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Abstract

Analyzing the behavior of ReLU neural networks often hinges on understanding
the relationships between their parameters and the functions they implement. This
paper proves a new bound on function distances in terms of the so-called path-
metrics of the parameters. Since this bound is intrinsically invariant with respect to
the rescaling symmetries of the networks, it sharpens previously known bounds.
It is also, to the best of our knowledge, the first bound of its kind that is broadly
applicable to modern networks such as ResNets, VGGs, U-nets, and many more.
In contexts such as network pruning and quantization, the proposed path-metrics
can be efficiently computed using only two forward passes. Besides its intrinsic
theoretical interest, the bound yields not only novel theoretical generalization
bounds, but also a promising proof of concept for rescaling-invariant pruning.

1 Introduction

An important challenge about neural networks is to upper bound as tightly as possible the distances
between the so-called realizations (i.e., the functions implemented by the considered network) Rθ, Rθ′

with parameters θ, θ′ when evaluated at x, in terms of a (pseudo-)distance d(θ, θ′) and a constant Cx:

∥Rθ(x)−Rθ′(x)∥1 ⩽ Cxd(θ, θ
′).

Such an inequality could be crucially leveraged to derive generalization bounds [Neyshabur et al.,
2018] or theoretical guarantees about pruning or quantization algorithms [Gonon et al., 2023]. This
type of bound is for example known with

d(θ, θ′) := ∥θ − θ′∥∞, Cx := (W∥x∥∞ + 1)WL2RL−1, (1)

in the case of a layered fully-connected neural network Rθ(x) = ML ReLU(ML−1 . . .ReLU(M1x))
with L layers, maximal width W , and with weight matrices Mℓ having some operator norm bounded
by R [Gonon et al., 2023, Theorem III.1 with p = ∞ and q = 1][Neyshabur et al., 2018, Berner
et al., 2020]. This known bound is however not satisfying at least for two reasons:

• it is not invariant under neuron-wise rescalings of the parameters θ that leave unchanged its
realization Rθ, leading to crude dependencies in R and L; and

• it only holds for simple fully-connected models organized in layers, but not for modern networks
that include pooling, skip connections, etc.

To circumvent these issues, this work proposes to leverage the so-called path-lifting (together with
its norm, called the path-norm), a tool that has recently emerged [Stock and Gribonval, 2023, Bona-
Pellissier et al., 2022, Marcotte et al., 2023, Gonon et al., 2024] in the theoretical analysis of modern
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neural networks with positively homogeneous activations. Its invariance under some rescaling
symmetries of the network is nicely complemented by the ease of computation of the path-norm
[Gonon et al., 2024]. The path-lifting and its norm have already been used to derive guarantees
of identifiability [Stock and Gribonval, 2023, Bona-Pellissier et al., 2022], characterizations of the
training dynamics [Marcotte et al., 2023] and generalization bounds [Neyshabur et al., 2015, Gonon
et al., 2024]. While these tools have long been limited to simple network architectures [Neyshabur
et al., 2015, Kawaguchi et al., 2017, Bona-Pellissier et al., 2022, Stock and Gribonval, 2023], they
were recently extended [Gonon et al., 2024] to modern architectures by including most of their
standard ingredients with the exception of attention mechanisms. This extension notably covers
ResNets, VGGs, U-nets, ReLU MobileNets, Inception nets or Alexnet. Moreover, Gonon et al. [2024]
also showed that these extended tools could be leveraged theoretically by deriving new state-of-the-art
generalization bounds based on path-norms.

The first contribution of this work is to introduce a natural (rescaling-invariant) metric based
on the path-lifting, and to show that it indeed yields an upper bound for the distance of two
realizations of a network. Specifically, denoting Φ(θ) the path-lifting (a finite-dimensional vector
whose definition will be recalled in Section 2) of the network parameters θ, we establish (Theorem 3.1)
that for any 1 ⩽ q ⩽∞, any input x, and network parameters θ, θ′ with the same sign :

∥Rθ(x)−Rθ′(x)∥q ⩽ max (∥x∥∞, 1) ∥Φ(θ)− Φ(θ′)∥1. (2)

We call d(θ, θ′) := ∥Φ(θ)−Φ(θ′)∥1 the ℓ1-path-metric, by analogy with the so-called ℓ1-path-norm
∥Φ(θ)∥1, see e.g. Neyshabur et al. [2015], Barron and Klusowski [2019], Gonon et al. [2024].

Inequality (2) not only holds for the very same general model as in Gonon et al. [2024] that en-
compasses pooling, skip connections and so on, but is also invariant under neuron-wise rescaling
symmetries, thanks to the intrinsic invariances of the path-lifting Φ, resolving the two problems
mentioned above for previous bounds of this type (Equation (1)). Moreover, it also improves on
Equation (1) in most cases (for example when there are at least two layers L ⩾ 2, and with inputs
∥x∥∞ ⩾ 1), see Appendix F for the curious reader.

More importantly, Equation (2) shows that distances in the uniform norm (q = ∞) over bounded
domains, but also in weighted ℓq norm, between the functions Rθ and Rθ′ , are upper-bounded by
a much simpler quantity: the ℓ1-path-metric between θ and θ′, that is, the ℓ1-distance between the
finite-dimensional vectors Φ(θ) and Φ(θ′).

The proof of Equation (2), which we believe to be interesting in its own right, is the main theoretical
contribution of this paper. The mapping (θ, x) 7→ Rθ(x) that takes parameters θ, an input x, and
returns the output Rθ(x) of the associated ReLU network, is well-known to be piecewise affine in x
[Arora et al., 2017, Theorem 2.1], but it is also piecewise polynomial in the coordinates of θ [Gonon
et al., 2024, consequence of Lemma A.1][Bona-Pellissier et al., 2022, consequence of Propositions 1
and 2]. To the best of our knowledge, the proof of Equation (2) is the first to practically leverage the
idea of “adequately navigating” through the different regions in θ where the network is polynomial,
see Figure 1 for an illustration.

The second contribution is to shed the light on theoretical and practical consequences of (2).
After showing that the ℓ1-path metric can be efficiently computed via two forward passes in con-
texts such as network pruning or quantization, we use it to provide a new pruning method invariant
under rescaling symmetries, and a new generalization bound valid on modern networks.

• Pruning Algorithm based on the lifting Φ. We provide a new pruning algorithm invariant under
symmetries. Its accuracy matches that of the standard magnitude pruning method when applied to
ResNets trained on Imagenet in the lottery ticket context [Frankle et al., 2020].

• Generalization bound based on Φ (Theorem 5.1). This is the second best bound valid in such a
general framework, after the one established in Gonon et al. [2024] (see Table 3). It is derived with
a different proof compared to the one in Gonon et al. [2024], offering a distinct avenue for future
refinements.

Plan. Section 2 recalls the model that captures standard ingredients of modern (ReLU, maxpool,
skip connections etc.) networks, using the mathematical formalization given in Gonon et al. [2024]
(that generalizes previous definitions given in Neyshabur et al. [2015], Kawaguchi et al. [2017],
Bona-Pellissier et al. [2022], Stock and Gribonval [2023]). Section 2 also recalls the definitions of the
path-lifting and the path-activations [Gonon et al., 2024]. The main result, Theorem 3.1, establishing
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Equation (2) is proved in Section 3. This leads to a pruning method invariant to rescaling in Section 4
and to a new generalization bound in Section 5.

2 Model, path-lifting and path-activations

Model. The neural network model we consider generalizes and unifies several models from the
literature, including those from Neyshabur et al. [2015], Kawaguchi et al. [2017], DeVore et al.
[2021], Bona-Pellissier et al. [2022], Stock and Gribonval [2023], as detailed in Gonon et al. [2024,
Definition 2.2]. This model allows for any Directed Acyclic Graph (DAG) structure incorporating
standard features1 such as max-pooling, average-pooling, skip connections, convolutional layers, and
batch normalization layers, thus covering modern networks like ResNets, VGGs, AlexNet, etc. The
full and formal definition of the model is in Appendix A.

Parameters and realization. All network parameters (weights and biases) are gathered in a parameter
vector θ, and we denote Rθ(x) the output of the network when evaluated at input x (the function
x 7→ Rθ(x) is the so-called realization of the network with parameters θ).

Path-lifting Φ and path-activations A. For network parameters θ and input x, this paper considers
the path-lifting vector Φ(θ) and the path-activations matrix A(θ, x) as defined in Gonon et al. [2024,
Definition A.1] for such general networks. We now give a simple description of these objects that will
be sufficient to grasp the main results of this paper. The full definitions are recalled in Appendix A.

The vector Φ(θ) ∈ RP is indexed by the set P of paths of the network (hence the name path-lifting),
where a path is a sequence of connected nodes (neurons) starting at some neuron (an input neuron
in the case of networks without biases) and ending at an output neuron. For instance, in the case of
a simple one-hidden-layer ReLU network, p = u → v → w is an admissible path if u is an input
neuron, v is a hidden neuron, and w is an output neuron. The coordinate of Φ(θ) associated with a
path is the product of the weights along this path, ignoring the non-linearities. For instance, if θa→b

denotes the weight of the edge a→ b, we have Φp(θ) := θu→vθv→w for the path p = u→ v → w.

The information about non-linearities is stored in binary form ({0, 1}) in the path-activations matrix
A(θ, x) ∈ {0, 1}P×din indexed by the paths p and the input coordinates u: (A(θ, x))p,u := 1 if and
only all neurons along path p are activated and p starts at the input neuron u.

In networks with biases, the definitions are similar, but the set of paths P also includes paths starting
from hidden neurons and ending at output neurons. The matrix A is then indexed by an additional
input coordinate to account for biases, resulting in A(θ, x) ∈ {0, 1}P×(din+1).

Key properties of (Φ, A). The essential properties are

• Φ(θ) is a vector, which entries are mononomial functions of the coordinates of θ;
• A(θ, x) is a binary matrix, and is a piecewise constant function of (θ, x),
• both Φ(θ) and A(θ, x) are invariant under neuron-wise rescalings of θ that leave invariant Rθ,
• the network output is a simple function of these two objects: for scalar-valued networks it holds

Rθ(x) =

〈
Φ(θ), A(θ, x)

(
x
1

)〉
(3)

and a similar simple formula holds for vector-valued networks [Gonon et al., 2024, Theorem A.1].

Example: For a simple one-hidden-layer network with parameters θ = (u1, . . . , uk, v1, . . . , vk)

with ui ∈ Rdin , vi ∈ Rdout and associated function Rθ(x) =
∑k

i=1 max(0, ⟨x, ui⟩)vi ∈ Rdout , the
path-lifting is simply given by Φ(θ) = (uiv

T
i , i ∈ J1, kK) ∈ Rkdindout (flattened).

The path-activation matrix A(θ, x) ∈ Rkdindout×(din+1) is simply Idin ⊗ (1⟨x,ui⟩>0)i∈J1,kK ⊗ 1dout ,
concatenated with 0kdindout (zeros because there are no biases here). We denote by Id the identity
matrix of size d× d and 1d (resp. 0d) the column vector of size d filled with ones (resp. zeros).

For this simple example, it is easy to see that both Φ(θ) and A(θ, x) are invariant under the neuron-
wise rescaling θ 7→ λ · θ corresponding to (vi, ui) → ( 1

λi
vi, λiui) with λ ∈ (R>0)

k, that leaves
invariant the associated function: Rθ = Rλ·θ [Gonon et al., 2024].

1With the exception of the attention mechanism.
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3 Bounding function distances via the path-lifting

Consider our initial problem of finding a pseudo-metric d(θ, θ′) and a constant Cx for any input x,
such that for many parameters θ, θ′, it holds that

∥Rθ(x)−Rθ′(x)∥∞ ⩽ Cxd(θ, θ
′).

Since the left hand-side is invariant under rescaling symmetries, the pseudo-metric d should ideally
also maintain this invariance. Yet, pseudo-metrics based on norms like ∥θ−θ′∥ are not invariant under
rescaling and can even be made arbitrarily large by adversarially rescaling one of the parameters.
In such cases, the bound becomes vacuous because the left-hand side remains unchanged while the
right-hand side can grow arbitrarily large depending on the scaling of the parameters. Although one
could make such a bound invariant by considering the infimum over all possible rescaling symmetries,
this infimum may be difficult to compute in practice. Therefore, a “good” bound should ideally be
both invariant under rescaling symmetries and easy to compute.

A rescaling invariant bound using the ℓ1-path metric. Our main result, Theorem 3.1, precisely
proves that we can define a pseudo-distance (the ℓ1-path metric) via Φ as d(θ, θ′) := ∥Φ(θ)−Φ(θ′)∥1,
with Cx = max(∥x∥∞, 1). Because of the invariances of Φ, any pseudo-distance that can be written
in terms of a pseudo-distance between the images of Φ is automatically invariant under rescaling
symmetries. The proof is in Appendix C (where we actually prove something slightly stronger, but
we stick to the next theorem for simplicity).
Theorem 3.1. Consider an exponent q ∈ [1,∞) and a ReLU neural network on a general DAG
network with max-pool etc. as in Section 2 (see Definition A.2 in the appendix for a precise definition).
Consider parameters vectors θ, θ′. If for every coordinate i, it holds θiθ′i ⩾ 0, then for every input x:

∥Rθ(x)−Rθ′(x)∥q ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1. (4)

Moreover, for every such neural network architecture, there are parameters θ ̸= θ′ and an input x
such that Equation (4) is an equality.

The assumption of parameters with the same sign cannot be simply removed: see Figure 5 in
Appendix C for a counterexample.

Computation of the path-metrics in two forward passes. Besides its theoretical interest, the
proposed pseudo-distance also has the desirable property of being easily computable in practice.
Consider θ, θ′ such that θiθ′i ⩾ 0 and |θ′i| ⩽ |θi| for every coordinate i. Then ∥Φ(θ)− Φ(θ′)∥1 can
be computed in two forward passes. Consider the graph G̃ deduced from the considered one but with
max-pooling activations replaced by the identity. For a vector α, denote by |α| the vector deduced
from α by applying x 7→ |x| coordinate-wise. Denote by 1 the input full of ones. We have:

∥Φ(θ)−Φ(θ′)∥1 = ∥Φ(θ)∥1−∥Φ(θ′)∥1 = ∥RG̃
|θ|(1)∥1−∥R

G̃
|θ′|(1)∥1 = ∥RG̃

|θ|(1)−R
G̃
|θ′|(1)∥1 (5)

where RG̃ denotes the forward pass in the network with graph G̃. The proof is in Appendix B and it
is heavily based on Theorem A.1 in Gonon et al. [2024]. In particular, Equation (5) is true as soon as
θ′ is obtained from θ by pruning, or by quantizing/truncating towards zero.

Proof sketch of Theorem 3.1 The proof is given in Appendix C. We now give a sketch of it. The output
of a ReLU neuron in the layer d of a layered fully-connected network is a piecewise polynomial
function of the parameters θ of degree at most d [Gonon et al., 2024, consequence of Lemma
A.1][Bona-Pellissier et al., 2022, consequence of Propositions 1 and 2].

