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Successive drops of coloured ink mixed with surfactant are deposited onto a thin film
of water to create marbling patterns in the Japanese art technique of Suminagashi. To
understand the physics behind this and other applications where surfactant transports
adsorbed passive matter at gas–liquid interfaces, we investigate the Lagrangian trajectories
of material particles on the surface of a thin film of a confined viscous liquid under
Marangoni-driven spreading by an insoluble surfactant. We study a model problem in
which several deposits of exogenous surfactant simultaneously spread on a bounded
rectangular surface containing a pre-existing endogenous surfactant. We derive Eulerian
and Lagrangian formulations of the equations governing the Marangoni-driven surface
flow. Both descriptions show how confinement can induce drift and flow reversal
during spreading. The Lagrangian formulation captures trajectories without the need to
calculate surfactant concentrations; however, concentrations can still be inferred from the
Jacobian of the map from initial to current particle position. We explore a link between
thin-film surfactant dynamics and optimal transport theory to find the approximate
equilibrium locations of material particles for any given initial condition by solving a
Monge–Ampère equation. We find that as the endogenous surfactant concentration δ

vanishes, the equilibrium shapes of deposits using the Monge–Ampère approximation
approach polygons with corners curving in a self-similar manner over lengths scaling as
δ1/2. We explore how Suminagashi patterns may be produced by using computationally
efficient successive solutions of the Monge–Ampère equation.
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1. Introduction

Successive drops of coloured inks mixed with surfactant create intricate patterns by
Marangoni spreading in the Japanese art technique of Suminagashi (see figure 1a). A
surfactant–ink drop is gently deposited at the surface of a thin layer of water, which may
have a small initial concentration of endogenous surfactant due to normal environmental
contamination. It then spreads outwards and equilibrates before reaching the edges of the
container. Then successive drops deposited at different locations of the liquid surface form
the intricate patterns. During pattern creation, the artist can blow on the surface with a
straw after drop equilibrations to further deform the pattern. Eventually, the pattern is
captured on pieces of paper placed onto the surface (Chambers 1991). Rouwet & Iorio
(2017) noticed similar patterns occurring in volcanic crater lakes, and hypothesised that
similar physics were responsible: thermal gradients in the lake create Marangoni flows,
and wind action creates a blowing effect, resulting in marbling patterns of the adsorbed
multicoloured sediments. In this study, we seek to understand the Lagrangian trajectories
of material points and curves on a surface during the spreading of surfactants on a confined
surface, and thus the dynamics of any adsorbed passive tracer, similar to the advection of
ink by surfactant in the Suminagashi technique.

In addition to the cultural importance of Suminagashi, which has been part of Japanese
art since the 12th century, and similar practices in China for even longer (Ishii &
Muro 1989), understanding Marangoni-driven surface motion can help us to better
understand various industrial and biological applications involving surfactants carrying
passive, adsorbed material. For example, Deng et al. (2018) showed how small amounts
of surfactant added to perovskite (a calcium titanium oxide mineral) can suppress the
formation of islands during the drying phase of blade coating by creating Marangoni flows
that keeps the solution coating even. Many other coating processes involve Marangoni
flows induced by trace amounts of surfactants. Some methods of drug delivery in
lungs mix pharmaceutical substances with exogenous surfactant (Haitsma, Lachmann &
Lachmann 2001), so that the surfactant acts as a carrier to spread the drug through the
airways. In particular, surfactant replacement therapies have been used successfully in
lungs of neonates affected with respiratory distress syndrome (Avery & Mead 1959; Jobe
1993; Rodriguez 2003; Halliday 2008). The surfactant-driven spreading in the complex
and confined tree-like geometry of the lungs acts against its natural endogenous surfactant
(Espinosa et al. 1993; Jensen, Halpern & Grotberg 1994; Grotberg, Halpern & Jensen
1995; Halpern, Jensen & Grotberg 1998; Temprano-Coleto et al. 2018; Mcnair et al. 2023).
These methods of delivery can help to overcome difficulties such as poor solubility of the
pharmaceuticals (Hidalgo, Cruz & Pérez-Gil 2015).

Molecules and substances that act as surfactants are ubiquitous in the environment.
They can cause unexpected fluid flows that have confounded scientists and engineers,
as described by Manikantan & Squires (2020), who discussed the ‘hidden’ variables
related to surfactant dynamics in many fluid flows. The present study addresses insoluble
surfactant spreading into pre-existing, endogenous surfactant on a thin film of a bounded
Newtonian viscous liquid, allowing us to use lubrication theory to approximate the Stokes
flow in the liquid film. Lubrication theory for insoluble surfactant-driven flows has its
origins with the work of Borgas & Grotberg (1988) who derived coupled partial differential
equations (PDEs) describing the leading-order evolution of the liquid film height and
surfactant concentration. The work was then extended theoretically and experimentally
by Gaver & Grotberg (1990, 1992). Thess, Spirn & Jüttner (1997) and Jensen & Halpern
(1998) showed that the coupled equations in the limit of large Bond number could be
combined into a single nonlinear diffusion (or ‘porous medium’) equation governing
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Lagrangian surfactant dynamics in confined domains
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Figure 1. (a) Pictures showing the Japanese art technique of Suminagashi (Rouwet & Iorio 2017). Successive
drops of a mixture of coloured ink and surfactant are deposited on the surface of a thin film of water to
create a multicoloured pattern. Blowing on the surface then creates further intricate patterning. (b) Picture of a
Suminagashi pattern of ink on water created by artist Bea Mahan (2011). (c) Schematic of the model problem.
Circular deposits of insoluble exogenous surfactant (red) spread on the surface Ω of a thin layer of viscous
liquid (blue) of mean height h confined in a rectangular region of dimensions L1 and L2, where the surface
contains an initially uniform endogenous surfactant (green). We assume that the ratio of vertical to horizontal
length scales is small enough, and that the Bond number (ratio of gravitational to surface tension forces) is
large enough, for height deflections caused by spreading to be negligible, confining spreading to the flat plane
of the surface Ω .

surfactant concentration evolution as a function of space and time. The effect of gravity
is to suppress deflections of the surface, removing the functional dependence of the
spreading on the dynamic film height.

In this paper, we explore a link between the theory of surfactant spreading and the
theory of optimal transport. This theory was initiated by Monge (1781), who was trying to
find the optimal way to transport mounds of soil under some cost function. The theory
was extended into its modern formulation by Kantorovich (1942, 2006). Most of its
current uses are found in machine learning and image analysis (Kolouri et al. 2017). A
powerful result, enabling significant simplification of optimal transport problems, occurs
when the cost function takes a quadratic form, yielding the quadratic Monge–Kantorovich
optimal transport problem (qMK). For such cost functions, solutions for the optimal map
of material from initial to final location can be shown to be the gradient of a convex
function that satisfies a so-called Monge–Ampère equation. A variety of approaches
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have been taken to find solutions of this nonlinear equation (Froese & Oberman 2011;
Benamou, Froese & Oberman 2012, 2014). Otto (2001), building on work by Jordan,
Kinderlehrer & Otto (1998) and Benamou & Brenier (2000), showed that porous medium
equations (a class of equations to which the Jensen & Halpern (1998) surfactant equation
that we use in this study belongs) have the variational structure of a gradient flow on
a Riemannian manifold measured by the quadratic Wasserstein distance. The square of
the Wasserstein distance, which is defined as the minimiser of a functional, doubles as
qMK, which suggests that solutions to the surfactant-induced transport problem may
be approximated by solving the Monge–Ampère equation under certain conditions. We
explore these conditions in this paper, and consider whether the Monge–Ampère equation
could be an efficient tool to determine equilibrium solutions to this complex confined
transport problem.

The primary aim of this study is to understand the underlying physics behind
surfactant-induced Marangoni dynamics in a confined environment when the surface
contains an initial endogenous concentration of surfactant, which is the case for most
environmental fluids. The spreading of multiple exogenous deposits is particularly
considered; this was investigated experimentally and with COMSOL� models recently
by Iasella et al. (2024), showing how adjacent droplets interact and deform. A
Lagrangian framework, which has been adopted in the analysis of other transport
problems with nonlinear diffusive character (Meı̆rmanov, Pukhnachev & Shmarev 1997),
enables us to compute efficiently individual surface particle trajectories and equilibrium
states as functions of initial distributions. Moreover, the Lagrangian framework reveals
underpinning flow phenomena such as stretching, compression and rotational motion that
govern the particle trajectories. While there have been limited investigations of Lagrangian
surfactant dynamics in one spatial dimension (Grotberg et al. 1995), there is none (to
our knowledge) in higher dimensions, despite the potential relevance to a variety of
applications. Furthermore, while some authors have exploited the gradient flow structure
of thin-film evolution equations (Thiele, Archer & Pismen 2016; Henkel, Snoeijer & Thiele
2021), we are not aware of prior studies linking thin-film flows to optimal transport. We
show how we can exploit this link for practical purposes. In particular, we describe a
procedure to reproduce the intricate patterns of Suminagashi art, through resolution of the
Monge–Ampère equation associated with the surfactant transport model. These results
appear to capture, at least qualitatively, the dominant physics behind Suminagashi art,
suggesting a powerful tool for other applications where surface transport is dominated by
surfactants in confined environments.

In § 2.1, we use a two-dimensional extension of the model of Jensen & Halpern (1998)
(derived in Appendix A) to describe transport of material particles on a surface. We
outline a physical problem in Eulerian coordinates in a confined rectangular domain,
implementing initial conditions that represent multiple deposits of exogenous surfactant
spreading on a surface with an initially uniform endogenous surfactant concentration.
We solve the particle-tracking problem using a finite-difference method by first solving
for the evolution of surfactant concentration, and then interpolating the gradient of this
solution onto a second Lagrangian grid where we integrate the surface velocity to find
the trajectories of surface particles initially located at each grid point. In § 2.2, we
reformulate the problem in Lagrangian coordinates, and show how it can be reduced
from three to two scalar PDEs, enabling the same calculation without the intermediate
step of finding the evolution of the surfactant concentration, and without the need to
interpolate concentration gradients from an Eulerian to a Lagrangian grid. We solve the
resulting scheme using a finite-element method. In § 2.3, we show how to approximate
the equilibrium locations of surface particles as a function of their initial locations via
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Lagrangian surfactant dynamics in confined domains

a Monge–Ampère equation, without having to compute their intermediate trajectories.
In § 3.1, we show consistency between the Eulerian and Lagrangian methods, and
describe dynamical phenomena not normally associated with spreading surfactants, such
as drift and flow reversals due to confinement. In § 3.2, we show that solutions of the
Monge–Ampère equation approximate the equilibrium solution well when the endogenous
and exogenous concentrations are of comparable magnitude, and also provide a credible
approximation when the endogenous concentration is much smaller. We show how, in the
limit of small endogenous concentration, the boundaries of the deposits become almost
polygonal with self-similar structures at the corners, resembling a two-dimensional foam.
We discuss subtle discrepancies between the Monge–Ampère solution, and a solution
computed with the Eulerian particle-tracking method, indicating that surfactant transport
can be considered almost, but not exactly, optimal. We analyse the two-dimensional
mapping between the initial surfactant distribution and its equilibrium distribution, and
discuss how the divergence and curl of the mapping can reveal regions of stretching,
compression and rotational motion. Finally, we show that successive solutions of the
Monge–Ampère equation, combined with divergence-free maps to mimic blowing, can be
used to create a computational Suminagashi marbling pattern, illustrating the power of the
optimal-transport approximation. Additional results are shown in supplementary material
available at https://doi.org/10.1017/jfm.2024.334 to provide further evidence supporting
the main findings and discussion presented in this paper.

