time (s)

Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 01 2 2 2 1 1795 83.27 3 3023.92 2931.88 3.14 108.18
Cardiff 40 01 2 3 3 1 1931 89.94 3 2931.88 2931.88 0.00 115.41
Cardiff 40 01 2 5 5 1 2491 111.19 1 2931.88 2931.88 0.00 112.07
Cardiff 40 01 2 5 8 1 5261 147.21 1 2931.88 2931.88 0.00 147.91
Cardiff 40 01 3 3 5 1 2366 138.05 1 2931.88 2931.88 0.00 138.87
Cardiff 40 01 3 5 5 1 2501 113.29 3 2931.88 2931.88 0.00 141.00
Cardiff 40 01 3 5 5 inf 2636 121.99 3 2931.88 2931.88 0.00 152.10
Cardiff 40 01 3 5 8 1 5283 175.87 3 2931.88 2931.88 0.00 231.41
Cardiff 40 01 3 5 8 inf 6601 213.12 3 2931.88 2931.88 0.00 276.06
Cardiff 40 01 3 8 8 1 5715 180.78 1 2931.88 2931.88 0.00 181.72
Cardiff 40 01 3 10 15 inf 16141 208.76 3 2931.88 2931.88 0.00 282.59
Cardiff 40 01 3 15 10 1 10714 197.94 3 2931.88 2931.88 0.00 273.71
Cardiff 40 01 3 15 15 inf 10714 190.00 3 2931.88 2931.88 0.00 252.57
Cardiff 40 02 2 2 2 1 1798 74.15 1 3258.43 3217.42 1.27 74.65
Cardiff 40 02 2 3 3 1 1940 76.30 1 3217.42 3217.42 0.00 76.65
Cardiff 40 02 2 5 5 1 2691 79.61 1 3217.42 3217.42 0.00 80.37
Cardiff 40 02 2 5 8 1 6439 119.73 3 3217.42 3217.42 0.00 368.83
Cardiff 40 02 3 3 5 1 2521 94.48 3 3217.42 3217.42 0.00 193.52
Cardiff 40 02 3 5 5 1 2707 99.99 1 3217.42 3217.42 0.00 100.56
Cardiff 40 02 3 5 5 inf 2831 73.55 3 3217.42 3217.42 0.00 163.43
Cardiff 40 02 3 5 8 1 6743 110.46 7 3217.42 3217.42 0.00 1222.35
Cardiff 40 02 3 5 8 inf 7965 117.88 13 3217.42 3217.42 0.00 1812.41
Cardiff 40 02 3 8 8 1 7431 110.16 11 3217.42 3217.42 0.00 1928.13
Cardiff 40 02 3 10 15 inf 94606 104.14 37 - 3217.42 - 10800.00
Cardiff 40 02 3 15 10 1 15732 143.74 5 3217.42 3217.42 0.00 1813.37
Cardiff 40 02 3 15 15 inf 44541 71.34 43 3217.42 3217.42 0.00 10800.00
Cardiff 40 03 2 2 2 1 1798 64.23 3 2761.12 2682.5 2.93 92.10
Cardiff 40 03 2 3 3 1 1932 83.51 1 2686.92 2682.5 0.16 84.03
Cardiff 40 03 2 5 5 1 2573 101.58 3 2682.5 2682.5 0.00 193.17
Cardiff 40 03 2 5 8 1 6071 150.94 3 2682.5 2682.5 0.00 277.87
Cardiff 40 03 3 3 5 1 2441 83.80 3 2682.5 2682.5 0.00 138.85
Cardiff 40 03 3 5 5 1 2605 107.42 3 2682.5 2682.5 0.00 186.08
Cardiff 40 03 3 5 5 inf 2676 119.35 1 2682.5 2682.5 0.00 119.95
Cardiff 40 03 3 5 8 1 6311 126.94 3 2682.5 2682.5 0.00 252.25
Cardiff 40 03 3 5 8 inf 7550 132.35 7 2682.5 2682.5 0.00 447.35
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 03 3 8 8 1 6983 141.43 5 2682.5 2682.5 0.00 470.14
Cardiff 40 03 3 10 15 inf 32435 203.85 5 2682.5 2682.5 0.00 531.98
Cardiff 40 03 3 15 10 1 14395 184.13 21 2682.5 2682.5 0.00 2524.46
Cardiff 40 03 3 15 15 inf 20100 185.76 5 2682.5 2682.5 0.00 456.20
Cardiff 40 04 2 2 2 1 1792 60.52 5 5259.18 5082.62 3.47 119.43
Cardiff 40 04 2 3 3 1 1934 60.83 5 5239.48 5082.62 3.09 164.87
Cardiff 40 04 2 5 5 1 2720 72.19 3 5239.48 5082.62 3.09 137.02
Cardiff 40 04 2 5 8 1 7764 90.31 39 5245.75 5082.62 3.21 10800.00
Cardiff 40 04 3 3 5 1 2573 79.86 7 5236.25 5082.62 3.02 224.70
Cardiff 40 04 3 5 5 1 2781 69.25 7 5236.25 5082.62 3.02 196.73
Cardiff 40 04 3 5 5 inf 2784 72.60 17 5236.25 5082.62 3.02 434.19
Cardiff 40 04 3 5 8 1 8532 162.82 73 5142.45 5082.62 1.18 10800.00
Cardiff 40 04 3 5 8 inf 8641 167.72 51 5178.7 5082.62 1.89 10800.00
Cardiff 40 04 3 8 8 1 9603 115.39 49 - 5082.62 - 10800.00
Cardiff 40 04 3 10 15 inf 169680 429.19 9 - 5082.62 - 10800.00
Cardiff 40 04 3 15 10 1 26672 195.76 45 5082.62 5082.62 0.00 10800.00
Cardiff 40 04 3 15 15 inf 146716 396.58 11 - 5082.62 - 10800.00
Cardiff 40 05 2 2 2 1 1795 166.61 3 3812.85 3770.9 1.11 332.22
Cardiff 40 05 2 3 3 1 1947 142.14 3 3812.85 3770.9 1.11 208.14
Cardiff 40 05 2 5 5 1 2582 185.46 3 3770.9 3770.9 0.00 250.84
Cardiff 40 05 2 5 8 1 5696 266.27 15 3770.9 3770.9 0.00 1436.28
Cardiff 40 05 3 3 5 1 2453 207.88 3 3770.9 3770.9 0.00 273.77
Cardiff 40 05 3 5 5 1 2609 213.88 3 3770.9 3770.9 0.00 269.74
Cardiff 40 05 3 5 5 inf 2758 223.78 3 3770.9 3770.9 0.00 294.98
Cardiff 40 05 3 5 8 1 5955 282.85 11 3770.9 3770.9 0.00 1134.08
Cardiff 40 05 3 5 8 inf 7149 336.73 9 3770.9 3770.9 0.00 1313.44
Cardiff 40 05 3 8 8 1 6492 300.18 13 3770.9 3770.9 0.00 1614.24
Cardiff 40 05 3 10 15 inf 25801 319.38 7 3770.9 3770.9 0.00 1614.57
Cardiff 40 05 3 15 10 1 12799 397.57 5 3770.9 3770.9 0.00 1000.81
Cardiff 40 05 3 15 15 inf 16776 239.74 3 3770.9 3770.9 0.00 674.01
Cardiff 40 06 2 2 2 1 1800 108.36 1 3013.15 2909 3.58 108.80
Cardiff 40 06 2 3 3 1 1939 111.47 1 2909.0 2909 0.00 112.15
Cardiff 40 06 2 5 5 1 2671 167.08 3 2909.0 2909 0.00 263.32
Cardiff 40 06 2 5 8 1 6008 193.26 3 2909.0 2909 0.00 331.11
Cardiff 40 06 3 3 5 1 2501 157.41 1 2909.0 2909 0.00 158.25
Cardiff 40 06 3 5 5 1 2680 177.21 3 2909.0 2909 0.00 292.64
Cardiff 40 06 3 5 5 inf 2858 174.96 1 2909.0 2909 0.00 175.67
Cardiff 40 06 3 5 8 1 6041 239.07 5 2909.0 2909 0.00 536.92
Cardiff 40 06 3 5 8 inf 7529 235.25 3 2909.0 2909 0.00 387.91
Cardiff 40 06 3 8 8 1 6590 256.48 3 2909.0 2909 0.00 503.01
Cardiff 40 06 3 10 15 inf 26451 211.78 7 2909.0 2909 0.00 865.43
Cardiff 40 06 3 15 10 1 13386 262.61 3 2909.0 2909 0.00 425.62
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 06 3 15 15 inf 17176 175.53 5 2909.0 2909 0.00 591.90
Cardiff 40 07 2 2 2 1 1796 77.83 1 2510.25 2491.27 0.76 78.45
Cardiff 40 07 2 3 3 1 1947 81.88 1 2510.25 2491.27 0.76 82.69
Cardiff 40 07 2 5 5 1 2756 96.54 3 2508.6 2491.27 0.70 220.03
Cardiff 40 07 2 5 8 1 6981 141.71 7 2498.08 2491.27 0.27 711.42
Cardiff 40 07 3 3 5 1 2579 115.86 3 2508.6 2491.27 0.70 239.77
