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Abstract—This article presents a novel numerical approach
aimed at finding a distribution network expansion plan that pre-
vents future congestion and voltage issues. Forecasted duration
and intensity of thermal and voltage violation events are used
to determine a pool of potential candidates for infrastructure
(i.e., line/cable) upgrade, voltage regulator, and energy storage
system installations. This is complemented with an algorithm to
obtain the minimum-cost list of these candidates that solves all
constraint violation events using binary linear programming. This
approach is validated using the modified IEEE 33-bus network
and a real 1171-bus feeder in the West of Ireland through
numerous high-resolution quasi-static time series simulations.
Three pools of candidates and three cost projections were con-
sidered to explore the method’s sensitivity to different scenarios.
Results show that the proposed methodology is a versatile tool
for designers, planners and policymakers. The methodology can
ensure that the investment plan solves all forecasted violation
events. Nevertheless, we show that accepting a marginal degree
of violations may be admissible and would significantly reduce
investment costs.

Index Terms—Battery energy systems, distribution network
expansion planning, flexibility, power distribution lines, power
distribution planning.

I. INTRODUCTION

THERE is growing attention from industry and the re-
search community around the evolution of electricity dis-

tribution networks. Expected industrial and residential growth,
inclusion of new loads resulting from the electrification of
heat and transport systems, and inclusion of distributed energy
resources (DER) [1], [2] represent a challenge for the planning
of future grids. Distribution network planning is shifting away
from a traditionally passive approach (i.e., waiting for issues
to manifest, and reacting with infrastructure upgrades (IU) and
voltage regulators (VR) to solve them) [3]. Different forms of
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flexibility like energy storage systems (ESS) are proposed as
non-wire alternatives (NWA) to address these challenges.

In this context, this manuscript takes the perspective of the
system operator planning its grids to prevent future conges-
tion and voltage issues resulting from increasing load and
generation connections. Traditionally, system operators carry
out demand projection studies that help them design grid
expansion plans consisting of IUs (i.e., conductor resizing,
adding parallel branches, etc.) and VRs [4], [5]. This way,
the grid capacity increases, as well as the potential to connect
additional load and generation resources. Alternatively, grid-
scale flexibility resources (e.g., ESS) can act as flexible loads
or generators that allow the grid to cope with excess demand
or supply in certain operational moments - reducing the
probability of constraint violation events [6].

The calculation, quantification and definition of the set of
investments that prepare the grid for the future are also known
as distribution network expansion planning (DNEP) [7]. This
process is challenging, because distribution networks have less
resource aggregation and present more variability than their
transmission equivalent (i.e., distribution networks have fewer
aggregated customers, which makes demand and generation
states harder to predict compared to the transmission level).
Furthermore, distribution networks have many more direct
customer connections than the transmission system. Thus,
the applicability of transmission network-inspired optimisation
algorithms to the DNEP problem is hampered by algorithmic
considerations, such as computational intensity [8].

The large body of works on DNEP focuses on finding
mathematical approximations to a complex and intractable
problem (non-linear and stochastic). An inherently mixed-
integer non-linear programming (MINLP) problem is usually
reformulated as mixed-integer linear programming (MILP)
like [9], or second order cone programming (SOCP) as [10].
Existing approaches for the DNEP problem in the literature in-
volve the definition of one or multiple objective functions (e.g.,
minimising investments, emissions, etc.), a set of constraints
(e.g., network constraints, reliability, etc.), a temporal model
(e.g., dynamic, static, or pseudo-dynamic), a network model,
and a solution algorithm (e.g., mathematical, evolutionary,
hybrid, artificial intelligent, etc.) [7]. While these approaches
can consider stochastic or deterministic parameters, integer or
continuous variables, they always result in a non-convex prob-
lem that is hard to solve exactly in reasonable time [8]. These
approaches must decide from a very large set of potential
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candidates (search space), requiring relaxations and scenario
reduction approaches that can potentially misrepresent the
complexity of distribution network applications.

This paper proposes a novel approach that can overcome
such computational drawbacks, relying on forecasts of future
congestion and voltage issues. The information on the con-
straint violation events is leveraged to design a binary linear
programming (BLP) problem which accounts for the remote
influence that the different candidate installations present on
such events. Using this tool, grid operators, policymakers
and designers can extract a list of investment candidates
that together address future technical issues of a distribution
network at the minimum cost. Furthermore, this method al-
lows the evaluation of multiple pools of candidates in short
computational time, making it a practical tool to complement
other planning methods. Ultimately, to understand the potential
trade-offs between the proposed approach and the common
industry practices, they are compared from a technical and
economic point of view through extensive simulation work.
The main contributions of this work are as follows.

1) Presenting a novel methodology for the location and
sizing of IU, VR, and ESS candidates applicable to ra-
dial distribution networks effectively reducing the search
space. This is based on the duration and intensity of
forecasted constraint violation events and the physics of
electricity networks.

2) Offering an accessible/practical BLP tool for system
operators, policy-makers, and designers to decide among
these potential candidates from a technical point of view,
and to translate them into a minimum-cost investment
plan (i.e., a DNEP). This is validated through extensive
simulation work.

A comparison with selected articles from the literature
showing the benefits of the proposed method in terms of
computational intensity is ultimately followed by a discussion
on the opportunities, challenges, scalability, and applicability
of the proposed approach.

The paper is structured as follows: Section II presents
the state of the art and limitations of the current practices
and research on the DNEP problem. This is followed by
Section III where the event-informed numerical method is
formulated. A working example is presented with results in
Section IV and Section V presents details of the simulation-
based validation process. Conclusions, recommendations, and
future work opportunities are discussed in Section VI.

II. DISTRIBUTION NETWORK EXPANSION PLANNING

This section presents the resources available in the literature
and currently used by system operators to address congestion
and voltage issues in distribution networks. A selection of
recent works dedicated to solving the DNEP is also presented.

A. The traditional approach

1) Infrastructure upgrades: the most common tool used
in distribution network planning for congestion issues is the
reinforcement of problematic lines (i.e., changing the existing
conductor size or including an additional parallel branch).