Given an input x, the proof of Theorem 3.1 consists in defining a trajectory t ∈ [0, 1]→ θ(t) ∈ Θ
(red curve in Figure 1) that starts at θ, ends at θ′, and with finitely many breakpoints 0 = t0 <
t1 < · · · < tm = 1 such that the path-activations A(θ(t), x) are constant on the open intervals
t ∈ (tk, tk+1). Each breakpoint corresponds to a value where the activation of at least one path
(hence at least one neuron) changes in the neighborhood of θ(t). For instance, in the left part of
Figure 1, the straight green line (resp. quadratic green curve) corresponds to a change of activation
of a ReLU neuron (for a given input x to the network) in the first (resp. second) layer.

With such a trajectory, given the key property (3), each quantity |Rθ(tk)(x) − Rθ(tk+1)(x)| can be
controlled in terms of ∥Φ(θ(tk))− Φ(θ(tk+1))∥1, and if the path is “nice enough”, then this control
can be extended globally from t0 to tm.
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Figure 1: Illustration of the proof of Theorem 3.1, see the end of Section 3 for an explanation.

There are two obstacles: 1) proving that there are finitely many breakpoints tk as above (think of
t 7→ tn+2 sin(1/t) that is n-times continuously differentiable but still crosses t = 0 an infinite
number of times around zero), and 2) proving that the length

∑m
k=1 ∥Φ(θ(tk))− Φ(θ(tk+1))∥1 of

the broken line with vertices Φ(θ(tk)) (dashed line on the right part of Figure 1) is bounded from
above by ∥Φ(θ)− Φ(θ′)∥1 times a reasonable factor. Trajectories satisfying these two properties are
called “admissible” trajectories. The first property is true as soon as the trajectory t 7→ θ(t) is smooth
enough (analytic, say). The second is true with factor one thanks to a monotonicity property of the
chosen trajectory. The core of the proof consists in exhibiting a trajectory with these properties.

4 Rescaling-invariant pruning matching the performance of IMP

As a proof of concept, we now show how to exploit the bound of Theorem 3.1 to design a rescaling-
invariant pruning criterion that matches the accuracy of the widely used magnitude pruning criterion.

Notion of pruned parameter. Considering a DAG neural network G as described in Section 2, we
use the shorthand RG to denote the corresponding set of parameters (see Definition A.2 for a precise
definition). By definition, a pruned version θ′ of θ ∈ RG is a "Hadamard" product θ′ = s⊙ θ, where
s ∈ RG is a binary vector with all of its coordinates in {0, 1} and ∥s∥0 is "small". A standard pruning
method consists in selecting s from a pre-trained parameter θ typically by pruning out (setting to
zero) entries of θ with magnitude below some threshold. This is clearly not rescaling-invariant, as the
ranking of the magnitude of certain coefficients can change when applying certain rescalings.

4.1 Proposed rescaling-invariant pruning criteria

Given any θ, the parameters θ, θ′ satisfy the assumptions of Theorem 3.1, hence for all input x we
have |Rθ(x)−R′

θ(x)| ⩽ ∥Φ(θ)−Φ(θ′)∥1 max(1, ∥x∥∞). Defining ∆(θ, s) := ∥Φ(θ)−Φ(s⊙θ)∥1,
a first reasonable global pruning criterion is then to aim at solving the following problem

min
s:∥s∥0⩽k

∆(θ, s). (6)

However, while (5) guarantees that, given s, the cost ∆(θ, s) is computed in two forward passes as

∆(θ, s) = ∥RG̃
|θ|(1d)∥1 − ∥RG̃

|s⊙θ|(1d)∥1

(where G̃ is the same as the original one G but with max-pooling activations replaced by the identity),
Problem (6) is combinatorial because the set {s : ∥s∥0 ⩽ k} has a size that grows exponentially in k.
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Instead, we propose to approximate the solution of Problem (6) by minimizing an upper-bound of
∆(θ, s). For each individual parameter coordinate i, we define

Φ-Cost(θ, i) := ∆(θ, si) (7)

where si := 1G− ei with 1G ∈ RG the vector filled with ones and ei ∈ RG the i-th canonical vector.

Bounding ∆(θ, s) using Φ-Cost(θ, i), i ∈ G. Consider any subset I ⊆ G to be potentially pruned
out. When s = s(I) := 1G − 1I with 1I =

∑
i∈I ei, then for any enumeration ij , 1 ⩽ j ⩽ |I| of

elements in I , denoting sj := 1G −
∑j

ℓ=1 eiℓ = 1G − 1∪j
ℓ=1{iℓ}

(and s0 := 1G) we have

∆(θ, s) =
(5)
∥Φ(θ)∥1 − ∥Φ(s⊙ θ)∥1 =

|I|∑
j=1

∥Φ(sj−1 ⊙ θ)∥1 − ∥Φ(sj ⊙ θ)∥1 =
(5)

|I|∑
j=1

∆(sj−1 ⊙ θ, sj)

=

|I|∑
j=1

Φ-Cost(sj−1 ⊙ θ, ij) (8)

⩽
|I|∑
j=1

Φ-Cost(θ, ij). (9)

Φ-Pruning Method. Instead of solving the combinatorial Problem (6), we propose to minimizing the
upper-bound given in Inequality (9). This is achieved via simple reverse hard thresholding:

1. compute Φ-Cost(θ, i) for all i (two forward passes per i via Equation (5));
2. given the targeted sparsity k, select the set I of cardinal |G| − k containing the k indices

corresponding to the smallest values of this cost.

By Inequality (9) and Theorem 3.1, the index set I thus selected is such that ∥s(I)∥0 ⩽ k and

|Rθ(x)−Rs(I)⊙θ| ⩽

(∑
i∈I

Φ-Cost(θ, i)

)
∥(x, 1)∥∞. (10)

To the best of our knowledge, this is the first practical network pruning method invariant under
rescaling symmetries that is endowed with guarantees on modern networks.

4.2 Experiments: proof of concept

To validate the approach we train a dense ResNet-18 on ImageNet-1k with standard hyperparameters
(Appendix D). We prune (set to zero) some weights of the trained dense model with one of the
following method (recall the definition of Φ-costs in Equation (7)):

• magnitude pruning (MP): layerwise pruning of p% of the smallest weights in absolute value,
• Φ-layerwise pruning (Φ-LP): layerwise pruning of p% of the weights with the smallest Φ-costs,
• Φ-global pruning (Φ-GP): global pruning of p% of the weights with the smallest Φ-costs.

Invariance under rescaling symmetries: MP versus Φ-pruning. A key difference between these
pruning methods is that Φ-pruning is invariant to neuron-wise rescaling symmetries in ReLU networks,
while MP is not. Consequently, unlike Φ-pruning, MP can be affected by adversarial rescalings of
the weights before pruning. Figure 2 shows a concrete example. We do not even try to choose a
rescaling in an adversarial manner: we simply choose a rescaling at random (see Appendix D for
details), before applying magnitude pruning. This results in a significant drop in accuracy for MP.

Comparing criteria and masks. The left part of Figure 3 shows the magnitude (absolute value)
versus the Φ-cost for each parameter index i, illustrating a positive correlation between these two
quantities. This leads to a high overlap in the sets of pruned weights, as shown in Table 1. This
suggests that the parameters obtained with SGD are naturally balanced in some sense, given that
magnitude pruning, which is not invariant under rescaling, largely aligns with the rescaling-invariant
pruning methods. The right part of Figure 3 shows that this correlation is largely reduced after
applying a random rescale as detailed in Appendix D. In this case, as we have seen on Figure 2,
magnitude pruning indeed yields quite different results compared to Φ-pruning.
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Figure 2: Training Curves: Test Top-1 Accuracy (left) and Validation Top-1 Accuracy (right) when
finetuning the pruned models, with (dashed line) or without (plain line) rescaling. The results for
Φ-pruning are the same with or without rescaling, hence the corresponding dashed line (random
rescale applied beforehand) perfectly overlaps with the plain line (no rescale), unlike for MP.

Figure 3: Scatter plot of the magnitude of each weight, versus its Φ-cost (Equation (7)). Left: dense
model trained with SGD. Right: same but randomly rescaled as detailed in Appendix D.

Comparing accuracies. We find that Φ-pruning methods achieve accuracies comparable to the
standard magnitude pruning method. Specifically, both methods yield the same top-1 test accuracy
at the end of training (Table 2), and their training curves are similar (Figure 2). This is noteworthy
because, in this context, the choice of the pruning mask is crucial for achieving high accuracy, as
demonstrated by the magnitude pruning method applied to a random rescaling of the parameters,
which significantly underperforms (Table 2 and Figure 2).

Computation of the Φ-costs. Computationally speaking, the time needed to compute the Φ-costs
associated with all the parameters of the trained dense ResNet18 using a single V100 GPU is
equivalent to the training time needed to obtain this ResNet18. Given the gain in rescaling invariance,
a natural challenge is to speed this up: besides parallelization over multiple GPUs, tricks allow to
jointly compute all the costs at least for the last layer (one of the most costly one), and will be the
object of future investigations. Our experiments also show (cf the vertical axis of Figure 3) that the
bound (10) is currently vacuous (on the order of 1026). This aligns with the numerical observations
reported in Gonon et al. [2024] for the ℓ1-path-norm ∥Φ(θ)∥1), and obtaining tightened, non-vacuous
bounds, e.g. with ℓq-path metrics with q > 1 (known to be of a much smaller order of magnitude
[Gonon et al., 2024]) is a challenge left to future work.

Overall, Φ-pruning is competitive with respect to the widespread magnitude pruning method in terms
of accuracy, is inherently invariant to rescaling symmetries, and the emerging theory of Φ offers a
promising foundation for future theoretical analysis of these pruning methods. We hope these results
will inspire further research in this direction.

It is important to highlight that these results were achieved without any tuning effort: we used the
same hyperparameters for the new Φ-pruning methods as those commonly employed for magnitude
pruning in comparable situations [Frankle et al., 2021]. For further details, see Appendix D.
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Pruning level 10% 20% 40% 60% 80%
Overlap between MP and Φ-GP 70% 74% 76% 80% 86%
Overlap between MP and Φ-LP 87% 82% 90% 94% 96%

Table 1: Overlap between masks as a function of pruning level (percentage of pruned out coefficients).
If S1 and S2 index the weights pruned (i.e. set to zero) by methods 1 and 2, the overlap is computed
as 100× |S1 ∩ S2|/|S1|. As all methods prune the same amount of weights we have |S1| = |S2|.

Pruning level none 10% 20% 40% 60% 80%
MP (+ Random Rescale)

67.7%

69.0 (68.8) 69.0 (68.7) 68.8 (63.1) 68.2 (57.5) 66.5 (15.8)
Φ-LP (∗) 68.8 68.9 68.7 68.1 66.1
Φ-GP (∗) 68.6 68.8 68.6 67.9 66.0

Table 2: Top-1 accuracy after pruning, rewind and retrain, as a function of the pruning level.
(∗) = results valid with as well as without rescaling, as Φ-pruning is invariant to rescaling.
MP + Random Rescale corresponds to the case where we apply a random rescaling before applying
MP (see Appendix D for details).

5 Application to generalization

We also concretely demonstrate how Theorem 3.1 can be used to derive generalization guarantees.
We take for granted the classical notion of loss function, generalization error and weight-sharing, and
we refer the reader to Appendix G for formal definitions.
Theorem 5.1. Consider n training samples stored in a vector Z. Consider an upper bound B ⩾ 1
on the ℓ∞-norm of the inputs. Consider a network with depth D (max length of a path from input
to output neurons), output dimension dout. Denote by #params the number of parameters, without
redundancy when there is weight-sharing2. Assume the loss function ℓ(y, y′) to be L-Lipschitz in y′

for every output y. It holds for every parameters θ learned on Z:

EZ ℓ-generalization error of θ ⩽ 544
LB√
n
max(D, dout)

√
#params× ∥Φ(θ)∥1. (11)

The full proof of Theorem 5.1 is in Appendix G. Theorem 5.1 is the second-best generalization
bound based on the so-called ℓ1-path-norm ∥Φ(θ)∥1 that is valid on a model as general as the one
described in Section 2: see Table 3 for a comparison. The interests of Theorem 5.1 compared to the
better bound proved in Gonon et al. [2024] is (i) to illustrate that Theorem 3.1 can indeed be used to
provide generalization guarantees and (ii) to provide an alternative avenue for future refinements as it
is derived with a different proof.

Limitations. However, note that both the bound in Gonon et al. [2024] and Theorem 5.1 are
essentially independent3 of the input distribution, and because of that, they have to be vacuous in
modern over-parameterized training regimes where it is possible to achieve zero training error [Zhang
et al., 2021, Nagarajan and Kolter, 2019]. We hope these bounds will inspire new bounds formulated
in terms of Φ (to preserve symmetries) but with stronger dependencies on the input distribution.

We now explain a sketch of the proof of Theorem 5.1 along with its key differences compared to the
proof of the concurrent bound in Gonon et al. [2024].

Sketch of proof of Theorem 5.1 and key differences with the proof of the bound in Gonon et al.
[2024]. Both proofs are based on the Rademacher complexity. The one in Gonon et al. [2024] bounds
the Rademacher complexity by peeling one by one every neuron of the network as in Golowich et al.
[2018]. Here, Theorem 5.1 starts by reducing the problem of bounding the Rademacher complexity
to a covering problem using the classical Dudley’s inequality, which is a common argument already
used in the literature to establish generalization bounds [Bartlett et al., 2017]. The new problem is
then to cover a set Θ of parameters θ with a finite number of balls with respect to a (pseudo-)metric of
the type d(θ, θ′) = ∥Rθ −Rθ′∥, where ∥ · ∥ should be understood as a norm whose precise definition

2For instance, for a convolutional layer with kernel matrix K, this is the number of coefficients in K, not the
number of coefficients in the matrix corresponding to the linear transformation with this convolutional kernel
(which would contain many repetitions of the coefficients in K).

3Except for the constant B, but this dependence is too weak to make the bound informative in over-
parameterized regimes.

8



is of no relevance at this point. This is where the new Theorem 3.1 plays a crucial role: such a cover
of Θ for d can be otbained by covering Φ(Θ) with respect to the ℓ1-norm. Exhibiting ℓ1-coverings of
Φ(Θ) is easier due to the finite dimensionality of the path-lifting Φ. However, using standard bounds
for covering Φ(Θ) results in an undesirable dependence on the ambient dimension of Φ(Θ). This
dimension, determined by the number of paths, is exponentially larger than the number of parameters
in Θ. While little is known on the image Φ(Θ), recent findings show that locally, Φ(Θ) has as
expected a dimension bounded by the number of parameters [Bona-Pellissier et al., 2022, Theorem
7]. In the same vein, we prove in the appendix (Theorem H.1) that it is also possible to replace
the number of paths (the algebraic ambient dimension of Φ(Θ)) that would appear using standard
coverings, by the dimension of Φ(Θ) as a variety: the number of parameters without weigh-sharing
redundancies, minus the number of neuron-wise rescaling symmetries. Thus, this new proof heavily
relies on two new properties of the path-lifting: the new Theorem 3.1 and new coverings of Φ(Θ),
opening up new avenues to strengthen current generalization bounds.

