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3Département Mécanique Appliquée, Université de Bourgogne
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Abstract

One of the primary challenges associated with bolts, frequently used
in assembly structures and systems, is the issue of torque loosening.
This problem can arise due to shock and vibration, potentially leading
to significant damage and structural failure. The difficulty in identi-
fying and monitoring torque loosening arises from the variability and
nonlinear effects present in bolted joints. In this paper, we proposed

1



Springer Nature 2021 LATEX template

2 Article Title

a machine-learning algorithm architecture designed for pattern recogni-
tion, detection, and quantification of torque loosening in bolted joints.
This approach combines unsupervised and supervised machine learning
algorithms to address the challenges of assessing the bolt torque loos-
ening issue. Our algorithm utilises a damage index, calculated from the
frequency response of the jointed system using the Frequency Response
Assurance Criterion, as input data for the unsupervised-supervised clas-
sification algorithm. This classification ML algorithm effectively identifies
and categorises instances of torque loss by analysing indirect vibra-
tion measurements, even in situations where the bolted system’s state
is unknown. Additionally, we introduce a regression algorithm to quan-
tify torque loosening levels. The results obtained from our proposed
machine learning algorithm to overcome torque loosening in bolted
joints show that the inherent uncertainties of a data-driven approach
intrinsically influence torque-related issues. This assessment is based
on experimental raw data collected under diverse test conditions for
the bolted structure. We employ a range of validation and cross-
validation metrics to evaluate the effectiveness and accuracy of these
ML algorithms in detecting and diagnosing torque-related issues. These
metrics play a crucial role in assessing the algorithms’ efficiency and
precision in determining the state of the bolted connection and the
corresponding torque levels with associated uncertainty quantification.

Keywords: Bolt tightening, Damage diagnosis, Uncertainty quantification,
Torque loosening detection, Unsupervised-supervised machine learning,
Regression

1 Introduction

Structural are usually connected using bolts or fasteners. Bolts are a popular
choice because they offer several benefits, such as preventing movement ensur-
ing stability, and the ability to disassemble, reuse, and maintain structural
integrity. However, bolt systems require a preload or torque level to prevent
undesired movement. Unfortunately, this torque can loosen due to various
causes, such as shock, vibration, inadequate tightening, and fracture. Reducing
torque can lead to changes in the dynamic system feature, resulting in seri-
ous damage and structural failure, some of which can be catastrophic [1, 2].
As a result, constant and systematic maintenance is necessary throughout the
system’s life cycle. This costly and often dangerous operation requires regu-
lar checks of each bolted joint. Therefore, identifying and detecting loosening
before failure remains a significant challenge in various engineering fields.

Over the years, significant advancements have been made in detecting loos-
ening in bolted structures [3, 4]. These techniques are in situ inspection,
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computational vision, and sensor-based techniques. In-situ inspection tech-
niques, such as using a torque wrench and hammer, can be visual or mechanical
[5, 22, 42]. Digital cameras or images are used in computer vision-based
techniques, while the vibration-based method, wave propagation [43–45],
acoustoelastic effect-based method, piezoelectric sensor-based methods, and
impedance-based method are used in sensor-based techniques [5]. Machine
Learning (ML) algorithms have recently been utilised to detect and monitor
bolt torque loosening. These algorithms are categorised into supervised and
unsupervised classification learning techniques and regression algorithms. The
supervised learning technique creates a model from a set of labelled training
data using previously known input and output values, and it is subdivided into
classification and regression problems. Sousa et al. [46] accurately assess the
damage of a beam reinforced by masses from its spectral response using multi-
class supervised machine learning algorithms. The authors used ML to classify
the beam’s damage, where the methodology involves experimental measuring
and numerical calculation of the dynamic features, such as natural frequency
and frequency response function, to construct two DIs. In contrast, the unsu-
pervised learning approach does not require target class labels in the training
data[6]. The regression algorithms help in defining the relationship between
labels and data points.

In situ inspection techniques to monitor torque loosening have been explored
by Zhou et al. [7], where the authors describe a study that used percussive
methods and machine learning to detect loosening in bolts. The experiment
was conducted on a four-bolt steel beam-column joint, where laser Doppler
vibrometry was used to capture the vibration information of the test bolt, while
microphones collected acoustic sounds generated by an automatic hammer.
The authors then transformed the reconstructed sound database into spectro-
grams and trained a 2D-CNN to identify bolts’ loosening conditions. Wang
and Song [8] presented a novel one-dimensional training interference capsule
neural network (1D-TICapsNet) to process and classify percussion-induced
sound signals to detect bolt early looseness in two steel pieces tightened using
four bolts. They also employed in [9]the multifractal analysis and joint mutual
information maximization method to extract feature sets and detect bolt loos-
ening using the gradient boosting decision tree (GBDT) algorithm. Tran et
al. [12] investigated the application of a deep convolutional neural network
(DCNN) algorithm to detect and estimate looseness in bolted joints using a
laser ultrasound technique. Zang et al. [10] presented a method of detecting
screw loosening in iron plates based on audio classification using SVM. Kong
et al. [11] proposed a new approach to identify bolt clearance levels in a twelve-
bolt subsea flange using an ML model with the decision tree method, similar
to the percussive diagnostic techniques used in clinical examinations.

Computer vision-based machine learning techniques to torque loosening were
proposed by Gong [13]. In [18], the authors use a combination of deep learning
algorithms and geometric image theory for detecting loosened bolts in a steel
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pedestal through vision-based bolt loosening. The method uses a faster regional
convolutional neural network (Faster-RCNN) and a waterfall pyramid network
(CPN) algorithm. Similar research has been conducted by Zhang [16] and
Yu [14] using the Faster R-CNN and single shot multibox detector (SSD)
algorithm, respectively, for detecting bolt loosening angles. Pham et al. [15]
used synthetic images of bolts generated from a graphical model to train a
deep learning model based on the Region-based Convolutional Neural Network
(R-CNN) algorithm for detecting loose bolts. Ramana et al. [17] used machine
learning techniques, including the Viola-Jones algorithm and SVM, to detect
loosened bolts on a steel I-section. Similarly, Chan et al. [19] used the Hough
transform and SVM to build a classifier for detecting loosened bolts.