This is an immediate solution for congestion issues as the
current-carrying capacity of the new installation is designed
to withstand the forecasted congestion. Additionally, voltage
issues are marginally mitigated thanks to the reduction in the
voltage drop due to lower resistances associated with the larger
cross-section conductor/parallel branch. However, upgrading
the infrastructure can be costly depending on the situation:
it may require changes in the mechanical infrastructure (e.g.,
poles and mechanical supports) [11] or the refurbishing of
underground infrastructure [12].

Obtaining planning permission to make changes in distribu-
tion networks is becoming increasingly difficult, especially in
urban settings. Right of way limited access, lack of community
acceptance and externalities result in long waiting times for
permitting and approvals. This presents a barrier that is cur-
rently delaying necessary IUs in already-congested distribution
networks [13], [14].

2) Installing voltage regulators: voltage issues are com-
monly addressed by installing VR (e.g., on-load tap-changing
(OLTC) regulators) in critical parts of the distribution network.
These can ramp up or down the voltage as a response to a
reference going over/under a predefined value [15]. Observ-
ability is a limitation of VR which can adjust voltage based
on a local voltage measurement performed on the load side
of the instrument. These underperform when DER production
exceeds local demand because the voltage is increased if local
energy is exported. The work in [2] shows that in some cases
VRs can exacerbate over-voltage in portions of a network due
to high DER production at the end of a feeder being mistaken
for a voltage drop at the head of the feeder.

3) Changing the feeder voltage rating: when a combina-
tion of IU and VR is not considered a viable solution, the
alternative is increasing the voltage rating on all portions of
the distribution feeder. An increased voltage rating simulta-
neously reduces the current through the lines and addresses
voltage issues. However, it is much more costly and carries
significant technical and planning challenges (e.g., change in
mechanical structures, isolation ratings, rating of medium/low
voltage (MV/LV) transformers, adapting protection systems,
etc). Moreover, this is only possible for MV networks because
the voltage level in LV networks is already bound by the
standard. A more operational approach is called conserva-
tion voltage reduction, when the voltage of the network is
altered temporarily during operation to reduce peak demand
and losses [16]. Feeder voltage rating change will not be
considered in this study.

4) Distributed generation as a solution: numerous stud-
ies have considered the possibility of including distributed
generation (DG) as a solution for congestion and voltage
issues, this under the assumption that it is possible to match
demand and generation locally. The DNEP has been formu-
lated accordingly, to include DG installations as candidates.
Nonetheless, as discussed in [17], DG installations are not a
decision variable for the system operator; instead, DG uptake
responds to many individual customer decisions. In light of
this, DG in distribution networks will not be considered as
a candidate in our problem, but rather as part of the origins
of the problem: in the absence of flexibility to match these
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stochastic demand and generation resources, DG installations
are expected to create constraint violation events.

B. Flexibility as an alternative

Alternative approaches to tackle future issues are referred to
as NWAs. The premise is that controllable resources can curb
peak load and generation to alleviate constrained networks
[18]. This, in turn, serves as a means to defer otherwise nec-
essary IU and VR installations and can represent an important
economic benefit [19]. While IU and VR can be costly [20],
they are still the current industry standard registered in grid
codes globally [21], [22]. As discussed before, some of the IU
candidates may be unfeasible due to non-technical restrictions
(e.g., lack of community acceptance), which highlights the
relevance of including NWAs as expansion candidates.

1) Demand-side management: demand-side management is
offered by users that have the capability to defer their energy
usage. However, asking users to reduce their consumption
in peak-usage moments may be an unreliable solution as
discussed in [23], because the commitment to do so is not
firm. This means that in practical terms, demand flexibility is
less relevant for system operators because of its unreliability,
and is therefore not considered in this study. Nonetheless,
the work in [24] presents a decision-support tool including
demand flexibility for DNEP.

2) Energy storage systems: energy storage owned by the
system operator can provide flexibility to alleviate congestion
and reduce the incidence of voltage drop/increases. It can store
excess energy at critical points of the grid when there are
problematic flows and release it when the grid is not under
stress. This purpose for ESS is referred to as load levelling,
peak shaving and load shifting [25].

Other potential planning candidates include: (1) low-cost
options (e.g., load transfers, phase balancing, etc), (2) energy
efficiency initiatives, (3) scheduling charge of electric vehicles,
(4) scheduling charge and discharge of vehicles with vehicle-
to-grid capabilities (5) significant topology changes (e.g.,
transferring a section of the network so it is connected to a
different feeder). In practice, the low-cost options are always
explored before proceeding with a more investment-intensive
approach, as discussed in [26]. Options 3 and 4 above can
be modelled and included as part of the problem formulation,
similarly to ESS candidates but smaller, with some scaling
challenges given an increased size of the problem as in [27].
In contrast, options 2 and 5 are not applicable to our proposed
method, and are considered out of scope.

C. Solutions for the DNEP

As discussed before, existing approaches for DNEP address
the problem using numerous definitions of objective functions,
constraints, temporal and network models, parameters, solu-
tion algorithms, as well as relaxations and scenario reduction
approaches. This results in a large number of research articles
on this topic [7].

Notable methods for DNEP are presented in [28], [29],
where authors model grid constraints using a modified aug-
mented relaxed optimal power flow approach that convexifies

the classical AC optimal power flow. Another approach by
the authors in [6] is to use a pre-processing tool for scenario
reduction due to the high computational cost of considering
a larger range of operational states. A common way to solve
the problem is also through a linearised DC power flow [30].
The work in [31] proposes an enhanced MILP model for
multistage DNEP considering reliability-related costs. [32]
proposes an approach for DNEP that involves relaxing the
N − 1 design criterion to alleviate the computational burden
of the problem. Authors in [33] include reliability assessment
as a constraint to cast the DNEP as an instance of MILP
for mesh-designed but radially-operated distribution networks.
[34] characterises uncertain demand and generation through
polyhedral uncertainty sets, and convexifies the AC power flow
(ACPF) to solve the optimisation problem.

A review of DNEP articles is presented in [7]. Since these
rely on some form of relaxation or approximation, they offer
either a non-global optimal solution, or a mathematical solu-
tion to an overly simplified problem [35]. Similar arguments
are presented in [36], where the performances of classical
and meta-heuristic models for reconfiguration of distribution
systems are compared.