Cardiff 40 07 3 5 5 1 2781 112.91 3 2508.6 2491.27 0.70 243.98
Cardiff 40 07 3 5 5 inf 2884 116.35 3 2508.6 2491.27 0.70 205.18
Cardiff 40 07 3 5 8 1 7195 173.82 7 2498.08 2491.27 0.27 772.11
Cardiff 40 07 3 5 8 inf 9005 154.60 3 2498.08 2491.27 0.27 362.34
Cardiff 40 07 3 8 8 1 7704 170.55 3 2498.08 2491.27 0.27 394.30
Cardiff 40 07 3 10 15 inf 144776 701.13 3 - 2491.27 - 10800.00
Cardiff 40 07 3 15 10 1 18094 224.58 3 2491.27 2491.27 0.00 414.07
Cardiff 40 07 3 15 15 inf 70597 375.00 9 - 2491.27 - 10800.00
Cardiff 40 08 2 2 2 1 1798 67.13 5 3964.98 3834.02 3.42 288.31
Cardiff 40 08 2 3 3 1 1932 70.08 7 3962.05 3834.02 3.34 263.64
Cardiff 40 08 2 5 5 1 2590 100.03 3 3880.87 3834.02 1.22 194.73
Cardiff 40 08 2 5 8 1 5238 143.00 1 3834.02 3834.02 0.00 143.70
Cardiff 40 08 3 3 5 1 2444 138.10 3 3880.87 3834.02 1.22 223.55
Cardiff 40 08 3 5 5 1 2605 114.78 3 3870.2 3834.02 0.94 205.67
Cardiff 40 08 3 5 5 inf 2703 115.98 3 3870.2 3834.02 0.94 191.49
Cardiff 40 08 3 5 8 1 5467 226.22 5 3834.02 3834.02 0.00 725.98
Cardiff 40 08 3 5 8 inf 6622 235.22 5 3834.02 3834.02 0.00 683.52
Cardiff 40 08 3 8 8 1 5922 217.93 5 3834.02 3834.02 0.00 751.23
Cardiff 40 08 3 10 15 inf 9510 229.68 5 3834.02 3834.02 0.00 799.80
Cardiff 40 08 3 15 10 1 6941 181.43 3 3834.02 3834.02 0.00 384.79
Cardiff 40 08 3 15 15 inf 6941 201.69 5 3834.02 3834.02 0.00 631.42
Cardiff 40 09 2 2 2 1 1799 148.26 3 4122.2 3668.2 12.38 323.28
Cardiff 40 09 2 3 3 1 1950 105.21 3 4114.32 3668.2 12.16 172.51
Cardiff 40 09 2 5 5 1 2698 186.22 5 3977.35 3668.2 8.43 469.85
Cardiff 40 09 2 5 8 1 6482 180.19 33 3726.48 3668.2 1.59 10800.00
Cardiff 40 09 3 3 5 1 2530 224.38 3 3955.0 3668.2 7.82 367.35
Cardiff 40 09 3 5 5 1 2717 222.18 3 3924.03 3668.2 6.97 334.68
Cardiff 40 09 3 5 5 inf 2830 236.50 3 3924.03 3668.2 6.97 369.09
Cardiff 40 09 3 5 8 1 6656 421.09 49 3668.2 3668.2 0.00 5115.00
Cardiff 40 09 3 5 8 inf 8011 446.94 49 3719.7 3668.2 1.40 10800.00
Cardiff 40 09 3 8 8 1 7350 323.74 31 3668.2 3668.2 0.00 10800.00
Cardiff 40 09 3 10 15 inf 80282 380.71 15 4639.5 3668.2 26.48 10800.00
Cardiff 40 09 3 15 10 1 15941 361.56 65 3668.2 3668.2 0.00 10800.00
Cardiff 40 09 3 15 15 inf 42829 362.02 21 3876.85 3668.2 5.69 10800.00
Cardiff 40 10 2 2 2 1 1800 76.35 1 2769.2 2692.08 2.86 76.72
Cardiff 40 10 2 3 3 1 1950 76.03 3 2769.2 2692.08 2.86 114.10
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 10 2 5 5 1 2669 85.22 1 2711.32 2692.08 0.71 86.05
Cardiff 40 10 2 5 8 1 5995 141.77 3 2711.32 2692.08 0.71 276.20
Cardiff 40 10 3 3 5 1 2515 99.54 1 2692.08 2692.08 0.00 100.29
Cardiff 40 10 3 5 5 1 2690 100.58 1 2692.08 2692.08 0.00 100.99
Cardiff 40 10 3 5 5 inf 2799 103.25 1 2692.08 2692.08 0.00 103.87
Cardiff 40 10 3 5 8 1 6222 151.79 1 2692.08 2692.08 0.00 152.67
Cardiff 40 10 3 5 8 inf 7334 173.19 1 2692.08 2692.08 0.00 174.24
Cardiff 40 10 3 8 8 1 6779 136.26 1 2692.08 2692.08 0.00 136.99
Cardiff 40 10 3 10 15 inf 55901 167.17 5 2692.08 2692.08 0.00 521.83
Cardiff 40 10 3 15 10 1 12351 156.87 1 2692.08 2692.08 0.00 157.60
Cardiff 40 10 3 15 15 inf 28248 210.33 1 2692.08 2692.08 0.00 211.15
Cardiff 40 11 2 2 2 1 1792 5.47 1 unfeasible unfeasible 0.00 5.69
Cardiff 40 11 2 3 3 1 1921 4.57 1 unfeasible unfeasible 0.00 4.79
Cardiff 40 11 2 5 5 1 2619 9.09 1 unfeasible unfeasible 0.00 9.75
Cardiff 40 11 2 5 8 1 6236 10.38 1 unfeasible unfeasible 0.00 10.86
Cardiff 40 11 3 3 5 1 2467 8.26 1 unfeasible unfeasible 0.00 8.76
Cardiff 40 11 3 5 5 1 2635 8.60 1 unfeasible unfeasible 0.00 9.02
Cardiff 40 11 3 5 5 inf 2774 8.18 1 unfeasible unfeasible 0.00 8.48
Cardiff 40 11 3 5 8 1 6535 10.62 1 unfeasible unfeasible 0.00 10.95
Cardiff 40 11 3 5 8 inf 8065 12.39 1 unfeasible unfeasible 0.00 13.12
Cardiff 40 11 3 8 8 1 7188 13.01 1 unfeasible unfeasible 0.00 13.37
Cardiff 40 11 3 10 15 inf 48327 32.05 1 unfeasible unfeasible 0.00 33.12
Cardiff 40 11 3 15 10 1 15181 16.39 1 unfeasible unfeasible 0.00 17.03
Cardiff 40 11 3 15 15 inf 27035 23.10 1 unfeasible unfeasible 0.00 23.63
Cardiff 40 12 2 2 2 1 1792 54.70 3 2692.03 2642.87 1.86 72.94
Cardiff 40 12 2 3 3 1 1929 53.43 3 2642.87 2642.87 0.00 66.04
Cardiff 40 12 2 5 5 1 2577 60.04 3 2642.87 2642.87 0.00 105.03
Cardiff 40 12 2 5 8 1 5911 99.59 3 2642.87 2642.87 0.00 145.91
Cardiff 40 12 3 3 5 1 2435 81.01 3 2642.87 2642.87 0.00 129.47
Cardiff 40 12 3 5 5 1 2596 85.92 3 2642.87 2642.87 0.00 140.96
Cardiff 40 12 3 5 5 inf 2720 87.54 3 2642.87 2642.87 0.00 142.77
Cardiff 40 12 3 5 8 1 5911 98.25 3 2642.87 2642.87 0.00 138.24
Cardiff 40 12 3 5 8 inf 7484 109.45 3 2642.87 2642.87 0.00 168.09
Cardiff 40 12 3 8 8 1 6505 109.39 3 2642.87 2642.87 0.00 159.03
Cardiff 40 12 3 10 15 inf 81967 173.31 3 2642.87 2642.87 0.00 251.61
Cardiff 40 12 3 15 10 1 14174 108.45 3 2642.87 2642.87 0.00 165.07
Cardiff 40 12 3 15 15 inf 35393 157.84 3 2642.87 2642.87 0.00 217.98
Cardiff 40 13 2 2 2 1 1798 76.77 1 2999.0 2827.82 6.05 77.11
Cardiff 40 13 2 3 3 1 1935 74.68 1 2999.0 2827.82 6.05 75.12
Cardiff 40 13 2 5 5 1 2676 116.97 1 2883.55 2827.82 1.97 117.87
Cardiff 40 13 2 5 8 1 6437 141.25 57 2864.38 2827.82 1.29 4819.00
Cardiff 40 13 3 3 5 1 2528 141.22 3 2881.38 2827.82 1.89 254.77
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 13 3 5 5 1 2717 101.87 1 2827.82 2827.82 0.00 102.28
Cardiff 40 13 3 5 5 inf 2853 99.53 1 2827.82 2827.82 0.00 100.08
Cardiff 40 13 3 5 8 1 6635 142.07 79 2827.82 2827.82 0.00 6390.00