2. Model and methods

2.1. The Eulerian particle-tracking problem

2.1.1. The problem and derivation of the model
We investigate the trajectories of particles on the surface of a viscous Newtonian
liquid advected by surface tension gradients caused by a non-uniform concentration
profile of insoluble surfactant, which is assumed to have negligible molecular diffusivity.
Concentration gradients are caused by deposits of exogenous surfactant added to a uniform
concentration field of endogenous surfactant. We assume that both species of surfactant
have the same material properties, which combine to create a single concentration field
that has a linear relationship with surface tension. A typical length scale is found from
the initial size of an exogenous deposit, which is much greater than the initial height
of the film. The thickness of the film is assumed to remain approximately uniform
during the spreading, as we assume that any large vertical deflections are suppressed by
gravity (in a large-Bond-number limit). The spreading takes place in a closed region with
rectangular horizontal cross-section Ω , given in non-dimensional Cartesian coordinates
as 0 ≤ x ≤ L1, 0 ≤ y ≤ L2 confined by impermeable walls. Surfactant concentrations are
scaled by the maximum initial concentration of one of the deposits. As explained in
Appendix A, the surfactant is transported from its initial profile to its final equilibrium
state via the nonlinear diffusion equation, which describes the evolution of the surfactant
concentration as a function of space and time:

Γt = 1
4 ∇x · (Γ ∇xΓ ), (2.1)

where ∇x is the gradient operator in the x = (x, y) plane of the Eulerian coordinates, and
Γt is the derivative of surfactant concentration with respect to non-dimensional time t;
here, time is scaled by the ratio of liquid viscosity to maximum surface tension gradient
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(Appendix A). We impose a no-flux boundary condition at the periphery of the domain:

∇xΓ · nb = 0 on ∂Ω, (2.2)

where ∂Ω is the boundary of the domainΩ , and nb is a unit normal vector to the boundary
of the domain. Comparison of (2.1) with the non-dimensional surface transport equation
Γt + ∇x · (usΓ ) = 0 for a flat surface and non-diffusive surfactant shows that the surface
velocity is

us(x, t) = −1
4 ∇xΓ. (2.3)

Since we impose no flux of surfactant at the boundaries of Ω , as time goes to infinity,
concentration gradients vanish to reach an equilibrium or steady state, so the initial
concentration profile of surfactant Γ0(x, y) spreads to a uniform state with concentration
Γ̄ > δ > 0, where δ is the initial endogenous concentration. We do not consider the
singular limit δ = 0, which is beyond the scope of this study. In that case, spreading at
the edges of the deposits would continue until the edges meet a solid boundary or the
edges of another deposit. The final concentration relates to the initial concentration profile
by

Γ̄ =
∫
Ω
Γ0(x, y) dx dy∫
Ω

dx dy
= 1

L1L2

∫
Ω

Γ0(x, y) dx dy. (2.4)

Equation (2.1) represents a natural generalisation of the spatially one-dimensional
nonlinear diffusion equation derived in Jensen & Halpern (1998), and aligns with
the two-dimensional formulation of Thess et al. (1997). In stepping from one to two
dimensions, an extra degree of freedom must be considered: any surface velocity field
for which usΓ has zero divergence will not change surface concentrations but will
nevertheless transport surface particles. This is illustrated in Appendix A by considering
the influence of an imposed surface stress, as might arise from external blowing on the
liquid film. For a monolayer close to equilibrium, the divergence of the stress field is
area-changing; this is resisted by Marangoni effects (A10). However, the curl of the stress
field in this simple model generates a flow that can redistribute surfactant (i.e. surface
material elements carrying either endogenous or exogenous surfactant) without inducing
surface tension gradients (A11). As well as being exploited by Suminagashi artists, this
feature highlights a potential degeneracy in (2.1): namely, that the energetic cost of any
flow that preserves concentrations of surface material elements is not captured by the
evolution equation.

We now introduce a Lagrangian coordinate system (x0, y0, τ ) to complement the
Eulerian system (x, y, t). We define a mapping X = (X, Y) between them, such that
particles starting on the interface at x0 = (x0, y0) ∈ Ω at t = 0 are advected at time t = τ

to

x = X(x0, y0, τ ), y = Y(x0, y0, τ ). (2.5a,b)

Since surfactant transport is purely advective under (2.1), the mapping satisfies

∂X (x0, y0, τ )

∂τ
= −1

4
∇xΓ (X (x0, y0, τ ), τ ). (2.6)

The mapping function X (x0, y0, τ ) from initial to current particle location is the main
quantity that we seek throughout this study. The initial conditions for each simulation that
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Lagrangian surfactant dynamics in confined domains

we perform in this study will be of the form

Γ0(x0, y0) =
{
δ + F(x0, y0), in Ω ′,
δ, in Ω −Ω ′,

(2.7)

where δ = minΓ0(x0, y0) for all (x0, y0) in Ω represents the initially uniform endogenous
surfactant, and F is a function describing the initial distribution of exogenous surfactant
deposited inΩ ′, a region ofΩ . In this study, we consider only non-overlapping depositions
of exogenous surfactant that are axisymmetric about their own centre, and with a radially
decreasing concentration profile. Although we have studied various initial distributions for
the exogenous surfactant deposits (see the supplementary material), we focus on quadratic
distributions, which we denote as

Cq(x0; xc, r, Γ0,c − δ) =
⎧⎨
⎩(Γ0,c − δ)

(
1 − |x0 − xc|2

r2

)
, |x0 − xc| ≤ r,

0, |x0 − xc| > r,
(2.8)

which is centred at xc = (xc, yc), where the initial concentration has a local maximum
Γ0,c, with deposit radius r. The concentration profile Γ0 is continuous when
added to the endogenous field, and the Euclidean distance is given by |x0 − xc| ≡√
(x0 − xc)2 + (y0 − yc)2. The subscript q in (2.8) refers to the quadratic nature of the

initial concentration profile. In Appendix F and in § S5 of the supplementary material, we
consider circular concentration profiles with other functional forms.

2.1.2. Scenarios studied
We have investigated scenarios involving one, two or three distinct deposits (i.e. Ω ′ is
constituted of one, two or three disconnected regions in Ω). The different configurations
studied for the one- and two-deposit problems are presented in the supplementary material
(see table S1). These two problems are helpful to understand basic dynamical features and
the impact of the relevant non-dimensional parameters, as we will discuss briefly in § 3.
However, the one- and two-deposit problems miss topological features that appear only
with three or more exogenous deposits, such as internal corners where the edges of the
deposits meet away from the domain boundaries. As we will discuss in § 3, internal corners
display self-similar features. For the sake of simplicity and to enable analytical progress,
we focus mainly on the three-deposit problem for the rest of this paper. Nevertheless, we
anticipate that many of the results found with the three-deposit problem will also apply to
problems involving more deposits. Therefore, we devise a model problem where F(x0, y0)
consists of three circular regions of different radii (r1 = 1, r2 and r3 in non-dimensional
variables; see figure 1c) containing exogenous surfactant with quadratic concentration
profiles, with differing non-dimensional maximum values 1, Γ2 and Γ3 in the different
regions (the number in the subscript corresponds to the region). Deposit 1, the smallest, is
centred at (x1, y1); the second largest circular deposit is centred at (x2, y2); the largest is
centred at (x3, y3). Therefore, using our notation for circular deposits (2.8), we have

F(x0, y0) = Cq(x1, y1, 1, 1 − δ)+ Cq(x2, y2, r2, Γ2 − δ)+ Cq(x3, y3, r3, Γ3 − δ). (2.9)

For the three-deposit problem, we choose r2 = 2, r3 = 3, Γ2 = 1 and Γ3 = 2. For every
problem tackled in this paper and in the supplementary material, we choose L1 = 13 and
L2 = 11. The centres of the deposits are chosen to be (x1, y1) = (6, 2), (x2, y2) = (10, 5)
and (x3, y3) = (4, 7) for most of the solutions presented, unless otherwise stated.
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2.1.3. Numerical scheme for the Eulerian particle-tracking problem
A finite-difference approximation of (2.1) and (2.6) is calculated using two rectangular
grids. The first grid is used to solve for an approximation of (2.1) subject to boundary
conditions (2.2) and initial conditions (2.7) and (2.9) in an Eulerian reference frame, which
is accomplished using a second-order central differencing system in space, and a first-order
forward Euler method in time (choosing a sufficiently small time step to ensure stability).
This is solved simultaneously with a forward Euler approximation of (2.6) for the dynamics
of the particle paths on a second grid in the Lagrangian reference frame. At each time step,
the concentration gradient is approximated on the Eulerian grid, and interpolated onto
the Lagrangian grid at the current particle locations using a linear interpolation method,
meaning that the method as a whole is first-order in space and time.

The simulation is computed from t = 0 to a large time t = tf when the solution
approximates the steady state. The value of tf is found by considering the analysis in
Appendix B, which shows how to ensure that the map is within a small tolerance vector
[Xtol, Ytol]T of the steady state everywhere (we set [Xtol, Ytol]T = [10−3, 10−3]T).

2.2. The Lagrangian particle-tracking problem

2.2.1. Derivation of the Lagrangian method
Rather than solving the three scalar PDEs in (2.1) and (2.6) in an Eulerian framework, it
is sufficient to solve only two PDEs by adopting a Lagrangian framework, as we now
demonstrate, by calculating X (x0, y0, τ ) without the intermediate step of determining
surfactant concentrations. We present a Lagrangian scheme reminiscent of that presented
by Carrillo, Matthes & Wolfram (2021) for a general Wasserstein gradient flow. The chain
rule combined with (2.5a,b) yields the material derivative ∂/∂τ |x0,y0 = ∂/∂t|x,y + us · ∇x,
where us = X τ , with the τ subscript meaning the partial derivative with respect to τ . It is
also the case that⎛

⎜⎜⎝
∂

∂x0
∂

∂y0

⎞
⎟⎟⎠ =

(
Xx0 Yx0

Xy0 Yy0

)⎛⎜⎜⎝
∂

∂x
∂

∂y

⎞
⎟⎟⎠ , or ∇x0 = (∇x0X )T ∇x. (2.10)

We define tensor calculus operators as

∇x0

(
a1
a2

)
=
(

a1x0 a1y0
a2x0 a2y0

)
, ∇x0 ·

(
a1 a2
a3 a4

)
= (

a1x0 + a3y0 a2x0 + a4y0

)
. (2.11)

The Jacobian of the mapping (2.5a,b),

α ≡ det(∇x0X ) = Xx0Yy0 − Xy0Yx0, (2.12)

quantifies how area elements are deformed by the map between initial and current
particle positions, such that area elements dAx0 and dAx are related by dAx = α dAx0 .
By conservation of mass, we can equate integrals of the surfactant concentration over the
Lagrangian and Eulerian domains, respectively:∫

X−1(�Ω)
Γ0(x0, y0) dAx0 =

∫
�Ω

Γ (X , t) dAx, (2.13)

where X−1(�Ω) is the pre-image of any subset �Ω of the Eulerian domain Ω , and there
is a one-to-one mapping between the domains. Using the Jacobian of the mapping, we can
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Lagrangian surfactant dynamics in confined domains

change variables on the right-hand side of (2.13) to give∫
X−1(�Ω)

Γ0(x0, y0) dAx0 =
∫

X−1(�Ω)
Γ (X (x0, y0, τ ), τ ) α(X (x0, y0, τ ), τ ) dAx0 .

(2.14)

We are now integrating over the same space with respect to the same variables, and as�Ω
is arbitrary, the integrands must be equal, yielding

Γ (X (x0, y0, τ ), τ ) α(X (x0, y0, τ ), τ ) = Γ0(x0, y0). (2.15)

This is the main statement of mass conservation in Ω , valid for any τ ≥ 0, and is key for
our analysis in this subsection and the next.

The choice of Lagrangian coordinate system is arbitrary, and in the rest of this
subsection, we choose a spatially non-uniform coordinate system (ξ, η). This coordinate
system, non-uniform in Ω , also defines a geometric transformation of the domain Ω ,
which is achieved by deforming Ω such that (ξ, η) become regularly spaced Cartesian
coordinates. We call this new domain the deformed Lagrangian domain, with coordinates
(ξ, η) replacing (x0, y0). In § 2.3 we will revert back to (x0, y0), which there will refer
to regular Cartesian coordinates in an undeformed copy of the Eulerian domain such
that (x, y) = (x0, y0) at τ = 0. (These two domains will be referred to as the deformed
and undeformed Lagrangian domains, respectively.) For now, however, we choose a
coordinate system (ξ, η) such that the initial surfactant concentration is uniform in the
deformed domain, with Γ0(ξ, η) = 1 everywhere. This new coordinate system (ξ, η)

defines a geometric transformation of the rectangular domain Ω , such that surface areas
are stretched or compressed until the concentration per unit area in the deformed system
is 1 everywhere. To illustrate, if a region of unit area has an initial uniform concentration
of 0.25 in the undeformed domain, then in the deformed domain it would have an area of
0.25 and therefore an initial uniform concentration of 1. In the coordinate system of the
deformed domain, (2.15) becomes

α(X (ξ, η, τ ), τ ) Γ (X (ξ, η, τ ), τ ) = 1. (2.16)

With this choice, and using (2.5a,b), it follows that ∇x(αΓ ) = α∇xΓ + Γ ∇xα = 0, and
so

α∇xΓ = −Γ ∇xα = −Γ (∇ξX
)−T ∇ξα, (2.17)

where α = det(∇ξX ), and ∇ξ = [∂/∂ξ, ∂/∂η]T. The particle velocity (2.6) is given by
X τ = −∇xΓ/4, so (2.12), (2.16) and (2.17) give

4α2 (∇ξX
)T X τ = ∇ξα. (2.18)

This expresses the time evolution of material particle locations in Eulerian coordinates as
a function of the deformed Lagrangian coordinates. We can expand (2.18) as the system

Xτ = 1
4α3

(
αξYη − αηYξ

)
, (2.19a)

Yτ = 1
4α3

(
αηXξ − αξXη

)
, (2.19b)
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Figure 2. (a) The Eulerian domain of the dynamic Lagrangian problem presented in § 2.2. This domain is
broken into nine different regions (denoted R1 to R9) to compute the piecewise continuous definition of ξ ,
given in § S1 of the supplementary material. The red circles are the locations of the initial deposits of exogenous
surfactant. (b) The deformed Lagrangian domain, calculated such that (2.16) holds for the Eulerian initial
conditions (2.7) and (2.9) with the parameter choices taken in § 2.1.3. This is the domain in which we compute
the numerical solution of (2.20) with boundary conditions (2.26).