D. Gaps and limitations

On the one hand, current DNEP approaches in the literature
present important challenges in terms of computational inten-
sity (with run times of hours to days, that grow exponentially
with the size of the network [28–34]). System operators may
prove reluctant to apply these methods because of the large
number of networks to study, their size, and the amount of
operational scenarios to analyse. Furthermore, methods that re-
quire relaxation and scenario reduction approaches may not be
workable for the DNEP problem because of the increased un-
certainty from lower levels of aggregation. On the other hand,
the work in [35] argues that existing transmission-inspired
MILP optimisation methods lack guaranteed optimality, or
result in optimality within an overly simplified search space,
making them less rigorous (i.e., providing mathematical, but
not engineering solutions).

These approaches must decide from a large set of potential
candidates, meaning that the search mechanism must cover
a significant search space sometimes making the problem
intractable. Some research offers to make the problem feasible
by reducing this search space, the work in [37] reduces the
search space of a transmission expansion plan problem through
an iterative DC load flow. The method proposed in this paper
can be classified as a search space reduction method because
our work reduces the search space to a few candidates for
each potential technology. Consequently, it can complement
existing approaches as part of a pool of decision-support tools
for system operators.

III. PROPOSED METHOD

This section presents the proposed numerical approach. The
outcome of a study of this nature is a DNEP combining
IU, VR, and ESS (and their characteristics). This allows the
future operation of the grid without congestion and voltage
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Fig. 1: Overview of the proposed methodology. Using the topology and
forecasted demand and generation of a target year, it is possible to find
candidates that solve all congestion and voltage issues at the minimum cost.

issues derived from forecasted demand and generation. Fig.
1 presents an overview of the steps to define and prioritise
candidates, to select the minimum-cost plan, and to validate
if the future topology solves forecasted events.

A. Preliminary identification of constraint violation events

Forecasted consumption and generation patterns in distri-
bution networks can show which portions of the grid require
reinforcement through IU or VR, or can benefit from grid-
scale ESS. The first step requires identifying and prioritising
the constraint violation events: this gives an idea of the relative
urgency of certain upgrades/installations over others, as well as
clues on their location and size. If consumption and generation
patterns are appropriately forecasted for future scenarios, it is
possible through simulation work to determine which portions
of the network may present congestion and voltage issues.

An ACPF simulation is proposed to determine voltage
profiles and power flows for the studied network. Values
resulting from the ACPF can be normalised as a percentage of
a limit being breached: for the case of voltage, the tolerable
voltage drop/increase given by the local regulation authority
(often ±2%, ±5% or ±10% voltage deviations for MV networks
[38]). Similarly, power flows are normalised as a percentage of
the line loading rating of the existing line to represent thermal
limits. Given a grid with a set of lines L and a set of nodes N
connected, voltage deviation ∆Vn,t in node n can be expressed
as a percentage ∆V %

n,t of the predefined limit ∆V LIM
n for

each time step t of the examined time window T , using (1).
Similarly, power flow Sl,t for all time steps t in each line l can
be expressed as a percentage S%

l,t of the thermal rating of the
conductor SLIM

l using (2). Following this notation, we define
constraint violation event as any timestep t in which either a
thermal or voltage limit is exceeded anywhere in the network
(i.e., S%

l,t or ∆V %
n,t are larger than 100%).

∆V %
n,t = (∆Vn,t/∆V LIM

n )× 100 ;∀ t ∈ T , n ∈ N (1)

S%
l,t = (Sl,t/S

LIM
l )× 100 ; ∀ t ∈ T , l ∈ L (2)

It is important to differentiate violation events in terms
of origin. A radial distribution network congested due to
excess demand means that power flows are going towards
the customer side, creating under-voltage issues at the end of

the feeder. If the congestion occurs due to excess generation,
power flows are going towards the head of the feeder, creating
over-voltage issues. Thus, a candidate’s (i.e., IU, VR or ESS)
influence on these events will depend on its origin: ESS for
example reduces congestion towards the head of the feeder
when charged with excess generation from the end of the
feeder. Any congestion or voltage issue is assumed to be
different if they respond to an excess in demand or generation.
In line with this, it is useful to define congestion as demand-
caused Sdem

l,t or generation-caused Sgen
l,t .

The intensity and duration of all violation events (i.e.,
∆V %

i or S%
l are higher than 100%) can be calculated. It is

proposed that any potential IU, VR or ESS, or combination of
these, must address all the events either locally or remotely.
While there is an entire range of potential constraints at the
distribution level (e.g., unbalance, harmonics, fault constraints,
etc.), this work focuses on voltage and thermal limits to define
“constraint violation events”.

The preliminary calculations from the ACPF can be time-
consuming if a large enough amount of forecasted demand-
generation scenarios is considered. However, the literature
offers different approaches to reduce this computational time
[39], [40]. Moreover, this preliminary simulation must be run
only once to assess violation events: once candidates are
sized based on this initial simulation, the decision-making
process (represented by the BLP solution) requires a very
small computational cost relative to other methods in the
literature for the DNEP problem as shown below.

B. Numerical approach

It is possible to use the duration and intensity of events to
size, locate and prioritise candidate solutions. This is done
by calculating each candidate’s local and remote influence
for voltage and congestion. The proposed method comple-
ments existing decision support tools used by modern system
operators, including transmission-like methods, other DNEP
approaches, network reconfiguration studies, etc. Moreover, it
is a practical mechanism that incorporates traditional design
practices, and ultimately represents a straightforward imple-
mentation that is expected to be of great interest for industry.
Its formulation is presented below.

1) Locating and sizing candidates: defining which com-
bination of IUs solves the congestion issues is a trivial
calculation. The new current-carrying capacity (i.e., new limit)
SLIM
l,new of a line l part of the subset of problematic lines Lp

should be above the maximum violation identified previously,
this can be calculated using (3).

SLIM
l,new = max

∀t∈T
{S%

l,t} ∗ S
LIM
l ; ∀ l ∈ Lp (3)

This can be complemented by locating VRs in one or more
nodes, part of the subset Nq with voltage violation events. VRs
can alleviate voltage events up to the range of the regulation
equipment (typically ±10% of the nominal voltage) on the
subset of nodes Nν part of its area of influence. These reg-
ulators must have increased observability (i.e., the possibility
to sense voltage drop/increase in the primary and secondary
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as discussed in [41]). Together, these IU and VR represent
the candidates for the traditional expansion plan calculated by
system operators, responding to forecasted issues.