Table 3: Generalization bounds (up to universal multiplicative constants) for a ReLU network
estimator learned from n iid training points when 1) the loss ŷ ∈ (Rdout , ∥ · ∥2) 7→ ℓ(ŷ, y) ∈ R is
L-Lipschitz for every y, and 2) inputs are bounded in L∞-norm by B ⩾ 1. Here, din/dout are the
input/output dimensions, #params is the number of parameters without redundancy when there is
weight-sharing, K = maxv∈N∗-pool | ant(v)| is the maximum kernel size (see Definition A.2 in the
appendix) of the ∗-max-pooling neurons, Md is the matrix of layer d for a layered fully-connected
network (LFCN) without bias Rθ(x) = MD ReLU(MD−1 . . .ReLU(M1x)), D is the depth.

Architecture Generalization bound
[Kakade et al., 2008, Eq.

(5)] [Bach, 2024, Sec.
4.5.3]

LFCN with depth D = 1, no bias,
dout = 1 (linear regression)

LB√
n
× ∥Φ(θ)∥1

√
ln(din)

[E et al., 2022, Thm. 6]
[Bach, 2017, Proposition 7]

LFCN with D = 2, no bias, dout = 1
(two-layer network)

LB√
n
× ∥Φ(θ)∥1

√
ln(din)

[Neyshabur et al., 2015,
Corollary 7]

DAG, no bias, dout = 1 LB√
n
× ∥Φ(θ)∥12D

√
ln(din)

[Golowich et al., 2018,
Theorem 3.2]

LFCN with arbitrary D, no bias,
dout = 1

LB√
n
×

D∏
d=1

∥Md∥1,∞
√

D + ln(din)

[Barron and Klusowski,
2019, Corollary 2]

LFCN with arbitrary D, no bias,
dout = 1

LB√
n
× ∥Φ(θ)∥1

√
D + ln(din)

[Gonon et al., 2024] DAG, with biases, arbitrary dout, with
ReLU, identity and k-max-pooling

neurons for
k ∈ {k1, . . . , kP } ⊂ {1, . . . ,K}

LB√
n
× ∥Φ(θ)∥1

√
D ln(PK) + ln(dindout)

This work, Theorem 5.1 DAG, with biases, arbitrary dout, with
ReLU, identity and ∗-max-pooling

neurons

LB√
n
× ∥Φ(θ)∥1 max(D, dout)

√
#params

6 Conclusion

This work proves that for modern ReLU networks with max pooling and/or skip connections, the
ℓ1-path-metric d(θ, θ′) = ∥Φ(θ) − Φ(θ′)∥1 bounds from above the distance between functions
realized by the networks with parameters θ and θ′. This metric, which is invariant to the natural
rescalings associated to the network parameterization, can be easily computed in two forward passes
in the context of parameter pruning or quantization. Besides a new generalization bound, it leads to a
pruning algorithm invariant under rescaling, competitive with standard magnitude pruning in terms
of accuracy, and with an associated theoretical bound (10), which is the first of its kind to the best of
our knowledge. A natural challenge is to establish similar but sharper bounds, typically with metrics
still based on the path-lifting but using ℓp norms with p > 1, and/or metrics that provide functional
bounds in expectation over inputs x with a given probability distribution. Progress in this direction
is needed to obtain non-vacuous pruning, quantization and generalization bounds, which may also
leverage recent advances in PAC-Bayes generalization bounds [Hellström et al., 2023].
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Appendices

A Path-lifting and path-activations

This section recalls the definitions from Gonon et al. [2024] for completeness.

A(θ, x) =

0 . . . 0

0 . . . 0 ap(θ, x) 0 . . . 0 0

0 . . . 0 0

0
...

0 0 ap′(θ, x)

0 0
...





p

p′

v1 b

PI

PH

Nin

Figure 4: The coordinate of the path-lifting Φ associated with the path p = v1 → v2 → v3 is
Φp(θ) = θv1→v2θv2→v3 since it starts from an input neuron (Definition A.5). While the path
p′ = w1 → w2 → w3 starts from a hidden neuron (in N \ (Nin ∪Nout)), so there is also the bias of
w1 to take into account: Φp′(θ) = bw1θ

w1→w2θw2→w3 . As specified in Definition A.5, the columns
of the path-activation matrix A are indexed by Nin ∪ {b} and its rows are indexed by P = PI ∪ PH ,
with PI the set of paths in P starting from an input neuron, and PH the set of paths starting from a
hidden neuron.

Definition A.1 (ReLU and k-max-pooling activation functions). The ReLU function is defined as
ReLU(x) := x1x⩾0 for x ∈ R. The k-max-pooling function k-pool(x) := x(k) returns the k-th
largest coordinate of x ∈ Rd.

Definition A.2 (ReLU neural network [Gonon et al., 2024]). Consider a Directed Acyclic Graph
(DAG) G = (N,E) with edges E, and vertices N called neurons. For a neuron v, the sets
ant(v), suc(v) of antecedents and successors of v are ant(v) := {u ∈ N, u→ v ∈ E}, suc(v) :=
{u ∈ N, v → u ∈ E}. Neurons with no antecedents (resp. no successors) are called input (resp.
output) neurons, and their set is denoted Nin (resp. Nout). Neurons in N \ (Nin ∪Nout) are called
hidden neurons. Input and output dimensions are respectively din := |Nin| and dout := |Nout|.
• A ReLU neural network architecture is a tuple (G, (ρv)v∈N\Nin) composed of a DAG G =
(N,E) with attributes ρv ∈ {id,ReLU} ∪ {k-pool, k ∈ N>0} for v ∈ N \ (Nout ∪ Nin) and
ρv = id for v ∈ Nout. We will again denote the tuple (G, (ρv)v∈N\Nin) by G, and it will be clear
from context whether the results depend only on G = (N,E) or also on its attributes. Define
Nρ := {v ∈ N, ρv = ρ} for an activation ρ, and N∗-pool := ∪k∈N>0

Nk-pool. A neuron in N∗-pool is
called a ∗-max-pooling neuron. For v ∈ N∗-pool, its kernel size is defined as being | ant(v)|.
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• Parameters associated with this architecture are vectors4 θ ∈ RG := RE∪N\Nin . We call bias
bv := θv the coordinate associated with a neuron v (input neurons have no bias), and denote θu→v

the weight associated with an edge u→ v ∈ E. We will often denote θ→v := (θu→v)u∈ant(v) and
θv→ := (θu→v)u∈suc(v).

• The realization of a neural network with parameters θ ∈ RG is the function RG
θ : RNin → RNout

(simply denoted Rθ when G is clear from the context) defined for every input x ∈ RNin as

Rθ(x) := (v(θ, x))v∈Nout ,

where we use the same symbol v to denote a neuron v ∈ N and the associated function v(θ, x),
defined as v(θ, x) := xv for an input neuron v, and defined by induction otherwise

v(θ, x) :=

{
ρv(bv +

∑
u∈ant(v) u(θ, x)θ

u→v) if ρv = ReLU or ρv = id,

k-pool
(
(bv + u(θ, x)θu→v)u∈ant(v)

)
if ρv = k-pool.

(12)

Definition A.3 (Paths and depth in a DAG [Gonon et al., 2024]). Consider a DAG G = (N,E)
as in Definition A.2. A path of G is any sequence of neurons v0, . . . , vd such that each vi → vi+1

is an edge in G. Such a path is denoted p = v0 → . . . → vd. This includes paths reduced to a
single v ∈ N , denoted p = v. The length of a path is length(p) = d (the number of edges). We
will denote pℓ := vℓ the ℓ-th neuron for a general ℓ ∈ {0, . . . , length(p)} and use the shorthand
pend = vlength(p) for the last neuron. The depth of the graph G is the maximum length over all of its
paths. If vd+1 ∈ suc(pend) then p→ vd+1 denotes the path v0 → . . .→ vd → vd+1. We denote by
PG (or simply P) the set of paths ending at an output neuron of G.
Definition A.4 (Sub-graph ending at a given neuron). Given a neuron v of a DAG G, we denote G→v

the graph deduced from G by keeping only the largest subgraph with the same inputs as G and with
v as a single output: every neuron u with no path to reach v through the edges of G is removed, as
well as all its incoming and outcoming edges. We will use the shorthand P→v := PG→v

to denote
the set of paths in G ending at v.

We now recall the definitions of the path-lifting and path-activations from Gonon et al. [2024]. An
illustration can be found in Figure 4.
Definition A.5 (Path-lifting and path-activations [Gonon et al., 2024]). Consider a ReLU neural
network architecture G as in Definition A.2 and parameters θ ∈ RG associated with G. For p ∈ P ,
define

Φp(θ) :=


length(p)∏

ℓ=1

θvℓ−1→vℓ if p0 ∈ Nin,

bp0

length(p)∏
ℓ=1

θvℓ−1→vℓ otherwise,

where an empty product is equal to 1 by convention. The path-lifting ΦG(θ) of θ is

ΦG(θ) := (Φp(θ))p∈PG .

This is often denoted Φ when the graph G is clear from the context. We will use the shorthand
Φ→v := ΦG→v

to denote the path-lifting associated with G→v (Definition A.4).

Consider an input x of G. The activation of an edge u→ v on (θ, x) is defined to be au→v(θ, x) := 1
when v is an identity neuron; au→v(θ, x) := 1v(θ,x)>0 when v is a ReLU neuron; and when v
is a k-max-pooling neuron, define au→v(θ, x) := 1 if the neuron u is the first in ant(v) in lexi-
cographic order to satisfy u(θ, x) := k-pool

(
(w(θ, x))w∈ant(v)

)
and au→v(θ, x) := 0 otherwise.

The activation of a neuron v on (θ, x) is defined to be av(θ, x) := 1 if v is an input neuron,
an identity neuron, or a k-max-pooling neuron, and av(θ, x) := 1v(θ,x)>0 if v is a ReLU neu-
ron. We then define the activation of a path p ∈ P with respect to input x and parameters θ as:
ap(θ, x) := ap0

(θ, x)
∏length(p)

ℓ=1 avℓ−1→vℓ(θ, x) (with an empty product set to one by convention).
Consider a new symbol vbias that is not used for denoting neurons. The path-activations matrix
A(θ, x) is defined as the matrix in RP×(Nin∪{vbias}) such that for any path p ∈ P and neuron
u ∈ Nin ∪ {vbias}

(A(θ, x))p,u :=

{
ap(θ, x)1p0=u if u ∈ Nin,

ap(θ, x) otherwise when u = vbias.
4For an index set I , denote RI = {(θi)i∈I , θi ∈ R}.
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B Computing the path-metric in two forward passes

This section proves that the path-metric can be computed in two forward passes.

Theorem B.1. Consider an architecture G = (N,E, (ρv)v∈N\Nin) as in Definition A.2. Consider
the architecture G̃ := (N,E, (ρ̃v)v∈N\Nin) with ρ̃v := id if v ∈ N∗-pool, and ρ̃v := ρv otherwise
(that is, replacing ∗-max-pooling neurons with identity ones). For a vector α, denote |α| the vector
deduced from α by applying x 7→ |x| coordinate-wise. Denote by 1 the input full of ones. Consider
parameters θ, θ′ such that for every coordinate i, θiθ′i ⩾ 0 and |θ′i| ⩽ |θi|. It holds:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(θ)∥1 − ∥Φ(θ′)∥1 = ∥RG̃
|θ|(1)∥1 − ∥R

G̃
|θ′|(1)∥1 = ∥RG̃

|θ|(1)−RG̃
|θ′|(1)∥1.

(13)

Proof. First of all, because θiθ′i ⩾ 0 for every coordinate i, we have for every path p: Φp(θ)Φp(θ
′) ⩾

0 so that |Φp(θ)− Φp(θ
′)| = |Φp(|θ|)− Φp(|θ′|)| and:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(|θ|)− Φ(|θ′|)∥1 =
∑
p∈P
|Φp(|θ|)− Φp(|θ′|)|.

Because |θi| ⩾ |θ′i| for every coordinate i, we have Φp(|θ|) ⩾ Φp(|θ′|) for every path p. Therefore,
we have:

∥Φ(θ)− Φ(θ′)∥1 =
∑
p∈P

Φp(|θ|)− Φp(|θ′|)

=

∑
p∈P

Φp(|θ|)

−
∑

p∈P
Φp(|θ′|)


=

∑
p∈P
|Φp(θ)|

−
∑

p∈P
|Φp(θ

′)|


= ∥Φ(θ)∥1 − ∥Φ(θ′)∥1. (14)

According to Theorem A.1 in Gonon et al. [2024], it holds for every parameters θ:

∥Φ(θ)∥1 = ∥RG̃
|θ|(1)∥1.

We just obtained

∥Φ(θ)− Φ(θ′)∥1 = ∥RG̃
|θ|(1)∥1 − ∥R

G̃
|θ′|(1)∥1.

The latter is also equal to ∥RG̃
|θ|(1)− RG̃

|θ′|(1)∥1 because |θi| ⩾ |θ′i| for every coordinate i implies
that for every neuron v:

vG̃(|θ|,1) ⩾ vG̃(|θ′|,1) ⩾ 0

so that

∥RG̃
|θ|(1)∥1 − ∥R

G̃
|θ′|(1)∥1 =

∑
v∈Nout

|vG̃(|θ|,1)| − |vG̃(|θ′|,1)|

=
∑

v∈Nout

vG̃(|θ|,1)− vG̃(|θ′|,1)

=
∑

v∈Nout

∣∣∣vG̃(|θ|,1)− vG̃(|θ′|,1)
∣∣∣

= ∥RG̃
|θ|(1)−RG̃

|θ′|(1)∥1.

This proves the result.
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C Proof of Theorem 3.1

We actually prove the next theorem that is stronger than Theorem 3.1. We do not state it in the main
body as it requires having in mind the definition of the path-lifting Φ, recalled in Definition A.5,
to understand the following notations. For parameters θ, we will denote ΦI(θ) (resp. ΦH(θ)) the
sub-vector of Φ(θ) corresponding to the coordinates associated with paths starting from an input
(resp. hidden) neuron. Thus, Φ(θ) is the concatenation of ΦI(θ) and ΦH(θ).

Theorem C.1. Consider a ReLU neural network as in Definition A.2, with output dimension equal to
one. Consider associated parameters θ, θ′. If for every coordinate i, θi and θ′i have the same signs or
at least one of them is zero (θiθ′i ⩾ 0), we have for every input x:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1. (15)

Moreover, for every neural network architecture, there are parameters θ ̸= θ′ and an input x such
that Equation (4) is an equality.

Theorem C.1 is intentionally stated with scalar output in order to let the reader deduce the result with
multi-dimensional output with his favorite norm. As an example, we derive the next corollary, which
corresponds to the Theorem 3.1 given in the text body (except for the equality case, which is also an
easy consequence of the equality case of Equation (15)).

Corollary C.1. Consider an exponent q ∈ [1,∞) and a ReLU neural network as in Definition A.2.
Consider associated parameters θ, θ′. If for every coordinate i, it holds θiθ′i ⩾ 0, then for every input
x ∈ Rdin :

∥Rθ(x)−Rθ′(x)∥q ⩽ max(∥x∥∞, 1)∥Φ(θ)− Φ(θ′)∥1.

Proof of Corollary C.1. By definition of the model, it holds:

∥Rθ(x)−Rθ′(x)∥qq =
∑

v∈Nout

|v(θ, x)− v(θ′, x)|q.

Recall that Φ→v is the path-lifting associated with the sub-graph G→v (Definition A.5). By Theo-
rem C.1, it holds:

|v(θ, x)− v(θ′, x)|q ⩽ max(∥x∥q∞, 1)∥Φ→v(θ)− Φ→v(θ′)∥q1.