with α = XξYη − XηYξ . In turn, (2.19) can be rewritten as

X T
τ = −1

8
∇ξ ·

(
1
α2

(
Yη −Xη

−Yξ Xξ

))
, (2.20)

which is an equation in divergence form that is easier to solve than (2.18) or (2.19) when
using a finite-element method. Initial conditions are imposed via (2.16), so

1
Γ (X (ξ, η, 0), 0)

= Xξ (ξ, η, 0)Yη(ξ, η, 0)− Xη(ξ, η, 0)Yξ (ξ, η, 0). (2.21)

We choose Yη(ξ, η, 0) = 1 and Yξ (ξ, η, 0) = 0, so that Xξ (ξ, η, 0) = 1/Γ (X (ξ, η, 0), 0).
This yields a purely one-dimensional transformation, as illustrated in figure 2, from
the undeformed to the deformed Lagrangian domain, simplifying the calculation of the
deformed geometry. The initial conditions for ξ are therefore obtained through∫ x

0
Γ0(x′, y) dx′ + C(y) = ξ(x, y, 0), ξ(0, y, 0) = 0. (2.22)

Here, C(y) is an arbitrary piecewise function chosen such that ξ is continuous, and
1/Xξ = ξx because we have fixed Y and t. After finding the indefinite partial integral
(2.22), we substitute y = η and x = X, and invert (2.22) (numerically if needed) to find
X as an explicit function of (ξ, η). Calling this solution G(ξ, η), the initial conditions can
be summarised as

Y(ξ, η, 0) = η, X(ξ, η, 0) = G(ξ, η). (2.23a,b)

2.2.2. The three-deposit problem
We illustrate the Lagrangian method introduced in § 2.2.1 by solving the model problem
with the parameters outlined in § 2.1.2. For the initial conditions (2.7) and (2.9), the
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Lagrangian surfactant dynamics in confined domains

solution of (2.22) is

ξ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x −
(
(x − x1)

3

3
+ x(y − y1)

2
)
(1 − δ)+ C1(y), |x − x1| ≤ 1,

Γ2x − 1
r2

2

(
(x − x2)

3

3
+ x(y − y2)

2
)
(Γ2 − δ)+ C2(y), |x − x2| ≤ r2,

Γ3x − 1
r2

3

(
(x − x3)

3

3
+ x(y − y3)

2
)
(Γ3 − δ)+ C3(y), |x − x3| ≤ r3,

δx + C4(y), everywhere else in Ω.
(2.24)

Here, C1(y), C2(y), C3(y) and C4(y) are determined for the choice Γ2 = 1, Γ3 = 2,
(x1, y1) = (6, 2), (x2, y2) = (10, 5) and (x3, y3) = (4, 7) in § S1 of the supplementary
material, along with the definition of the Lagrangian coordinates of the three circles.
Finding this initial condition involves breaking the Lagrangian domain into nine regions,
as shown in figure 2. By imposing Y = η, and imposing that the line X = 0 corresponds to
ξ = 0, only the right-hand side of the Lagrangian domain, which we call ∂ΩR (defined for
this problem in equation (S1.2) of the supplementary material), is not a straight line. We
substitute η = y into (2.24) and then invert (2.24) numerically to find the initial expression
for X as an explicit function of ξ and η.

The boundary conditions for (2.20), and for the steady-state problem presented in the
next subsection, are derived from the dynamic boundary condition (2.2). Analysis in
Appendix C reveals that for corner angles less than π, such as we have in the domain
that we consider, a particle that begins on one of the four edges of the rectangle must stay
on that edge for all time, and the appropriate boundary conditions accompanying (2.27) in
the undeformed Lagrangian domain are the Dirichlet conditions

X = 0, L1 on x0 = 0, L1 and Y = 0, L2 on y0 = 0, L2, (2.25a,b)

which ensures that (2.2) is satisfied. This means that in the deformed Lagrangian domain,

X(0, η, τ ) = 0, X(ξ, η, τ ) = L1 on ∂ΩR, Y(ξ, 0, τ ) = 0, Y(ξ, L2, τ ) = L2.
(2.26)

2.2.3. Numerical solution
Having inverted (2.24) numerically to find the initial conditions (2.23a,b), we use these
initial conditions to solve (2.20) subject to boundary conditions (2.26), from τ = 0 to a
final time taken to approximate the steady-state τ = tf , in the Lagrangian domain shown in
figure 2(b), using COMSOL�. For reproducibility purposes we provide the details of the
COMSOL� settings chosen: we use the Mathematics suite, using the coefficient form PDE
set-up that is designed to handle PDEs in divergence form such as (2.20). We discretise
using standard COMSOL� triangulation method, and we use quadratic Lagrange basis
functions with 314 198 degrees of freedom plus 16 578 internal degrees of freedom, and
set the relative tolerance to 10−9. We store the solution at every 2 time units.
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2.3. The steady-state problem

2.3.1. Formulation of the problem
We now consider the problem of approximating the equilibrium locations of surface
particles (their locations as t → ∞) as a function of their initial locations directly,
i.e. without any intermediate calculation of surfactant concentrations, or intermediate
calculation of particle trajectories. We return to the coordinate systems used in § 2.2;
however, here we revert to calling the Lagrangian coordinates (x0, y0) to indicate that
the Lagrangian domain is a copy of the Eulerian domain, defined as 0 ≤ x0 ≤ L1 and
0 ≤ y0 ≤ L2, and (X, Y) = (x0, y0) at t = τ = 0. Using these variables, at steady state,
(2.15) becomes

Xx0Yy0 − Xy0Yx0 = Γ0(x0, y0)

Γ̄
, (2.27)

which is a PDE describing the mapping function (X, Y) to the spatial coordinates (x, y)
for particles starting at (x0, y0), in the limit t → ∞. Equation (2.27) needs to be solved
subject to boundary conditions (2.25a,b).

For one-dimensional problems, e.g. Γ0 = Γ0(x0), we can impose Y = y0 and (2.27) has
a unique solution. However, in two dimensions, (2.27) constitutes only one equation for
the two unknowns (X, Y), and therefore does not have a unique solution, so we turn to the
Helmholtz decomposition theorem to make progress. By this theorem, we know that we
can write the map X = [X, Y]T in terms of two scalar potentials φ(x0, y0) and ψ(x0, y0)
such that

[X, Y]T = ∇x0φ + ∇x0 × ψ, (2.28)

where ψ is a vector of magnitude ψ pointing out of the plane (in the z-direction), with
∇x0 · X = ∇2

x0
φ and ∇x0 × X = −∇2

x0
ψ . To make this Helmholtz decomposition unique

up to constants, we impose the boundary conditions

∇x0φ · nb = [x0, y0]T · nb, ∇x0 × ψ · nb = 0 on ∂Ω, (2.29)

which satisfies (2.25a,b).
The map at time t is generated by (2.6), the right-hand-side of which is an Eulerian

gradient of the instantaneous surfactant concentration. Thus the map remains irrotational
with respect to the Eulerian coordinates. Now we investigate whether the map at time t can
be approximated by a map that is irrotational with respect to the Lagrangian coordinates,
as this would allow us to remove the indeterminacy in (2.27), since ∇x0 × [X, Y]T = 0
yields ψ equal to a constant, reducing the problem (2.27) to finding a solution for a single
scalar potential φ. We summarise the statement that we want to test as that, for all time t,

|∇x0φ| 	 |∇x0 × ψ |. (2.30)

In effect, we test the idea that because the Eulerian curl of us is zero, and material particles
on boundaries are not allowed to traverse corners, (2.30) might hold for all time, at least
when the rearrangement of the surface is small. We will test this hypothesis a posteriori
in § 3.

Assuming that the map (2.28) is given by [X, Y]T = ∇x0φ, (2.27) and boundary
conditions (2.25a,b) reduce to the Monge–Ampère equation

φx0x0φy0y0 − φ2
x0y0

= Γ0(x0, y0)

Γ̄
on 0 ≤ x0 ≤ L1, 0 ≤ y0 ≤ L2, (2.31)

subject to

φx0 = x0 on x0 = 0, L1, φy0 = y0 on y0 = 0, L2, φ(0, 0) = 0. (2.32)
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Lagrangian surfactant dynamics in confined domains

The last boundary condition is necessary to close the problem, as φ is unique only up to
a constant. The Monge–Ampère equation arises often in the theory of optimal transport, a
connection that we will discuss further in § 4.

2.3.2. Numerical method
We solve (2.31) subject to the boundary conditions (2.32) for the initial concentration
profile of surfactant (2.7) and (2.9) using an iterative Newton–Raphson scheme for a
finite-difference approximation of the solution, the full details of which are in Appendix D.
The Newton–Raphson scheme converges to the desired solution only if the initial guess is
in the basin of attraction of the desired solution, which for a nonlinear problem such as
(2.31) and (2.32) is difficult to determine a priori. We surmount this problem with the
following continuation scheme. Using a parameter βj ∈ [0, 1], we take advantage of the
fact that the PDE

φx0x0φy0y0 − φ2
x0y0

− 1 + βj

(
1 − Γ0(x0, y0)

Γ̄

)
= 0, (2.33)

subject to boundary conditions (2.32), has a known solution when βj = 0, namely φ =
x2

0/2 + y2
0/2; when βj = 1, we have the desired solution to (2.31) and (2.32). We step

from β0 = 0 to βJ = 1, in steps of some fixed quantity �β = 1/J (where J is an integer),
solving (2.33) and (2.32) each time. Starting from β0 = 0 and φ0 = x2

0/2 + y2
0/2, we find

φj+1 by using φj as a guess solution for (2.33) and (2.32), where βj+1 = βj +�β. If we
choose �β to be small enough, then we ensure that we stay inside the basin of attraction
of solutions, finding the desired solution to (2.31) and (2.32) when j = J.

We use this process to solve (2.31) and (2.32) for intermediate and low values
of endogenous surfactant, δ = 0.25 and δ = 0.002. We solve for the larger value of
δ using a grid with grid points spaced uniformly 0.05 units apart in MATLAB�,
using the software’s ‘sparse’ variable type to handle the large sparse matrices, and its
efficient algorithms for finding solutions to linear systems such as (D3) with a direct
LU factorisation scheme. This solution is obtained by using �β = 0.1. For the solution
with the smaller value of δ, we use grid points spaced evenly 0.05 units apart. We
need �β = 0.0025 for this second solution, which means that the computational cost is
increased. The convergence of the numerical scheme is presented in § D.2. In addition, we
present a method for creating a computational Suminagashi picture in Appendix E.

To quantify how well the Monge–Ampère method approximates the solution found by
the Eulerian particle-tracking method at t = tf (assumed to be an accurate solution of the
steady state), we define metrics that characterise the difference between solutions found
using the two methods for the same initial conditions. We define the Euclidean distance
between final particle locations XEU and XMA predicted by both methods and normalised
by the longest side of the domain,

1
L1

|XEU − XMA| ≡ 1
L1

√
(XEU − XMA)2 + (YEU − YMA)2, (2.34)

which we call the normalised absolute error between the two methods for a given initial
particle location. Statistics of the error are then obtained by analysing distributions for a
large number of the initial particle locations, particularly the median, the upper quartile,
the 90th percentile and the maximum values of (2.34).
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Method δ Centre deposits 1/2/3 tf Key

Eulerian particle tracking 0.25 (6, 2)/(10, 5)/(4, 7) 1047.8 Eul[0.25]
Lagrangian particle tracking 0.25 (6, 2)/(10, 5)/(4, 7) 1047.8 Lag[0.25]
Monge–Ampère 0.25 (6, 2)/(10, 5)/(4, 7) N/A MA[0.25]
Eulerian particle tracking 0.002 (6, 2)/(10, 5)/(4, 7) 2094.1 Eul[0.002]
Monge–Ampère 0.002 (6, 2)/(10, 5)/(4, 7) N/A MA[0.002]
Monge–Ampère 0.04 (6, 2)/(10, 5)/(4, 7) N/A MA[0.04]
Monge–Ampère 0.005 (6, 2)/(10, 2)/(4, 7) N/A MA[0.005]Alt1
Monge–Ampère 0.005 (6, 2)/(10, 8.5)/(4, 7) N/A MA[0.005]Alt2
Monge–Ampère 0.005 (3, 2)/(10, 5)/(4, 7) N/A MA[0.005]Alt3
Monge–Ampère 0.005 (8, 2)/(10, 5)/(4, 7) N/A MA[0.005]Alt4
Monge–Ampère 0.005 (9, 2)/(10, 5)/(4, 7) N/A MA[0.005]Alt5
Monge–Ampère 0.005 (11, 2)/(10, 5)/(4, 7) N/A MA[0.005]Alt6

Table 1. A table presenting a summary of the simulations presented in § 3, together with parameters used, and
a key with which we refer to each simulation. The methods used are the Eulerian particle-tracking method (2.1)
and (2.6), the Lagrangian particle-tracking method (2.20), and the Monge–Ampère method (2.31). For all these
simulations, we choose r2 = 2, r3 = 3, Γ2 = 1 and Γ3 = 2.