Alternatively, local congestion issues can be solved by in-
stalling an ESS in nodes next to congested lines. The capacity
and charge/discharge rating of the ESS is proposed to be
determined using the intensity and duration of the associated
congestion events. Consider a node n connected to one or
more congested lines (the latter represented by the subset Ln).
The maximum charge/discharge rating CHrate

n,ESS necessary to
solve local congestions of the subset of lines can be calculated
as the maximum difference between new conductor ratings and
original conductor ratings using (4).

CHrate
n,ESS = max

∀l∈Ln

{SLIM
l,new − SLIM

l } (4)

To calculate ESS capacity it is important first to define
the nodal loading that comes from excess demand Sdem

n,t or
generation Sgen

n,t , as the maximum power flow that occurs
in any congested line l connected to n, at any given time
step t. The nodal limit coming from connected lines SLIM

n is
represented by the minimum thermal limit in any of them.

Sdem
n = max

∀t∈T ,l∈Ln

{Sdem
l,t } (5)

Sgen
n = max

∀t∈T ,l∈Ln

{Sgen
l,t } (6)

SLIM
n = min

∀l∈Ln

{SLIM
l } (7)

The capacity of the ESS En,ESS is then calculated by
finding the maximum energy that would be required to solve
all congestion events in any day, either from demand or gen-
eration excess. This is given by the maximum between daily-
aggregated demand-caused and generation-caused congestion
issues using (8). This approach accounts for two or more
subsequent congestion events without enough time for the
ESS to charge/discharge back into levels that could address
the second congestion. This will be tested with a daily cycle,
where any charge or discharge occurs on a day.

En,ESS = max

{ ∑
t∈day

[(Sgen
n,t − SLIM

n )× t]∑
t∈day

[(Sdem
n,t − SLIM

n )× t]

}
(8)

2) Addressing local violation events: it is possible to de-
fine and calculate the local congestion and voltage influence
scores (CIS and V IS respectively) of every candidate (i.e.,
the ability of the candidate to solve the local voltage and
congestion violation event). For IUs, VRs and ESS, these are
given respectively by (9), (10) and (11)*.

CISlocal
IUl,l

= 1;∀ l ∈ Lp (9)

V ISlocal
V Rn,n =

∆V V R
range

max
∀t∈T

{∆Vn,t} −∆V LIM
n

;∀ n ∈ Nq (10)

CISlocal
ESSn,l = 1 ,∀ l ∈ Ln (11)

*Naming convention as follows: CISlocal
Xa,b

reads “local congestion influ-
ence score that installing X in element a has on element b”.

3) Addressing remote events: Some candidates can solve
congestion and voltage issues in remote locations. Previous
work [20] used coincidence factors (i.e., correlations between
intensity and occurrence of events) as an indication of the
potential of a local solution to have a remote effect. This paper
proposes an alternative based on the physical relationships
between technologies, congestion and voltage drop, analogue
to the critical sensitivity indices in [42].

Voltage drop δV over a line is calculated using (12), where I
is the transported current, Λ is the length of the conductor with
a cross-section Acond. The influence of temperature, the ma-
terial (e.g., copper or aluminium) and the configuration of the
installation (e.g., three-phase or single-phase) is represented
by the constant k. Voltage drops can be added for different
sections that have various values of current, length and cross-
sections. For this study, Λ is assumed constant because lines
are only upgraded, not rerouted.

δV =
k × I × Λ

Acond
(12)

The candidates dimensioned above can have direct and/or
indirect influences over congestion and voltage drop/rise: IU
and ESS have a direct influence on congestion, and an indirect
influence on voltage via the increased conductor cross-section
and reduced line loading, respectively. VR have a direct
influence on remote voltages and a negligible influence on
congestion. The following relations are defined when it comes
to remote addressing of congestion and voltage issues:

• IUs only affect congestion locally, therefore its remote
influence on congestion CISremote

IUl,lb
in a remote line lb is

assumed to be zero.

CISremote
IUl,lb

= 0 ;∀ lb ∈ L (13)

A remote influence on voltage will be considered from IUs
for each node n part of the subset N∗ that has voltage issues
and is part of the direct path of the current that goes through
the upgrade. The remote voltage influence score V ISremote

IUl,n

of upgrading line l in voltage-problematic node n is calculated
using the proportion between the change in voltage drop across
the line l (i.e., from the old line and the line after the IU), and
the maximum voltage event seen by n.

V ISremote
IUl,n

=

(δV old
l − δV new

l

δV old
l

)
max
∀t∈T

{∆Vn,t}
(14)

Voltage drops across non-upgraded sections also remain un-
changed. Assuming that k remains constant and that the
change in current due to conductor resizing is negligible, with
some intermediate steps (12) can be used to rewrite (14) as:

V ISremote
IUl,n

=
1− (Aold

l /Anew
l )

∆V MAX
n

(15)

• VRs have zero influence in remote congestion (16). In
contrast, a VR installed in node n with bandwidth ∆V range

n,V R

alleviates voltages in nodes nb ∈ Nν that see the regulator as
head of the feeder (17):
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CISremote
V Rn,lb

= 0 ;∀ lb ∈ L (16)

V ISremote
V Rn,nb

=
∆V range

n,V R

max
∀t∈T

{∆Vnb,t} −∆V LIM
nb

(17)

• A remote influence on congestion will be considered
from ESS installations for the subset of lines Lν that are part of
the direct path of the current that goes through the element.
This influence depends on the origin of the congestion. As
discussed before, demand-caused and generation-caused con-
gestions are treated differently.
Assuming that the ESS responds to a congestion signal, any
charge with magnitude CHrate

n,ESS in congested moments is the
power that is not going to flow through the grid and as such
alleviates congestion in remote sections. We assume that the
ESS does not cause problems when charging/discharging back
in moments without constraint violation events.