Several investigations have employed various techniques and methods to detect
anomalies and identify bolt loosening in engineering structures. For instance,
Razi et al.[20] have utilized sensor-based techniques, machine learning (ML)
based on wave propagation, and modal methods. In the study by Ziaja et
al. [21], elastic wave propagation was employed to detect anomalies in the
prestressed connections of engineering structures, utilising a combination of
artificial neural networks (ANN). Eraliev et al.[22] detected and identified
loosening bolts in a multi-bolt structure using seven ML algorithms, namely
Random Forest, Bagged Trees, Decision Tree, Kneighbor, Linear Discriminant
Analysis, SVM, and XGBoost. The author utilised the Short-Time Fourier
Transform (STFT) method for feature extraction from acquired vibration
data. Miguel et al.[23] observed the loss of tightening torque in bolted joints
by employing modal parameters. Teloli et al. [35] utilised two probabilistic
ML methods, namely the Gaussian mixture model (GMM) for damage detec-
tion and Gaussian process regression (GPR) for quantifying loosening torque
in lap-joint structures. Chen et al. [24] proposed a diagnostic method for
detecting looseness in fan foundation bolts based on the mixed domain char-
acteristics of excitation response and multiple learning. The study employed
the K-weight nearest neighbour classifier (WKNNC) to identify slacks. Zhuang
et al. [25] employed the acoustoelastic effect-based method along with several
ML algorithms such as the recurrent neural network LSTM, one-dimensional
WideResnet40 2, one-dimensional Densenet121, XGBOOST tree classification
model, LightGBM, and the SAX-VSM algorithm. Wang et al.[26, 27] proposed
the Siamese Double-path CapsNet (SD-CapsNet) and the Genetic Algorithm-
based Least Square Support Vector Machine (GA-based LSSVM) for bolt
loosening detection, using piezoelectric sensor-based methods. Zhou et al.[28]
applied an impedance-based method using the Graph convolutional networks
(GCN) model in another approach. Hence, these studies have utilised various
ML algorithms to tackle complex real-world problems in diverse applications.
Most proposed techniques or processes combining structural health monitor-
ing (SHM) with ML are based on hybridising multiple interacting numerical
procedures [60]. Consequently, this complexity often poses challenges when
implementing an effective solution.
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This study builds upon existing work in bolted joint analysis, particularly
in recognising and detecting loosening torque from a structure’s dynamic
response. Prior studies have primarily relied on machine learning algorithms
to assess bolted joint integrity, utilising modal parameters such as natural fre-
quency and damping. However, these studies have typically overlooked critical
factors such as data variability, noise, and spectral signals, which are of utmost
importance when dealing with bolted joints. It is worth noting that modal
parameters, although valuable, exhibit limited sensitivity to variations com-
pared to measurement uncertainties, particularly at higher torque levels. In
our approach to recognising, detecting, and quantifying bolt-loosening torque,
we have departed from the conventional path by directly leveraging the raw
spectral signals obtained from experimental tests to estimate a damage index.
Then, this DI is used as input for our machine-learning algorithms, which avoid
the need for prior operational modal analysis and incorporate the inherent
variability within the experimental measurements when estimating loosening
torque. To further enhance the analysis, several ML techniques were employed.
The ML classifiers have been designed to withstand variabilities in raw data,
in addition to noise variations, considering the influence of assembling and dis-
assembling the bolted structure during experimental tests, as documented in
[35]. The present approach simplifies the analysis by eliminating the need to
evaluate the most sensitive features for extraction, introducing the concept of
FRAC in obtaining the damage index, which plays a crucial role in our algo-
rithm’s methodology. As a result, the main contribution of our ML algorithm
architecture for pattern recognition, detection, and quantification of loosen-
ing torque in bolted joints lies in its utilisation of spectral raw signals from
experimental tests. This approach not only accounts for intrinsic variabilities
in torque estimation but also quantifies the associated uncertainty, enhancing
the robustness and accuracy of our results.

Towards this background, this paper is structured as follows: section 2 pro-
vides a description of the algorithm developed in this work for bolt loosening
detection. Section 3 introduces the data-driven processing carried out on the
structure being analysed, the feature selection and pattern recognition frame-
work. Further details are also given on how the data from healthy conditions
and damage was divided up for the learning stages. Then, section 4 focuses
on developing the machine learning techniques used in the work to detect the
loss of tightening torque, specifying the hyperparameters used and the differ-
ent performance metrics analysed, allowing a comparison between methods.
After detecting whether or not there is a loss of tightening torque, a natural
step is to quantify it - this is discussed in section 4. Finally, section 5 reports
the final remarks on expected contributions and proposes the next steps for
future work.
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2 Algorithm Framework

The proposed framework to pattern, detect and quantify the loosening bolt
torque is presented in the flowchart of Figure 1. It includes: data acquisition
(step 1), an unsupervised stage comprising data processing (step 2), feature
selection (step 3), pattern recognition and clustering (step 4) - all these steps
constitute the Data-Driven Processing and Pattern Recognition section of the
methodology, which is addressed in section 3. Then, these steps are followed
by data splitting (step 5). In the supervised stage, classification ML algorithms
(steps 6 and 7) are used to detect and evaluate torque loosening (see section
4), and regression (steps 6 and 7) is employed for torque quantification (see
section 5). At the end (step 8), the algorithm provides information about the
torque state based on the classification and regression algorithm outcomes.

Data 
acquisition

2. Preprocessing1. Monitored Structure

5. Split Data

Training

Test

Unsupervised

3. Feature Selection

6. ML Classifiers7. Model Evaluation

SVM 
KNN
DT
RF
NB

XGBosst

Evaluation

Bolt-Loosening Detection

4. Data Groups or Clusters

6. ML Regression7. Model Evaluation

SVR (Support 
Vector 

Regression)

Evaluation

Bolt-Loosening Quantification

8. Final Model (Decision)

Estimated 
Torque

8. Final Model (Decision)

Healthy

Damage

Supervised

Data-Driven Processing and Pattern Recognition

Fig. 1: Flowchart of a semi-supervised ML algorithm and the Pattern Recog-
nition methodology to bolt loosening monitoring.

The structure proposed in this work can be established using the following
algorithm:
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Algorithm 1 Loosening bolt torque detection and quantification algorithm

1: Data Acquisition: Collect FRF (H(ω)) data from monitored structure.
2: Data Processing: Converts raw experimental data into a normalised

value using the FRAC Damage Index.

FRACij =
∥Hd

ij(ω)(Hu
ij(ω))

∗∥2

[Hu
ij(ω)(Hu

ij(ω))
∗
][Hd

ij(ω)(Hd
ij(ω))

∗
]

3: Feature Selection: Select a subset of features (variables, predictors) for
use in model construction.

4: Pattern Recognition and Clustering: Use the K-means unsupervised
algorithm to group the data into distinct clusters.

J =
∑n

i=1 mink

(
∥xi − µk∥2

)
5: Data Splitting: Split the dataset into training (70%) and testing (30%).
6: Classification ML algorithms: Applied ML algorithms for detection

(SVM, K-NN, RF, NB, DT and XGBoost).
7: Model Evaluation: Calculate the Performance Measure for the ML

classifiers (Cross-validation, Accuracy, Precision, Recall, and F1-Score).
8: Regression: Applied SVR-supervised regression for quantification.

Minimize : 1
2 ∥w∥

2
+ C

∑n
i=1 (ξi + ξ∗i )

9: Bolt-Loosening Quantification: Quantifies the extent of bolt loosening
using the SVR algorithm.

10: Final decision: Information about torque state based on classification
and regression algorithm outcomes.