Cardiff 40 13 3 5 8 inf 8202 152.43 67 - 2827.82 - 10800.00
Cardiff 40 13 3 8 8 1 7251 151.86 73 2827.82 2827.82 0.00 8276.00
Cardiff 40 13 3 10 15 inf 121449 206.87 23 2913.13 2827.82 3.02 10800.00
Cardiff 40 13 3 15 10 1 16815 208.34 113 2827.82 2827.82 0.00 8293.00
Cardiff 40 13 3 15 15 inf 60077 156.43 41 - 2827.82 - 10800.00
Cardiff 40 14 2 2 2 1 1796 75.74 15 3091.18 2910.9 6.19 960.53
Cardiff 40 14 2 3 3 1 1929 93.03 45 3053.88 2910.9 4.91 2932.49
Cardiff 40 14 2 5 5 1 2680 78.02 63 3028.5 2910.9 4.04 3480.14
Cardiff 40 14 2 5 8 1 6624 117.48 63 3023.08 2910.9 3.85 10800.00
Cardiff 40 14 3 3 5 1 2515 108.57 139 2957.28 2910.9 1.59 9388.00
Cardiff 40 14 3 5 5 1 2705 112.64 55 2957.28 2910.9 1.59 3692.00
Cardiff 40 14 3 5 5 inf 2819 120.63 39 2957.28 2910.9 1.59 2816.44
Cardiff 40 14 3 5 8 1 6992 170.78 53 - 2910.9 - 10800.00
Cardiff 40 14 3 5 8 inf 8269 192.80 63 - 2910.9 - 10800.00
Cardiff 40 14 3 8 8 1 7750 187.90 81 - 2910.9 - 10800.00
Cardiff 40 14 3 10 15 inf 246924 1796.16 1 - 2910.9 - 10800.00
Cardiff 40 14 3 15 10 1 21082 102.81 113 2910.9 2910.9 0.00 7905.00
Cardiff 40 14 3 15 15 inf 116234 1094.78 3 - 2910.9 - 10800.00
Cardiff 40 15 2 2 2 1 1797 82.77 1 2760.08 2707.12 1.96 83.05
Cardiff 40 15 2 3 3 1 1942 106.92 1 2760.08 2707.12 1.96 107.20
Cardiff 40 15 2 5 5 1 2643 125.59 3 2707.12 2707.12 0.00 205.99
Cardiff 40 15 2 5 8 1 6574 174.10 3 2707.12 2707.12 0.00 318.79
Cardiff 40 15 3 3 5 1 2506 118.92 3 2707.12 2707.12 0.00 186.76
Cardiff 40 15 3 5 5 1 2680 134.02 3 2707.12 2707.12 0.00 201.04
Cardiff 40 15 3 5 5 inf 2730 132.68 3 2707.12 2707.12 0.00 198.58
Cardiff 40 15 3 5 8 1 6721 172.12 3 2707.12 2707.12 0.00 330.60
Cardiff 40 15 3 5 8 inf 8005 180.66 9 2707.12 2707.12 0.00 966.44
Cardiff 40 15 3 8 8 1 7296 186.29 5 2707.12 2707.12 0.00 597.70
Cardiff 40 15 3 10 15 inf 37408 185.77 41 2716.77 2707.12 0.36 10800.00
Cardiff 40 15 3 15 10 1 15169 133.81 25 2707.12 2707.12 0.00 3442.63
Cardiff 40 15 3 15 15 inf 23134 200.91 35 2707.12 2707.12 0.00 6986.00
Cardiff 40 16 2 2 2 1 1796 152.34 3 4095.77 3353.42 22.14 325.30
Cardiff 40 16 2 3 3 1 1938 139.04 3 3378.82 3353.42 0.76 246.38
Cardiff 40 16 2 5 5 1 2634 157.76 3 3378.82 3353.42 0.76 290.33
Cardiff 40 16 2 5 8 1 6861 251.24 37 3415.72 3353.42 1.86 10800.00
Cardiff 40 16 3 3 5 1 2483 223.02 3 3378.82 3353.42 0.76 387.75
Cardiff 40 16 3 5 5 1 2660 146.76 3 3353.42 3353.42 0.00 271.65
Cardiff 40 16 3 5 5 inf 2771 161.23 3 3353.42 3353.42 0.00 291.54
Cardiff 40 16 3 5 8 1 7072 278.11 49 3353.42 3353.42 0.00 10800.00
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 16 3 5 8 inf 8688 351.24 27 3366.97 3353.42 0.40 10800.00
Cardiff 40 16 3 8 8 1 7898 296.23 61 3410.52 3353.42 1.70 10800.00
Cardiff 40 16 3 10 15 inf 152985 835.01 5 - 3353.42 - 10800.00
Cardiff 40 16 3 15 10 1 19971 335.19 15 3366.97 3353.42 0.40 10800.00
Cardiff 40 16 3 15 15 inf 65872 480.78 9 - 3353.42 - 10800.00
Cardiff 40 17 2 2 2 1 1798 92.36 3 2831.3 2749.83 2.96 115.20
Cardiff 40 17 2 3 3 1 1939 87.32 1 2777.07 2749.83 0.99 87.80
Cardiff 40 17 2 5 5 1 2624 128.11 1 2749.83 2749.83 0.00 129.20
Cardiff 40 17 2 5 8 1 5241 189.10 5 2749.83 2749.83 0.00 676.60
Cardiff 40 17 3 3 5 1 2474 162.52 3 2749.83 2749.83 0.00 235.68
Cardiff 40 17 3 5 5 1 2642 160.60 1 2749.83 2749.83 0.00 161.46
Cardiff 40 17 3 5 5 inf 2738 164.62 1 2749.83 2749.83 0.00 165.30
Cardiff 40 17 3 5 8 1 5350 225.94 3 2749.83 2749.83 0.00 364.92
Cardiff 40 17 3 5 8 inf 6334 204.08 7 2749.83 2749.83 0.00 928.89
Cardiff 40 17 3 8 8 1 5787 191.46 3 2749.83 2749.83 0.00 307.75
Cardiff 40 17 3 10 15 inf 24600 280.43 33 - 2749.83 - 10800.00
Cardiff 40 17 3 15 10 1 9307 233.03 7 2749.83 2749.83 0.00 1051.50
Cardiff 40 17 3 15 15 inf 16770 256.00 9 2749.83 2749.83 0.00 4918.00
Cardiff 40 18 2 2 2 1 1787 120.56 3 2898.75 2888.65 0.35 264.26
Cardiff 40 18 2 3 3 1 1915 82.22 3 2888.65 2888.65 0.00 146.25
Cardiff 40 18 2 5 5 1 2579 88.51 5 2888.65 2888.65 0.00 268.48
Cardiff 40 18 2 5 8 1 6586 110.40 57 2941.17 2888.65 1.82 10800.00
Cardiff 40 18 3 3 5 1 2435 120.02 5 2888.65 2888.65 0.00 378.09
Cardiff 40 18 3 5 5 1 2593 109.83 5 2888.65 2888.65 0.00 355.63
Cardiff 40 18 3 5 5 inf 2711 117.91 3 2888.65 2888.65 0.00 190.47
Cardiff 40 18 3 5 8 1 6763 155.29 75 2888.65 2888.65 0.00 9097.00
Cardiff 40 18 3 5 8 inf 8311 165.19 37 2888.65 2888.65 0.00 4932.00
Cardiff 40 18 3 8 8 1 7454 153.60 57 2902.2 2888.65 0.47 10800.00
Cardiff 40 18 3 10 15 inf 93353 233.75 21 - 2888.65 - 10800.00
Cardiff 40 18 3 15 10 1 17614 94.82 93 2888.65 2888.65 0.00 10800.00
Cardiff 40 18 3 15 15 inf 48958 156.16 29 - 2888.65 - 10800.00
Cardiff 40 19 2 2 2 1 1800 100.68 3 2807.1 2784.05 0.83 206.02
Cardiff 40 19 2 3 3 1 1956 125.08 3 2807.1 2784.05 0.83 272.73
Cardiff 40 19 2 5 5 1 2690 181.37 3 2784.05 2784.05 0.00 345.11
Cardiff 40 19 2 5 8 1 5057 147.83 3 2784.05 2784.05 0.00 312.69
Cardiff 40 19 3 3 5 1 2541 174.93 3 2784.05 2784.05 0.00 298.16
Cardiff 40 19 3 5 5 1 2710 172.47 3 2784.05 2784.05 0.00 306.01
Cardiff 40 19 3 5 5 inf 2801 156.48 7 2784.05 2784.05 0.00 557.54
Cardiff 40 19 3 5 8 1 5075 158.20 3 2784.05 2784.05 0.00 261.90
Cardiff 40 19 3 5 8 inf 6009 167.29 3 2784.05 2784.05 0.00 297.71
Cardiff 40 19 3 8 8 1 5412 169.81 11 2784.05 2784.05 0.00 924.35
Cardiff 40 19 3 10 15 inf 11376 209.09 3 2784.05 2784.05 0.00 374.94
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Table 14: Detailed performance of the heuristic