CISremote
ESSn,l =

CHrate
n,ESS

max
∀t∈T

{Sl,t} − SLIM
l

;∀ l ∈ Lν (18)

Since voltage drop is directly proportional to the current
flowing through a conductor, an ESS reducing congestion, also
has a positive impact on voltage issues across the network. A
similar approach to that of the voltage influence score for IUs
can be used. The difference here is that instead of the current
being constant, the cross-section remains constant. Therefore,
using (12) and (14) for a constant k, we find the remote voltage
influence score as follows,

V ISremote
ESSn,nb

=
1− (Inewla

/Ioldla
)

max
∀t∈T

{∆Vnb,t}
(19)

where Ioldla
is the maximum current in any congestion event

and Inewla
is the reduced current in a congestion event when

the ESS alleviates congestion in line la, the line connected to
the node n where the candidate ESS is proposed - looking
towards nb. While reducing the current flowing through the
lines between n and nb reduces voltage drop in all of them,
it is proposed to calculate only the voltage influence score
for the node nb - this simplifies the problem and makes it
a conservative approach: the candidate is assigned a smaller
influence than it has in reality. Ultimately, using the same base
voltage to work with power flows instead of currents, (19) can
be rewritten as follows.

V ISremote
ESSn,nb

=
CHrate

n,ESS

max
∀t∈T

{Sla,t} × max
∀t∈T

{∆Vnb,t}
(20)

4) Prioritisation of candidates: considering local and re-
mote benefits, candidates can be ranked from a technical
perspective. By adding influence scores, the designer or system
operator can determine which candidate performs best as a
standalone installation. The maximum hypothetical score that
a candidate can obtain is equal to the number of problematic
elements, this would mean that such candidate is able to solve
all the issues on its own.

Moreover, the candidates can be ranked from an economic
perspective. As the technical specifications of each candidate
are known, their costs can be calculated. The global score
defined by the designer or grid operator divided by the cost
of the candidate represents its technical benefits per cost unit.

5) Finding the minimum cost investment: since it is not
expected that one candidate is able to solve all issues, the last
step is defining which combination of candidates does it at
a minimum cost. Let us define p, q and r as the number of
IU, VR, and ESS candidates, respectively. The binary vector
x containing the decision variables xi to install or not each
candidate i out of all options is defined in (21). This vector
has size p+ q+ r. Similarly, the costs ci associated with each
candidate i are contained in the vector c (22).

x = [xIU1
, ..., xIUp

,xV R1
, ..., xV Rq

, xESS1
, ..., xESSr

]

xi ∈ {1, 0}; ∀ i
(21)

c = [cIU1
, ..., cIUp

, cV R1
, ..., cV Rq

, cESS1
, ..., cESSr

] (22)

Finding the minimum-cost list of candidates that solve
all events can be cast as a BLP problem. The premise of
this method is that the influences of different candidates are
independent from each other, and are cumulative. This might
result in a more conservative solution compared to regular
DNEP approaches. The BLP is defined in (23), where b is a
unitary vector with the size of the problematic elements.

minimise cTx

subject to Ax ≥ b
(23)

Where A is a matrix of influence scores that includes all the
local and remote influence scores on congestion and voltage
issues as in (24). Each candidate has an associated score
between 0 and 1 in all the p congested lines and q voltage-
problematic nodes, therefore A has a size of [p+q]×[p+q+r]
(i.e., number of problematic elements × number of candi-
dates). The inequality in (23) guarantees that the addition
of influence scores VIS and CIS (represented in A) from
selected candidates (represented by x), solve the issues in all
problematic elements (represented by unitary vector b). The
global optimal is found with conventional solvers.

IV. CASE STUDIES AND NUMERICAL RESULTS

This section presents the networks used to test the proposed
methodology, and the relative results.

A. Studied topologies

1) IEEE 33-bus modified network: a radial feeder with 33
nodes that is often used for distribution network studies. The
technical data paired with peak loads can be found in [43],
[44]. The point of connection is modelled as the point of
supply by the system operator, and the 32 remaining nodes
represent aggregated low-voltage customers connected to the
node through a distribution transformer.
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A =

l1 l2 . . . lp n1 n2 . . . nq



1 0 . . . 0 V ISrem
IU1,n1

V ISrem
IU1,n2

. . . V ISrem
IU1,nq

IU1

0 1 . . . 0 V ISrem
IU2,n1

V ISrem
IU2,n2

. . . V ISrem
IU2,nq

IU2

...
...

. . .
...

...
...

. . .
...

...
0 0 . . . 1 V ISrem

IUp,n1
V ISrem

IUp,n2
. . . V ISrem

IUp,np
IUp

0 0 . . . 0 V ISloc
V R1,n1

V ISrem
V R1,n2

. . . V ISrem
V R1,nq

V R1

0 0 . . . 0 V ISrem
V R2,n1

V ISloc
V R2,n2

. . . V ISrem
V R2,nq

V R2

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . 0 V ISrem
V Rq,n1

V ISrem
V Rq,n2

. . . V ISloc
V Rq,nq

V Rq

1 CISrem
ESS1,l2

. . . CISrem
ESS1,lp

V ISloc
ESS1,n1

V ISrem
ESS1,n2

. . . V ISrem
ESS1,nq

ESS1

CISrem
ESS2,l1

1 . . . CISrem
ESS2,lp

V ISrem
ESS2,n1

V ISloc
ESS2,n2

. . . V ISrem
ESS2,nq

ESS2

...
...

. . .
...

...
...

. . .
...

...

CISrem
ESSr,l1

CISrem
ESSr,l2

. . . 1 V ISrem
ESSr,n1

V ISrem
ESSr,n2

. . . V ISloc
ESSr,nq

ESSr

(24)

2) Real Irish rural distribution network: radial rural feeder
with 1171 buses from the West coast of Ireland was selected to
represent more complex, unbalanced and extensive topologies
[17]. 389 buses are loaded, 39 of these are three-phase. 484
three-phase and 615 single-phase branches compose the total
131.36 km in lines, while the furthest electrical point is
23.70 km away from the feeder. The peak active and reactive
loads are 1728.6 kW and 591.6 kVAr respectively. This grid
operates at 10 kV base voltage and presents significant voltage
problems in its current state.

3) Forecasted demand and generation: for both feeders, the
forecasted scenario selected for demand is given by a 250%
increase for the target year, using the historical peak load
reported in the documentation as a reference. This information
is complemented using the CREST demand model [45] to
generate synthetic profiles. Real utility data from the United
Kingdom have been used to validate the model, which has
been used in more than 300 distribution network studies.
Reactive power is adjusted to match the power factor of each
node in the documentation. With this model, year-long demand
profiles with one-minute resolution equivalent to a leap year
analogous to 2020 are produced for each node studied.