Each algorithm’s steps are briefly detailed in the following:

Data-Driven Processing and Pattern Recognition:

1 Data Acquisition: The first step involves collecting data from the mon-
itored structure, corresponding to obtaining the experimental raw data
- they are available in [36]. The input data considered consists of 360
realisations from several experimental runs.

2 Data Pre-processing: The utilization of a data-driven involves a crucial
step - understanding and examining its inherent features before integrating
it into the machine learning model for accurate classification and estima-
tion. Specifically, our case involves employing the spectrum response of the
structure, which addresses limitations encountered when relying solely on
modal parameters such as natural/resonant frequency and modal shape.
These parameters exhibit sensitivity to uncertainties and lack the ability
to detect certain types of damage effectively. To address these limitations,
we incorporate spectrum analysis, necessitating additional pre-processing
steps outlined in this step. It becomes imperative as some resonant fre-
quencies in the spectrum display limited sensitivity to torque loosening,
particularly evident in higher vibration modes. This step, also known as
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feature extraction, involves transforming the original data variables to cre-
ate a new dataset, as described by Bishop (2006) [39]. This data processing
step converts raw experimental data into a normalised value using the DIs
calculated with Eq. 1. The 360 DIs are split into two feature attributes DI1
e DI2, each with 180 samples, serving as input data to the ML algorithms.

3 Feature Selection: The feature selection is the process of choosing a subset
of variables from a given set [37, 38]. In this case, the DIs represent features
characterising the tightening torque. These features are employed as inputs
for the subsequent pattern recognition stage, performed here by the K-
means.

4 Pattern Recognition and Clustering: Pattern recognition and cluster-
ing are performed using the K-means unsupervised algorithm to group the
data into distinct clusters. In this generated dataset, there is prior knowl-
edge regarding the number of clusters to be chosen (e.g. K = 5). However,
the elbow method can also be applied to determine the most appropriate
number of clusters for K-means. Thus, in this clustering step, the elbow
method was applied to the dataset to validate this assumption. The result
closely aligned with our assumed value of K=5, reinforcing the appropriate-
ness of our choice. The K-means algorithm receives DI1 and DI2 attributes
and returns clusters with 180 samples grouped between healthy and dam-
aged. The utilisation of clustering techniques offers a significant advantage
in this step. By grouping similar data, it becomes possible to describe
the unique characteristics of each group efficiently, giving us clear pattern
recognition. This step falls under the data preparation stage. It holds impor-
tance as it will serve as a base for ML algorithms in the classification and
regression, which will be subsequently applied to the identified clusters.

5 Data Splitting: In this step, the new dataset generated by K-means (two
attributes and a group cluster) is divided into training and testing sets for
model construction and evaluation. The training subset is used for model
training, while the test subset is reserved for assessing its performance.
Train and test splitting data adopted in work is described in Table 1. One
assumes 70% of the data for training and 30% for testing.

Bolt Loosening Detection:

6 Classification: This step involves the application of six supervised classi-
fication ML algorithms to the training data. This process allows the model
to learn patterns and relationships within the dataset.

7 Model Evaluation: This step assesses the model’s performance by testing
it on the previously separated test dataset (as per step 6). During this
stage, model hyperparameters can be fine-tuned to improve metrics such
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as Accuracy, Precision, Recall, and F1-Score. Additionally, the confusion
matrix is examined for insights. Cross-validation is employed to prevent
overfitting and promote model generalisation on the training set, with 5-fold
cross-validation being utilised in the current study.

Bolt-Loosening Quantification:

6 Regression: The SVR-supervised regression machine learning algorithm is
applied. The same dataset previously clustered by the K-means model (two
attributes and a group cluster) is used as input in this process, addressing
the regression problem, which returns the torque estimated values.

7 Quantification: This step quantifies the extent of bolt loosening using
the SVR algorithm. This step aims to assess the effectiveness of SVR in
estimating torque as an indicator of bolt looseness.

8 Final Decision and Interpretation: The last step of the proposed
algorithm provides information about the torque state based on the classi-
fication algorithm and torque quantification from the regression algorithm.
The uncertainty quantification on the toque estimation is also provided.
Both results are used for interpretation and decision-making on bolts’
torque loosening.

Overall, applying unsupervised-supervised machine learning algorithms and
evaluations in structural health monitoring can greatly improve the accuracy
and efficiency of bolt loosening detection. This semi-supervised approach can
provide valuable insights for determining maintenance and repair operations,
ultimately leading to improved safety and the longevity of structures.

3 Data-driven processing and pattern
recognition

The main objective of the pattern recognition process is to classify objects
into different categories or classes based on the analysis of their characteristics
[37, 39]. In damage identification, pattern recognition aims to identify struc-
tural changes relative to the undamaged state linked to the damaged structural
state. This process begins with collecting sensor data from the monitored struc-
ture and ends with identifying the damage to assess the actual condition of
the structure [40, 41].

3.1 Experimental data-driven acquisition

Bolt loosening detection from vibration data is challenging due to variability
and nonlinear effects from the contact interface in bolted joints. Therefore, this
paper proposes a data-driven strategy to detect loosening bolts from experi-
mental vibration signals. In the experimental set available in Teloli et al. [36],
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the authors consider a physical system consisting of two bolted beams (dimen-
sion 370 × 30 × 2 mm) in a cantilever and joint lap configuration connected
by three bolts with controlled tightening, as shown in Fig. 2. The experimen-
tal apparatus consists of a load cell (PCB288D01), an electromagnetic Modal
Shop shaker (Model K2004E01), a 3D scanning laser, NI9234 hardware for data
acquisition. The excitation spectrum considered was a white noise Gaussian
input with the amplitude levels of 1m/s2, 4m/s2, 8m/s2, and 12m/s2 RMS val-
ues induced by the shaker at the clamped end. The tightening torques applied
on the beam’s bolts were 10 cNm, 20 cNm, 30 cNm, and 80 cNm.

The tightening torques were measured with a Lindstorm MA500-1 torque
wrench, and the force acquired with a Futek LTH300 donut-load cell was per-
formed after each experimental run. The experimental data-driven consists
of the frequency response obtained by dividing the velocity measured at the
beam’s free edge by the acceleration measured at the clamp. Three-hundred-
sixty response samples were acquired considering all different excitation
spectrum amplitude levels and variability in assembling the jointed structure.

Measurement Point

Orion Beam

Lap-Joint

Shaker

Accelerometer

Clamp

(a) Experimental setup (b) Schematic diagram

Fig. 2: Physical and schematic drawing of the experimental bolted beams
presented in [36].
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Fig. 3: Twenty samples of the bolted beams data-driven [36]. The entire signal
spectrum (on top) and truncated signal comprise the 5th and 6th mode shape
(at the bottom). The continuous line represents the based acceleration level
of 1m/s2, dashed-dot line acceleration level of 4m/s2, dashed line acceleration
level of 8m/s2, and dotted line acceleration level of 12m/s2.