Since Φ(θ) = (Φ→v(θ))v∈Nout , this implies:

∥Rθ(x)−Rθ′(x)∥qq ⩽ max(∥x∥q∞, 1)∥Φ(θ)− Φ(θ′)∥q1.

1 1 −1 −1

Figure 5: Counter-example showing that the conclusion of Theorem 3.1 does not hold when the
parameters have opposite signs. If the hidden neurons are ReLU neurons, the left network implements
Rθ(x) = ReLU(x) (with θ = (1 1)T ) and the right network implements Rθ′(x) = −ReLU(−x)
(with θ′ = (−1 − 1)T ). Equation (4) does not hold since there is a single path and the product of
the weights along this path is equal to one in both cases, so that Φ(θ) = Φ(θ′) = 1 (cf Section 2)
while these two functions are nonzero and have disjoint supports.

Sketch of the proof of Theorem C.1. To prove the inequality, we define the notion of admissible
trajectory, show that it is enough to find an admissible trajectory in order to conclude (Lemma C.1),
and then we construct such an admissible trajectory (Corollary C.2). A geometric illustration of
the spirit of the proof is given in Figure 1, as detailed in the figure legend. The formal proof of
Theorem C.1, including the equality case, is given at the end of the section.

Admissible trajectory: definition. Given any input vector x and two parameters θ, θ′, we define an
x-admissible trajectory5 betweeen θ and θ′ as any continuous map t ∈ [0, 1] 7→ θ(t) such that for
every t ∈ [0, 1], the vector θ(t) corresponds to parameters associated with the considered network

5While the standard terminology for such a map t 7→ θ(t) is rather "path" than "trajectory", we chose
"trajectory" to avoid possible confusions with the notion of "path" of a DAG associated with a neural network.
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architecture, with the boundary conditions θ(0) = θ and θ(1) = θ′, and with the additional "x-
admissibility property" corresponding to the existence of finitely many breakpoints 0 = t0 < t1 <
· · · < tm = 1 such that the path-activations matrix (see Definition A.5) t ∈ [0, 1] 7→ A(θ(t), x) is
constant on each interval (tk, tk+1) and such that for every path p of the graph, using the shorthand
θk := θ(tk), the "reverse triangle inequality" holds (which is then, of course, an equality):

m∑
k=1

|Φp(θk)− Φp(θk−1)| ⩽ |Φp(θm)− Φp(θ0)|. (16)

Finding an admissible trajectory is enough.
Lemma C.1. Consider an input vector x and two parameters θ, θ′. If t ∈ [0, 1] 7→ θ(t) is an
x-admissible trajectory between θ and θ′ then

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞∥ΦI(θ)− ΦI(θ′)∥1 + ∥ΦH(θ)− ΦH(θ′)∥1. (17)

Proof. In this proof, we denote by convention xu := 1 for any u that is not an input neuron. Recall
that p0 denotes the first neuron of a path p, and xp0 is the coordinate of x for neuron p0. Since for
every parameters θ and every input x, it holds [Gonon et al., 2024, Lemma A.1]

Rθ(x) =
∑
p∈P

xp0ap(θ, x)Φp(θ),

we deduce that for every k ∈ {1, . . . ,m} and every tk−1 < t′ < t < tk, we have:

Rθ(t)(x)−Rθ(t′)(x) =
∑
p∈P

xp0
(ap(θ(t), x)Φp(θ(t))− ap(θ(t

′), x)Φp(θ(t
′))) .

Since both t and t′ belong to the same interval (tk−1, tk) and since t 7→ θ(t) is an admissible
trajectory, the path-activations ap(θ(t), x) = ap(θ(t

′), x) are the same for every path p. Thus, it
holds:

Rθ(t)(x)−Rθ(t′)(x) =
∑
p∈P

xp0
ap(θ(t), x) (Φp(θ(t))− Φp(θ(t

′))) .

Recall that the set of paths P is partitioned into the sets PI and PH of paths starting respectively
from an input and a hidden neuron. By the convention taken in this proof, for p ∈ PH , it holds
xp0

= 1. Thus:

Rθ(t)(x)−Rθ(t′)(x) =
∑
p∈PI

xp0ap(θ(t), x) (Φp(θ(t))− Φp(θ(t
′)))

+
∑

p∈PH

ap(θ(t), x) (Φp(θ(t))− Φp(θ(t
′))) .

Recall that a path-activation is always equal to 0 or 1 by definition, so that:∣∣Rθ(t)(x)−Rθ(t′)(x)
∣∣ ⩽ ∑

p∈PI

|xp0 | |Φp(θ(t))− Φp(θ(t
′))|+

∑
p∈PH

|Φp(θ(t))− Φp(θ(t
′))|

⩽ ∥x∥∞∥ΦI(θ(t))− ΦI(θ(t′))∥1 + ∥ΦH(θ(t))− ΦH(θ(t′))∥1.
Considering the limits t→ tk and t′ → tk−1 gives by continuity of both θ 7→ Rθ(x) and θ 7→ Φ(θ):∣∣Rθk(x)−Rθk−1

(x)
∣∣ ⩽ ∥x∥∞∥ΦI(θk)− ΦI(θk−1)∥1 + ∥ΦH(θk)− ΦH(θk−1)∥1.

Since θ = θ0 and θ′ = θm, using the triangle inequality yields:

|Rθ(x)−Rθ′(x)| ⩽ ∥x∥∞
m∑

k=1

∥ΦI(θk)− ΦI(θk−1)∥1 +
m∑

k=1

∥ΦH(θk)− ΦH(θk−1)∥1. (18)

See Figure 1 for an illustration of what is happening here. By definition, since the trajectory is
x-admissible, we have by Equation (16)

m∑
k=1

∥ΦI(θk)− ΦI(θk−1)∥1 ⩽ ∥ΦI(θm)− ΦI(θ0)∥1 = ∥ΦI(θ′)− ΦI(θ)∥1
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and
m∑

k=1

∥ΦH(θk)− ΦH(θk−1)∥1 ⩽ ∥ΦH(θm)− ΦH(θ0)∥1 = ∥ΦH(θ′)− ΦH(θ)∥1.

With Equation (18), this proves Equation (17).

Construction of an admissible trajectory. In the formal proof of Theorem C.1 we will see that it is
enough to establish the result when all the coordinates of θ, θ′ are nonzero.
Definition C.1. Consider two parameters θ, θ′ with only nonzero coordinates. For every t ∈ [0, 1]
and every i, define the following trajectory6 t 7→ θ(t) between θ and θ′:

(θ(t))i = sgn(θi)|θi|1−t|θ′i|t, (19)

where sgn(y) := 1y>0 − 1y<0 ∈ {−1, 0,+1} for any y ∈ R.

Observe that the trajectory in Equation (19) is well-defined since the coordinates of θ and θ′ are
nonzero by assumption. As proved in the next lemma, this trajectory has indeed finitely many
breakpoints where the path-activations change. This is basically because for every coordinate i, the
trajectory t ∈ [0, 1] → (θ(t))i is analytic7. As a consequence, the set of t’s where a coordinate of
the path-activations matrix A(θ(t), x) does change can be realized as a set of zeroes of an analytic
function on C, and since these zeroes must be isolated, there could only be finitely of them in the
compact [0, 1], except if this coordinate is constant equal to zero.

Lemma C.2. Consider n ∈ N>0 inputs X = (x1, . . . , xn) ∈ (Rdin)n. For parameters θ, θ′ with
only nonzero coordinates, consider the trajectory t ∈ [0, 1] 7→ θ(t) defined in Equation (19). There
exists finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that for every i = 1, . . . , n, the
path-activations matrix t ∈ [0, 1] 7→ A(θ(t), xi) is constant on each interval (tk, tk+1).

Proof of Lemma C.2. After showing that the result for arbitrary n follows from the result for n = 1,
we establish the latter by an induction on a topological sorting of the graph G.

Reduction to n = 1. If for every i = 1, . . . , n, we have a finite family of breakpoints (tik)k,
then the union of these families gives a finite family of breakpoints that works for every i. It
is then sufficient to prove that for a single arbitrary input x, there are finitely many breakpoints
0 = t0 < t1 < · · · < tm = 1 such that the path-activations matrix t ∈ [0, 1] 7→ A(θ(t), x) remains
constant on each interval (tk, tk+1).

For the rest of the proof, consider a single input x, and define for any neuron v the property

there are finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1 such that for every k :

the map t ∈ [tk, tk+1] 7→ v(θ(t), x) is analytic, (20)
and the functions t 7→ av(θ(t), x), t 7→ au→v(θ(t), x), for each u ∈ ant(v), are constant on (tk, tk+1)

Reduction to proving Property (20) for every neuron v. We will soon prove that Property (20)
holds for every neuron v. Let us see why this is enough to reach the desired conclusion. By the
same argument as in the reduction to n = 1, the union of the breakpoints associated to all neurons
yields finitely many intervals such that, on each interval, all functions t 7→ av(θ(t), x), v ∈ N , and
au→v(θ(t), x), u ∈ ant(v), are constant. By Definition A.5 this implies that t 7→ A(θ(t), x) is
constant on each corresponding open interval.

Proof of Property (20) for every neuron v by induction on a topological sorting [Cormen et al.,
2009, Section 22.4] of the graph. We start with input neurons v since by Definition A.2, these are the
ones without antecedents so they are the first to appear in a topological sorting.

Initialization: Property (20) for input neurons. For any input neuron v, it holds by Definition A.2
v(θ, x) = xv that is constant in θ. Thus t ∈ [0, 1] 7→ v(θ(t), x) is trivially analytic. Since v is an
input neuron, it has no antecedent, and by Definition A.5 we have av(θ, x) := 1. This shows that
Property (20) holds for input neurons.

6This trajectory is linear in log-parameterization: for every t 7→ ln(|(θ(t))i|) is linear in t.
7A function f : C 7→ R is analytic on a closed subset C ⊂ R if there exists an open set C ⊂ O ⊂ R such

that f is the restriction to C of a function that is analytic on O.
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Induction: Now, consider a non-input neuron v and assume Property (20) to hold for every neuron
coming before v in the considered topological sorting. Since every antecedent of v must come before
v in the topological sorting, there are finitely many breakpoints 0 = t0 < t1 < · · · < tm = 1
such that for every u ∈ ant(v) and every k, the map t ∈ [tk, tk+1] 7→ u(θ(t), x) is analytic. We
distinguish three cases depending on the activation function of neuron v.

• Case of an identity neuron. By Definition A.2 v(θ(t), x) = bv +
∑

u∈ant(v) u(θ(t), x)θ(t)
u→v

and for every k it is clear that it is anaytic as it is the case for each t ∈ [tk, tk+1] 7→ u(θ(t), x) by
induction, and it is also the case for t ∈ [tk, tk+1] 7→ θ(t)u→v by definition (Equation (19)). Since v
is an identity neuron by Definition A.5 we have au→v(θ(t), x) = av(θ(t), x) = 1 for every t. This
establishes Property (20) for v.
• Case of a ReLU neuron. By Definition A.2: v(θ, x) = ReLU(prev(θ, x)) where we denote
the so-called pre-activation of v by prev(θ, x) := bv +

∑
u∈ant(v) u(θ, x)θ

u→v. Reasoning as
in the case of identity neurons, the induction hypothesis implies that for every k the function
t ∈ [tk, tk+1] 7→ prev(θ(t), x) is analytic. We distinguish two sub-cases:
– If this function is identically zero then t ∈ [tk, tk+1] 7→ v(θ(t), x) is null, so it is analytic, and by
Definition A.5 au→v(θ(t), x) = av(θ(t), x) = 1v(θ,x)>0 = 0 for every u ∈ ant(v);
– Otherwise this analytic function can only vanish a finite number of times on the compact [tk, tk+1]:
there are times tk = s0 < s1 < · · · < sn = tk+1 such that for each j, s ∈ (sj , sj+1) 7→
prev(θ(s), x) has constant (nonzero) sign and can be extended into an analytic function on C. For
each segment (sj , sj+1) where the sign is negative, we deduce that for every s ∈ [sj , sj+1] we have
v(θ(s), x) = 0, hence by Definition A.5, av(θ(s), x) = au→v(θ(s), x) = 0 for every u ∈ ant(v);
on the other segments, we have v(θ(s), x) = prev(θ(s), x) for every s ∈ [sj , sj+1], and therefore
av(θ(s), x) = au→v(θ(s), x) = 1 for every s ∈ (sj , sj+1) and u ∈ ant(v).
Overall, on all the resulting (finitely many) segments, we obtain all the properties establishing that
Property (20) indeed holds for v.
• Case of a K-max-pooling neuron. Recall that by Definition A.2, the output of v is the K-th
largest component of prev(θ, x) := (u(θ, x)θu→v)u∈ant(v), with ties between antecedents decided
by lexicographic order. Since each t ∈ [tk, tk+1] 7→ u(θ(t), x) is analytic, and so does t 7→ θ(t)u→v ,
this is also the case of each coordinate of prev(θ(t), x).
Consider any k. We are going to prove that there are finitely many breakpoints tk = s0 < s1 <
· · · < sℓ = tk+1 such that on each interval (sj , sj+1), there is an antecedent u ∈ ant(v) such that

v(θ(s), x) = u(θ(s), x)θ(s)u→v, for every s ∈ (sj , sj+1).

By the same reasoning as above this will imply that Property (20) holds for v.
For any neurons u ̸= u′ ∈ ant(v), denote δu,u′(θ) := u(θ(t), x)θ(t)u→v − u′(θ(t), x)θ(t)u

′→v

and let U be the set of u ∈ ant(v) such that: for each u′ ∈ ant(v), either t 7→ δu,u′(θ(t)) is not
identically zero on [tk, tk+1], or u is before u′ in lexicographic order. With this definition, for each
pair u ̸= u′ ∈ U , the function t ∈ [tk, tk+1] 7→ δu,u′(θ(t), x) is not identically zero and is analytic,
so that there are only finitely many breakpoints tk = su,u

′

0 < su,u
′

1 < · · · < su,u
′

ℓ(u,u′) = tk+1 where
it vanishes on the compact [tk, tk+1]. Considering the union over all pairs u, u′ ∈ U of these finite
families of breakpoints, we get a finite family of breakpoint tk = s0 < s1 < · · · < sℓ = tk+1

such that on each interval (sj , sj+1), the ordering between the coordinates of prev(θ(s), x) in U is
strict and stays the same. To conclude, it is not hard to check that, by the definition of U and of
∗-max-pooling, the output of v only depends on the coordinates of prev(θ(s), x) indexed by U . This
yields the claim and concludes the proof.

For y ∈ R, recall that we consider sgn(y) = 1y>0 − 1y<0 ∈ {−1, 0,+1} and extend it to vectors by
applying it coordinate-wise.

Corollary C.2. Consider two parameters θ, θ′ with nonzero coordinates and such that sgn(θ) =
sgn(θ′). Then the trajectory defined in Equation (19) is x-admissible for every input vector x.

Proof. First, the trajectory is well-defined since the coordinates are nonzero, and it satisfies the
boundary conditions θ(0) = θ and θ(1) = θ′ since the coordinates have the same signs.