Instance Γh wh kh ph |Amax| Root Time Nodes PB BKS Gap Time (s)
Cardiff 40 19 3 15 10 1 7577 211.69 7 2784.05 2784.05 0.00 650.65
Cardiff 40 19 3 15 15 inf 8484 189.95 3 2784.05 2784.05 0.00 345.95
Cardiff 40 20 2 2 2 1 1798 104.94 41 3167.3 3083.32 2.72 4142.00
Cardiff 40 20 2 3 3 1 1937 94.93 53 3167.3 3083.32 2.72 4879.00
Cardiff 40 20 2 5 5 1 2668 104.20 3 3083.32 3083.32 0.00 249.27
Cardiff 40 20 2 5 8 1 7541 126.64 51 3083.32 3083.32 0.00 10800.00
Cardiff 40 20 3 3 5 1 2503 152.96 3 3083.32 3083.32 0.00 295.26
Cardiff 40 20 3 5 5 1 2685 142.13 3 3083.32 3083.32 0.00 315.32
Cardiff 40 20 3 5 5 inf 2798 138.74 3 3083.32 3083.32 0.00 283.32
Cardiff 40 20 3 5 8 1 7844 162.42 71 3217.35 3083.32 4.35 10800.00
Cardiff 40 20 3 5 8 inf 9585 183.54 51 3102.13 3083.32 0.61 10800.00
Cardiff 40 20 3 8 8 1 8665 198.26 47 3109.15 3083.32 0.84 10800.00
Cardiff 40 20 3 10 15 inf 89884 223.75 23 - 3083.32 - 10800.00
Cardiff 40 20 3 15 10 1 20544 273.60 55 3089.5 3083.32 0.20 10800.00
Cardiff 40 20 3 15 15 inf 55292 162.79 31 - 3083.32 - 10800.00