Figure 3 (top) displays four experimental Frequency Response Function (FRF)
samples for each torque and base acceleration level measured over a frequency
range from 0 to 1900 Hz, in a total of 20 curves printed in the figure. A different
colour line represents the FRF of each torque. The continuous line represents a
base acceleration level of 1 m/s², the dashed-dot line represents an acceleration
level of 4 m/s², the dashed line represents an acceleration level of 8 m/s², and
the dotted line represents an acceleration level of 12 m/s². The torque loosening
induces clearer changes in higher mode shapes, for instance, on the fifth and
sixth modes shape, which can be more evident as the excitation amplitude
levels increase. There is both noise and variability present in the spectral signal
across the entire frequency range. When considering the whole FRF signal in
the damage index calculation, the estimation of torque loosening can induce a
false positive in the prediction and diagnostic because one considered all signal
power densities, including the signal in low frequencies, less influenced by the
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damage. Therefore, the truncated signal ranging from 1200 to 1900 Hz was
assumed in the DIs estimation (Fig. 3 bottom). This frequency band was the
most affected by the torque loosening.

The structure’s vibration signature has been used to detect, locate and quantify
damage and anomalies in a structure from changes in its dynamic characteris-
tics [50]. Among the methods that employ the dynamic response, the damage
index (DI) is a metric that correlates a system signal in different states. The ref-
erence signal, usually derived from the system considered an undamaged state,
correlated to the one provided by the system under the presence of discontin-
uing or damage [51]. Various DI approaches have been developed to extract
signal features in different domains, aiming at identifying structural damage
using an indicator that describes the damage as explored in [30–34]. The DIs
are associated with the estimation techniques for damage quantification and
reveal important information about the structural health condition. The liter-
ature describes a range of DI developed over time. The Frequency Response
Assurance Criterion (FRAC) is a damage index representing the correlation
between tested frequency responses. It references FRF signals [29], where a
unity indicates a strong correlation in case no damage is found. In contrast,
the lowest correlation reaches zero, depending on the damage severity. The
FRAC is defined by

FRACij =

∥∥∥Hd
ij(ω)

(
Hu

ij(ω)
)∗∥∥∥2[

Hu
ij(ω)

(
Hu

ij(ω)
)∗] [

Hd
ij(ω)

(
Hd

ij(ω)
)∗] (1)

where “*” defines the complex conjugate operator, ”Hd
ij(ω)” is the FRF vector

on ”j” for the damaged excited on ”i” and ”Hu
ij(ω)” is the FRF vector for the

undamaged, on the same aforementioned coordinates.

The frequency responses are then employed to diagnose and predict the bolt
torque loosening. An FRF corresponding to a tightening torque set at 80 cNm
of each base acceleration level was assumed to be the reference signal for calcu-
lating the DIs with FRAC against other FRFs of respective base acceleration
of the bolded beams under undamaged and damaged conditions. Since the
experiment involved a specimen assembled and disassembled for each FRF
measurement, as described in [36], this procedure introduces variability in
the bolted beams’ dynamic responses and, consequently, randomness in DIs
estimation. In the data acquisition algorithm step, we counted 360 samples
encompassing the bolted beam’s damaged and undamaged states. The data
categorisation follows two attributes, referred to as DI1 and DI2, with 180
samples of DI each.

3.2 Feature selection and pattern recognition

The ML algorithm is expected to classify the damage state correctly. In this
case, DIs close to unity are considered healthy states of the structure for
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torques of 80 and 60 cNm. In contrast, torque losses are associated with
torques of 30, 20, and 10 cNm, indicating structural damage. The classifica-
tion identifies the structure state and quantifies as Healthy(80), Healthy(60),
Damage(30), Damage(20), and Damage(10). The DIs are calculated consider-
ing the whole signal spectrum, signal truncated comprising 5th and 6th mode
shapes, and the signal covering only the fifth and sixth modes separately.

From data processing and estimating DIs, two attribute datasets (DI1 and
DI2), each consisting of 180 samples, were generated based on the selected
FRAC DI observations. Having the dataset pre-processed, DI clustering was
carried out using the K-means algorithm with a value of K = 5 (for K rep-
resenting the number of classes) to identify clusters within unlabelled data.
Consequently, an object target dataset was created, comprising 180 samples
belonging to one of the 5-labelled classes. Further, the samples were ran-
domly divided, with 70% of the data allocated for training and 30% for
testing, as defined in Table 1. Each classifier was assessed using a 5-fold cross-
validation procedure to enhance training accuracy, accomplished by randomly
partitioning the training dataset into five distinct subsets.

The dataset grouped in classes by the K-means is shown using a scatter plot to
characterise the clustered points, enabling us to observe the correlation in two-
dimensional space and recognise a pattern of the torque loosening. Figures 4a
show the correlation between the two attributes of features (DI1 and DI2). The
cloud points show an unclear classification of torque loosening, as the points
cluster in the range of DIs considered healthy state of bolted beams. Bolt loos-
ening most affects the dynamic response in higher frequency modes; therefore,
by using the whole response signal spectrum, the influence of modes in low
frequency intends to dominate the signal power spectrum because they have
higher amplitudes. In this case, the torque loosening identification through the
DI is compromised. Therefore, whether the ML algorithm can correctly clas-
sify the damage is unclear. All datasets have a considerable correlation, which
can induce misleading classification and false diagnosis identification.

For torques of 80 and 60 cNm the FRAC DI varies between 1 to 0.9, which is
considered a healthy structure state. In contrast, torque losses are associated
with torques of 30, 20, and 10 cNm, with the DIs estimated from 0.8 to 0, indi-
cating torque loosening. Therefore, by following the DI values, the multiclass
dataset can be used to identify the structure state and quantify the severity
of the damage from a pattern in the DI values.

Assuming only part of the signal is truncated in the frequency range of the
modes’ shapes most affected by the torque loosening, the identification turns
more consistent. The data correlation is stronger for the sixth mode than
the fifth mode shape because of the small change in the frequency response
due to the torques from 80 to 30 cNm. Figure 4b shows the data set pattern
classification for the signal containing information of the fifth and sixth mode
shapes and the correlation between the features attributes. In this case, the
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Fig. 4: Correlation scatter plots of between features DI1 and DI2 dataset
obtained from five different classes of torques in the frequency ranges of (a)
10 to 1940 Hz, (b) 1250 to 1940 Hz (5th∼6th mode), (c) 1250 to 1550 Hz (5th
mode), and (d) 1740 to 1940 Hz (6th mode).

classification in healthy and damaged states is more evident as the torque
loosening increases. The multiclass dataset can recognise the pattern of the
toque loosening through the calculated FRAC DIs. Figures 4c and 4d include
information on the mode fifth and sixth, respectively. For each torque level,
the DI data points cluster correctly around the range corresponding to the
normalised value of DI, indicating that the dataset follows a torque loosening
pattern, which can lead to a good classification of the ML algorithm.