3. Results

Table 1 summarises all of the simulations and their parameters that are presented in the
results section, with a key with which we refer to each simulation.

3.1. Particle-tracking solutions
The results for the Eulerian (Eul[0.25]) and Lagrangian (Lag[0.25]) particle-tracking
methods (presented in §§ 2.1.3 and 2.2.3) with δ = 0.25 are shown in figures 3(a) and
3(b), respectively, and also as supplementary movies 1 and 2, where each thin coloured
line represents a particle trajectory, terminating at a black dot at t = tf . The trajectories
shown in figure 3(a) represent 1 in every 225 trajectories calculated, selected such that their
initial locations are evenly spaced. The data obtained by the solution for the Lagrangian
method presented in figure 2(b) are spaced irregularly, with each data point corresponding
to a node of the mesh used in COMSOL� to discretise the deformed Lagrangian domain;
we display 1 in every 50 particles from the data list obtained from the simulation, so the
density of particles shown is not significant.

In figures 3(a) and 3(b), the largest deposit spreads out through Marangoni stresses, and
compresses the other two deposits. Flow reversals (sharp turns of particle trajectories of
more than 90◦) arise in several areas for two reasons. First, reversals in the top left-hand
corner are due to confinement. Early outward spreading is into a region containing
endogenous surfactant at low concentration δ; later reversals arise once the surfactant
concentration in this region is much larger due to non-local compression of the endogenous
material. Second, points that begin on the edges of the smaller two deposits nearest the
centre of the domain first spread into the centre, but soon the effect of the largest deposit
spreading is felt, and these points reverse their trajectories. The final shapes of the smallest
deposits are non-trivial oval shapes, the centres of which are shifted away from their
initial locations. Some particles to the top left of the centre of the largest deposit traverse
distances close to 1 unit in length and then move approximately the same distance back,
close to where the particles started. Particles compress into the top and bottom right-hand
corners. A variety of trajectories are evident: for example, particles in the top and left
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Figure 3. Solution to the example problem of three circular deposits of exogenous surfactant spreading
together with δ = 0.25. (a) The results of Eul[0.25] (see supplementary movie 1). The initial boundaries of the
exogenous surfactant circular deposits are the black circles, and the final locations are the thick red lines. The
points described by the green curves map to the black circles at t = tf . Individual particle trajectories are plotted
using thin coloured lines terminating at black points. (b) The results of Lag[0.25] with the same colour scheme
as in (a) (see supplementary movie 2). The particles represent 1/50 of all the particle trajectories calculated,
which are chosen at random, so the density of particles shown is not significant. (c) Graph showing the results
of MA[0.25] overlaid onto Eul[0.25] and Lag[0.25]. The steady-state boundaries of the three deposits and the
curves found by the inverse map (which spread from and to the black circles in the steady state, respectively)
are given by the colour scheme shown in the figure legend.

have trajectories that involve straight lines and sharp turns, whereas particles towards the
bottom right describe gentle arcs. In figure S1 in § S2 of the supplementary material, we
present an overlay of the contour plots of X(x0, y0) and Y(x0, y0) for the solutions at t = tf
obtained from the Eulerian and Lagrangian particle-tracking methods, respectively. The
methods find the same particle locations to within a distance of 0.05 almost everywhere,
apart from the locations of small oscillations in the Lagrangian solution that appear to
be an artefact of the domain deformation as discussed in § S2, and much closer than that
in most places. Some of the small discrepancies that do exist can be explained partly by
the fact that small errors arise by interpolating the Lagrangian solution onto a regular,
rectangular grid to make the comparison, and errors occur in the Eulerian solution by the
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interpolation of the gradient of the evolving concentration shown in § S3 (figure S2) of the
supplementary material at every time step in that solution.

3.2. The steady-state solution
We investigated the steady-state solution of a variety of configurations involving one
and two deposits (see table S1 in the supplementary material). We compare the results
obtained between Eulerian (EU) particle tracking and the Monge–Ampère (MA) method
in § S5 of the supplementary material. We tested how the final equilibrium shape of the
deposits is influenced by the proximity of the domain boundaries. In the case of a single
initial deposit, we find only small differences in the discrepancy between the EU and
MA results, quantified using (2.34) for deposit locations at various distances from the
domain boundaries. The median normalised absolute error is approximately 10−4, and the
maximum error is bounded by 2 × 10−3. In the case of two initial deposits, the median
normalised absolute error is approximately 5 × 10−4, and the maximum error is bounded
by 5 × 10−3. The median discrepancy between the two methods tends to be inversely
correlated with the symmetry of the initial configuration, whereas the upper quartile,
90th percentile and maximum discrepancy are much noisier for both the one-deposit and
two-deposit problems studied. Discrepancies between the EU and MA methods increase
with an increase in the number of deposits, and with a decrease in δ (the normalised initial
endogenous surfactant concentration), as shown in Appendix F. As stated previously, we
choose to focus on the three-deposit case.

3.2.1. The three-deposit problem with δ = 0.25
The solution for the approximation of the edges of the three deposits in the steady state
(MA[0.25]) found by the Monge–Ampère method (outlined in § 2.3.2) is presented in
figure 3(c) for δ = 0.25, with the approximations of the steady state found from the
Eulerian (Eul[0.25]) and Lagrangian (Lag[0.25]) particle-tracking solutions overlaid. The
final edges of the deposits predicted by MA[0.25] are almost indistinguishable except in a
few places, which supports assumption (2.30). Predictions of Eul[0.25] and Lag[0.25] are
indistinguishable to the naked eye in figure S1 of the supplementary material, providing
a reliable benchmark against which to test the prediction of MA[0.25]. We also use the
inverse maps to calculate the contours that map to the initial drop boundaries under
the spreading in figure 3; again, only very small discrepancies between MA[0.25] and
Eul[0.25] are evident.

A comparison of the global behaviour of the Monge–Ampère approximation of the map
from initial to final particle configuration (MA[0.25]) with the map calculated from the
particle-tracking solution (Eul[0.25]) is given by contour plots in figure 4 (see also a colour
map of the absolute error between the two predictions for the final particle location in
§ S4, figure S3, of the supplementary material). Dense contours in figures 4(a,b) indicate
that surface areas starting at these locations are stretched by the mapping, and similarly
large gaps between contours indicate that the map compresses the surface. Conversely, in
figures 4(c,d), dense contours of the inverse maps indicate that surface areas finishing at
these locations have been compressed by the spreading, and large gaps between contours
indicate that the spreading has stretched the surface. The Monge–Ampère approximation
agrees with the particle-tracking solution in most places, although some noticeable
discrepancies exist, such as in the left half of the smallest deposit most notably. The
median error across the solution is approximately 0.25 % of the domain length, and the
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Figure 4. Contour plots of solutions for the map from initial configuration to steady state found from MA[0.25]
and Eul[0.25]. (a) 25 evenly spaced contours of XMA taken from MA[0.25] (red) overlaid with the same-valued
contours of XEU taken from Eul[0.25] (blue). (b) 25 contours of YMA (red) overlaid with YEU (blue). (c) The
inverse map X−1

MA (red) overlaid with X−1
EU (blue), with the same contour scheme. (d) The same for Y−1

MA (red)
overlaid with Y−1

EU (blue).

error for every particle is within 1.5% of the domain length, as shown in figure S7 of the
supplementary material.

To illustrate where and how the discrepancies arise, figure 5 shows the divergence
and curl of the map found from Eul[0.25], shown in both Lagrangian and Eulerian
coordinate systems. From the Helmholtz decomposition (2.28), figures 5(a,c) show
∇x0 · (X − x0) = ∇2

x0
φ − 2, and figures 5(b,d) show (∇x0 × (X − x0))⊥ = −∇2

x0
ψ ,

where (·)⊥ means the z-component, perpendicular to the plane of the solution. The vector
field X − x0, which points from initial to final particle locations, is an easier quantity
to interpret physically than X itself. Given boundary conditions (2.29) (the boundary
condition for ψ can be taken to be equivalent to the Dirichlet condition ψ = 0 on all
four boundaries), the fact that |∇2

x0
φ| is an order of magnitude greater than |∇2

x0
ψ | almost

everywhere is further evidence justifying our assumption (2.30) (the ratio ∇2
x0
ψ/∇2

x0
φ is

plotted in § S4, figure S4, of the supplementary material), although it is certainly not the
case that the curl of the map vanishes. In figures 5(a,c), ∇x0 · (X − x0) < 0 represents
surface areas with net compression, and ∇x0 · (X − x0) > 0 represents areas with net
expansion by the map. Areas within the deposits expand, as do area elements connecting
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Figure 5. Contour plots showing the divergence and curl of the vector field from initial to final particle
location taken from Eul[0.25]. (a) Plot of ∇x0 · (X − x0) = ∇2

x0
φ − 2 in Lagrangian coordinates. (b) Plot of

(∇x0 × (X − x0))⊥ = −∇2
x0
ψ in Lagrangian coordinates. (c) Plot of ∇x0 · (X − x0) = ∇2

x0
φ − 2 in Eulerian

coordinates. (d) Plot of (∇x0 × (X − x0))⊥ = −∇2
x0
ψ in Eulerian coordinates.

the largest deposit with the smaller deposits, and the corner regions compress. Saddle-like
area elements directly between each of the initial deposit locations, and between each
deposit and the nearest boundary, are compressed and expanded in orthogonal directions.
In figures 5(b,d), positive values of (∇x0 × (X − x0))⊥ refer to anticlockwise net local
rotation (twist) by the map, and negative values for clockwise twist. It is notable that
weak twisting motions arise where interfaces spread towards a nearby boundary, or near
another drop interface, with regions of oppositely oriented twisting typically appearing in
pairs. The most intense twisting appears to be confined to regions immediately outside the
boundaries of the exogenous surfactant drops.

3.2.2. Weak endogenous surfactant
Many fluids in the environment have low levels of contaminant surfactant, and in
some cases (especially in controlled laboratory conditions) vanishingly small endogenous
surfactant concentrations, so we would like to understand the Lagrangian motion of
surface particles in the limit of very small δ. The Lagrangian dynamic method (§ 2.2.3)
is not capable of handling small values of δ, because the deformed Lagrangian domain
becomes extremely stretched. The Eulerian particle-tracking method (§ 2.1.3), and the
Monge–Ampère approximation (§ 2.3.2), however, can both find well-behaved results with
extremely small δ.
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Figure 6. Plots showing a comparison between MA[0.002] and Eul[0.002]. (a) Contour plots of XMA taken
from MA[0.002] (red) overlaid with the same-valued contours from XEU (blue) taken from Eul[0.002]. (b) The
same for YMA (red) and YEU (blue). (c) The same scheme for the inverse maps X−1

MA (red) and X−1
EU (blue). (d)

Similarly for Y−1
MA (red) and Y−1

EU (blue). (e) An overlay of the final deposit boundaries from MA[0.002] (red)
and Eul[0.002] (blue). ( f ) Particle trajectories, each given by a thin coloured line terminating at a black dot,
from Eul[0.002] (see supplementary movie 3). The three red dashed ellipses each contain a complete particle
trajectory that involves two sharp changes of direction.

We present the solution to the Monge–Ampère approximation MA[0.002] overlaid with
the solution for the Eulerian particle-tracking method Eul[0.002] in figure 6. Figures 6(a,b)
show the overlaid contour plots of the approximations for the steady-state solutions for X
and Y in the Lagrangian coordinates, and figures 6(c,d) show the inverse mapping in the
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Eulerian coordinates. Figure 6(e) shows an overlay of the prediction for the final boundary
locations for the three deposits using both methods.

Figure 6 shows that when δ is small, the Monge–Ampère method does less well in
approximating the solution, which is expected as particles spread further, leading to
large discrepancies between the Lagrangian and Eulerian curls of the maps; however,
it is still credible as a first-order approximation. In particular, for particles that are
initially located within the three deposits, the approximation is still accurate, with the
largest discrepancy occurring for particles of endogenous surfactant. This is shown
clearly when comparing figures 6(c,d), which show the inverse map in the Eulerian
coordinates, to figures 6(a,b), which show the map in the Lagrangian coordinates.
(This is also shown clearly in the plot of the absolute and relative errors between the
predictions for final particle locations in § S4, figures S3(b,d), of the supplementary
material.) Contours coincide over an appreciably greater region of the final configuration
in comparison to the initial configuration. In Appendix F, we present box-and-whisker
plots of the absolute error between final particle locations predicted by the Monge–Ampère
and Eulerian particle-tracking methods for several values of δ, which show how the
maximum discrepancy grows as δ → 0 (10 % of the domain length for δ = 0.002), but the
median discrepancy remains an order of magnitude or more smaller than the maximum
discrepancy for δ = 0.002.

The final locations of particles beginning on the region occupied by endogenous
surfactant are compressed into effectively three lines, as shown by the blue curves
in figure 6(e) for Eul[0.002]. The Monge–Ampère approximation (MA[0.002]) for the
location of the lines (in red) is relatively accurate in most places. Figure 6( f ) and
supplementary movie 3 show the particle trajectories from the Eulerian particle-tracking
method. The variety of trajectories is remarkable, with many particles having two
sharp changes in direction during the spreading (see, for example, the three trajectories
highlighted by red dashed ellipses). This likely reflects the fact that particle trajectories
can be influenced by different deposits at different times.