Table 15: Detailed experiments on the impact of the ARCC

Instance ARCC Root Gap Root Time Nodes DB PB Gap Time (s)
120 C1 2 01 yes 0 58.04 1 9090 9090 0 58.94
120 C1 2 01 no 0 43.98 1 9090 9090 0 44.63
120 C1 2 02 yes 0 162.93 1 8920.5 8920.5 0 163.87
120 C1 2 02 no 0 145.72 1 8920.5 8920.5 0 146.54
120 C1 2 03 yes 0.2 250.16 5 8843.52 8843.52 0 428.45
120 C1 2 03 no 0.3 185.19 9 8843.52 8843.52 0 433.68
120 C1 2 04 yes 0.7 240.19 187 8740.64 8784.92 0.51 10800
120 C1 2 04 no 0.6 165.93 241 8740 8784.92 0.51 10800
120 C1 2 05 yes 0 240.02 1 8986.2 8986.2 0 241.07
120 C1 2 05 no 0 237.6 1 8986.2 8986.2 0 238.7
120 C1 2 06 yes 0.3 395.59 9 8988.4 8988.4 0 847.64
120 C1 2 06 no 0.3 341.83 9 8988.4 8988.4 0 908.45
120 C1 2 07 yes 0.1 210.22 3 8958.6 8958.6 0 375.54
120 C1 2 07 no 0.1 242.94 3 8958.6 8958.6 0 419.64
120 C1 2 08 yes 0.1 229.57 11 8817.9 8817.9 0 375.16
120 C1 2 08 no 0.1 175.54 15 8817.9 8817.9 0 529.05
120 C1 2 09 yes 0 281.36 1 8790.62 8790.62 0 282.26
120 C1 2 09 no 0 189.73 1 8790.62 8790.62 0 190.56
120 C1 2 10 yes 0.7 264.75 97 8740.41 8794.92 0.62 10800
120 C1 2 10 no 0.7 155.31 125 8737.92 8794.92 0.65 10800
130 C1 2 01 yes 0 193.32 1 9325.92 9325.92 0 194.05
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Table 15: Detailed experiments on the impact of the ARCC