The approach for assessing torque loosening based on spectrum signal can
effectively capture the intricate dynamics and torque loss processes within
bolted joints across varying torque levels. As torque drops, DI consistently
decreases in most scenarios. Nevertheless, the FRAC method consistently out-
performs others, indicating a clear trend of decreasing values with reduced
torque. Therefore, by adopting DI as a normalisation factor in the vibration
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Classification/Regression
Torque
(cNm)

Frequency
range (Hz)

Train dataset Test dataset

Healthy Damaged Total Healthy Damaged Total

80,60,30,
20,10

1250∼1550
(5th∼6th modes)

60 66
126

26 28
54

1740∼1940
(5th mode)

69 57 30 24

1740∼1940
(6th mode)

59 67 25 29

Multiclass label classification (torque): Healthy(80), Healthy(60), Damaged(30),
Damaged(20), Damaged(10)

Table 1: Torque values, labelled classification, train, and test data splitting
associated with samples number identified healthy or damaged.

dataset, it becomes the input for unsupervised and supervised machine learn-
ing algorithms. Consequently, due to DI’s normalisation effect on the data, the
range of based motion acceleration excitation is dissociated from the subse-
quent analysis and estimation. In our context, using normalised data is one of
the advantages of our algorithm, which lies in the DI procedure. However, a
limitation of our proposed algorithm in this paper is that it assumes raw data
instead of DI. We are currently exploring ideas to address this issue, but they
are beyond the scope of this paper.

4 Machine-Learning techniques for
bolt-loosening detection

Bolts have the function of connecting and maintaining stability between two
pieces that need to be joined. However, this fixation might only be guaran-
teed in parts of the structure lifespan, a problem engineering systems face. It
is common for the ends joined by the bolts to loosen over time due to exter-
nal vibrations, dynamic loading, or thermal variations. Bolted joint loosening
is damage-like and modifies the connectivity between the components of the
structure. Predicting torque losses is essential and helps engineers create con-
trol strategies for torque tightening. Based on actual torque data, it is possible
to train a classifier model that predicts whether torque loss occurs for a bolted
joint and subsequently identifies whether there is damage to the structure.

Machine learning algorithms can be employed in system monitoring using the
dataset related to the loss of torque problem. Machine Learning is an auto-
mated process that extracts information from data based on a pattern learned
through different algorithms. It utilises the learned patterns to predict future
data or perform other types of decision-making. This work predicts the state of
the bolted connection with unsupervised-supervised learning from the bolted
beams’ vibration response data-driven. The ML algorithm quantifies the torque
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loosening using a regression algorithm under different torque conditions as
input. The learning approach is divided into an unsupervised-supervised clas-
sification and regression problem, as the data has defined attributes. The ML
data input is the DIs, and the target variable will be the information on
bolt loosening and indicate the influence of the independent variable. Thus,
we intended to obtain a previous classification, determine which unclassified
category the data belongs to, and then quantify the torque loosening.

The classifiers algorithm used are the unsupervised K-means to cluster the
data and supervised Naive Bayes, Decision Tree (DT), Random Forest (RF),
K-Nearest Neighbours (KNN), Support Vector Machine (SVM), and extreme
Gradient Boosting (XGBoost) to detect the torque loosening. General theo-
retical details on the machine learning techniques used here are presented in
Appendix A. Each algorithm has hyperparameters that must be configured
and tested for optimal performance in application cases. In the case of SVM, a
linear kernel function was used, and a grid search was conducted to determine
the penalty parameter, assumed as C = 10. For KNN, the number of neigh-
bours is set to k = 3, and the metric is defined as the Euclidean distance. The
function weights are uniform, meaning that all points in each neighbourhood
are equally weighted, and the leaf size, which affects query construction and
speed, is set to 30. For RF and DT, the number of trees in the forest is 100,
and the maximum depth is restricted to 3. The minimum sample split is 2,
indicating the minimum number of samples required to split an internal node.
The minimum sample leaf represents the training samples on each of the right
branches, and the minimum sample leaf values are set to 1. The Max features
value is set to ’auto’, representing the number of features considered when
searching for the best split, and the criterion used is the Gini index. In the
case of XGBoost, the objective is assumed as softmax for multiclass classifica-
tion using the softmax objective. The learning rate is set to 0.3, which means
that each weight in all trees will be multiplied by this value, and the maxi-
mum depth is set to 6. In the Naive Bayes classifier, the Gaussian-NB case was
selected. Table 2 shows the hyperparameters selected for each ML algorithm
implemented in this paper. All algorithms were applied using the open-source
Scikit-learn library in Python.

Algorithm Hyperparameters

K-Means
Number of clusters = 5; Method for initialisation: k-means++;
Number of times the algorithm is run with different centroid seeds = 20.

SVM Kernel: Linear; C = 10.
K-NN Metric: Euclidean distance; Number of neighbours: 3.
Naive Bayes Gaussian

Ramdon Forest
Number of forest trees = 100; Maximum depth = 3;
Minimum division = 2; Minimum value of sample sheet = 1;
Criterion = Gini Index.

Decision Tree Criterion = Gini Index; Splitter = ’best’; Maximum depth = 3.
XGBoost Objective =’multi:softmax’, Maximum depth = 6, learning rate = 0.3.

Table 2: Hyperparameters assumed for each ML algorithms.
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After the machine learning algorithm completes its estimation, it becomes cru-
cial to assess the stability and accuracy of the model. This validation process
involves confirming the quantified relationships between variables, which can
be accomplished by examining metrics such as accuracy, score, precision, and
recall [47, 48]. However, it’s important to note that these metrics primarily
reflect the ML model’s performance on the data it was trained on. There-
fore, the ML model’s cross-validation using a separate dataset is necessary to
ensure that it successfully captures the underlying patterns in the data, and a
reliable validation set indicates a model with low bias or variance. In the dam-
age assessment, the validation and the cross-validation of the ML algorithms
are explored. The evaluation metrics of the ML algorithm are addressed to
compare the damage detection capability through their accuracy and the con-
fusion matrix. Accuracy close to 100% is considered a good performance. In all
cases presented in this paper, the ML model exhibits excellent performance,
as evidenced by a standard deviation of 5% in the cross-validations obtained
through five different cluster data.

Initially, an unsupervised clustering algorithm K-means is applied to cluster
the data, which were divided into five classes. From the samples obtained
through the selection of attributes, the algorithms were evaluated by compar-
ing metrics for the classification algorithm in the training and test sets. The
idea was to compare the classification metrics, considering the damage index
calculated from the FRFs and torques as a characteristic. Therefore, the stud-
ies on the dataset investigate the feasibility and accuracy of the six supervising
machine learning on the performed classification. The dataset includes five
torque identification classes (see Table 1), with two record attributes as input
variables or predictors. Loosening torque identification, considered as damage,
is performed with 180 samples separated into three different assemblies and
divided into training and testing data. The classification method employed
here is ”one versus one” [49], where one multiclass classification problem turns
into ten binary class classification problems. The metrics for multiclass clas-
sification are shown in Table 3 for the torque estimation using the 5th∼6th
mode shapes, Table 4 only with the 5th mode, and Table 5 with the 6th mode
shape. The estimation using the whole frequency band is discarded because of
the low accuracy in the DI grouping.