Second, Lemma C.2 proves that for every x, there are finitely many breakpoints 0 = t0 < t1 < · · · <
tm = 1 such that the path-activations matrix t ∈ [0, 1] 7→ A(θ(t), x) is constant on each interval
(tk−1, tk).
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It now only remains to prove that Equation (16) holds to prove that this is an x-admissible trajectory.
Consider a path p. For a coordinate i of the parameters, we write i ∈ p either if i = p0 and p0 is a
hidden neuron, or if i = e is an edge along the path p. Define sgn(p) :=

∏
i∈p sgn(θi) and note that

sgn(p) ̸= 0 since θ has only nonzero coordinates by assumption. Denote |θ| the vector deduced from
θ by applying the absolute value coordinate-wise. It is easy to check by definition of the path-lifting
Φ that for every t ∈ [0, 1]:

Φp(θ(t)) = sgn(p)Φp(|θ|)1−tΦp(|θ′|)t = sgn(p)Φp(|θ(t0)|)1−tΦp(|θ(tm)|)t.
Denote by a := Φp(|θ′|) = Φp(|θ(tm)|) and by b = Φp(|θ|) = Φp(|θ(t0)|). The latter rewrites:

Φp(θ(t)) = sgn(p)atb1−t.

Thus, Equation (16) holds if, and only if,
m∑

k=1

| sgn(p)|
∣∣atkb1−tk − atk−1b1−tk−1

∣∣ ⩽ | sgn(p)| |a− b| .

Simplifying by sgn(p) ̸= 0, Equation (16) is equivalent to:
m∑

k=1

∣∣atkb1−tk − atk−1b1−tk−1
∣∣ ⩽ |a− b| .

Let us now observe that t 7→ atb1−t is monotonic and conclude. We only do so when a ⩾ b, the
other case being similar. Since by definition, we also have a and b positive, it holds for t > t′

at−t′ ⩾ bt−t′ that is equivalent to atb1−t′ ⩾ atb1−t′ .

We then have a telescopic sum:
m∑

k=1

∣∣atkb1−tk − atk−1b1−tk−1
∣∣ = m∑

k=1

atkb1−tk − atk−1b1−tk−1

= atmb1−tm − at0b1−t0 = a− b = |a− b| .
This shows Equation (16), proving that t 7→ θ(t) is an admissible trajectory, and thus the result.

Proof of Theorem C.1. Equality case. Consider an arbitrary neural network architecture, an input
neuron v0 and a path p = v0 → v1 → . . . vd. Consider θ (resp. θ′) with only zero coordinates, except
for θvℓ→vℓ+1 = a > 0 (resp. (θ′)vℓ→vℓ+1 = b > 0) for every ℓ ∈ J0, d− 1K. Consider the input
x to have only zero coordinates except for xv0 > 0. It is easy to check that Rθ(x) = adxv0 and
Rθ′(x) = bdxv0 . Since ∥x∥∞ = xv0 , ∥ΦI(θ)−ΦI(θ′)∥1 = |ad− bd| and ∥ΦH(θ)−ΦH(θ′)∥1 = 0,
this shows that Equation (15) is an equality for these parameters.

Proof of the inequality. By continuity of both handsides of (15) with respect to θ, θ′, it is enough
to prove the result when all coordinates of θ, θ′ are nonzero, i.e., under the stronger assumption
that θiθ′i > 0 for every coordinate index i. Under this assumption, by Corollary C.2, the trajectory
t 7→ θ(t) defined in Equation (19) is x-admissible for every input vector x. The conclusion follows
by Lemma C.1.

D Details on the experiments of Section 4.2

Model and data. We train a dense ResNet18 [He et al., 2016] on ImageNet-1k, using 99% of the
1,281,167 images of the training set for training, the other 1% for validation. The PyTorch code for
normalization at inference is standard:

i n f e r e n c e _ n o r m a l i z a t i o n = t r a n s f o r m s . Compose ( [
t r a n s f o r m s . R e s i z e ( 2 5 6 ) ,
t r a n s f o r m s . Cen te rCrop ( 2 2 4 ) ,
t r a n s f o r m s . ToTensor ( ) ,
t r a n s f o r m s . Normal i ze (

mean = [ 0 . 4 8 5 , 0 . 4 5 6 , 0 . 4 0 6 ] ,
s t d = [ 0 . 2 2 9 , 0 . 2 2 4 , 0 . 2 2 5 ]
) ,

] )
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Optimization. We use SGD for 90 epochs, learning rate 0.1, weight-decay 0.0001, batch size 1024,
and a multi-step scheduler where the learning rate is divided by 10 at epochs 30, 60 and 80. The
epoch out of the 90 ones with maximum validation top-1 accuracy is considered as the final epoch.
Doing 90 epochs took us about 18 hours on a single A100-40GB GPU.

Pruning. At the end of the training phase, we prune (i.e. set to zero) p% of the remaining weights
of each convolutional layer, and p

2% of the final fully connected layer for a layerwise method. For
a global pruning method, we prune the same amount of weights but globally. We save the mask
and rewind the weights to their values after the first 5 epochs of the dense network, and train for 85
remaining epochs. This exactly corresponds to the hyperparameters and pruning algorithm of the
lottery ticket literature [Frankle et al., 2021].

Random rescaling. Consider a pair of consecutive convolutional layers in the same basic block of the
ResNet18 architecture, for instance the ones of the first basic block: model.layer1[0].conv1 and
model.layer1[0].conv2 in PyTorch, with model being the ResNet18. Denote by C the number
of output channels of the first convolutional layer, which is also the number of input channels of
the second one. For each channel c ∈ J1, CK, we choose uniformly at random a rescaling factor
λ ∈ {1, 128, 4096} and multiply the output channel c of the first convolutional layer by λ, and divide
the input channel c of the second convolutional layer by λ. In order to preserve the input-output
relationship, we also multiply by λ the running mean and the bias of the batch normalization layer
that is in between (model.layer1[0].bn1 in the previous example). Here is an illustrative Python
code (that should be applied to the correct layer weights as described above):

1 factors = np.array([1, 128, 4096])
2

3 out_channels1 , _, _, _ = weights_conv1.shape
4

5 for out in range(out_channels1):
6 factor = np.random.choice(factors)
7 weights_conv1[out , :, :, :] *= factor
8 weights_conv2 [:, out , :, :] /= factor
9 running_mean[out] *= factor

10 bias[out] *= factor

E Lipschitz property of Φ

We first establish Lipschitz properties of θ 7→ Φ(θ). Combined with the main result of this paper,
Theorem 3.1, or with Corollary C.1, they establish a Lipschitz property of θ 7→ Rθ(x) for each
x, and of the functional map θ 7→ Rθ(·) in the uniform norm on any bounded domain. This is
complementary to the Lipschitz property of x 7→ Rθ(x) studied elsewhere in the literature, see e.g.
[Gonon et al., 2024]. These results are also used to bound the covering numbers of Φ(Θ) in the proof
of Theorem 5.1.

Lemma E.1. Consider q ∈ [1,∞), parameters θ and θ′, and a neuron v. Then, it holds:

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq max
u∈ant(pℓ)

∥Φ→u(θ′)∥qq
)

(21)
with the convention that an empty sum and product are respectively equal to zero and one. Recall
also that by convention, biases of ∗-max-pooling neurons v are set to bv = 0 (Definition A.5).

Note that when all the paths in P→v have the same length L, Equation (21) is homogeneous:
multiplying both θ and θ′ coordinate-wise by a scalar λ scales both sides of the equations by λL.

Proof. The proof of Equation (21) goes by induction on a topological sorting of the graph. The
first neurons of the sorting are the neurons without antecedents, i.e., the input neurons by definition.
Consider an input neuron v. There is only a single path ending at v: the path p = v. By Definition A.5,
Φ→v(·) = Φv(·) = 1 so the left hand-side is zero. On the right-hand side, there is only a single
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choice for a path ending at v: this is the path p = v that starts and ends at v. Thus D = 0, and the
maximum is zero (empty sum). This proves Equation (21) for input neurons.

Consider a neuron v /∈ Nin and assume that this is true for every neuron before v in the considered
topological sorting. Recall that, by definition, Φ→v is the path-lifting of G→v (see Definition A.5).
The paths in G→v are p = v, and the paths going through antecedents of v (v has antecedents since it

is not an input neuron). So we have Φ→v(θ) =

(
(Φ→u(θ)θu→v)u∈ant(v)

bv

)
, where we again recall

that Φ→u(·) = 1 for input neurons u, and bu = 0 for ∗-max-pooling neurons. Thus, we have:

∥Φ→v(θ)− Φ→v(θ)∥qq
= |bv − b′v|q +

∑
u∈ant(v)

∥Φ→u(θ)θu→v − Φ→u(θ′)(θ′)u→v∥qq

⩽ |bv − b′v|q +
∑

u∈ant(v)

(
∥Φ→u(θ)− Φ→u(θ′)∥qq|θu→v|q + ∥Φ→u(θ′)∥qq|θu→v − (θ′)u→v|q

)
⩽ |bv − b′v|q + ∥θ→v∥qq max

u∈ant(v)
∥Φ→u(θ)− Φ→u(θ′)∥qq + ∥θ→v − (θ′)→v∥qq max

u∈ant(v)
∥Φ→u(θ′)∥qq.

Using the induction hypothesis (Equation (21)) on the antecedents of v and observing that p ∈ P→v

if, and only if there are u ∈ ant(v), r ∈ P→u such that p = r → v gives (we highlight in blue the
important changes):

∥Φ→v(θ)− Φ→v(θ)∥qq ⩽ |bv − b′v|q + ∥θ→v − (θ′)→v∥qq max
u∈ant(v)

∥Φ→u(θ′)∥qq

+∥θ→v∥q
q max
u∈ant(v)

max
r∈P→u

length(r)∑
ℓ=1

length(r)∏
k=ℓ+1

∥θ→rk∥qq

(|brℓ − b′rℓ |
q + ∥θ→rℓ − (θ′)→rℓ∥qq max

w∈ant(rℓ)
∥Φ→w(θ′)∥qq

)
.

= |bv − b′v|q + ∥θ→v − (θ′)→v∥qq max
u∈ant(v)

∥Φ→u(θ′)∥qq

+ max
p∈P→v

length(p)−1∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq max
w∈ant(pℓ)

∥Φ→w(θ′)∥qq
)

= max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

∥θ→pk∥qq

(|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq max
w∈ant(pℓ)

∥Φ→w(θ′)∥qq
)
.

This proves Equation (21) for v and concludes the induction.

In the sequel it will be useful to restrict the analysis to normalized parameters, defined as parameters θ̃

such that
∥∥∥( θ̃→v

b̃v

)∥∥∥
1
∈ {0, 1} for every v ∈ N \ (Nout∪Nin). Thanks to the rescaling-invariance

of ReLU neural network parameterizations, Algorithm 1 in Gonon et al. [2024] allows to rescale any
parameters θ into a normalized version θ̃ such that Rθ̃ = Rθ and Φ(θ) = Φ(θ̃) [Gonon et al., 2024,
Lemma B.2]. This implies the next simpler results for normalized parameters.
Theorem E.1. Consider q ∈ [1,∞). For every normalized parameters θ, θ′ obtained as the output
of Algorithm 1 in Gonon et al. [2024], it holds:

∥Φ(θ)− Φ(θ′)∥qq ⩽
∑

v∈Nout\Nin

|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

+min
(
∥Φ(θ)∥qq, ∥Φ(θ′)∥qq

)
max

p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq
)
. (22)

where we recall that bv = 0 for ∗-max-pooling neurons v.

Denote by N(θ) the normalized version of θ, obtained as the output of Algorithm 1 in Gonon et al.
[2024]. It can be checked that if θ = N(θ̃) and θ′ = N(θ̃′), and if all the paths have the same lengths
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L, then multiplying both θ̃ and θ̃′ coordinate-wise by a scalar λ does not change their normalized
versions θ and θ′, except for the biases and the incoming weights of all output neurons that are scaled
λL. As a consequence, Equation (22) is homogeneous: both path-liftings on the left-hand-side and
the right-hand-side are multiplied by λL, and so is the sum over v ∈ Nout \Nin in the right-hand-side,
while the maximum over p is unchanged since it only involves normalized coordinates that do not
change.

For networks used in practice, it holds Nout ∩Nin = ∅ so that Nout \Nin is just Nout, but the above
theorem also covers the somewhat pathological case of DAG architectures G where one or more
input neurons are also output neurons.

Proof of Theorem E.1. Since Φ(θ) = (Φ→v(θ))v∈Nout
, it holds

∥Φ(θ)− Φ(θ′)∥qq =
∑

v∈Nout

∥Φ→v(θ)− Φ→v(θ′)∥qq.

By Definition A.5, it holds for every input neuron v: Φ→v(·) = 1. Thus, the sum can be taken over
v ∈ Nout \Nin:

∥Φ(θ)− Φ(θ′)∥qq =
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥qq.

Besides, observe that many norms appearing in Equation (21) are at most one for normalized
parameters. Indeed, for such parameters it holds for every u ∈ N \ (Nin ∪ Nout): ∥θ→u∥qq ⩽ 1
[Gonon et al., 2024, Lemma B.2]. As a consequence, for p ∈ P and any ℓ ∈ J0, length(p)− 1K we
have:

length(p)∏
k=ℓ+1

∥θ→pk∥qq =

length(p)−1∏
k=ℓ+1

∥θ→pk∥qq︸ ︷︷ ︸
⩽1

 ∥θ→pend∥qq ⩽ ∥θ→pend∥qq.

Moreover, for normalized parameters θ and u /∈ Nout, it also holds ∥Φ→u(θ)∥qq ⩽ 1 [Gonon et al.,
2024, Lemma B.3]. Thus, Equation (21) implies for any v ∈ Nout, and any normalized parameters θ
and θ′:

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽ |bv − b′v|q + ∥θ→v − (θ′)→v∥qq + ∥θ→v∥qq max
p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq
)
.

Thus, we get:

∥Φ(θ)− Φ(θ′)∥qq
=

∑
v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥qq

⩽
∑

v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+
∑

v∈Nout\Nin

∥θ→v∥qq max
p∈P→v

length(p)−1∑
ℓ=1

(
|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq
)

⩽
∑

v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+

 ∑
v∈Nout\Nin

∥θ→v∥qq

 max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq
)
.
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It remains to use that
∑

v∈Nout\Nin
∥θ→uv∥qq ⩽ ∥Φ(θ)∥qq for normalized parameters θ [Gonon et al.,

2024, Theorem B.1, case of equality] to conclude that:

∥Φ(θ)− Φ(θ′)∥qq ⩽
∑

v∈Nout\Nin

(
|bv − b′v|q + ∥θ→v − (θ′)→v∥qq

)

+ ∥Φ(θ)∥q
q max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|bpℓ
− b′pℓ

|q + ∥θ→pℓ − (θ′)→pℓ∥qq
)
.

The term in blue can be replaced by min
(
∥Φ(θ)∥q

q,∥Φ(θ′)∥q
q

)
by repeating the proof with θ and

θ′ exchanged (everything else is invariant under this exchange).