Instance ARCC Root Gap Root Time Nodes DB PB Gap Time (s)
130 C1 2 01 no 0 188.75 1 9325.92 9325.92 0 189.49
130 C1 2 02 yes 0 201.23 1 9141.2 9141.2 0 202.12
130 C1 2 02 no 0 169.74 1 9141.2 9141.2 0 170.74
130 C1 2 03 yes 0.7 198.25 241 9056.65 9119 0.69 10800
130 C1 2 03 no 0.7 199.17 167 9059.79 9119 0.65 10800
130 C1 2 04 yes 0.8 254.91 223 8993.56 9056.21 0.70 10800
130 C1 2 04 no 0.8 176.29 101 8989.81 9056.21 0.74 10800
130 C1 2 05 yes 0 264.44 1 9209.62 9209.62 0 265.45
130 C1 2 05 no 0 214.59 1 9209.62 9209.62 0 215.36
130 C1 2 06 yes 0.3 336.13 33 9222.4 9222.4 0 2152.1
130 C1 2 06 no 0.3 403.74 15 9222.4 9222.4 0 1633.03
130 C1 2 07 yes 0 687.49 3 9197.92 9197.92 0 1027.5
130 C1 2 07 no 0 771.28 3 9197.92 9197.92 0 1236.02
130 C1 2 08 yes 0.4 375.96 141 9082.79 9091.7 0.10 10800
130 C1 2 08 no 0.3 432.57 137 9066.88 9091.7 0.27 10800
130 C1 2 09 yes 0.6 261.74 119 9028.84 9077.5 0.54 10800
130 C1 2 09 no 0.6 236.97 129 9029.86 9077.5 0.53 10800
130 C1 2 10 yes 0.8 277.84 119 8992 9060.5 0.76 10800
130 C1 2 10 no 0.8 193.69 121 8990.42 9060.5 0.78 10800
140 C1 2 01 yes 0 268.45 1 9970.42 9970.42 0 269.33
140 C1 2 01 no 0 224.69 3 9970.42 9970.42 0 259.88
140 C1 2 02 yes 0.4 323.74 53 9817.38 9817.38 0 3780.0
140 C1 2 02 no 0.4 241.88 53 9817.38 9817.38 0 3656.0
140 C1 2 03 yes 0.8 271.7 115 9722.55 9784.7 0.64 10800
140 C1 2 03 no 0.8 174.26 119 9715.29 9784.7 0.71 10800
140 C1 2 04 yes 1.4 288.78 143 9637.97 9762.48 1.29 10800
140 C1 2 04 no 1.4 220.5 119 9637.72 9762.48 1.29 10800
140 C1 2 05 yes 0 262.62 1 9848.82 9848.82 0 263.61
140 C1 2 05 no 0 219.09 1 9848.82 9848.82 0 220.18
140 C1 2 06 yes 0.1 638.89 3 9853.5 9853.5 0 881.09
140 C1 2 06 no 0.1 598.12 3 9853.5 9853.5 0 809.91
140 C1 2 07 yes 0 325.88 3 9836.32 9836.32 0 363.95
140 C1 2 07 no 0 229.26 3 9836.32 9836.32 0 304.98
140 C1 2 08 yes 0.4 374.68 165 9726.07 9754.28 0.29 10800
140 C1 2 08 no 0.5 274.15 129 9716.74 9754.28 0.39 10800
140 C1 2 09 yes 0.8 271.95 157 9684.21 9754 0.72 10800
140 C1 2 09 no 0.9 258.01 181 9690.01 9754 0.66 10800
140 C1 2 10 yes 2.9 296.33 113 9639.97 9900 2.70 10800
140 C1 2 10 no 2.9 185.31 115 9638.62 9900 2.71 10800
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Table 16: Detailed experiments on the impact of the SPR

Instance SPR |Amax| Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 40 01 yes 13034 0 268.41 1 2931.88 2931.88 0 269.49
Cardiff 40 01 no 13174 0 297.93 1 2931.88 2931.88 0 298.89
Cardiff 40 02 yes 95883 20.1 88.12 45 2827.85 3217.43 13.8 10800
Cardiff 40 02 no 97648 20.1 117.31 29 2774.49 3217.42 16 10800
Cardiff 40 03 yes 30318 0 400.03 1 2682.5 2682.5 0 401.32
Cardiff 40 03 no 30721 9.1 264.48 3 2682.5 2682.5 0 542.77
Cardiff 40 04 yes 169680 20.2 317.5 9 4282.36 5082.63 18.7 10800
Cardiff 40 04 no 178022 20.2 478.01 7 4281.08 5082.63 18.7 10800
Cardiff 40 05 yes 25801 1.6 543.24 27 3770.9 3770.9 0 6574.0
Cardiff 40 05 no 26586 1.6 603.97 23 3770.9 3770.9 0 4977.0
Cardiff 40 06 yes 26451 0 491.63 1 2909 2909 0 492.73
Cardiff 40 06 no 27449 0 559.3 1 2909 2909 0 560.32
Cardiff 40 07 yes 89523 19.8 696.68 3 2093.42 2491.28 19 10800
Cardiff 40 07 no 91461 19.8 1008.99 1 2080.22 2491.28 19.8 10800
Cardiff 40 08 yes 9510 0 215.16 1 3834.02 3834.02 0 215.85
Cardiff 40 08 no 9671 0 258.93 1 3834.02 3834.02 0 259.65
Cardiff 40 09 yes 81734 12.7 1084.47 9 3569.6 3668.21 2.8 10800
Cardiff 40 09 no 84161 13.1 1156.82 11 3541.86 3668.21 3.6 10800
Cardiff 40 10 yes 55913 0 220.62 1 2692.08 2692.08 0 221.98
Cardiff 40 10 no 59456 0 297.74 1 2692.08 2692.08 0 299.62
Cardiff 40 11 yes 48327 0 5.94 1 unfeasible unfeasible 0 6.59
Cardiff 40 11 no 51524 0 6.89 1 unfeasible unfeasible 0 8.0
Cardiff 40 12 yes 38128 0 280.93 1 2642.87 2642.87 0 282.13
Cardiff 40 12 no 38637 0 351.3 1 2642.87 2642.87 0 353.38
Cardiff 40 13 yes 121649 18.4 199.97 17 2742.72 2827.83 3.1 10800
Cardiff 40 13 no 123340 18.4 274.22 15 2742.19 2827.83 3.1 10800
Cardiff 40 14 yes 247124 30.2 1794.42 1 2236.37 2910.91 30.2 10800
Cardiff 40 14 no 260625 30.2 3466.11 1 2236.37 2910.91 30.2 10800
Cardiff 40 15 yes 33041 19.9 281.4 37 2549.95 2707.12 6.2 10800
Cardiff 40 15 no 33301 20 351.13 35 2643.72 2707.13 2.4 10800
Cardiff 40 16 yes 153756 18 844.32 3 2904.8 3353.43 15.4 10800
Cardiff 40 16 no 156619 19.1 1134.11 3 2881.14 3353.43 16.4 10800
Cardiff 40 17 yes 24463 1.8 678.22 13 2735.28 2749.84 0.5 10800
Cardiff 40 17 no 24917 1.9 916.07 13 2722.56 2749.84 1 10800
Cardiff 40 18 yes 93744 31 213.52 21 2676.43 2888.66 7.9 10800
Cardiff 40 18 no 95960 31 291.94 15 2509.3 2888.66 15.1 10800
Cardiff 40 19 yes 10767 0 264.74 1 2784.05 2784.05 0 265.26
Cardiff 40 19 no 10810 0 262.37 1 2784.05 2784.05 0 263.17
Cardiff 40 20 yes 85341 27.2 219.7 21 2586.44 3083.33 19.2 10800
Cardiff 40 20 no 87042 27.2 322.25 13 2594.19 3083.33 18.9 10800
c100 01 yes 18845 0 55.84 1 5298.76 5298.76 0 56.75
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Table 16: Detailed experiments on the impact of the SPR