Figure 7 shows the divergence and curl of the map computed from Eul[0.002]. The fact
that the Monge–Ampère approximation is less accurate for small δ is reflected in the fact
that |∇2

x0
φ| and |∇2

x0
ψ | are shown to be of the same order of magnitude in certain places

within the initial configuration (the ratio ∇2
x0
ψ/∇2

x0
φ is plotted in figure S4 in § S4 of the

supplementary material). However, figures 7(c,d), plotted in the final configuration, once
again show that, for particles that start within the deposits, it is still the case that (2.30)
holds. Once again, ∇x0 · (X − x0) < 0 represents area elements with net compression,
and ∇x0 · (X − x0) > 0 represents area elements with net expansion by the map. Areas
within the deposits expand, as do area elements connecting the largest deposit with the
smaller deposits, and we also now see expansion for areas connecting the deposits with
the boundaries. In figure 7(b), the patterns created by (∇x0 × (X − x0))⊥ are similar to
the case where δ = 0.25, although the modulus of twist is greater in magnitude.

3.2.3. Self-similarity of corner regions
Computationally, the Monge–Ampère solution is significantly cheaper to solve compared
to either of the particle-tracking solutions. We take advantage of this to analyse the
shape of the corners of deposits as δ → 0 using finely discretised Monge–Ampère
approximations. We note that the errors found between the Eulerian and Monge–Ampère
predictions are small near the corner regions, even with δ = 0.002 (see figure S3 in the
supplementary material). This suggests that predictions from the Monge–Ampère solution
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Figure 7. Contour plots showing the divergence and curl of the vector field from initial to final particle
location taken from Eul[0.002]. (a) Plot of ∇x0 · (X − x0) = ∇2

x0
φ − 2 in Lagrangian coordinates. (b) Plot of

(∇x0 × (X − x0))⊥ = −∇2
x0
ψ in Lagrangian coordinates. (c) Plot of ∇x0 · (X − x0) = ∇2

x0
φ − 2 in Eulerian

coordinates. (d) Plot of (∇x0 × (X − x0))⊥ = −∇2
x0
ψ in Eulerian coordinates.

remain accurate in the corner regions in the limit δ → 0. Examples of these corner regions
are numbered in green in figure 8(a), which shows the results of MA[0.04]. To compute
the deposit edges as sufficiently smooth curves to accurately analyse curvature of the edges
was not possible from the particle-tracking solutions with available computational power,
but is possible with the Monge–Ampère method. During spreading, endogenous surfactant
at initial concentration δ, occupying an O(1) area, is compressed into narrow threads
(between pairs of drops) and into what resemble seven Plateau borders (at corners between
drops, and at the domain boundary), at final concentration of order unity. Assuming that
the bulk of the endogenous surfactant is driven into these seven regions, and noting that
each has an O(1) aspect ratio, we can expect each drop corner to curve over a length scale
of O(δ1/2). This scaling is motivated by the observation that an area with an O(1) length
scale and with an initial concentration of endogenous surfactant δ (giving a total mass
of O(δ)) is ultimately compressed into an area with final concentration Γ̄ ∼ 1 over an
O(δ1/2) length scale (preserving the total mass of O(δ)).

Figure 8 shows how the equilibrium shapes of the deposits calculated by
Monge–Ampère become more and more polygonal in the limit δ → 0, with corner regions
adopting a self-similar form. For several values of small δ, we calculate the curvature K
of the equilibrium boundary of each deposit as a function of arc length s. To show how
each of a selection of corners sharpens as δ → 0, we set s = 0 at the local curvature
maximum, and plot log (δ1/2K) against sδ1/2. Figures 8(b–f ) show collapse of the data,
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Figure 8. Scaled curvature plots for a selection of the corners of the boundaries of the three circular deposits
at the steady state for small values of δ. (a) A graph of the solution from MA[0.04] that shows in green our
numbering system for corners inside each deposit. (b–f ) Plots of the natural logarithm of the curvature scaled
by δ1/2 against the arc length scaled by δ−1/2, where s = 0 identifies the vertex of the corner in each case.

illustrating how, as δ → 0, the curvature of corners of the polygons (numbered in green
in figure 8a) is proportional to δ−1/2, with this curvature occurring over arc lengths
proportional to δ1/2, and the edges of the deposits becoming effectively straight lines away
from the corners. We see that in small regions away from s = 0, the quantity ln (δ1/2K)
becomes linear, indicating a functional dependence such as δ1/2K ∼ exp(−λδ−1/2|s|) for
some constant λ. In practice, the boundaries between the deposits have a small curvature
in the Eulerian particle-tracking solution (figure 6e), so the deposits instead resemble
slightly distorted polygons, with corner regions slightly distorted from the Monge–Ampère
prediction. As discussed above, the self-similarity observed for the internal corners, and
the appearance of a characteristic length scale of order δ1/2, are based on the fundamental
physical principle of mass conservation. Since this principle is independent of the choice
of method, we expect that the results observed using the Monge–Ampère method will
remain valid with the Eulerian and Lagrangian methods. This provides further evidence
that the self-similarity behaviour observed in figure 8 is physically grounded.

Figure 9 shows the Monge–Ampère approximation of the three-deposit problem with
δ = 0.005 (MA[0.005]Alt1–Alt6), using multiple different centres of the deposits (given
in the caption), revealing a variety of near-polygonal structures. Each deposit approaches
a triangle, a quadrilateral, or in the case of the largest deposit (figures 9b,d), a hexagon.
The final configuration approaches a structure that can be characterised by up to four
coordinates, i.e. the locations of corners shared by multiple deposits, which we call the
characteristic coordinates of a given initial configuration. As in figure 8, we expect the
Monge–Ampère approximation to provide a good first-order estimate of equilibrium drop
shape predicted by the full dynamic problem. However, at the present time we are unable
to offer any simple strategy for determining the characteristic coordinates directly from
the initial conditions.
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Figure 9. Plots showing the steady-state mapping and inverse mapping for δ = 0.005 with varying initial
locations for some of the circular deposits 1 and 2 (deposit 3, as shown in figure 8a, remains fixed). Initial
locations of the boundaries of the circular deposits are in blue, with the final locations of those boundaries in
red. The green curves map to the blue circles under the same map. (a–f ) The results for MA[0.005]Alt1 to
MA[0.005]Alt6, respectively, from the key shown in table 1.

4. Discussion

In this study, we have evaluated the trajectories of passive surface particles confined in a
rectangular domain under the action of surfactant spreading on a thin film in a large-gravity
and large-Péclet-number limit using two separate methods (Eulerian particle tracking,
outlined in § 2.1, and Lagrangian particle tracking, outlined in § 2.2), the results of which
corroborate each other. We have also identified a direct method (using the Monge–Ampère
equation outlined in § 2.3) for approximating the equilibrium configuration as t → ∞. The
solutions to this problem show how confinement and drop–drop interactions can lead to
drift of surface particles (in addition to spreading), and how drop–boundary interactions
lead to transient flow reversals. It is striking the way that some particles move a significant
distance from their initial location, before moving back close to where they started, and
that in figure 6( f ) some particles sharply change directions twice, which is reminiscent
of the multiple regimes identified for multiple surfactant sources noted by Iasella et al.
(2024). Predicting the equilibrium location of the interface between exogenous and
endogenous surfactants is straightforward for spreading in one spatial dimension (relying
on mass conservation arguments). However, in two-dimensions (as here) it becomes a
non-trivial task, even for simple scenarios with one or two initial deposits, particularly
when symmetry is broken. With three initial deposits, new topological features appear in
the form of internal corners between deposits. Nevertheless, equilibrium shapes possess
asymptotic structures, such as the self-similar geometry of the internal corners in the limit
of small initial endogenous surfactant concentration (figures 8 and 9). Such observations
might offer a route to explicit predictions.

In order to compute the particle trajectories involved in the surfactant-driven spreading,
we constructed a finite-difference numerical method on a regular grid. We used an
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interpolated concentration gradient to determine the local velocity of the particles. The
surfactant concentration gradients were calculated using a finite-difference solution from
a second grid. In addition, we reformulated the Eulerian surfactant transport equation
(2.1) and the Lagrangian particle transport equation (2.6) into a single Lagrangian vector
equation (2.20), which describes the dynamics of material particles. This was achieved by
choosing a Lagrangian coordinate system for which the surfactant concentration is initially
uniform in the deformed Lagrangian domain (i.e. having uniform mass per unit Lagrangian
area), and choosing this domain such that the initial conditions are simple to compute from
(2.21). Although the calculation of surfactant concentration is bypassed by this approach,
the concentration can still be recovered at any time from the Jacobian via (2.16).

From a computational point of view, the Eulerian and Lagrangian numerical methods
used to compute the particle trajectories each have some advantages and drawbacks.
They are similar in computational expense; however, the Eulerian method introduces
additional errors at every time step by first approximating ∇xΓ on the Eulerian grid,
and then interpolating this quantity onto the current position of surface particles on the
Lagrangian grid. The Eulerian method also requires storage of two solutions (Eulerian
surfactant concentration and Lagrangian particle position) on two separate grids, whereas
the Lagrangian method needs storage of only a single solution. Some of the drawbacks of
the Lagrangian method are that: the deformed domain needs to be calculated beforehand
(although this needs to be done only once); the Lagrangian domain has an irregular shape,
which makes numerical resolution of (2.20) difficult; and the domain can become so
deformed for small δ that numerical resolution of (2.20) is not practical. For moderate
δ, however, the Lagrangian formulation is a mathematically elegant approach that finds
the solution without needing to introduce interpolation errors, and the close agreement
of the results between the two methods (figures 4 and S1) provides corroboration of the
particle-tracking method, lending support to our calculations of Eulerian solutions for
small δ.

Since equilibrium drop shapes, obtained in the limit of large time, can be
computationally expensive to calculate with the Eulerian and Lagrangian methods, we
have also explored how a Monge–Ampère equation can be used to find approximations
of the equilibrium configurations. This was achieved by approximating the map between
initial and final configuration as the gradient of a scalar potential, and neglecting the
rotational part of the map. The computational benefits of this approach are beyond dispute,
as only a single, scalar, time-independent PDE needs to be solved. For example, the
Monge–Ampère solution shown in figure 4 can be computed for approximately 2.3 × 107

grid points in a shorter time than a solution for approximately 3 × 105 grid points using
the Eulerian particle-tracking method from § 2.2.3 for the same parameters. Beyond
computational issues, the Monge–Ampère method reveals a counterintuitive feature
of surfactant-spreading dynamics in two dimensions: despite always being transported
by an instantaneously irrotational flow (2.3), in the Eulerian sense, the mapping of
particles from their initial to their current state can accumulate a weak rotational
component with respect to Lagrangian coordinates, as illustrated in figures 5(b,d) and
7(b,d). This small Lagrangian rotational component can lead to weak distortions of final
equilibrium configurations between the Monge–Ampère predictions and the Eulerian and
Lagrangian predictions (figure 4). In the supplementary material, we explored a variety of
alternate exogenous configurations to analyse further the accuracy of the Monge–Ampère
predictions. These show how symmetry of the initial conditions reduces the median error
between the Monge–Ampère approximation and the Eulerian solution. In general, the error
between the Monge–Ampère approximation and the Eulerian solution reduces with larger
initial endogenous surfactant concentration δ, and with having fewer initial deposits. It
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Lagrangian surfactant dynamics in confined domains

is worth noting that when spreading is one-dimensional, the Monge–Ampère equation
gives the exact solution. This is due to the fact that topologically, no rearrangement of
the particles can be performed in one dimension without an energetic cost captured by
the evolution equation. In contrast, in two dimensions, particles can rearrange through
a divergence-free stress field (such as blowing by a Suminagashi artist after reaching
equilibrium), which has no energetic cost for the evolution equation (2.1).