Table 3: Comparison between metrics of experimental test ML algorithms for
FRF data (5th∼6th mode).

Performance Metrics SVM KNN NB RF DT XGB

Cross-validation 97,8 97.2 94.4 98.9 98.9 98.9
Accuracy 98.1 98.1 85.1 100 100 90.7
Precision 98.1 98.1 85.1 100 100 90.7
Recall 98.1 98.1 85.1 100 100 90.7

F1-Score 98.1 98.1 85.1 100 100 90.7
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Table 4: Comparison between metrics of experimental test ML algorithms for
FRF data (5th mode).

Performance Metrics SVM KNN NB RF DT XGB

Cross-validation 98.3 98.9 98.3 99.4 100 99.4
Accuracy 98.1 98.1 100 100 100 100
Precision 98.1 98.1 100 100 100 100
Recall 98.1 98.1 100 100 100 100

F1-Score 98.1 98.1 100 100 100 100

Table 5: Comparison between metrics of experimental test ML algorithms for
FRF data (6th mode).

Performance Metrics SVM KNN NB RF DT XGB

Cross-validation 96.7 97.2 97.8 97.8 94.4 95
Accuracy 98.1 98.1 92.6 98.1 94.4 88.9
Precision 98.1 98.1 92.6 98.1 94.4 88.9
Recall 98.1 98.1 92.6 98.1 94.4 88.9

F1-Score 98.1 98.1 92.6 98.1 94.4 88.9

All torque classification performed with the three signals present cross-
validation ranging from 94.4% to 100%, and the accuracy, precision, recall and
F1-score range from 88.9% to 100%. Torque estimation using the signal from
the 5th mode shape presents the higher metrics, showing the efficiency of the
algorithms in detecting the most specific conditions for the health and damage
state of the bolted beam. The results consistently demonstrate similar perfor-
mance, yielding accurate predictions on previously overlooked datasets. The
XGBoost performed K-folds (K=5) estimation, where 88%, 95.6%, 94.4%, 97%
and 100% were achieved. The cross-validation of 95% given by the XGBoost
is estimated by the mean value of the five validations previews test. It indi-
cates a high level of consistency in the model’s performance across different
cross-validation iterations, with minimal fluctuations in its learning behaviour.
Cross-validation is a valuable tool for evaluating the algorithm’s effectiveness
by assessing its performance on various data splits. It provides a robust under-
standing of how the model behaves regarding overfitting. Additionally, the
other metrics support the model’s strong classification performance.

The confusion matrix [47] is also vastly employed to verify the data classi-
fication, which provides the correct configurations of the classified data. It
minimises the error in the damage, and the model’s successes provide a com-
parison between actual and predicted values, where the labels are considered
“Positive” and “Negative” [48]. In the case of the torque loss problem, the
matrix elements are characterised as true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). The matrix’s main diagonal
values show how many correct model predictions are for each class. In this
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application, the confusion matrix details the ML classifiers’ performance in
correctly labelling the data and predicting the severity of the loosening torque,
which is divided into five classes: damaged or healthy. Therefore, the confusion
matrix represents five rows indicating true classes and nine columns repre-
senting models’ predictions. Figures 5-7 show the confusion matrices of the
multiclass classification for torque losses for the truncated signal between the
5th and 6th mode shape. The results indicate that a smaller number of samples
were misclassified. Most algorithms had only a sample misclassified, represent-
ing 1.85% of the total samples used, in this case, the confusion matrix shows
the correct and incorrect predictions on each class. For example, by looking at
all the values in row four (Figure 5a), it can be inferred that, out of four sam-
ples, the model predicts that three samples belong to class 20-damage (correct
prediction) and one sample belongs to class 30-damage. Overall, the result for
a multiclass classification using ML algorithms is satisfactory for this specific
task using the dataset for bolt loosening identification. For each class, it is pos-
sible to evaluate the model’s performance by looking at the confusion matrix
in detail.
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Fig. 5: Confusion matrix of Multiclass classification of six ML techniques
in the 5th∼6th mode. The values in blue blocks indicate correctly classified
points, whereas those in pale blue blocks indicate misclassified points.
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Fig. 6: Confusion matrix of Multiclass classification of six ML techniques in
the 5th mode. The values in blue blocks indicate correctly classified points,
whereas those in pale blue blocks indicate misclassified points.
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(b) KNN
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(c) Naive Bayes
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(d) Random Forest
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Fig. 7: Confusion matrix of Multiclass classification of six ML techniques in
the 6th mode. The values in blue blocks indicate correctly classified points,
whereas those in pale blue blocks indicate misclassified points.

5 Machine-Learning techniques for
bolt-loosening quantification

The ML classification algorithm successfully classified torque loosening by
identifying the corresponding DI values with good accuracy in the met-
rics. While the classification algorithm detects the torque loss, the regression
method is used to quantify the torque values. Therefore, the regression-based
methodology adds to our algorithm the advantage of estimating the torque
loss from the input dataset carrying on the intrinsic variability in the data,
enabling us to verify the uncertainty associated with the estimation. Therefore,
the Support Vector Regression (SVR) algorithm is used to quantify the degree
of torque loosening based on score changes. In this process, we employed the
same dataset previously clustered by the k-means model to address the classifi-
cation problem. The regression algorithm also utilised the DI values for torque
estimation, with a dataset consisting of two attributes and a group cluster,
each one involving 180 samples (given by K-means). It assumes 70% of the
data for training and 30% for testing. The SVR algorithm achieved an accu-
racy score of approximately 98.57%, 98.64%, and 99.17% for the prediction
intervals corresponding to the frequency ranges of the 5th to 6th, 5th mode,
and 6th mode shapes, respectively.
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(b) (c) (d) (e) (f)

(a)

Fig. 8: SVR torque estimation comprises the frequency range comprising 5th
and 6th mode shapes in the DI calculation: a) Estimated torque versus actual
torque; Probability density function of the estimated torque valuing: b)10 cNm,
c)20 cNm, d)30 cNm, e)60 cNm, and e)80 cNm.
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(b) (c) (d) (e) (f)

(a)

Fig. 9: SVR torque estimation comprises the frequency range comprising
the 5th mode shape in the DI calculation: a) Estimated torque versus actual
torque; Probability density function of the estimated torque valuing: b)10 cNm,
c)20 cNm, d)30 cNm, e)60 cNm, and e)80 cNm.
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(b) (c) (d) (e) (f)

(a)

Fig. 10: SVR torque estimation comprises the frequency range comprising
the 6th mode shape in the DI calculation: a) Estimated torque versus actual
torque; Probability density function of the estimated torque valuing: b)10 cNm,
c)20 cNm, d)30 cNm, e)60 cNm, and e)80 cNm.