The forecasted generation profiles are produced with the
respective functionality of the CREST model for photovoltaic
(PV) production throughout the year. An expected growth of
250% in the installed generation capacity allocated in previous
work by the authors in [17] was used as a reference. These
demand and generation growth assumptions for the target year
are realistic but purely illustrative, and they must be replaced
by the system operator/designer/regulator forecast particular to
the case they intend to study.

B. Preliminary analysis and candidate identification

A full ACPF simulation of the networks with forecasted de-
mand and generation profiles was performed using OpenDSS.
This results in networks with line congestion and voltage
issues: 11 lines present congestion issues and 16 nodes present
voltage issues for the IEEE 33-bus network (see Fig. 2a).

N3

N2N1 N6N5N4 N9N8N7 N12N11N10 N15N14N13 N18N17N16

N25N24N23

N28N27N26 N31N30N29

N22

N33N32

N21N20N19

Head of the feeder

Node free of voltage issues

Line free of congestion

Line with congestion

Node with voltage issues

(a)

(b)

Fig. 2: Results of the preliminary analysis for the IEEE 33-bus network.
(a) Topology highlighting voltage and line loading violation locations. (b)
Heatmap with the numerical occurrence of line loading events at the most
congested line L1 between N1 and N2.

Based on the topology and these preliminary results of
congestion and voltage issues for the IEEE 33-bus network, it
is possible to determine the existence of 11 candidates for IU,
16 candidates for VR and 12 candidates for ESS. The event
heatmap at a critical location is shown in Fig. 2b.

The duration and intensity of events are used to size
candidates. As an example, using the information on the
congested line L1 available in Fig. 2b it is possible to size
a candidate for IU (ID 1 in Table I) and for ESS (ID 28).
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TABLE I
CANDIDATES DEFINED FOR THE DNEP: IEEE 33-BUS NETWORK

ID Location Type Definition

1 Line 1 IU New limit = 6,805 kVA (+34%)
2 Line 2 IU New limit = 6,163 kVA (+22%)
3 Line 3 IU New limit = 4,811 kVA (+52%)
4 Line 4 IU New limit = 4,650 kVA (+47%)
5 Line 5 IU New limit = 4,514 kVA (+43%)
6 Line 6 IU New limit = 2,856 kVA (+50%)
7 Line 7 IU New limit = 2,809 kVA (+48%)
8 Line 8 IU New limit = 2,723 kVA (+43%)
9 Line 9 IU New limit = 2,490 kVA (+31%)
10 Line 10 IU New limit = 2,224 kVA (+17%)
11 Line 11 IU New limit = 1,943 kVA (+2%)
12-27 Nodes 8-18, VR ±10% Voltage range increase

29-33
28, 29 Nodes 1, 2 ESS Cap. = 11.45 MWh, Dur. = 6.6h
30, 31 Nodes 3, 4 ESS Cap. = 5.78 MWh, Dur. = 3.5h
32 Node 5 ESS Cap. = 3.95 MWh, Dur. = 2.6h
33 Node 6 ESS Cap. = 3.16 MWh, Dur. = 2.3h
34 Node 7 ESS Cap. = 2.88 MWh, Dur. = 3.0h
35 Node 8 ESS Cap. = 2.76 MWh, Dur. = 3.0h
36 Node 9 ESS Cap. = 2.32 MWh, Dur. = 2.8h
37 Node 10 ESS Cap. = 1.23 MWh, Dur. = 2.1h
38 Node 11 ESS Cap. = 394 kWh, Dur. = 1.2h
39 Node 12 ESS Cap. = 17.8 kWh, Dur. = 0.4h

The maximum intensity registered in the figure is 34.4%
above the rating of L1 - which is 5,064 kVA. Therefore,
the new rating of the upgraded conductor (ID 1) must be at
least 6,805 kVA. Similarly, the charge or discharge rate from
ESS that would solve the congestion issue in L1 corresponds
to the difference between the new rating and the old one
(i.e., 1,741 kVA charge/discharge rate). The maximum value
obtained for the energy requirements for charge or discharge
on a single day was 11.45 MWh. This can also be translated
into an ESS duration of 6.6 hours. This process is repeated
for all potential candidates considered for the IEEE 33-bus
network, a summary of which is presented in Table I.

In the case of the Irish rural distribution feeder, the fore-
casted demand and generation results in a total of 1,079
nodes (92.2%) presenting voltage issues and 129 lines (11.0%)
being congested. Considering the topology, this results in a
total of 129 candidates for IU, 1,079 candidates for VR and
163 candidates for ESS. The candidates were sized using the
methodology in Section III.

C. Prioritising candidates

Up to this point, the proposed methodology is technology-
agnostic: for the case of VR and ESS, the technical benefits of
candidates are assessed, but the particularities of the technol-
ogy have not been considered This changes in the prioritisation
of candidates: depending on the technology to analyse; the
designer, policymaker or system operator must apply different
efficiencies, depths of discharge, costs, etc.

A technology-specific assessment of candidates is not the
purpose of this study: this paper will not extend to the
technical and economic constraints for particular IU, VR and
ESS technologies. Instead, for the purpose of this work and
following current trends, VR will be modelled as OLTC with a
±10% bandwidth, and ESS as Li-Ion battery with a minimum
state of charge of 20%. An analysis of sensitivity to ESS

(a)

(b)

Fig. 3: Prioritisation of candidates, IEEE 33-bus network. (a) Sum of conges-
tion and voltage influence scores for each candidate, and (b) sum of influence
scores for each candidate per 10,000 C, considering the high-cost projection
for ESS.

price was performed considering the high, mid and low-
cost projections developed by the National Renewable Energy
Laboratory in [46], [47]. Additional economic and technical
assumptions can be found in [22], [47], [48].

The costs of installing, operating and maintaining each can-
didate in the planning timescale can be calculated and brought
to present value considering local economic constraints. Con-
sidering the IEEE 33-bus network, Fig. 3a presents how
many issues each candidate solves on its own. Fig. 3b is a
graphical representation of issues solved per cost unit. From
the information in Fig. 3 it is possible to abstract that the
best technical candidate is a VR in node 8 (ID 12) addressing
events in 11 voltage-problematic elements. The best economic
candidate is an ESS in node 12 (ID 39) addressing events in
approximately one element per 10,000 C invested.