F Recovering a known bound with Theorem 3.1

It is already known in the literature that for every input x and every parameters θ, θ′ (even with
different signs) of a layered fully-connected neural network with L affine layers and L+ 1 layers
of neurons, N0 = Nin, . . . , NL = Nout, width W := max0⩽ℓ⩽L |Nℓ|, and each matrix having some
operator norm bounded by R ⩾ 1, it holds [Gonon et al., 2023, Theorem III.1 with p = q =∞ and
D = ∥x∥∞][Neyshabur et al., 2018, Berner et al., 2020]:

∥Rθ(x)−Rθ′(x)∥1 ⩽ (W∥x∥∞ + 1)WL2RL−1∥θ − θ′∥∞.

Can it be retrieved from Theorem 3.1? Next corollary almost recovers it: with W max(∥x∥∞, 1)
instead of W∥x∥∞ +1, and 2L instead of L2. This is better as soon as there are at least L ⩾ 2 layers
and as soon as the input satisfies ∥x∥∞ ⩾ 1.

Corollary F.1. [Gonon et al., 2023, Theorem III.1] Consider a simple layered fully-connected
neural network architecture with L ⩾ 1 layers, corresponding to functions Rθ(x) =
ML ReLU(ML−1 . . .ReLU(M1x)) with each Mℓ denoting a matrix, and parameters θ =
(M1, . . . ,ML). For a matrix M , denote by ∥M∥1,∞ the maximum ℓ1 norm of a row of M . Consider
R ⩾ 1 and define the set Θ of parameters θ = (M1, . . . ,ML) such that ∥Mℓ∥1,∞ ⩽ R for every
ℓ ∈ J1, LK. Then, for every parameters θ, θ′ ∈ Θ, and every input x:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.

Proof. For every neuron v, define f(v) := ℓ such that neuron v belongs to the output neurons of
matrix Mℓ (i.e., of layer ℓ). By Lemma E.1 with q = 1, we have for every neuron v

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ max
p∈P→v

length(p)∑
ℓ=1


length(p)∏
k=ℓ+1

∥θ→pk∥1︸ ︷︷ ︸
⩽∥Mf(pk)∥1,∞

⩽R


|bpℓ

− b′pℓ
|︸ ︷︷ ︸

=0 (no biases)

+ ∥θ→pℓ − (θ′)→pℓ∥1︸ ︷︷ ︸
⩽| ant(pℓ)|∥θ−θ′∥∞⩽W∥θ−θ′∥∞

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1

 (23)

⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

∥Φ→u(θ′)∥1 (24)

with the convention that an empty sum and product are respectively equal to zero and one. Consider
θ′ = 0. It holds ∥Φ→u(θ′)∥1 = 0 for every u /∈ Nin, and ∥Φ→u(θ′)∥1 = 1 for input neurons u
(Definition A.5). Therefore, we have:

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1 = 1ant(pℓ)∩Nin ̸=∅ = 1ℓ=1 and p0∈Nin . (25)
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Specializing Equation (23) to θ′ = 0 and using Equation (25) yields

∥Φ→v(θ)∥1 ⩽ max
p∈P→v

length(p)∑
ℓ=1

length(p)∏
k=ℓ+1

R

 ∥θ→pℓ∥1︸ ︷︷ ︸
⩽∥Mf(pℓ)

∥1,∞
⩽R

max
u∈ant(pℓ)

∥Φ→u(θ′)∥1︸ ︷︷ ︸
=1ℓ=1 and p0∈Nin

= max
p∈P→v :p0∈Nin

Rlength(p). (26)

Since the network is layered, every neuron u ∈ ant(pℓ) is on the ℓ− 1-th layer, and every p′ ∈ P→u

is of length ℓ− 1, hence we deduce using Equation (24), Equation (26) for θ′ and u:

∥Φ→v(θ)− Φ→v(θ′)∥1 ⩽ W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−ℓ max
u∈ant(pℓ)

max
p′∈P→u:p′

0∈Nin

Rlength(p′)︸ ︷︷ ︸
=Rℓ−1

= W∥θ − θ′∥∞ max
p∈P→v

length(p)∑
ℓ=1

Rlength(p)−1

︸ ︷︷ ︸
⩽LRL−1

⩽ LWRL−1∥θ − θ′∥∞.

We get:

∥Φ(θ)− Φ(θ′)∥1 =
∑

v∈Nout\Nin

∥Φ→v(θ)− Φ→v(θ′)∥1

⩽ |Nout \Nin| · LWRL−1∥θ − θ′∥∞
⩽ LW 2RL−1∥θ − θ′∥∞.

Using Corollary C.1 with q = 1, we deduce that as soon as θ, θ′ satisfy θiθ
′
i ⩾ 0 for every parameter

coordinate i, then for every input x:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)LW 2RL−1∥θ − θ′∥∞. (27)

Now, consider general parameters θ and θ′. Define θinter to be such that for every parameter coordinate
i:

θinter
i =

{
θ′i if θiθ′i ⩾ 0,
0 otherwise.

By definition, it holds for every parameter coordinate i: θinter
i θi ⩾ 0 and θinter

i θ′i ⩾ 0 so we can apply
Equation (27) to the pairs (θ, θinter) and (θinter, θ′) to get:

∥Rθ(x)−Rθ′(x)∥1 ⩽ ∥Rθ(x)−Rθinter(x)∥1 + ∥Rθinter(x)−Rθ′(x)∥1
⩽ max(∥x∥∞, 1)LW 2RL−1

(
∥θ − θinter∥∞ + ∥θinter − θ′∥∞

)
.

It remains to see that ∥θ − θinter∥∞ + ∥θinter − θ′∥∞2∥θ − θ′∥∞. Consider a parameter coordinate i.

If θiθ′i ⩾ 0 then θinter
i = θ′i and:

|θi − θ′i| = |θi − θinter
i |+ |θinter

i − θ′i|.

Otherwise, θinter
i = 0 and:

|θi − θ′i| = |θi|+ |θ′i|
= |θi − θinter

i |+ |θinter
i − θ′i|.

This implies ∥θ − θinter∥∞ = maxi |θi − θinter
i | ⩽ maxi |θi − θinter

i |+ |θinter
i − θ′i| = ∥θ − θ′∥∞ and

similarly ∥θinter − θ′∥∞ ⩽ ∥θ − θ′∥∞. This yields the desired result:

∥Rθ(x)−Rθ′(x)∥1 ⩽ max(∥x∥∞, 1)2LW 2RL−1∥θ − θ′∥∞.
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G Proof of Theorem 5.1: Generalization bound

The goal of this section is to prove the bound on the generalization error given in Theorem 5.1. First,
we recall the definition of the generalization error.
Definition G.1. (Generalization error) Consider an architecture G (Definition A.2) with input
and output dimensions din and dout, and a so-called loss function ℓ : Rdout × Rdout → R. The
ℓ-generalization error of parameters θ on a collection Z of n ∈ N>0 pairs of input/output zi =
(xi, yi) ∈ Rdin × Rdout and with respect to a probability measure µ on Rdin × Rdout is:

ℓ-generalization error(θ, Z, µ) :=E(X0,Y0)∼µ (ℓ (Rθ(X0),Y0))︸ ︷︷ ︸
test error

− 1

n

n∑
i=1

ℓ (Rθ(xi), yi)︸ ︷︷ ︸
training error when trained on Z

.

We are going to bound the generalization error with covering numbers. We start by recalling the
definition of covering numbers (see, e.g., Definition 5.5 in Van Handel [2014]).
Definition G.2. Consider a pseudo-metric space (S, d). Let Br(x) the closed ball centered at
x ∈ S of radius r > 0. A family x1, . . . , xn of points of S is called an r-covering of (S, d) if
S ⊂ ∪ni=1Br(xi). The covering number of (S, d) for radius r > 0, denoted N (S, d, t), is the
minimum cardinality of an r-covering of (S, d).

We now state a result that uses very classical arguments to bound the generalization error by Dudley’s
integral Shalev-Shwartz and Ben-David [2014], Van Handel [2014], Maurer [2016]. It is valid for an
arbitrary class of functions (not only neural networks). We will then bound Dudley’s integral using
arguments specific to neural networks (notably Theorem 3.1).
Theorem G.1. Consider a set F := {Rθ, θ ∈ Θ} of measurable functions from Rdin to Rdout

parameterized by an arbitrary set Θ. Consider a loss function ℓ : Rdout × Rdout → R such that

ℓ(ŷ1, y)− ℓ(ŷ2, y) ⩽ L∥ŷ1 − ŷ2∥2, ∀y, ŷ1, ŷ2 ∈ support(Y1), (28)

for some L > 0. Consider a probability measure µ on the pairs of input/output Rdin ×Rdout . Consider
n + 1 iid random variables Zi = (Xi,Yi) ∼ µ, 0 ⩽ i ⩽ n, and denote Z = (Zi)i=1,...,n. Define
the pseudo-metric dX on Θ by:

dX(θ, θ′)2 := ∥R(θ,X)−R(θ′,X)∥22 =
∑

v∈Nout

n∑
i=1

|v(θ,Xi)− v(θ′,Xi)|
2 (29)

Then8 for any estimator θ̂ : Z 7→ θ̂(Z) ∈ Θ (recalling the definition of a covering number in
Definition G.2)

EZℓ-generalization error(θ̂(Z),Z, µ) ⩽
24
√
2L

n
EX

(∫ ∞

0

√
lnN (Θ, dX, t)dt

)
. (30)

Proof of Theorem 5.1. 1st step: control the generalization error by the Rademacher complexity.

Consider a family (εj)j∈J , with J that will be clear from the context, of iid Rademacher ran-
dom variables (meaning that P(εj = 1) = P(εj = −1) = 1/2). Denote by JnK × Nout

(where JnK := {1, . . . , n}) and define the random matrices E = (εi,v)i,v ∈ RJnK×Nout and
R(θ,X) = (v(θ,Xi))i,v ∈ RJnK×Nout so that ⟨E,R(θ,X)⟩ =

∑
i,v εi,vv(θ,Xi). It then holds:

EZ ℓ-generalization error of θ̂(Z) ⩽
2

n
EZ,ε

(
sup
θ

n∑
i=1

εiℓ (Rθ(Xi),Yi)

)

⩽
2
√
2L

n
EZ,ε

(
sup
θ
⟨E,R(θ,X)⟩

)
.

8The definition of the generalization error (Definition G.1) has been given for deterministic θ to keep things
simple. The careful reader will have noted that the term corresponding to the test error in Definition G.1 has to
be modified when θ is a function of Z. Indeed, the expectation has to be taken on an iid copy Z0 conditionally
on each Zi, i = 1, . . . , n: the test error should be defined as EZ0∼µ

(
ℓ(Rθ̂(Z)(X0),Y0)|Z

)
. This correct

definition will be used in the proof, but it has no importance here to understand the statement of the theorem.
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The first inequality is the symmetrization property given by Shalev-Shwartz and Ben-David [2014,
Theorem 26.3], and the second inequality is the vector-valued contraction property given by Mau-
rer [2016]. These are the relevant versions of very classical arguments that are widely used to
reduce the problem to the Rademacher complexity of the model [Bach, 2024, Propositions 4.2 and
4.3][Wainwright, 2019, Equations (4.17) and (4.18)][Bartlett and Mendelson, 2002, Proof of Theorem
8][Shalev-Shwartz and Ben-David, 2014, Theorem 26.3][Ledoux and Talagrand, 1991, Equation
(4.20)]. Note that the assumption on the loss is used for the second inequality.

2nd step: sub-Gaussianity.

We consider the characterization of sub-Gaussianity given in Definition 5.20 of Van Handel [2014]:
a real random process (Nt)t∈T is sub-Gaussian on the pseudo-metric space (T, d) (recall that a
pseudo-metric does not necessarily separate points, that is d(s, t) = 0 does not imply s = t) if it is
centered and if:

E (exp (λ(Nt −Ns))) ⩽ exp

(
λ2d(s, t)2

2

)
,∀λ > 0,∀s, t ∈ T.

Consider the real random process S = (Sθ)θ∈Θ defined by
Sθ = ⟨E,R(θ,X)⟩ .

We now establish that conditionally on X, the random process S is sub-Gaussian on the pseudo-metric
space (Θ, dX) (where dX is defined in Equation (29)). The process is centered since E (Sθ|X) =
⟨E(E), R(θ,X)⟩ = 0 for every θ ∈ Θ. Now, consider θ, θ′ ∈ Θ, (i, v) ∈ JnK×Nout and denote by
di,v = v(θ,Xi)− v(θ′,Xi). For any t > 0, it holds 1

2 (e
t + e−t) ⩽ et

2/2 so for every λ > 0:

E (exp (λεi,vdi,v) |X) =
1

2
(exp(λdi,v) + exp(−λdi,v)) ⩽ exp

(
λ2d2i,v

2

)
.

Thus, we have

E (exp (λ(Sθ − Sθ′)) |X) =
∏

(i,v)∈JnK×Nout

E (exp (λεi,vdi,v) |X) ⩽ exp

(
λ2dX(θ, θ′)2

2

)
.

This shows the claim about the sub-Gaussianity of S.

3rd step: Dudley’s inequality.

Using Dudley’s integral inequality [Van Handel, 2014, Corollary 5.25] conditionally on X yields
almost surely:

Eε sup
θ∈Θ

Sθ ⩽ 12

∫ ∞

0

√
lnN (Θ, dX, t)dt

where Eε denotes the expectation conditioned on everything (here X) except ε. Putting all the first
three steps together, we get:

EZ ℓ-generalization error of θ̂(Z) ⩽
24
√
2L

n
EX

(∫ ∞

0

√
lnN (Θ, dX, t)dt

)
.

We now get specifc to neural networks. The main ingredient is Theorem 3.1.
Lemma G.1 (Bounding Dudley’s integral with covering numbers of (Φ(Θ), ∥·∥1)). Consider a ReLU
neural network architecture G (Definition A.2) and a set Θ ⊂ RG of parameters associated to this
architecture. Denote by r = supθ∈Θ ∥Φ(θ)∥1, Θ∗ the set of parameters with only nonzero coordinates,
S = {sgn(θ), θ ∈ Θ∗} the associated set of sign vectors (with sgn(x) = 1x⩾0−1x⩽0 ∈ {−1, 0, 1}),
and for each s ∈ S denote Θs = Θ ∩ {θ : θisi ⩾ 0,∀i}. For t > 0, define

f(t) := max
s∈S
N (Φ(Θs), ∥ · ∥1, t). (31)

Consider n inputs x1, . . . , xn of G. Define σX =
(∑n

i=1 max(1, ∥xi∥2∞)
)1/2

and consider the

pseudo metric dX(θ, θ′) :=
(∑n

i=1 ∥Rθ(xi)−Rθ′(xi)∥22
)1/2

. Then, it holds (recall the definition of
a covering number in Definition G.2):∫ ∞

0

√
lnN (Θ, dX , t)dt ⩽ 2rσX

√
ln |S|+ σX

∫ 2r

0

√
ln(f(u)) du. (32)
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Proof. For any parameters θ and input x, it holds

∥Rθ(x)∥2 = ∥Rθ(x)−R0(x)∥2 ⩽
Corollary C.1

max(1, ∥x∥∞)∥Φ(θ)−Φ(0)∥1 = max(1, ∥x∥∞)∥Φ(θ)∥1.

Recall that r = supθ∈Θ ∥Φ(θ)∥1. Then for every θ, θ′ ∈ Θ and every input x, it holds

∥Rθ(x)−Rθ′(x)∥2 ⩽ ∥Rθ(x)∥2 + ∥Rθ′(x)∥2 ⩽ 2max(1, ∥x∥∞)r.