In Figure 8(a), the plot displays a comparison between the actual torque values
and their corresponding estimates. Note that the estimated mean values for
each torque condition, indicated by the red ’X’ symbols, closely align with the
actual torque values. The graphs of Figures 8(b-f) illustrate the probability
density functions (PDFs) for estimated torques at various levels: 10cNm (µ =
8.73, σ = 3.52), 20cNm (µ = 23.03, σ = 2.09), 30cNm (µ = 36.16, σ = 6.60),
60cNm (µ = 64.56, σ = 6.62), and 80cNm (µ = 75.37, σ = 3.52), respectively.
Where µ represents the mean value and σ denotes the standard deviation of
the reference torque, calculated using the first and second statistical moments
of each PDF.

Figure 9(a) shows the actual torque values versus the estimated torques, with
the estimated mean values of each torque. Figures 9(b-f) are the PDF of the
estimated torques referent to 10cNm (µ = 10.86, σ = 3.37), 20cNm (µ = 20.32,
σ = 2.35), 30cNm (µ = 31.21, σ = 4.56), 60cNm (µ = 58, σ = 8.98), and
80cNm (µ = 78.8, σ = 3.67), respectively. In Figures 9, only the 5th mode
shape is utilised for the DI calculation, serving as input for the SVR model.
In Figures 10(a), it assumed the frequency band of the 6th mode shape for
the DI calculation and SVR torque estimation. The SVR successfully obtained
all torque values with a good approximation to the actual torque. Figures 10



Springer Nature 2021 LATEX template

Article Title 25

(b-f) show the PDFs with the mean value indicated in the red line of each
estimated torque. In this case, torques estimated with reference values of 10
cNm (µ = 10.47, σ = 3.08), 20 cNm (µ = 19.58, σ = 3.5), 30 cNm (µ = 34.10,
σ = 4.92), 60 cNm (µ = 63.62, σ = 7.37), and 80 cNm (µ = 78.7, σ = 3.48).
Overall, the SVR model provided mean torque predictions with a standard
deviation below 10%, which were close to the actual values for most cases.
Notwithstanding the foregoing, as stated in Teloli et al. [35], the torque wrench
can also show variability in the torque applied - in other words, although the
torque value was considered to be a discrete variable, it is a continuous variable,
which our method is capable of encompassing.

On this point, the proposed algorithm focuses initially on pattern recognition
and loosening torque detection performed with the classification-base ML, and
torque estimation is based on the regression. Because of the scattered torque
values of the data-driven model adopted in the analysis, the correlation on
torque-DI is discontinuous, limiting us from using regression as a linear estima-
tor. In future work, we intend to enrich the experimental dataset and improve
the application of the regression in our algorithm.

6 Conclusion

In this study, we investigated the application of six supervised classification
machine-learning techniques for detecting bolt loosening and supervised regres-
sion techniques for quantifying torques in bolted joints using a vibration-based
method. We used data from experimental studies that monitored bolt loose-
ness, considering changes in applied pre-toque and structure assembly and
disassembly procedures. We calculated damage indices using the frequency
response for the full signal and frequency band gaps ranging from 1220 to 1940
Hz, as the natural frequency in lower modes did not show a significant varia-
tion. The FRAC damage index was selected for feature extraction, as it was
suitable for generating and pattern-reconditioning the dataset. After feature
extraction, an unsupervised algorithm was used to cluster the dataset to dis-
cover patterns without human intervention, so the ML algorithms were trained
and evaluated using the dataset to determine the state of the bolted connec-
tion. The analysis of the algorithms included illustrative examples to show the
test error rate through the confusion matrix and metrics.

Based on the test results, the algorithms could classify satisfactorily, with a
few classification failures for the case in the three frequency band range con-
ditions. The analysis of the algorithms included illustrative examples to show
the test error rate through the confusion matrix and metrics. The performance
of the models for classification is above 89% in all frequency band intervals for
all metrics. The results obtained through SVR ML demonstrated significant
potential in estimating bolt loosening with its uncertainty quantification based
on the proposed algorithm methodology, which utilises Damage Indices (DIs)
as indicators of damage. Torque estimation achieved with accuracy scores of
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98.57%, 98.64%, and 99.17% for the prediction intervals corresponding to the
frequency ranges, this approach proves to be an effective tool for predicting
damage in structures. In this manner, the applied methodology not only classi-
fies the loss of torque but also provides a good determination of the associated
torque value. Overall, this algorithm has shown great potential and accuracy
for application in assessing bolt integrity. Therefore, a big challenge in SHM is
acquiring and obtaining data, which can be an issue in applying the ML-base
detection algorithms.

The application of a linear regression model to estimate statistical moments
and model uncertainty may introduce challenges when the data exhibit dis-
continuities. While this choice aligns with the primary objectives of our study,
it is essential to recognise that the model’s performance may be affected in
scenarios characterised by abrupt changes in the data. Incorporating nonlin-
ear regression models would necessitate a more extensive analysis, which could
be pursued in subsequent research endeavours. In future work, we intend to
enrich the dataset, improve the application of the regression in our algorithm
and improve the algorithm’s potential by employing a physic learning algo-
rithm to improve the feasibility of ML algorithms for monitoring continuously
bolted joints. This study extensively analyses the classification algorithm but
primarily employs linear regression for estimating statistical moments. A com-
prehensive analysis involving various regression models, including nonlinear
ones, can be researched. However, this limitation allows future investigations to
investigate the effectiveness of nonlinear regression models in similar contexts.
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Appendix A Machine Learning Techniques

An appendix contains supplementary information that is not an essential part
of the text itself but which may help provide a more comprehensive under-
standing of the research problem, or it is information that is too cumbersome
to be included in the body of the paper.

A.1 K-Means Clustering

The K-Means clustering algorithm is an unsupervised ML in which data
objects are distributed into a specified number of k clusters [52]. The K is a
hyperparameter that specifies the number of clusters that should be created.
It is a useful approach for clustering (labelling) or partitioning the data prior
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to feeding the labelled data as the output of a supervised ML algorithm. The
aim is to find centroids that is a measure of the centre point of the cluster,
such that the sum of the squared distances of each data sample to its nearest
cluster centre is minimal. Nearest here is with respect to the Euclidean norm
(L2 norm). Thus, the objective function is

J =

n∑
i=1

mink

(
∥xi − µk∥2

)
(A1)

where, xi is referred to as the ith instance in cluster k and µk is referred to as
the mean of the samples or “centroid” of cluster k.

The K-Means algorithm is widely used due to its simplicity of implementation
and low computational complexity but one of the biggest problems of K-Means
clustering algorithms include the problem of the initial definition of the number
of clusters that must be used. When dealing with highly complex problems
where the cluster count is hard to define, the “elbow” method can provide
insights into the potential number of required clusters. Another disadvantage
of k-means is that it very sensitive to outlier points, which can distort the
centroids and the clusters [54].