D. BLP solution

After defining, characterising and prioritising candidates,
the minimum-cost list of candidates that solve all violation
events of the network can be found using the BLP in (23). The
intlinprog functionality of Matlab was used to find a solution,
and the algorithm was run using a desktop PC equipped
with an Intel Core i7, CPU at 2.3 GHz, and physical system
memory of 16 GB. Three pools of candidates (i.e., cases) were
considered to solve the BLP problem.

• Case 1: Only IU and VR candidates are considered. This
represents current practices and is the trivial solution to
the DNEP as defined before. Each IU solves locally the
congestion issues and partially remote voltage issues; this
is complemented by localised VR.
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TABLE II
BLP SOLUTION FOR DIF. CANDIDATE POOLS AND COST PROJECTIONS

Network Cand. Cost Candidates Total costs Solving
Pool Proj. Chosen (ID) (C) time (s)

IEEE Case 1 - 1-11 2,279,842 0.008
33-bus Case 2 High 1-5, 37-39 1,755,473 0.013

Mid 1-5, 37-39 1,653,630 0.009
Low 1-5, 37-39 1,553,736 0.008

Case 3 High 28, 31-33, 37-39 7,840,297 0.009
Mid 28, 31-33, 37-39 6,307,234 0.010
Low 28, 31-33, 37-39 5,045,787 0.009

Irish Case 1 - 129 (all) IU, 14,450,940 0.055
Rural 2 VR
Feeder Case 2 High 36 ESS, 1 VR 831,620 4.910

Mid 36 ESS, 1 VR 696,860 4.062
Low 36 ESS, 1 VR 562,098 4.355

Case 3 High 11 ESS 4,988,892 0.183
Mid 11 ESS 3,402,886 0.172
Low 11 ESS 2,459,615 0.173

• Case 2: All candidates are considered. A combination of
IU upgrades, VR and ESS candidates can simultaneously
address constraint violation events.

• Case 3: Only ESS candidates are considered. This is a
scenario that may be present in future planning problems:
IUs are not a possibility due to technical or planning
permission restrictions, and the system operator chooses
to prioritise storage.

Table II presents the candidates selected for each case,
together with the associated costs, and solving time. These
results show that the candidates prioritised above as the best
economic and technical ones are not necessarily part of the
minimum-cost solution, highlighting that it is appropriate to
use the BLP approach for candidate selection. Using a com-
bination of candidate types (Case 2) the total costs associated
are significantly reduced when compared to the traditional
mechanism (Case 1) and the use of ESS exclusively (Case 3).
The last one results in a significantly more expensive result in
all cost projection scenarios.

Using different cost projections for ESS does not result in
radically different solutions, the same candidates are selected
even if the total costs of the installation vary. Ultimately, the
results of both studied topologies suggest that the proposed
method is not highly sensitive to inputs and requires a small
computational time. The advantages of the proposed method
are highlighted when comparing these results with those
reported by other authors as shown in Table III. Without
considering pre-processing times for any, the proposed method
finds a solution at least 277 times faster when comparing the
1171-bus West Ireland rural feeder (an extensive, complex and
unbalanced network), to the 8-bus TN in [30].

Some references in Table III have power flow calculations
embedded in their method. In contrast, the BLP method pro-
posed runs power flows at the pre-processing stage. The com-
parison is not complete without including such pre-processing
computational burden. The ACPF and influence score calcu-
lations run time for the 33-bus and 1171-bus distribution net-
works studied is 18,925.7 and 117,338.4 seconds respectively,
this is the same order of magnitude as one solution time of the
other methods. The usefulness of the BLP approach is high-
lighted because of two reasons. First, when noting that the data

TABLE III
COMPARISON WITH OTHER METHODS IN THE LITERATURE

Ref. Case Data Selected Solving
study (timestep) candidates time* [s]

BLP 33-bus 1y (1m) 6 IU, 3 ESS 0.013
1171-bus 1y (1m) 36 ES, 1 VR 4.91

[28] 25-bus 8d (15m) 2 IU, 1 ESS 66,996
55-bus 8d (15m) 2 IU, 1 ESS 70,812
69-bus 8d (15m) 2 IU, 1 ESS 307,008
123-bus 8d (15m) 2 IU, 1 ESS 299,016

[29] 28-bus 4d (1h) 2 IU, 2 ESS 4,248
28-bus 4d (1h) 8 IU, 8 ESS 106,200

[30] 8-bus 24d (1h) 1 IU, 1 ESS 1,360.78
* Not including scenario reduction or data pre-processing run time

set in this study is many times larger and has a considerably
higher temporal resolution than those used in other methods.
Second, when considering that this computationally-heavy pre-
processing stage must be conducted only once for our method:
after one run the BLP outperforms others. Ultimately, authors
in [28–30] reported DNEP costs of 8.78, 6.86, and 214.57
million euros respectively, higher than those from our method
in Table III. However, note that the cost projections, demand
and generation scenarios, and the case studies are different:
comparing reported investment costs on their own is not
evidence of superior performance.

V. TESTS AND VALIDATION

This section presents the results of simulation work con-
ducted on these “future topologies” to test and validate our
method under different circumstances. Initially, a year-long
quasi-static time-series simulation of each “future topology”
(i.e., candidates chosen for each network, candidate pool and
cost projection in Table II) was performed. IUs replaced old
conductors (impedances and thermal limits from cable sizing
were assumed continuous and were adjusted according to
the IU), VRs were installed when selected, and Li-Ion ESS
candidates configured for peak-shaving were connected. The
results of this simulation confirm that the application of the
selected candidates in all cases resolved all congestion and
voltage issues.

For example, the BLP solution considering the medium
cost projection of Case 2 for the IEEE 33-bus modified
network is valued at 1,653,630 C, distributed as follows:
1,154,161 C (69.8%) for IUs, and 499,469 C (30.2%) for ESS
installations - no VRs were part of this solution. Note that the
network originally had 104,450 minutes of the year where at
least one violation event occurs (i.e., 19.8% of the time there is
at least one problem). Installing the selected candidates from
the BLP 100% of constraint violation events are solved.