Instance SPR |Amax| Root Gap Root Time Nodes DB PB Gap Time (s)
c100 01 no 18845 0 57.8 1 5298.76 5298.76 0 58.64
c100 02 yes 18845 0 88.01 1 5298.36 5298.36 0 88.81
c100 02 no 18845 0 84.7 1 5298.36 5298.36 0 85.49
c100 03 yes 18898 0 139.25 1 5296.46 5296.46 0 140.3
c100 03 no 18898 0 150.06 1 5296.46 5296.46 0 150.89
c100 04 yes 20064 0.5 111.65 39 5294.66 5294.66 0 1042.88
c100 04 no 20064 0.5 99.7 45 5294.66 5294.66 0 1629.27
c100 05 yes 18849 0 56.7 1 5298.76 5298.76 0 57.6
c100 05 no 18849 0 57.66 1 5298.76 5298.76 0 58.43
c100 06 yes 18844 0 80.37 1 5298.76 5298.76 0 81.23
c100 06 no 18844 0 78.6 1 5298.76 5298.76 0 79.32
c100 07 yes 18875 0 65.13 1 5298.76 5298.76 0 66.0
c100 07 no 18875 0 66.53 1 5298.76 5298.76 0 67.33
c100 08 yes 18845 0 107.34 1 5295.36 5295.36 0 108.15
c100 08 no 18845 0 114.34 1 5295.36 5295.36 0 115.17
c100 09 yes 19018 0 218.49 1 5295.16 5295.16 0 219.57
c100 09 no 19018 0 226.06 1 5295.16 5295.16 0 227.08

Table 17: Detailed experiments on the impact of the restricted
master heuristics

Instance RMH Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 40 01 yes 0.3 214.13 3 2931.88 2931.88 0.00 306.84
Cardiff 40 01 no 0.5 234.17 5 2931.88 2931.88 0.00 447.26
Cardiff 40 02 yes 21.1 99.25 77 2986.6 3242.98 8.58 10800.00
Cardiff 40 02 no 20.1 92.80 37 3044.72 3217.42 5.67 10800.00
Cardiff 40 03 yes 2.7 168.23 3 2682.5 2682.5 0.00 351.02
Cardiff 40 03 no 14.6 114.83 21 2682.5 2682.5 0.00 1287.88
Cardiff 40 04 yes inf 401.23 9 4292.31 - - 10800.00
Cardiff 40 04 no 9.2 453.32 57 4297.88 4620.65 7.51 10800.00
Cardiff 40 05 yes 1.7 329.68 11 3770.9 3770.9 0.00 2141.71
Cardiff 40 05 no 1.8 378.99 15 3770.9 3770.9 0.00 1415.53
Cardiff 40 06 yes 12.5 203.15 19 2909.0 2909.0 0.00 1633.04
Cardiff 40 06 no 14.6 214.06 17 2909.0 2909.0 0.00 1067.80
Cardiff 40 07 yes 21.9 741.64 53 2297.3 2535.67 10.38 10800.00
Cardiff 40 07 no inf 674.04 3 2093.42 - - 10800.00
Cardiff 40 08 yes 0.6 191.29 3 3834.02 3834.02 0.00 358.60
Cardiff 40 08 no 0.5 247.14 5 3834.02 3834.02 0.00 509.05
Cardiff 40 09 yes 35.1 381.09 11 3580.1 4484.18 25.25 10800.00
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Table 17: Detailed experiments on the impact of the restricted
master heuristics