Furthermore, the Monge–Ampère formulation makes a connection between the theory
of surfactant-driven transport and the theory of optimal transport. Monge–Ampère
equations arise for optimal transport problems where the transport satisfies the so-called
quadratic Monge–Kantorovich optimal transport problem (qMK). If surfactant were
transported optimally according to qMK, then the map X would satisfy

min
X :Γ0→Γ̄

∫
Ω

|X − x0|2Γ0 dAx0, (4.1)

where minX :Γ0→Γ̄ means that we choose the minimum over all possible maps X that
transport the initial surfactant concentration profile Γ0 to the final uniform profile Γ̄
(equivalently, from all possible maps X that satisfy (2.27)). It is known that such maps
X , which satisfy (4.1), are the gradients of (convex) scalar potentials that satisfy the
Monge–Ampère equation (Rockafellar 1970; Caffarelli & McCann 2010). Unfortunately,
the surfactant problem (2.1) does not satisfy (4.1) precisely, as we can see by the
discrepancies in figure 6, for example, which shows a different prediction for the final
configuration compared to the Eulerian particle-tracking method. However, Otto (2001)
showed that solutions to equations of porous medium type (a class of equations to
which (2.1) belongs) are gradient flows on the function space M of possible solutions;
this function space can be shown to satisfy the definition of a Riemannian manifold
when distances on the manifold are measured by the Wasserstein-2 distance, defined
variationally as

W2(Γ0, Γ̄ ) =
√

min
X :Γ0→Γ̄

∫
Ω

|X − x0|2Γ0 dAx0 . (4.2)

The Wasserstein-2 distance (4.2) is simply the square root of qMK in (4.1). Hence
optimal maps that satisfy (4.1) must follow the shortest path between Γ0 and Γ̄ on M
(a geodesic). The question of how closely the Monge–Ampère method approximates the
correct steady-state solution for surfactant spreading is therefore equivalent to the question
of how far the gradient flow deviates from the geodesic on M. This leads to the possibility
that a quantification of how well the Monge–Ampère method approximates the correct
solution could be made with variational analysis. We do not pursue this further here, except
to recall the degeneracy in the evolution equation revealed in Appendix A, namely that
(2.1) does not account for the dissipation associated with any flow that preserves surface
concentration; this raises the possibility that such flows may account for differences
between equilibria predicted by the Monge–Ampère and Eulerian descriptions. Similarly,
we leave as open the question of whether the solutions as δ → 0 can be used to infer the
behaviour of the final state with an initially clean interface (δ = 0).

In the limit of vanishing endogenous surfactant concentration δ → 0, using the
Monge–Ampère approximation, we find that exogenous deposits approach equilibrium
shapes with polygonal boundaries (figure 9). Moreover, the internal corners between
deposits present self-similar geometries, with a typical spatial extent scaling as δ1/2

(figure 8). This self-similar behaviour can be explained by mass conservation. In the limit
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(e)

(b)(a) (c)

(d ) ( f )

Figure 10. Successive solutions of the Monge–Ampère equation are shown in (a–e), as detailed in Appendix E,
showing a final pattern that is reminiscent of a Suminagashi pattern in ( f ) (see also supplementary movie 4).
The image was created by 20 solutions of the Monge–Ampère equation with a stirring or blowing step after the
release of every four deposits. (a–c) Creation of the pattern after four depositions, after the first stirring step,
and after 12 depositions, respectively. (d–f ) The solution just before the final stirring step after 20 depositions,
the final result where a monochrome colour scheme is added, and a Suminagashi pattern made by Bea Mahan
(2011) for qualitative comparison.

of δ → 0, we also observe that the topology at equilibrium is reduced to a small finite
number of characteristic coordinates that are the intersections between the polygonal final
shapes of the deposits. Predicting these coordinates a priori remains an open problem.

In figure 10 and supplementary movie 4, we explore how the Monge–Ampère
method could be used to create a pattern resembling Suminagashi art. We have used
divergence-free maps to mimic the blowing process used by Suminagashi artists. (The
details for the creation of this picture are in Appendix E.) Such a computation, which
involves 20 consecutive calculations of the Monge–Ampère equation, would be extremely
expensive to run using a full dynamic solution. The choice of a divergence-free map found
by time-stepping (E7) for the blowing step used by artists is credible, as gentle blowing on
a surfactant-laden surface would likely deform the surface in such a way as to not create
concentration gradients. Indeed, at equilibrium, the surfactant prevents the formation
of concentration gradients (Manikantan & Squires 2020), because the Marangoni force
opposes them (Appendix A). Moreover, we exploited the facts that gravitational forces in
the Suminagashi process are sufficiently strong to suppress deformations of the gas–liquid
interface, and that surface diffusion is sufficiently weak compared to advection to avoid
smearing of the edge deposits. In other contexts, Marangoni flows can induce surface
deformations. Despite the fact that the coupled evolution equations between the bulk
and the surface for such problems can be written in a gradient flow formulation (Thiele
et al. 2018), the link between such flows and optimal transport is not clear; the bulk flow
that transports fluid is distinct from the surface flow that transports surfactant, such that
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Lagrangian surfactant dynamics in confined domains

distinct maps may be needed to characterise such problems. The numerical results from the
Monge–Ampère method presented in figure 10 are only suggestive in their reproduction
of Suminagashi art; nevertheless, we hope that they will encourage experimentalists to
explore this link further.

Many applications involving surfactants are concerned with the transport of passive
solutes by the Marangoni effect in confined geometries, ranging from pharmaceutical
delivery to the human lung to the creation of artistic patterns using Suminagashi
techniques. We have presented methods for finding the dynamic behaviour of material
surface particles, and for finding an approximation of the equilibrium location of material
particles without having to solve for transient dynamics. The equilibrium approximation
was achieved by showing a connection between surfactant dynamics and the theory
of optimal transport, a research area at the forefront of modern mathematics, through
a Monge–Ampère equation associated with the surfactant-driven transport. We hope
that this connection, and the methods presented here, will spark the imaginations of
researchers interested in both fundamental understanding and practical work related to
surfactant-induced Marangoni flows carrying solutes.

Supplementary material. Supplementary material and movies are available at https://doi.org/10.1017/jfm.
2024.334.
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Appendix A. Derivation of the nonlinear diffusion equation (2.1)

We consider a liquid layer of density ρ∗, viscosity μ∗ and uniform thickness h∗, sitting on
the horizontal plane z∗ = 0, subject to a restoring force (provided, for example, by a strong
vertical gravitational field g∗) that suppresses out-of-plane deflections of the gas/liquid
interface at z∗ = h∗ (where stars denote dimensional quantities). We therefore disregard
the normal stress condition in the equations below, but provide a condition on the relevant
Bond number that permits this approximation. An insoluble surfactant with concentration
Γ ∗(x∗

‖, t∗) occupies the interface, where x∗
‖ denotes horizontal or in-plane coordinates

such that x∗
‖ ≡ (x∗, y∗). The surfactant lowers surface tension via a linear equation of

state, so that in-plane surface tension gradients are −A∗ ∇∗
‖Γ

∗, with A∗ > 0 being the
surface activity of the surfactant (Manikantan & Squires 2020), ∇∗

‖ ≡ x̂ ∂∗
x + ŷ ∂∗

y , and
where (x̂, ŷ, ẑ) are unit vectors in the three Cartesian coordinate directions. Adopting
lubrication theory, we assumed that the horizontal velocity field u∗

‖(x
∗
‖, z∗, t∗) in the liquid

layer satisfies the Stokes equation μ∗u∗
‖,z∗z∗ = ∇∗

‖p∗ in 0 ≤ z∗ ≤ h∗, where p∗(x∗
‖, t∗)

is the leading-order pressure field. The horizontal volume flux q∗(x∗
‖, t∗) = ∫ h∗

0 u∗
‖ dz∗
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satisfies ∇∗
‖ · q∗ = 0, in order to maintain uniformity of the layer thickness. Integrating

the momentum equation, applying a no-slip boundary condition u∗
‖ = 0 on z∗ = 0, and

the tangential stress condition

μ∗u∗
‖,z∗ = −A∗ ∇∗

‖Γ
∗ + τ ∗ at z∗ = h∗, (A1)

where τ ∗(x∗
‖, t∗) is an imposed shear stress from the gas phase, we obtain

μ∗u∗
‖ = −∇∗

‖p∗z∗(h∗ − z∗/2)+ (τ ∗ − A∗ ∇∗
‖Γ

∗)z∗, yielding the following expressions
for the flux and surface velocity:

μ∗q∗ = −1
3 h

∗3 ∇∗
‖p∗ + 1

2 h
∗2(τ ∗ − A∗ ∇∗

‖Γ
∗), (A2a)

μ∗u∗
s = −1

2 h
∗2 ∇∗

‖p∗ + h∗(τ ∗ − A∗ ∇∗
‖Γ

∗). (A2b)

Material particles at the interface are transported via dx∗
‖/dt∗ = u∗

s (x
∗
‖, t∗).

Using Helmholtz decomposition, we may write τ ∗ = ∇∗
‖ϕ

∗ + ∇∗
‖ × (κ∗ẑ) for some

scalar potentials ϕ∗(x∗
‖, t∗) and κ∗(x∗

‖, t∗), where ∇∗
‖ · τ ∗ = ∇∗2

‖ ϕ
∗ and ∇∗

‖ × τ ∗ =
∇∗2

‖ κ
∗. Then the mass conservation constraint ∇∗

‖ · q∗ = 0 implies

0 = ∇∗2
‖
[− 1

3 h∗3p∗ + 1
2 h∗2(ϕ∗ − A∗Γ ∗)

]
. (A3)

We impose no-flux (Neumann) conditions on the pressure, surfactant concentration
and stress potential ϕ∗ at the periphery of the domain, so that on the boundary,
nb · ∇∗

‖p∗ = nb · ∇∗
‖ϕ

∗ = nb · ∇∗
‖Γ

∗ = 0, where nb is the unit outward normal.
Integrating (A3), the pressure gradient satisfies

h∗ ∇∗
‖p∗ = 3

2 ∇∗
‖
(
ϕ∗ − A∗Γ ∗) . (A4)

Thus the surface velocity field (A2b) becomes

μ∗u∗
s = 1

4 h∗(∇∗
‖ϕ

∗ − A∗ ∇∗
‖Γ

∗)+ h∗ ∇∗
‖ × (κ∗ẑ), (A5)

which can be inserted into the surfactant transport equation

Γ ∗
t + ∇∗

‖ · (u∗
sΓ

∗) = 0 (A6)

(neglecting surface diffusion). We highlight two special cases of the resulting evolution
equation for the surfactant concentration.

First, in the absence of an imposed shear stress (τ ∗ = 0), (A5) and (A6) yield a
generalisation to two dimensions of the nonlinear diffusion equation derived in Jensen
& Halpern (1998):

Γ ∗
t = A∗h∗

4μ∗ ∇∗
‖ · (Γ ∗ ∇∗

‖Γ
∗). (A7)

As assumed previously, the condition for the interface to remain flat is that horizontal
pressure gradients generated by interfacial deflections (through gravity forces, for instance)
dominate those arising from Marangoni effects in (A4), namely that the Bond number is
large:

1 � ρ∗g∗h∗2

A∗�Γ ∗ , (A8)

where�Γ ∗ represents characteristic surfactant concentration differences driving the flow.
To neglect the effects of surface diffusivity D∗ from (A7), the surface Péclet number
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Lagrangian surfactant dynamics in confined domains

should be large, or
D∗μ∗

A∗�Γ ∗ h∗ � 1. (A9)

Second, retaining the imposed shear stress τ∗ but decomposing the surfactant
concentration such that Γ ∗ = Γ̄ ∗ + Γ̂ ∗(x∗

‖, t∗), and linearising about a uniform state

Γ̄ ∗ > 0 (assuming |Γ̂ ∗| � Γ̄ ∗), (A5) and (A6) become

Γ̂ ∗
t − A∗h∗Γ̄ ∗

4μ∗ ∇∗2
‖ Γ̂

∗ = −h∗Γ̄ ∗

4μ∗ ∇∗
‖ · τ ∗. (A10)

The rotational component of the shear stress (associated with κ∗) moves material
particles (via (A2b)) but does not change surface concentration in (A10) (in this linear
approximation). Thus, based on (A5), there is unrestricted transport of material elements
under

dx∗
‖

dt∗
= h∗

μ∗
[∇∗

‖ × (κ∗ẑ)
]∣∣

x∗
‖
, (A11)

a feature that we will exploit to create Suminagashi patterns in Appendix E. In contrast,
shear stress with non-zero divergence acts as a forcing to the transport equation governing
surfactant concentration in (A10), which responds diffusively in the linear approximation.

The governing non-dimensional surfactant transport equation (2.1) of the problems
studied in this paper (see § 2) is based on the dimensional equation (A6). Considering the
initial condition illustrated in figure 1, we non-dimensionalise (A6) using a characteristic
horizontal length scale r∗

1, representing the initial radius of a deposit of exogenous
surfactant. We impose that the liquid height h∗ is small compared to this length scale,
with the ratio given as the small parameter ε = h∗/r∗

1 � 1. We impose that the ratio
of horizontal lengths L∗

1/L
∗
2 is O(1) with respect to ε (this is to ensure that the ratio

of length scales does not affect the asymptotics). Surface tension γ ∗ = γ ∗
0 − A∗Γ ∗ is

non-dimensionalised by γ = (γ ∗ − γ ∗
c )/S

∗, where S∗ = γ ∗
0 − γ ∗

c = A∗Γ ∗
c , with γ ∗

c the
surface tension when Γ ∗ = Γ ∗

c , a characteristic concentration used to non-dimensionalise
all surfactant concentrations, and γ ∗

0 the nominal surface tension when Γ ∗ = 0. The
surface velocity scale is obtained from the viscous–Marangoni stress balance in the
dynamic boundary condition at the liquid surface (A1), which gives characteristic
surface velocity εS∗/μ∗. The scale for the vertical velocity component w∗ is found
from non-dimensionalising the continuity equation ∇ · u (where ∇ and u are the full
three-dimensional nabla operator and velocity field) by the horizontal velocity and length
scales, yielding ε2S∗/μ∗. The time scale is found by combining a horizontal velocity scale
with the length scale r∗

1, yielding μ∗r∗
1/(εS∗). The pressure scale that we use is S∗/(εr∗

1).
In summary, we relate unstarred dimensionless variables to starred dimensional variables
by

x = x∗

r∗
1
, y = y∗

r∗
1
, z = z∗

εr∗
1
, Li = L∗

i
r∗

1
for i = 1, 2,

u = u∗μ∗

εS∗ , v = v∗μ∗

εS∗ , w = w∗μ∗

ε2S∗ , γ = γ ∗ − γ ∗
c

S∗ ,

t = εt∗S∗

μ∗r∗
1

Γ = Γ ∗

Γ ∗
c
, δ = δ∗

Γ ∗
c
, Γ̄ = Γ̄ ∗

Γ ∗
c
, p = p∗εr∗

1
S∗ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A12)
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Using the scales above, we can non-dimensionalise the governing surfactant transport
equation (A7) to obtain (2.1).