Since σ2
X =

∑n
i=1 max(1, ∥xi∥2∞), we have:

dX(θ, θ′)2 =

n∑
i=1

∥Rθ(xi)−Rθ′(xi)∥22 ⩽ 4σ2
Xr2.

This shows that any single vector θ of Θ is a 2σXr-covering of this set with respect to dX . Thus, we
have N (Θ, dX , t) = 1 for t ⩾ 2σXr so that:∫ ∞

0

√
lnN (Θ, dX , t)dt =

∫ 2σXr

0

√
lnN (Θ, dX , t)dt.

We now bound the covering number for a general t ⩾ 0 using Theorem 3.1. Recall that Θ∗ is the
set of parameters with only nonzero coordinates, S = {sgn(θ), θ ∈ Θ∗} is the associated set of sign
vectors, and for each s ∈ S , Θs = Θ∩ {θ : θisi ⩾ 0,∀i}. Therefore, Θ = ∪s∈SΘs and the union of
t-coverings of each Θs is a t-covering of Θ. So for each t > 0 we have

N (Θ, dX , t) ⩽
∑
s∈S
N (Θs, dX , t)

Theorem 3.1 implies (through Corollary C.1) that for each s, and every θ, θ′ ∈ Θs:

dX(θ, θ′) =

(
n∑

i=1

∥Rθ(xi)−Rθ′(xi)∥22

)1/2

⩽ σX∥Φ(θ)− Φ(θ′)∥1,

Thus, picking an abritrary pre-image by Φ of a t/σX -covering of Φ(Θs) for the ℓ1-norm yields a
t-covering of Θs for the pseudo-metric dX , so that

N (Θs, dX , t) ⩽ N (Φ(Θs), ∥ · ∥1, t/σX) ⩽ max
s∈S
N (Φ(Θs), ∥ · ∥1, t/σX)︸ ︷︷ ︸
=f(t/σX) (Equation (31))

and thus∫ 2σXr

0

√
lnN (Θ, dX , t) dt ⩽

∫ 2σXr

0

√
ln (|S|f(t/σX)) dt

u=t/σX
= σX

∫ 2r

0

√
ln (|S|f(u)) du ⩽ 2rσX

√
ln |S|+ σX

∫ 2r

0

√
ln(f(u)) du.

For the parameter set Θ = Θ(r) := {θ ∈ RG, ∥Φ(θ)∥1 ⩽ r}, and other similar parameter sets with
weight-sharing (associated e.g. to convolution layers), it is enough to study the covering numbers
associated with the positive orthant: Θs with s = 1.

Lemma G.2. Consider the setting of Lemma G.1. Denote by 1 the vector constant equal to one
and by |θ| ∈ Θ1 the vector deduced from θ ∈ Θs by applying x 7→ |x| coordinate-wise. If for every
s ∈ S, the map x ∈ Θs 7→ s⊙ |x| ∈ Θs is one-to-one (with inverse x ∈ Θ1 7→ s⊙ x ∈ Θs), then

N (Φ(Θs), ∥ · ∥1, t) = N (Φ(Θ1), ∥ · ∥1, t).

Proof. For every θ, θ′ ∈ Θs, it is easy to check that by definition (Definition A.5) ∥Φ(θ)−Φ(θ′)∥1 =
∥Φ(|θ|)− Φ(|θ′|)∥1. This shows that under the assumptions, there is a one-to-one correspondence
between the t-coverings of (Φ(Θs), ∥ · ∥1) and of (Φ(Θ1), ∥ · ∥1).
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When covering a set in dimension d, the covering numbers typically grow exponentially with d. In
our case, Φ(Θ) lives in a space indexed by the paths, but the actual degree of freedom expected is
the dimension of Θ, which is much less in general. Moreover, in many practical cases of interest, Θ
has often weight sharing. Is it possible to bound these covering numbers exponentially in d := the
number of free parameters, taling into account possible weight sharing? The next example shows that
this is indeed possible in some situations.

Example G.1. Consider the model Rθ : x ∈ Rd 7→ W ReLU(WTx) ∈ Rd with θ = (W,WT ),
W = (w1 . . . wd) ∈ Rd×d, and each column wi being in Rd. In this case, there are 2d2 coor-
dinates in θ, but only d2 of them are free. The path-lifting is Φ(θ) = (wi ⊗ wi)i=1,...,d ∈ Rd3

(flattened) where u ⊗ v = uvT is the tensor product of vectors u and v. Consider r > 0
and Θ = Θ(r) := {θ ∈ RG, ∥Φ(θ)∥1 ⩽ r}. For parameters θ = (W,WT ), its normalized
version N(θ) defined as the output of Algorithm 1 in [Gonon et al., 2024], reproduced in Algo-
rithm 1 for convenience, satisfies N(θ) = (N(W ), N(WT )) where N(W ) := ( w1

∥w1∥1
. . . wd

∥wd∥1
) and

N(WT ) := (∥w1∥21 w1

∥w1∥1
. . . ∥wd∥21 wd

∥wd∥1
)T . Fix the parameters θ and t ∈ (0,min(12, r)]. Consider

the problem of finding θ′ such that ∥Φ(θ)− Φ(θ′)∥1 ⩽ t. Consider a t-covering of the unit sphere
in dimension d for the ℓ1-norm of cardinal at most equal to (12/t)d−1 (see the end of Appendix H
for the existence of such a covering). For every i = 1, . . . , d, choose ui in this covering in such
a way that ∥N(wi) − ui∥1 ⩽ t where we denote N(w) := w

∥w∥1
for any vector w. Consider also

ri =
√
⌊∥wi∥21/rt⌋ t. Since ∥Φ(θ)∥1 =

∑d
i=1 ∥wi∥21 ⩽ r, we have ∥wi∥21/r ⩽ 1 and there are at

most
⌊
1
t

⌋
+1 ⩽ 12

t possible values for ri if we further restrict t ∈ (0,min(11, r)). Define w′
i := riui.

This results in at most ( 12t )
d possible values for w′

i. Since θ′ is built from d vectors w′
i that can be

chosen independently of each other, there are at most
∏d

i=1(
12
t )

d = ( 12t )
d2

choices for θ′. Since
N(w′

i) = ui, it holds that ∥N(wi)− N(w′
i)∥1 ⩽ t. Moreover, we have |r2i − ∥wi∥21| ⩽ rt. We deduce

that:

∥Φ(θ)−Φ(θ′)∥1 =

d∑
i=1

∥wi⊗wi−w′
i⊗w′

i∥1 =

d∑
i=1

∥∥∥wi∥21N(wi)⊗N(wi)−∥w′
i∥21N(w′

i)⊗N(w′
i)
∥∥
1

⩽
d∑

i=1

(
∥wi∥21∥N(wi)⊗ (N(wi)− N(w′

i))∥1 +
∥∥(∥wi∥21N(wi)− ∥w′

i∥21N(w′
i))⊗ N(w′

i)
∥∥
1

)
=

d∑
i=1

∥wi∥21 ∥N(wi)∥1︸ ︷︷ ︸
=1

∥N(wi)− N(w′
i)∥1 +

∥∥∥wi∥21N(wi)− ∥w′
i∥21N(w′

i)
∥∥
1
∥N(w′

i)∥1︸ ︷︷ ︸
=1


=

d∑
i=1

(
∥wi∥21∥N(wi)− N(w′

i)∥1 +
∥∥∥wi∥21N(wi)− ∥w′

i∥21N(w′
i)
∥∥
1

)
=

d∑
i=1

(
∥wi∥21∥N(wi)− N(w′

i)∥1 +
∥∥∥wi∥21N(wi)− ∥wi∥21N(w′

i) + ∥wi∥21N(w′
i)− ∥w′

i∥21N(w′
i)
∥∥
1

)
⩽

d∑
i=1

∥wi∥21∥N(wi)− N(w′
i)∥1 + ∥wi∥21∥N(wi)− N(w′

i)∥1 +
∣∣∥wi∥21 − ∥w′

i∥21
∣∣ ∥N(w′

i)∥1︸ ︷︷ ︸
=1


=

d∑
i=1

2∥wi∥21 ∥N(wi)− N(w′
i)∥1︸ ︷︷ ︸

⩽t

+
∣∣∥wi∥21 − ∥w′

i∥21
∣∣︸ ︷︷ ︸

⩽rt

 ⩽

(
d∑

i=1

∥wi∥21

)
︸ ︷︷ ︸

⩽r

2t+drt ⩽ (d+2)rt.

This shows that if we replace t by t
(d+2)r , we get a t-covering of Φ(Θ) in the ℓ1-norm of size at

most equal to
(

12(d+2)r
t

)d2

. In this situation, when t > 0 goes to zero, the covering number
essentially grows exponentially with d2, that is the number of free cordinates, rather than 2d2

the number of total coordinates after weight sharing.
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Figure 6: Illustration of a convolutional circular layer with kernel size k as described in Example G.2.
The connections corresponding to the first row of the matrix C are drawn as plain arrows, the ones
corresponding to the second row are drawn as dashed arrows.

In the previous example, some weights are shared across successive layers of the networks. In
contrast, most practical application share weights in the same (convolutional) layer, that leads to very
different properties of Φ(θ): a path cannot contain several copies of a same weight, in contrast to the
previous example. We now prove that for usual layered feedforward networks, it is still possible to
control the covering numbers by taking into account weight sharing.

Definition G.3. Consider a DAG G = (N,E). A partition N = ∪Lℓ=0Nℓ of the neurons is said to be
directed if for every k ⩽ ℓ, we have E ∩ (Nℓ ×Nk) = ∅ (no edge going from Nℓ to Nk). It is said
regular if for every k < ℓ, every u, v ∈ Nℓ, it holds | ant(u) ∩Nk| = | ant(v) ∩Nk| (same number
of antecedents in Nk).

Example G.2. • Every DAG admits at least one directed and regular partition. Indeed,
consider any topological sorting v1, . . . , vL of the neurons. The partition defined by Nℓ :=
{vℓ} for every ℓ = 1, . . . , L is both directed and regular.

• Consider a graph with a single (circular) convolutional layer with kernel size k as in
Figure 6, corresponding to a circulant matrix

C =



c1 c2 · · · ck 0 . . . 0

0 c1
. . . ck

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . ck
... . . .

. . .
. . .

. . .
...

c3
. . . . . .

. . . c1 c2
c2 c3 · · · 0 0 0 c1


With N0 := {x1, . . . , xn} and N1 := {y1, . . . , yn} the sets of input and output neurons of
this layer, the partition N = N0 ∪N1 is directed and regular: by definition of the kernel
size, every u ∈ N1 satisfies | ant(u) ∩N0| = | ant(u)| = k.
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• With the previous example, it is easy to see that for a neural network organized in L + 1
layers of neurons, a directed and regular partition of the neurons is given by N0, . . . , NL

where Nℓ is the set of neurons in layer ℓ.

Definition G.4. Consider a directed regular partition N0, . . . , NL of a graph G. A set of parameters
Θ ⊂ RG associated with G is said to be weight-sharing compatible with N0, . . . , NL if for every
0 ⩽ k < ℓ ⩽ L, every pair of neurons u, v ∈ Nℓ shares weights and biases in the following sense:

• bu = bv

• there exists a bijection σuv : ant(u) ∩Nk → ant(v) ∩Nk such that for every θ ∈ Θ, every
w ∈ ant(u) ∩Nk, θw→u = θσuv(w)→v .

Example G.3. The set of parameters corresponding to all circular matrices C as in Example G.2 is
weight-sharing compatible with the partition given in Example G.2 in this case.

For a fully-connected layer, denote by Nin the input neurons and v1, . . . , vd an enumeration of
the output neurons. The set of parameters is weight-sharing compatible with the directed regular
partition given by N0 = Nin and Ni = {vi} for i = 1, . . . , d. Note that the set of parameters is not
weight-sharing compatible with the directed regular partition N0 = Nin and N1 = {v1, . . . , vd}
because the neurons vi do not share the same weights and cannot be gathered in the same set N1 of
the partition.

For convenience, we recall in Algorithm 1 the Algorithm 1 given in Gonon et al. [2023] in the specific
case of the ℓ1-norm that we consider here.

Algorithm 1 Normalization of parameters for the ℓ1-norm

1: Consider a topological sorting v1, . . . , vk of the neurons
2: for v = v1, . . . , vk do
3: if v /∈ Nin ∪Nout then

4: λv ←
∥∥∥∥( θ→v

bv

)∥∥∥∥
1

5: if λv = 0 then
6: θv→ ← 0
7: else
8:

(
θ→v

bv

)
← 1

λv

(
θ→v

bv

)
▷ normalize incoming weights and bias

9: θv→ ← λv × θv→ ▷ rescale outgoing weights to preserve the function Rθ

Algorithm 1 introduces for each neuron u ∈ N \ (Nin ∪Nout) and each θ a normalizing scalar λv(θ)
defined at the moment where u is processed in the for loop of Algorithm 1. The next lemma shows
that this normalizing scalr is the same for all the neurons in a given set Nℓ of a directed regular
partition with weight-sharing.

Lemma G.3. Consider a set of parameters Θ ⊂ RG weight-sharing compatible with a directed
regular partition N0, . . . , NL of a DAG G. It holds:

λu(θ) = λv(θ),∀θ ∈ Θ,∀u, v ∈ Nℓ \ (Nin ∪Nout),∀ℓ ∈ J0, LK.

Proof. The proof is by induction on L.

Initialization. For L = 0, since the partition is directed, there is no edge going from N0 to N0 so all
neurons are input ones and there is nothing to check. Therefore, the property is trivially true.

Induction. Assume this is true for L ⩾ 0 and consider the case L+ 1. Since the partition is directed,
the neurons in N0, . . . , NL are normalized by Algorithm 1 in the same way, irrespectively of whether
we consider the graph G or its maximal subgraph with neurons restricted to the sets N0, . . . , NL.
This shows the desired property for every ℓ ⩽ L. It remains to consider ℓ = L + 1. Take θ ∈ Θ.
We just saw that when normalizing θ with Algorithm 1, for every k ⩽ L, all the neurons in Nk

have the same normalization scalar: denote it by λk(θ). Denote also θNk→u := (θw→u)w∈ant(u)∩Nk
.

Since the partition is directed, and since the neurons are normalized in the order of a topological
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sorting, Algorithm 1 normalizes the neurons u ∈ NL+1 only after having normalized all the ones in
N0, . . . , NL. Therefore, when normalizing u ∈ NL+1, we have

λu(θ) = |bu|+
∑
k⩽L

λk(θ)∥θNk→u∥1.

Consider u, v ∈ NL+1. Since Θ is weight-sharing compatible, we have bu = bv, and ∥θNk→u∥1 =
∥θNk→v∥1. This proves that λu(θ) = λv(θ) and concludes the induction.

An easy consequence of Lemma G.3 is that the neurons in the same set Nℓ of a directed regular
partition with weight-sharing must be normalized in the same way by Algorithm 1. This is because
they share the same weights before normalization, and have the same normalization scalar according
to Lemma G.3.