Instance RMH Root Gap Root Time Nodes DB PB Gap Time (s)
Cardiff 40 09 no 17.5 338.15 73 3580.5 3707.23 3.54 10800.00
Cardiff 40 10 yes 1.9 184.87 5 2692.08 2692.08 0.00 441.81
Cardiff 40 10 no 1.3 171.29 3 2692.08 2692.08 0.00 573.32
Cardiff 40 11 yes 0 29.34 1 unfeasible unfeasible 0.00 30.12
Cardiff 40 11 no 0 32.62 1 unfeasible unfeasible 0.00 33.43
Cardiff 40 12 yes 0.8 200.06 3 2642.87 2642.87 0.00 307.18
Cardiff 40 12 no 0.7 200.69 3 2642.87 2642.87 0.00 276.22
Cardiff 40 13 yes inf 211.40 81 2722.68 - - 10800.00
Cardiff 40 13 no 21.9 196.03 23 2723.1 2913.13 6.98 10800.00
Cardiff 40 14 yes inf 1716.28 1 2236.37 - - 10800.00
Cardiff 40 14 no inf 1914.77 13 2435.77 - - 10800.00
Cardiff 40 15 22.9 157.89 53 2707.12 2707.12 0.00 3757.00
Cardiff 40 15 no 20.3 181.95 39 2606.74 2707.12 3.85 10800.00
Cardiff 40 16 yes 19.8 863.33 61 3188.12 3372.57 5.79 10800.00
Cardiff 40 16 no inf 785.41 5 2927.97 - - 10800.00
Cardiff 40 17 yes 2.1 291.80 57 2749.83 2749.83 0.00 4976.00
Cardiff 40 17 no 3.2 278.48 23 2733.69 2781.87 1.76 10800.00
Cardiff 40 18 yes 33.0 254.40 63 2731.72 2932.45 7.35 10800.00
Cardiff 40 18 no inf 224.52 21 2707.07 - - 10800.00
Cardiff 40 19 yes 1.9 198.71 3 2784.05 2784.05 0.00 368.26
Cardiff 40 19 no 1.7 227.32 17 2784.05 2784.05 0.00 989.55
Cardiff 40 20 yes 32.1 237.58 103 2617.56 3203.98 22.40 10800.00
Cardiff 40 20 no inf 214.13 23 2649.34 - - 10800.00
c100 01 0.3 yes 88.03 5 5298.76 5298.76 0.00 643.78
c100 01 0.3 no 70.29 33 5298.76 5298.76 0.00 3785.00
c100 02 0.4 yes 86.38 7 5298.36 5298.36 0.00 751.62
c100 02 0.3 no 80.16 63 5298.36 5298.36 0.00 2802.46
c100 03 0.4 yes 111.98 81 5296.46 5296.46 0.00 3877.00
c100 03 0.4 no 104.73 43 5296.46 5296.46 0.00 4008.00
c100 04 inf yes 151.20 121 5274.14 - - 10800.00
c100 04 1.4 no 141.28 121 5274.95 5339.06 1.22 10800.00
c100 05 0.3 yes 93.02 61 5298.76 5298.76 0.00 5342.00
c100 05 0.3 no 90.38 19 5298.76 5298.76 0.00 3249.86
c100 06 0.4 yes 90.42 9 5298.76 5298.76 0.00 1144.60
c100 06 0.3 no 89.64 23 5298.76 5298.76 0.00 1840.12
c100 07 0.3 yes 87.01 37 5298.76 5298.76 0.00 3516.10
c100 07 0.3 no 80.05 5 5298.76 5298.76 0.00 769.38
c100 08 0.4 yes 113.60 25 5295.36 5295.36 0.00 1823.05
c100 08 0.4 no 93.02 15 5295.36 5295.36 0.00 1712.00
c100 09 0.4 yes 125.41 49 5295.16 5295.16 0.00 5127.00
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Table 17: Detailed experiments on the impact of the restricted
master heuristics

Instance RMH Root Gap Root Time Nodes DB PB Gap Time (s)
c100 09 0.6 no 126.27 69 5295.16 5295.16 0.00 3874.00
120 C1 2 01 yes 0.4 43.36 7 9090.0 9090.0 0.00 279.21
120 C1 2 01 no 0.4 45.31 7 9090.0 9090.0 0.00 251.78
120 C1 2 02 yes 0.3 93.16 83 8920.5 8920.5 0.00 2895.06
120 C1 2 02 no 0.3 87.07 29 8920.5 8920.5 0.00 1827.92
120 C1 2 03 yes inf 185.25 143 8815.06 - - 10800.00
120 C1 2 03 no 0.7 158.94 247 8812.02 8868.12 0.64 10800.00
120 C1 2 04 yes inf 163.47 153 8728.17 - - 10800.00
120 C1 2 04 no inf 155.55 229 8718.23 - - 10800.00
120 C1 2 05 yes 0.5 65.29 21 8986.2 8986.2 0.00 1552.51
120 C1 2 05 no 0.5 58.24 19 8986.2 8986.2 0.00 1454.68
120 C1 2 06 yes 0.9 97.45 99 8988.4 8988.4 0.00 4892.00
120 C1 2 06 no 0.9 91.46 17 8988.4 8988.4 0.00 1899.70
120 C1 2 07 yes 0.4 84.31 29 8958.6 8958.6 0.00 1845.62
120 C1 2 07 no 0.5 67.44 29 8958.6 8958.6 0.00 2438.20
120 C1 2 08 yes 0.3 153.67 135 8817.9 8817.9 0.00 6501.00
120 C1 2 08 no 0.3 166.80 9 8817.9 8817.9 0.00 642.36
120 C1 2 09 yes inf 164.03 231 8771.15 - - 10800.00
120 C1 2 09 no 0.3 171.82 51 8790.62 8790.62 0.00 3394.73
120 C1 2 10 yes 1.0 191.08 243 8729.87 8808.82 0.90 10800.00
120 C1 2 10 yes inf 193.90 131 8741.16 - - 10800.00

Appendix B Calculation of drone-reachable neigh-
borhood

Let Qd be the drones maximal capacity. For i ∈ V , fd
i is set to 0 if qi > Qd

or if i is not available for deliveries by drone. Otherwise we set fd
i = 1. We

introduce a parameter f̄d
i = 0 expressing whether client i ∈ V is available to

launch drone from or not. The latest can be explained because no parking
spot is available nearby for example. We set f̄d

i = 0 in this case and f̄d
i = 1

otherwise. An energy function limits the maximal flight distance, calculated

as follows: P (q) = (W +m + q)
3
2

√
g3

2ρζh in Watt, introduced by Dorling et al.

(2016) as the hovering power consumption of a h-rotor drone, an upper bound
on the general power consumption of a h-rotor drone, and based on Leishman
(2006). W is the frame weight (kg), m the battery weight (kg), q the payload
(kg), g is the force due to gravity (N), ρ the fluid density of air in (kg/m3) and
ζ the area of spinning blade (m2). We note Bc the drone’s battery capacity in
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watt-hours. Let g = 9.81 N/kg and ρ = 1.204 kg/m3 as in (Dorling et al., 2016).

Ci = {j ∈ V |
(
f̄d
i == 1

)
∧
(
fd
j == 1

)
∧
(
P (qi) ∗ cdi,j + P (0) ∗ cdj,i ≤ Bc

)
∧
(
cv0,i + cdi,j ≤ d̄j

)
i ∈ V }
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