Appendix B. Late-time correction for the mapping X

We run the Eulerian and Lagrangian methods for simulating particle trajectories from
t = 0 to some final time tf , where tf needs to be chosen such that it gives an accurate
approximation of the steady state within a certain tolerance. To find such tf , we analyse
the error between the mapping calculated numerically at tf , and an estimate of the mapping
computed theoretically using a linearised version of the governing equation as t → ∞. At
late time, the nonlinear diffusion equation (2.1) can be approximated by the linear diffusion
equation

Γt = Γ̄

4
∇2

xΓ, (B1)

with the no-flux boundary condition (2.2) and where Γ̄ is defined in (2.4). Using
separation of variables, the solution of (B1) can be found analytically as the double series

Γ (x, y, t) =
∞∑

m=0

∞∑
n=0

σmn cos
(

mπx
L1

)
cos

(
nπy
L2

)
e−ωmn(t−tf ), (B2)

for a series of constants σmn, where

ωmn = Γ̄

4

(
m2π2

L2
1

+ n2π2

L2
2

)
. (B3)

Thus the surface velocity field is given by

us = −1
4

∇xΓ =

⎛
⎜⎜⎜⎜⎝

∞∑
m=0

∞∑
n=0

mπσmn

4L1
sin (mπx/L1) cos (nπy/L2) e−ωmn(t−tf )

∞∑
m=0

∞∑
n=0

nπσmn

4L2
cos (mπx/L1) sin (nπy/L2) e−ωmn(t−tf )

⎞
⎟⎟⎟⎟⎠ . (B4)

We integrate this expression from t = tf to t → ∞, giving a linear correction for the
map of particle trajectories:

X cr =

⎛
⎜⎜⎜⎜⎝

∞∑
m=1

∞∑
n=0

mπσmn

4L1ωmn
sin (mπx/L1) cos (nπy/L2)

∞∑
m=0

∞∑
n=1

nπσmn

4L2ωmn
cos (mπx/L1) sin (nπy/L2)

⎞
⎟⎟⎟⎟⎠ . (B5)

Hence the equilibrium mapping between t = 0 and t → ∞ can be approximated by
X ≈ X tf + X cr, where X tf is the mapping solution from t = 0 to a large time tf , and the
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coefficients σmn are given by

σmn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
L1L2

∫ L1

x=0

∫ L2

y=0
Γ (x, y, tf ) dy dx = Γ̄, for m, n = 0,

2
L1L2

∫ L1

x=0

∫ L2

y=0
cos

(
nπy
L2

)
Γ (x, y, tf ) dy dx, for n > 0,m = 0,

2
L1L2

∫ L1

x=0

∫ L2

y=0
cos

(
mπx
L1

)
Γ (x, y, tf ) dy dx, for m > 0, n = 0,

4
L1L2

∫ L1

x=0

∫ L2

y=0
cos

(
mπx
L1

)
cos

(
nπy
L2

)
Γ (x, y, tf ) dy dx, for m, n > 0.

(B6)

It is relevant to our arguments for using the approximation (2.30) to point out that the
late-time mapping approximation (B5) is exactly the gradient of the scalar potential

φcr =
( ∞∑

m=0

∞∑
n=0

σmn

4ωmn
cos (mπx/L1) cos (nπy/L2)

)
− σ00

4ω00
. (B7)

At a large time t = tf , we expect the three leading order terms for Γ (x, y, tf ) to be

Γ (x, y, tf ) ≈ Γ̄ + σ01 cos
(

πy
L2

)
+ σ10 cos

(
πx
L1

)
, (B8)

as higher-order modes are subject to exponential decay over a smaller time scale through
(B3). (Taking tf = 1047.8 with δ = 0.25, for example, we found that the next largest
coefficient σmn was a factor of O(10−3) smaller than either σ01 or σ10, justifying (B8).)
If we write Γa for the concentration at (0, L2) and Γb for the concentration at (L1, L2),
then

Γa ≈ Γ̄ + σ10 − σ01, Γb ≈ Γ̄ − σ10 − σ01, (B9a,b)

which means

σ10 ≈ 1
2
(Γa − Γb), σ01 ≈ 1

2
(2Γ̄ − Γa − Γb). (B10a,b)

The leading-order terms for the correction to the mapping X cr that maps particles from tf
to t → ∞ can therefore be approximated as

X cr ≈

⎛
⎜⎜⎝

L1(Γa − Γb)

2πΓ̄
sin (πx/L1)

L2(2Γ̄ − Γa − Γb)

2πΓ̄
sin (πy/L2)

⎞
⎟⎟⎠ . (B11)

We run a given Eulerian particle-tracking simulation to a time tf where the leading-order
amplitude of the correction is below a pair of chosen tolerance levels [Xtol, Ytol], or in other
words, until ∣∣∣∣L1(Γa − Γb)

2πΓ̄

∣∣∣∣ < Xtol,

∣∣∣∣L2(2Γ̄ − Γa − Γb)

2πΓ̄

∣∣∣∣ < Ytol. (B12a,b)
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Appendix C. Behaviour of solutions to the nonlinear diffusion equation (2.1) near
sharp corners

We wish to understand the behaviour of the two-dimensional nonlinear diffusion equation
(2.1) subject to boundary conditions (2.2), near a sharp corner of a wedge-shaped domain.
We introduce a polar coordinate system (r, θ) with the origin at the corner, with one
boundary located at θ = 0, and the other at θ = Φ. The surfactant concentration Γ must
neither diverge nor go to zero at the corner, so we look for expansions of the form

Γ(m) = Am,0(θ, t)+ Am,1(θ, t) ram,1 + Am,2(θ, t) ram,2 + · · · , (C1)

where 0 < am,1 < am,2 < · · · , and m is an index as we anticipate multiple expansions,
each indexed by a different value of m. The result will be a sum of asymptotic series, a
technique used to derive a corner expansion for surfactant-induced flow in Mcnair, Jensen
& Landel (2022). Substituting an expansion for a given m into (2.1), we obtain

4
(
∂Am,0

∂t
+ ram,1

∂Am,1

∂t
+ ram,2

∂Am,2

∂t
+ · · ·

)

= 1
2r2

∂2A2
m,0

∂θ2 + a2
m,1Am,0Am,1ram,1−2 + ram,1−2 ∂2

∂θ2 (Am,0Am,1)

+ 1
2

r2am,1−2 ∂
2A2

m,1

∂θ2 + A2
m,1(2am,1)

2r2am,1−2 + ram,2−2 ∂2

∂θ2 (Am,0Am,2)

+ a2
m,2Am,0Am,2ram,2−2 + · · · . (C2)

As am,1 > 0, the leading-order equation is ∂2A2
m,0/∂θ

2 = 0, which, when solved subject
to boundary conditions ∂Am,0/∂θ = 0 (from (2.2)), gives Am,0 = Am,0(t). The balance at
the next order is

4
∂Am,0

∂t
= a2

m,1Am,0Am,1ram,1−2 + ram,1−2 ∂2

∂θ2 (Am,0Am,1). (C3)

One possible exponent, which we index with m = 0, in the expansion is a0,1 = 2, yielding
an expansion driven by ∂A0,0/∂t,

Γ(0) = A0,0(t)+ ∂A0,0/∂t
A0,0

r2 + O(r4), (C4)

representing a purely radial flow that drives surfactant into or out of the corner, leading to
changes in the corner concentration A0,0(t). The fact that the series goes in powers of r2n

can be obtained by examining (C2) at the next order.
We now look for other possible expansions indexed by m = 1, 2, 3, . . ., and to

avoid duplication of the primary flow contribution (C4), we set A1,0 = A2,0 = · · · = 0.
(When Φ = π/2, again assuming a0,1 = 2, (C3) also possesses a homogeneous solution
A0,1 = f0,1(t) cos(2θ), representing a stagnation point flow in the corner, with strength
f0,1(t) determined by conditions far from the corner.) More generally, (C3) possesses
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homogeneous solutions satisfying, for m = 1, 2, . . .,

a2
m,1Am,1 + ∂2

∂θ2 (Am,1) = 0. (C5)

This means that Am,1 = fm,1(t) cos (am,1θ), after applying ∂Am,1/∂θ = 0 at θ = 0.
Applying ∂Am,1/∂θ = 0 at θ = Φ means that

am,1 = mπ

Φ
, (C6)

for any integer m, and this provides an infinite set of possible exponents. (WhenΦ = π/2,
(C6) with m = 1 recovers the stagnation point flow cited above with amplitude f0,1.) By
examining the next-order balance in (C2), it must also be the case that am,2 = mπ/Φ + 2,
and so on. Therefore, the full solution is given by the sum of asymptotic series

Γ = Γ(0) + Γ(1) + Γ(2) + Γ(3) + · · · , (C7)

where Γ(0) is given by (C4), and

Γ(1) = f1,1(t) cos (πθ/Φ) rπ/Φ + A1,2(θ, t) rπ/Φ+2 + A1,3(θ, t) rπ/Φ+4 + · · · , (C8)

Γ(2) = f2,1(t) cos (2πθ/Φ) r2π/Φ + A2,2(θ, t) r2π/Φ+2 + A2,3(θ, t) r2π/Φ+4 + · · · ,
(C9)

Γ(3) = f3,1(t) cos (3πθ/Φ) r3π/Φ + A3,2(θ, t) r3π/Φ+2 + A3,3(θ, t) r3π/Φ+4 + · · · ,
(C10)

and so on. The series can be summarised as

Γ (r, θ, t) =
∞∑

n=0

∞∑
m=0

Am,n(θ, t) rmπ/Φ+2n. (C11)

The velocity field is us = −∇xΓ/4, so as r → 0, it is a combination of a radial and a
stagnation point flow:

us ≈ r̂
(

2
∂A0,0/∂t

A0,0
r + π

4Φ
f1,1(t) cos

(
πθ

Φ

)
r(π/Φ)−1

)
− θ̂ f1,1(t)

π

4Φ
sin
(

πθ

Φ

)
r(π/Φ)−1.

(C12)

For internal angles in a convex domain (when Φ < π), the velocity is proportional to r to
a positive power, so it goes to zero at the corner. In particular, when Φ = π/2, a particle
on the boundary θ = 0 or θ = π/2 has an inward radial velocity bounded above by Fr for
some finite F > 0. A particle starting at r = r0 at t = 0 will then lie in r > r0 exp(−Ft)
for t > 0, never reaching the corner in finite time, supporting the use of (2.25a,b). For
wedge anglesΦ < π/2, the radial flow is dominant as r → 0, and (2.25a,b) again applies.
For wedge angles satisfying Φ ∈ (π/2,π), the stagnation point flow dominates as r → 0.
In this case, although the velocity field along a boundary vanishes as r → 0, a sustained
inward flow dr/dt = −Fr(π/Φ)−1 for constant F > 0 has the potential to drive particles
to the corner in finite time, with r = [F(t0 − t)(2 − (π/Φ))]1/(2−(π/Φ)) as t → t0 for
some t0, calling into question the validity of (2.25a,b) in this case. For even larger wedge
angles (Φ > π), regularity of the velocity field demands f1,1 = 0. This highlights the
influence of any smoothing over a length scale of order δ � 1 that might be applied to
computations of flows around such corners in non-convex domains, where velocities of
magnitude 1/δ1−(π/Φ) can be anticipated.
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Appendix D. The numerical scheme to solve the Monge–Ampère equation

D.1. Outline of the scheme
We approximate (2.33) and (2.32) on an (M + 2)× (N + 2) rectangular grid. The points
on the four boundaries we consider as known, as they can be expressed as functions of the
interior points by the boundary conditions using one-sided second-order differences. This
leaves us with an M × N grid of unknowns. We create an MN × 1 vector of the values
of the solution φ at these grid points by stacking the rows of the grid of unknowns into a
column vector φ, starting from the top and proceeding downwards. So, for example, φi+N
refers to the grid point directly below φi, and φi+1 refers to the grid point directly to the
right of φi unless i = pN for some integer p.