A.2 K-Nearest-Neighbour Classifier

K-nearest neighbour is one of the simplest supervised learner methods [53, 54]
and widely used for pattern recognition[55]. k-NN can be used for classification
and regression, where data with discrete labels usually uses classification and
data with continuous labels regression. The classification is calculated from a
simple majority vote of the nearest neighbours of each point: a query point is
assigned the data class with more representatives within the nearest neighbours
of the point. For this, a metric between the points is used spaces[54].

The k-NN algorithm, in its simplest version, only considers exactly one near-
est neighbour, which is the closest training data point to the point we want
to predict. The prediction is then simply the known output for this training
point. Depending on the value of ‘k’, each sample is compared to find similar-
ity or closeness with ‘k’ surrounding samples. For example, when k = 5, the
individual samples compare with the nearest five samples; hence, the unknown
sample is classified accordingly [54]. The optimal choice of the value of ’k’ is
highly data-dependent. In general, a larger suppresses the effects of noise but
makes the classification boundaries less distinct.

A.3 Decision Tree and Random Forest

Decision tree supervised algorithm can target categorical variables such as
the classification of a damaged or undamaged statement and continuous vari-
ables as regression to compare the signal with the healthy state of the system
[53]. Learning a decision tree means learning the sequence of if/else questions
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that gets us to the true answer most quickly. A tree contains a root node
representing the input feature(s) and the internal nodes with significant data
information. Each node (also called a leaf or terminal node) represents a ques-
tion containing the answer. The interactive process is repeated until the last
node (leaf node) is reached such that the node becomes impure [54]. The data
get into the form of binary features in our application, and a classification
procedure is performed.

Random Forest ML algorithm is an ensemble classifier that consists of many
decision trees where the class output is the node composed of individual trees.
The RF has high prediction accuracy, robust stability, good tolerance of noisy
data, and the law of large numbers they do not overfit, and it has been used
for structural damage detection. It has shown a better performance [56].

A.4 Support Vector Machine

Support Vector Machines are supervised machine learning techniques devel-
oped from the statistical learning theory that can be used for classifying and
regressing clustered data. In the case of linear classification, with two classes,
let {(xi, yi), ..., (xn, yn)}, a training dataset with n observations, where xi rep-
resents the set of input vectors and yi(+1,−1) is the class label of xi, the
hyperplane is a straight line that separates the two classes with a marginal
distance (as seen in Fig. A1). The purpose of an SVM is to construct a hyper-
plane using a margin, defined as the distance between the hyperplane and the
nearest points that lie along the marginal line termed as support vectors [57].

𝑤𝑥 + 𝑏 = 0

𝑤𝑥 + 𝑏 = 1

𝑤𝑥 + 𝑏 = −1

𝑀𝑎𝑟𝑔𝑖𝑛
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝑥1

𝑥2

𝐻𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

𝜖

𝜉𝑖
𝜉𝑖
∗

Fig. A1: SVM algorithm operation.

One can define the hyperplane by Eq. (A2), where we have the dot product
between x and w added to the term b:

D(x) = wT .x + b = c for − 1 < c < 1 (A2)
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where x represents the points within the hyperplane, w is the weights that
determine the orientation of the hyperplane, and b is the bias or displacement
of the hyperplane. When c = 0, the separating hyperplane is in the middle of
the two hyperplanes with c = 1 and −1. An SVM aims to maximise the data
separation margin from the minimisation of w. This optimisation problem can
be obtained as the quadratic programming problem given by

min
w2

2
s.t yi(w

T .xi + b) ≥ 1 for i = 1, 2, ..., n (A3)

where w is the Euclidean norm.

SVM algorithm encompasses not only linear and nonlinear classification but
also linear and nonlinear regression. The main idea of the algorithm consists of
fitting as many instances as possible a “tube” while limiting margin violations.
Therefore, SVR wants to find a hyperplane that minimises the distance from
all data to this hyperplane. The width of the “tube” is controlled by a hyper-
parameter, which has an error “insensitive” area, defined by ϵ, as illustrated by
Figure A1. The larger the ϵ, the larger the diameter of this tube, and the less
sensitive the model is in predicting points within it. In contrast, the smaller ϵ,
the smaller the diameter of the tube, the greater the chances of points being
on the edges of the tube, making the model more robust. The samples that
fall into the ϵ-margin do not incur any loss. Points outside the tube are exam-
ined and considered with respect to the ϵ-insensitive region. Compared to a
previously defined error, called slack variables (ξ). This approach is similar to
the “soft margin” concept in SVM classification, because the slack variables
allow regression errors to exist up to the value of ξ and ξ∗i , yet still satisfy the
required conditions. Including slack variables leads to the objective function
given by Eq. (A4).

Minimize :
1

2
∥w∥2 + C

n∑
i=1

(ξi + ξ∗i )

Constraints :

yi − wT .xi − b ≤ ϵ + ξi

wT .xi + b− yi ≤ ϵ + ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, ..., n

(A4)

A.5 Näıve Bayes

Näıve Bayes classification is a probabilistic classification method based on
Bayes theorem with the assumption of independence between features, con-
sidered a simple technique for constructing classifiers with models that assign
class labels to problem instances, represented as vectors of feature values,



Springer Nature 2021 LATEX template

30 Article Title

where the class labels are drawn from some finite set. There are three classes
in sk-learn, the Gaussian-NB, Multinomial-NB, and Bernoulli-NB. The first
assumes a Gaussian distribution, the second is for discrete occurrence counters,
and the third is for discrete boolean attributes [58].

Naive Bayes classifiers are highly scalable, requiring several parameters linear
in the number of variables in a learning problem. Maximum-likelihood training
can be done by evaluating a closed-form expression. In other words, one can
work with the naive Bayes model without accepting Bayesian probability or
using any Bayesian methods. An advantage of naive Bayes is to train a model
with few samples [59].

A.6 Extreme Gradient Boosting (XGBoost)

XGBoost (short for Extreme Gradient Boosting) is an efficient implementation
of Gradient Boosting Machines (GBM), developed by Tianqi Chen [61], widely
recognised for its superior performance in supervised learning. This versatile
algorithm is also considered to be an ensemble tree technique that can be used
for both regression and classification tasks.

XGBoost follows the concept of weak-learner, where each predictor could be
improved by sequentially training new trees to the model [62]. In other words,
the XGBoost makes predictions by creating numerous smaller decision trees,
also known as subtrees. Each of these subtrees makes predictions for the data,
and their individual predictions are combined to form the final prediction
for the given input. This ensemble approach helps improve the accuracy and
generalisation ability of the predictive model. The process involves iteratively
training these subtrees to correct the errors made by the previous subtrees,
gradually refining the overall prediction as more trees are added.

Another feature related to XGBoost is that it uses L1 and L2 regularisation
which helps with model generalisation and overfitting reduction. It uses an
optimisation strategy that produces better weights as it calculates the weights
of the component models. It also uses slightly less tiny component models.
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