Corollary G.1. In the context of Lemma G.3, consider ℓ ∈ J0, LK and assume that either Nℓ∩V = ∅
or that Nℓ ⊂ V for both V = Nin and Nout. For θ ∈ Θ, denote N(θ) its normalized version, obtained
as the output of Algorithm 1 in Gonon et al. [2024] on input θ (see Algorithm 1). It holds for every
u, v ∈ Nℓ \Nin:

N(b)u = N(b)v,

N(θ)w→u = N(θ)σuv(w)→v,∀w ∈ ant(u).

Proof. The assumption guarantees that all neurons in Nℓ are updated in the same way by the
normalizing algorithm (Algorithm 1).

Case Nℓ ⊂ Nin. There is nothing to prove.

Case Nℓ ⊂ Nout. When u is an output neuron, bu is not modified by Algorithm 1 so N(b)u = bu.
Moreover, for every w ∈ ant(u), the last time θw→u is modified is when w is considered in
Algorithm 1, so:

N(θ)w→u = λw(θ)θ
w→u.

It is easy to conclude using weight-sharing (Definition G.4) and Lemma G.3.

Case Nℓ ∩ (Nin ∪Nout) = ∅. All neurons u ∈ N \ (Nin ∪Nout) are such that the last time bu and
θw→u (w ∈ ant(u)) are modified by Algorithm 1 is when u is being considered in the for loop, so it
holds:

N(b)u =
1

λu(θ)
bu,

N(θ)w→u =
1

λu(θ)
θw→u.

We again conclude using weight-sharing (Definition G.4) and Lemma G.3.

We now use this to cover the set (Φ(Θ), ∥ · ∥1) for a set of parameters Θ that has weight-sharing.
This results in the following generalization bound.

Theorem G.2. Consider iid X1, . . . ,Xn random inputs of G. Denote σX =

EX

(∑n
i=1 max(1, ∥Xi∥2∞)

)1/2
.

Consider a set of parameters Θ weight-sharing compatible (Definition G.4) with a directed regular
partition N0, . . . , NL (Definition G.3) of a DAG G (Definition A.2). Assume that for V = Nin and
V = Nout, each Nℓ is either disjoint from V or is a subset of V . Assume also that Nin ∩Nout = ∅.
Define L0 to be the unique integer in J0, LK such that NL0 ⊂ Nin and NL0+1 ∩ Nin = ∅. For
ℓ ∈ JL0, LK, denote by kℓ := | ant(u)| =

∑
j<ℓ | ant(u) ∩Nj | for u ∈ Nℓ, the common number of

antecedents of the neurons in Nℓ. Define # rescalings := L− L0 and #params :=
∑L

ℓ=L0
(kℓ + 1).

Recall that D = maxp∈P length(p) is the depth of the graph and dout = |Nout| is the output
dimension. Denote by r := supθ∈Θ ∥Φ(θ)∥1. It holds:

EZ ℓ-generalization error of θ̂(Z) ⩽ 544
σX

n
Lmax(D, dout)

√
#params× r. (33)
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Proof. Consider Θ∗ the set of parameters with only nonzero coordinates, S = {sgn(θ), θ ∈ Θ∗} the
associated set of sign vectors (with sgn(x) = 1x⩾0−1x⩽0 ∈ {−1, 0, 1}), and for each s ∈ S denote
Θs = Θ ∩ {θ : θisi ⩾ 0,∀i}. Theorem G.1, Lemma G.1 and Lemma G.2 guarantee altogether that
for (recall the definition of a covering number in Definition G.2):

f(u) := N (Φ(Θ1, ∥ · ∥1, u)

we have by Theorem G.1 and lemmas G.1 and G.2

EZℓ-generalization error(θ̂(Z),Z, µ) ⩽
24
√
2L

n
EX

(∫ ∞

0

√
lnN (Θ, dX, t)dt

)
⩽

24
√
2L

n
EX

(
2rσX

√
ln |S|+ σX

∫ 2r

0

√
ln(f(u)) du

)
Because of the weight-sharing assumption, the number |S| of signs is at most equal to 2#params.
Moreover, Theorem H.1 guarantees for every u > 0

f(u) = N (Φ(Θ1), ∥ · ∥1, u) ⩽ 2# rescalings max

(
1,

(
24max(D, dout)r

u

)#params−# rescalings
)
. (34)

We get∫ 2r

0

√
ln(f(u))du =

∫ 2r

0

√√√√ln

(
2# rescalings

(
24max(D, dout)r

u

)#params−# rescalings
)
du

⩽ 2r
√
ln(2)# rescalings +

√
#params− # rescalings

∫ 2r

0

√
ln

(
24max(D, dout)r

u

)
du.

For the last integral, do a change of variable t = u/24max(D, dout)r to get:∫ 2r

0

√
ln

(
24max(D, dout)r

u

)
du = 24max(D, dout)r

∫ 1/12max(2D,dout)

0

√
ln(1/t)dt

⩽ 24max(D, dout)r

∫ 1/12

0

√
ln(1/t)dt︸ ︷︷ ︸

⩽1/3

⩽ 8max(D, dout)r.

Putting everything together, we get:

EZ ℓ-generalization error of θ̂(Z)

⩽
24
√
2L

n
EX

(
2rσX

√
ln |S|+ σX

∫ 2r

0

√
ln(f(u)) du

)
⩽

24
√
2L

n
EX

(
2rσX

√
ln(2)#params + 2rσX

√
ln(2)# rescalings + 8rσX max(D, dout)

√
#params− # rescalings)

)
⩽

24
√
2L

n
2rσX

(√
ln(2)#params +

√
ln(2)# rescalings + 4max(D, dout)

√
#params− # rescalings

)
⩽

48
√
2L

n
rσX

√
#params

 2
√
ln(2)︸ ︷︷ ︸

≃1.38⩽4max(D,dout)

+4max(D, dout)


⩽

384
√
2L

n
rσX

√
#paramsmax(D, dout).

Since 240
√
2 ≃ 543, this yields the bound 544σX

n Lmax(D, dout)
√

#params× r. Moreover, σX =

EX

(∑n
i=1 max(1, ∥Xi∥2∞)

)1/2
⩽
√
nB. This yields the claim.
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H Covering numbers of Φ(Θ)

Theorem E.1 implies a bound on the covering numbers (Definition G.2) of Φ(Θ).
Theorem H.1. Consider a set of parameters Θ to be weight-sharing compatible (Definition G.4)
with a directed regular partition N0, . . . , NL (Definition G.3) of a DAG G (Definition A.2). Assume
that for V = Nin and V = Nout, each Nℓ is either disjoint from V or is a subset of V . Assume
also that Nin ∩ Nout = ∅. Define L0 to be the unique integer in J0, LK such that NL0 ⊂ Nin
and NL0+1 ∩ Nin = ∅. For ℓ ∈ JL0, LK, denote by kℓ the common number of antecedents of all
neurons in Nℓ and define # rescalings := L − L0 and #params =

∑L
ℓ=L0

(kℓ + 1). Recall that
D = maxp∈P length(p) is the depth of the graph and dout = |Nout| is the output dimension. Denote
by r := supθ∈Θ ∥Φ(θ)∥1. It holds:

N (Φ(Θ), ∥ · ∥1, t) ⩽ 2# rescalings max

(
1,

24max(D, dout)r

t

)#params−# rescalings

where the definition of covering numbers is recalled in Definition G.2.

Proof. For θ ∈ Θ, denote N(θ) its "normalized version", obtained as the output of Algorithm 1
in Gonon et al. [2024] on input θ (see Algorithm 1). By Lemma B.1 in Gonon et al. [2024],
Φ(θ) = Φ(N(θ)) so for every θ, θ′ ∈ Θ:

∥Φ(θ)− Φ(θ′)∥1 = ∥Φ(N(θ))− Φ(N(θ′))∥1.
For every neuron u ∈ N \Nin and all parameters θ, denote by θ(u) := (bu, θ

→u), and recall that
bv = 0 for ∗-max-pooling neurons v (Definition A.5). By Theorem E.1 with q = 1, we have:
∥Φ(N(θ))− Φ(N(θ′))∥1
⩽

∑
v∈Nout\Nin

|N(b)v − N(b)′v|+ ∥N(θ)→v − (N(θ′))→v∥1

+min (∥Φ(N(θ))∥1, ∥Φ(N(θ′))∥1)︸ ︷︷ ︸
⩽r

max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

(
|N(b)pℓ

− N(b)′pℓ
|+ ∥N(θ)→pℓ − (N(θ′))→pℓ∥1

)
⩽

∑
v∈Nout\Nin

∥N(θ)(v)− N(θ′)(v)∥1︸ ︷︷ ︸
=:(1)

+ r max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(pℓ)− N(θ′)(pℓ)∥1︸ ︷︷ ︸
=:(2)

.

Consider L0 ∈ J0, LK such that NL0
⊂ Nin and NL0+1 ∩Nin = ∅. The integer L0 is well defined

since every Nℓ is either disjoint from Nin or is a subset of Nin, and at least one of them must be
disjoint since N0, . . . , NL is a partition of the neurons and Nin ∩Nout = ∅.
For every ℓ ∈ JL0, LK, consider an arbitrary vℓ ∈ Nℓ. By Corollary G.1, we have N(θ)(v) = N(θ)(vℓ)
for every v ∈ Nℓ, every ℓ ∈ JL0, LK and every parameters θ ∈ Θ. We get

(1) =

L∑
ℓ=0

∑
v∈(Nout∩Nℓ)\Nin

∥N(θ)(v)− N(θ′)(v)∥1

=

L∑
ℓ=L0

|Nout ∩Nℓ|∥N(θ)(vℓ)− N(θ′)(vℓ)∥1.

Consider p ∈ P and f : J0, length(p)K 7→ J0, LK the function defined by pℓ ∈ Nf(ℓ) for every
ℓ ∈ J0, length(p)K. Once again using Corollary G.1, since pℓ /∈ Nin for ℓ > 0, we have N(θ)(pℓ) =
N(θ)(vf(ℓ)) for every ℓ ∈ J1, length(p)K and every parameters θ ∈ Θ. This yields

(2) = max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(vf(ℓ))− N(θ′)(vf(ℓ))∥1.
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Assume that for every ℓ ∈ J0, LK, it holds

∥N(θ)(vf(ℓ))− N(θ′)(vf(ℓ))∥1 ⩽

{
t

2dout
if ℓ = L,

t
2Dr otherwise.

where we recall that dout = |Nout is the output dimension and D = maxp∈P length(p) is the depth
of the graph. This implies:

(1) =

L∑
ℓ=L0

|Nout ∩Nℓ|∥N(θ)(vℓ)− N(θ′)(vℓ)∥1 ⩽
t

2dout

L∑
ℓ=L0

|Nout ∩Nℓ| ⩽
t

2dout
.

Consider p ∈ P . Since the partition N0, . . . , NL is directed and pℓ → pℓ+1 is an edge, we
have f(k) < f(ℓ) for every k < ℓ. In particular, f(ℓ) < f(length(p)) ⩽ L for every ℓ ∈
J1, length(p)− 1K, so we have

(2) = max
p∈P:pend /∈Nin

length(p)−1∑
ℓ=1

∥N(θ)(vf(ℓ))−N(θ′)(vf(ℓ))∥1 ⩽
t

2Dr
max

p∈P:pend /∈Nin

(length(p)−1) ⩽ t

2r
.

Therefore, we get:

∥Φ(N(θ))− Φ(N(θ′))∥1 ⩽ (1) + r(2)

⩽
t

2
+ r

t

2r
= t.

For a neuron v /∈ Nin, denote N(Θ)(v) := {N(θ)(v), θ ∈ Θ}. In terms of covering numbers, we just
proved that:

N (Φ(θ), ∥ · ∥1, t) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

N (N(Θ)(vℓ), ∥ · ∥1, t/2dout)
∏

ℓ∈JL0,LK
Nℓ∩Nout=∅

N (N(Θ)(vℓ), ∥ · ∥1, t/2Dr).

We now bound the latter.

Consider v ∈ Nout \ Nin. By Lemma B.1 in [Gonon et al., 2024], it holds N(θ)(v) ⩽ r for every
θ ∈ Θ. In this situation, N(Θ)(v) is a subset of the closed ℓ1-ball Bkv+1(0, r), with kv := | ant(v)|
(k for kernel size) so

N (N(Θ)(v), ∥ · ∥1, t/2dout) ⩽ N (Bkv+1(0, r), ∥ · ∥1, t/4dout).

It is well known that the covering with respect to ∥ · ∥1 of the closed ball Bd ⊂ Rd with center 0 and
radius R satisfies [Wainwright, 2019, Lemma 5.7]:

N (Bd, ∥ · ∥1, t) ⩽ max

(
1,

3R

t

)d

.

Since the partition N0, . . . , NL is regular, all neurons in Nℓ have the same number of antecedents:
denote it by kℓ. We get:∏

ℓ∈JL0,LK
Nℓ⊂Nout

N (N(Θ)(vℓ), ∥ · ∥1, t/2dout) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

max

(
1,

12doutr

t

)kℓ

Case v ∈ N \ (Nout ∪ Nin). For every θ ∈ Θ, Lemma B.1 in Gonon et al. [2024] guarantees that
∥N(()θ)(v)∥1 ∈ {0, 1} so N(Θ)(v) ⊂ {0} ∪ Skv with Skv the sphere of radius 1 in dimension kv +1
with respect to ∥ · ∥1. We deduce that a t-covering of N(Θ)(v) is given by the union of the null vector
and a t/2-covering of the sphere Skv :

N (N(Θ)(v), ∥ · ∥1, t/2Dr) ⩽ 1 +N (Skv , ∥ · ∥1, t/4Dr).

The unit sphere Sd in dimension d+ 1 satisfies

Sd = f(Bd) ∪ g(Bd)
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where f(x1, . . . , xd) = (x1, . . . , xd, 1 − ∥x∥1) and g(x1, . . . , xd) = (x1, . . . , xd, ∥x∥1 − 1). For
every x, x̃ ∈ Rd:

∥f(x)− f(x̃)∥1 =
∑
i⩽d

|xi − x̃i|+ |(1− ∥x∥1)− (1− ∥x̃∥1)| ⩽ 2∥x− x̃∥1.

Thus, the union of the images of a t
2 -covering of Bd under both f and g is a t-covering of Sd:

N (Sd, ∥ · ∥1, t) ⩽ 2N (Bd, ∥ · ∥1, t/2) ⩽ 2max

(
1,

6

t

)d

.

We deduce that ∏
ℓ∈JL0,LK
Nℓ∩Nout=∅

N (N(Θ)(vℓ), ∥ · ∥1, t/2Dr) ⩽
∏

ℓ∈JL0,LK
Nℓ∩Nout=∅

2max

(
1,

24Dr

t

)kℓ

.

We now return to our covering of Φ(Θ) and deduce that:

N (Φ(Θ), ∥ · ∥1, t) ⩽
∏

ℓ∈JL0,LK
Nℓ⊂Nout

max

(
1,

12doutr

t

)kℓ ∏
ℓ∈JL0,LK
Nℓ∩Nout=∅

2max

(
1,

24Dr

t

)kℓ

.

Denote # rescalings := L− L0 and #params :=
∑L

ℓ=L0
(kℓ + 1). We get the desired result:

N (Φ(Θ), ∥ · ∥1, t) ⩽ 2# rescalings max

(
1,

24max(D, dout)r

t

)#params−# rescalings

.
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