We approximate (2.33) using second-order differences at the ith grid point as

fi(φ) = (φi+1 − 2φi + φi−1)(φi+N − 2φi + φi−N)

�x2�y2

−
(−φi+N+1 − φi−N−1 + φi+N−1 + φi−N+1

4�x�y

)2

− Gi = 0, (D1)

which we define to be the ith component of the vector f (φ). Here, �x and �y refer to the
grid spacing in the x0 and y0 coordinate directions, respectively, and we define

G = 1 − βj

(
1 − Γ0(x0, y0)

Γ̄

)
. (D2)

The kth iteration of the Newton scheme for the vector φ of the values of the function φ
approximated at the grid points is

φk = φk−1 − (∇φf (φk−1)
)−1f (φk−1), (D3)

where the Jacobian ∇φ f (φ) is the sparse matrix of derivatives of the components fi with
respect to solution at each grid point φj, so that the element ∂fi/∂φj is zero, except for nine
diagonals given by

∂fi
∂φi

= 2 (4φi − φi+1 − φi−1 − φi+N − φi−N)

�x2�y2 , (D4a)

∂fi
∂φi+1

= φi+N − 2φi + φi−N

�y2�x2 , (D4b)

∂fi
∂φi−1

= φi+N − 2φi + φi−N

�y2�x2 , (D4c)

∂fi
∂φi+N

= φi+1 − 2φi + φi−1

�y2�x2 , (D4d)

∂fi
∂φi−N

= φi+1 − 2φi + φi−1

�y2�x2 , (D4e)

∂fi
∂φi+N+1

= −φi+N+1 − φi−N−1 + φi+N−1 + φi−N+1

8�x2�y2 , (D4f )
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∂fi
∂φi−N−1

= −φi+N+1 − φi−N−1 + φi+N−1 + φi−N+1

8�x2�y2 , (D4g)

∂fi
∂φi+N−1

= −−φi+N+1 − φi−N−1 + φi+N−1 + φi−N+1

8�x2�y2 , (D4h)

∂fi
∂φi−N+1

= −−φi+N+1 − φi−N−1 + φi+N−1 + φi−N+1

8�x2�y2 . (D4i)

The definitions (D1) and (D4) are valid for every interior point of the M × N grid of
unknowns; however, for the values i = 1 to N, i = (M − 1)N + 1 to MN, ( p − 1)N +
1 and pn for every integer 1 < p < M, the elements of f and the Jacobian are slightly
different to this as they incorporate the boundary conditions, but we omit them here for
conciseness. We iterate (D3) until the sum of absolute differences of the components of φ
from one iteration to the next falls below a small tolerance value, which we choose to be
10−6.

We use this numerical method to perform the calculation using the method presented
in § 2.3.2 for a relatively coarse grid until βJ = 1, and then increase the refinement by
interpolating the solution onto a more refined grid, and re-solving (2.33) and (2.32) with
βj = 1 (a multi-grid method). We repeat this second process until we have a sufficiently
refined solution.

D.2. Convergence of the numerical scheme
Figure 11 demonstrates the convergence of the numerical scheme presented in detail in
§ D.1 for the solution to the problem set out in § 2.3.2 with δ = 0.25, 0.05 and 0.002. For
the purpose of illustration, we have picked a point (x0, y0) = (5, 5) and displayed the error
between an approximation for the correct solution and solutions for φ(5, 5), X = φx0(5, 5)
and Y = φy0(5, 5) at various values for a uniformly spaced grid with h = �x = �y. The
approximation for the correct solution is found by selecting h ≡ hend smaller than all of the
other values of h used, and using this as the grid spacing to solve for φ(5, 5) ≡ φend(5, 5),
X(5, 5) = φx0(5, 5) ≡ Xend(5, 5) and Y(5, 5) = φy0(5, 5) ≡ yend(5, 5), for each value
of δ.

The solutions for all three values in figure 11 converge approximately with slope 2 on
the log scale indicated by a dotted black line, which is expected for our second-order
finite-difference scheme. The graphs are only approximately showing this convergence,
as there are numerous sources of noise, e.g. the approximation that we have used
for the correct solution. Also, the code stops iterating once the sum of the absolute
difference of each grid point in a solution between one iteration and the next falls below
a certain small tolerance value. The exact locations of the edges of the deposits do not
coincide precisely with grid points, and this is a further source of error as the initial
conditions (and therefore the right-hand side of (2.31)) for differently discretised grids are
effectively slightly different. The solutions for X and Y also involve calculating a further
derivative using a second-order finite-difference approximation, introducing further error.
However, the dominant error is clearly the square of the discretisation parameter h used
in the approximation (2.31). Solutions with δ = 0.002 are significantly more expensive
computationally, which is why the curves terminate at larger values of h than the other
curves. The fact that we have used a larger value of h to calculate φend(5, 5) and its
derivatives for δ = 0.002 might also partly explain why some of these curves are noisier
than for larger values of δ.
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h2

|X(5, 5) – Xend(5, 5)|

|Y(5, 5) – Yend(5, 5)|

|φ(5, 5) – φend(5, 5)|

Figure 11. Graph showing the convergence of the finite-difference approximation to the solution of the
Monge–Ampère equation (2.31). To illustrate convergence, we choose a point on the Lagrangian domain
(x0, y0) = (5, 5) and calculate the solution for the three-deposit problem outlined in § 2.3.2 with δ = 0.25,
0.05 and 0.002 (each δ is assigned a different line style – see legend) for multiple values of a uniform grid
spacing h (data points are shown as circles). A set of values for each δ, which we call φend(5, 5), Xend(5, 5)
and Yend(5, 5), is calculated for a discretisation parameter hend that is smaller than the rest of the values of
h used. We use this solution as our approximation to the correct solution. The curves show the difference
between X(5, 5) (blue), Y(5, 5) (orange) and φ(5, 5) (purple), and the approximated correct solution, showing
convergence at a rate of order h2 (dotted black line).

Appendix E. Simulating Suminagashi patterns

We create a Suminagashi pattern using successive solutions of the Monge–Ampère
equation. As described in the Introduction (§ 1), the creation of Suminagashi art patterns
consists of repeated deposition of an ink–surfactant mixture onto a liquid surface, followed
by the artist blowing on the surface between ink depositions. We simulate this procedure
using the Monge–Ampère equation (2.31) to simulate the final locations of ink depositions
in the spreading steps, and a divergence-free map to create the effects of the blowing steps.
We show in (A11) how the rotational component of a surface shear stress can redistribute
surfactant without changing its surface concentration.

The physical assumptions that we consider in this study for the Monge–Ampère method
are appropriate for Suminagashi. Exploiting conditions (A8) and (A9): for a typical 1 cm
layer of water with a surface tension reduction of 1–10 g s−2, we find that the Bond number
is large and of the order of 102–103; surface diffusivity for most surfactants is of the
order of D∗ = 10−10–10−9 m2 s−1 (Chang & Franses 1995), which leads to a very large
surface Péclet number of the order of 107–109; furthermore, Suminagashi patterns can be
transferred to paper within a minute, during which any boundary thickens under molecular
(surface) diffusivity by less than 0.3 mm.

E.1. Spreading steps
Each spreading step starts from initial conditions (2.7) with F(x0, y0) = Cq(x1, y1, 0.5, 1 −
δ), and by imposing L1 = 13, L2 = 11, so that this is now a single deposit of exogenous
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surfactant spreading into endogenous surfactant. For the first spreading step, we set
δ = 0.01, and solve (2.31) and (2.32). We store the final location of the boundary of this
initial deposit, which we call C1,(1), where the first index labels each deposit edge, and
the second index refers to how many total deposits have been released. Next, we set up a
new problem by replacing δ by Γ̄ from the previous problem, and we shift (x3, y3) to a
displaced position (using an algorithm described below as (E4)), and solve again (2.31) and
(2.32), finding the edge of the new deposit, and the new locations of the edges of previously
released deposits, repeating the above process J times. This process is summarised below.

E.2. Summary of the algorithm for the spreading steps
For j = 1 to J: solve (2.31) and (2.32) subject to initial conditions (2.7) with F(x0, y0) =
Cq(x1, y1, 0.5, 1 − δ), using the solution method outlined in § 2.3.2 with L1 = 13, L2 = 11,
Γ2 = Γ3 = δ, r1 = 0.5, r2 = 0, r3 = 0, with (x1, y1) = (x1,j, y1,j) and δ = δj, where this
last quantity is found using

δj = Γ̄j−1, Γ̄0 = 0.05, (E1)

and where at each step Γ̄j is computed using (2.4). We find all curves at step j by

Ci,( j+1) = X j(Ci,( j)) for i = 1, 2, . . . , j, (E2)

where X j is the solution of (2.31) and (2.32) at step j, and one new evolving curve is
introduced at each step j by

Cj,( j) = {(x, y) | (x − x1,j)
2 + (y − y1,j)

2 = 0.5}. (E3)

The centres of the new deposits are chosen such that

(x1,j+1, y1,j+1) = (xc,j − 0.75, yc,j − 0.2), where (xc,j, yc,j) = max
x
(Cj,( j)), (E4)

until maxx(Cj,( j)) > 12.9, and then

(x1,j+1, y1,j+1) = (xc,j − 0.05, yc,j + 0.75), where (xc,j, yc,j) = min
y
(Cj,( j)), (E5)

with
(x1,1, y1,1) = (3.5, 8.5). (E6)

We vary the locations of the centres of the new deposits, as we have observed Suminagashi
artists to do this. The final picture is created by plotting Ci,(J+1) for all i = 1 to J.

E.3. Blowing steps
Between some of the spreading steps, we introduce blowing steps, which are computed by
finding a divergence-free map X b by time-stepping

d
dt

X b =
∞∑

ns=1

Ans

⎛
⎜⎝

nsπ

11
sin
(nsπx

13

)
cos

(nsπy
11

)
−nsπ

13
cos

(nsπx
13

)
sin
(nsπy

11

)
⎞
⎟⎠ , (E7)

for some integer ns, between t = 0 and some ts, where Ans are the amplitudes of the
modes, and where X b = [x0, y0] at t = 0. The resulting map X b is divergence-free (such
that concentrations do not change) and satisfies the required boundary conditions. The
functions on the right-hand side of (E7) form a basis, such that any divergence-free map
can be obtained by choosing a set of amplitudes Ans and some choice of ts. The new
location of deposit edge i, after spreading step j, is given by X b(Ci,( j)).
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Figure 12. Graphs showing the normalised absolute error (2.34) for several different values of δ. The initial
conditions are (2.7) and (2.9), with Cq replaced by Cc defined in (F1) except for the first solution, which is taken
from Eul[0.002] and MA[0.002] and has a quadratic initial profile. (a) The logarithm of the Euclidean distance
between the predictions of final location, for each initial particle location from a 221 × 261 grid, represented as
a data point. The whiskers show 1.5 times the interquartile range above and below the quartiles, and particles
outside this range are considered outliers and plotted as a cloud of points in blue, with the 90th percentile
plotted as an orange line. (b) The same data as in (a), plotted in the form of a cumulative distribution function
(CDF), with δ increasing in the direction of the arrow. Horizontal dashed lines indicate the median, the 75th
percentile and the 90th percentile, respectively.

E.4. Sequential depositions: the Suminagashi patterns
To illustrate the utility of the Monge–Ampère approximation, a solution of the
Suminagashi algorithm is presented in figure 10. Here, for (E7), we choose Ans = 0 for
every ns except Ns = 4, and we choose A4 = 1. We run 20 spreading steps, with a blowing
step imposed after every four spreading steps with ts = 0.15. The creation of figure 10( f )
is shown after four spreading steps, after four spreading steps and one blowing step, after
12 spreading steps, after 12 spreading steps and three blowing steps, and finally after 20
spreading steps before the final blowing step. The final result is given in a monochrome
colour scheme in figure 10(e).

Appendix F. Difference in the prediction between Eulerian particle tracking and
Monge–Ampère for different values of δ

Figure 12 shows a series of box and whisker plots of the normalised absolute error (2.34),
measuring the Euclidean distance between predictions for final particle location between
Monge–Ampère and Eulerian particle-tracking, for multiple values of δ. Except for the
solution with δ = 0.002, which has quadratic initial conditions (2.7) and (2.9), the rest of
the solutions have cosine-shaped exogenous deposit profiles such that

Cc(x0; xc, r, Γ0,c − δ) =

⎧⎪⎨
⎪⎩
(
Γ0,c − δ

2

)(
1 + cos

(
π(|x0 − xc|2)

r2

))
, |x0 − xc| ≤ r,

0, |x0 − xc| > r,
(F1)

replaces Cq(x0; xc, r, Γ0,c − δ) in (2.7) and (2.9). The shape of the exogenous deposit
profiles does not have a significant effect on results as shown in figure S7 of § S5 of the
supplementary material, but we change the profile shape here for the sake of variety.
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For moderate δ, the error between different methods remains small, but it increases
rapidly as δ tends to zero. However, for δ as small as 0.075, the normalised absolute error
is below 0.01 for 75 % of particles, and even for δ = 0.002, the error is below 0.05 for
90 % of particles.
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