Through the rest of this section we conduct extensive
simulation work to further validate our method. First, we
study the uncertainty from forecasted data and the validity
of the assumption of independence of candidate influences.
Subsequently, we check if new candidates have the potential
to generate new constraint violation events (i.e., not present
before). At last, we evaluate the possibility to reduce the size of
candidates to lower costs, if it is possible to accept a marginal
amount of events.
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Fig. 4: Constraint violation events resulting from forecasting errors in demand
and generation. BLP solution to Case 2 - IEEE 33-bus modified network.
Values in bold correspond to approximate time of the year with violation
events (m = minutes, h = hours, d = days)

A. Uncertainty from forecasted data

In this subsection we study what would happen if demand
and generation were not forecasted correctly. The BLP solu-
tion was tested given 2.5% decreases/increases in forecasted
demand and generation. Fig. 4 presents the results of these
simulations installing the candidates from the solution to Case
2 - IEEE 33-bus modified network. For different levels of
demand and generation relative to the initial forecast, the bar
plot shows the number of minutes over the studied year that
present at least one constraint violation event.

Note that the DNEP addresses events from a forecast
increase in generation of 2.5%, provided that the demand does
not increase. This means that as predicted, the BLP solution is
overdimensioned: it solves constraint violation events beyond
the initial forecast. The solution is as robust as the prediction
of demand and generation: if an inaccurate prediction is made,
the DNEP will have oversized elements, or will not achieve
the purpose of constraint event reduction.

In parallel, it was discovered that maintaining the initial
demand forecast, while reducing the forecast difference in
generation by -5%, -7.5%, and -10% creates one, one and two
minutes of constraint violation events respectively. These three
simulations were examined in detail with the same finding: for
one or two minutes of the year, the energy produced by locally
generating units is insufficient to charge the ESS so they can
provide its peak-shaving service later (i.e., since the ESS are
not sufficiently charged, the peak demand must be provided
by the grid, creating a line overloading event).

At last, Fig. 4 shows that the worst event-generating forecast
is not given by a simultaneous increase in demand and
generation. Increasing both by 10% results in approximately 4
days of constraint violation events. In contrast, increasing the
demand forecast by 10% while keeping generation forecast
difference at 0% produces approximately 6 days of events.
Keeping 10% increase in demand while reducing the genera-
tion forecast by -10% creates even more events: 8 days. This
highlights the important roles of self-consumption and ESS in

solving constraint violation events, and the need to have accu-
rate predictions for both demand and generation. At this stage,
the cost increases or decreases under uncertainty were not
established: results in Fig. 4 suggest that the interdependence
of demand and generation (e.g., through self-consumption and
storage), and its cost implications require further study.

B. Different ESS operational regimes

Given an appropriate operational configuration, simulation
results above show that ESS do not generate additional con-
straint violation events (i.e., ESS store and release energy
when there is a sufficient energy surplus or requirement
without creating a constraint violation event). Two additional
simulations were performed on different ESS operational
regimes. If the BLP solution to the Case 2, IEEE 33-bus
network is installed, but ESS are configured to follow a price
curve (e.g., to charge when electricity is cheap and to discharge
when it is expensive, following the time of use tariff in [49]),
results in 37,338 minutes with at least one constraint violation
event (35.75% of the pre-BLP events). Alternatively, if the
ESS follow pre-set times (e.g., charging around the expected
PV generation peak given by the solar noon at each day,
and discharging around the yearly average moment of peak
electricity consumption), the number of events rises to 54,500
minutes (51.63% of the pre-BLP constraint violation events).
These results show that the key to a successful DNEP solution
that includes ESS is in their operational regime. This last
remark applies regardless of the optimisation method used
(e.g., BLP, MILP, SOCP, etc.).

C. Interdependence of candidate influences

This subsection evaluates an important assumption in our
work, that the effect of candidates is independent and cumu-
lative. If this premise is correct, the sum of individual effects
of candidates installed in isolation should be equal to that of
installing all candidates together. It is possible to test this if we
focus on the moments with the largest amount of voltage and
thermal violation events. The contribution towards improving
voltage and line loading is quantified as the aggregated per-
unit improvement in these moments. By comparing the sum
of these subset contributions, and the contribution from the
whole candidate set, we can check if they are independent.

For illustration purposes, we considered the eight candidates
from BLP solution for Case 2 in the IEEE-33 bus modified
network in Table II. The snapshots studied in this test were
20:08 hours the 13th day of January and 13:38 hours the 20th
day of May of the studied year - being the most event-intensive
moments forecasted in terms of voltage and thermal violation
events, respectively. Table IV presents the contributions of the
BLP solution as a whole, and from subsets of candidates in
isolation.

The sum of improvements from subsets of candidates in-
stalled in isolation is not equal to that of installing all candi-
dates from the BLP solution. This proves the premise wrong:
effects from candidates are interdependent. As explained theo-
retically in subsection III-B3, applying this premise results in a
conservative solution because the individual effects calculated
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TABLE IV
EVALUATION OF INTERDEPENDENCIES BETWEEN CANDIDATES

IEEE 33-BUS - CASE 2

Candidate
IU ESS

1 2 3 4 5 37 38 39
Event Improvement from installing subset [p.u.] Sum

Voltage
profile,
20:08

13th Jan

17.8 17.8
9.2 11.0 20.2

7.3 10.0 3.2 20.5
5.4 3.9 8.4 3.2 20.9

1.0 4.3 2.0 1.9 5.0 4.2 2.8 0.4 21.6
Line

loading
profile,
13:38

20th May

6.9 6.9
2.3 5.4 7.7

1.7 4.0 2.3 8.0
1.0 1.4 3.4 2.3 8.1

0.4 0.6 0.8 0.7 1.0 2.7 2.0 0.3 8.5

are underestimated in the global BLP problem. The sum of
individual effects from subsets is larger than the real global
effect of the BLP solution, which suggests that the proposed
method results in larger candidate sizes than necessary.

D. Lowering costs by reducing candidate sizes

It is possible to quantify the performance of candidates if
they are smaller than what the BLP suggests, we tested how
many violation events were produced if this was the case. Fig.
5 shows that implementing the candidates at a reduced size
solves fewer events. This suggests that if the system operator
is willing to accept a network with some violation events,
investments can be reduced significantly. To have a network
with less than 2% of problematic instances of the year (i.e.,
reducing existing congestion and voltage issues by 10%), the
size of IU candidates can be reduced to 70% and of ESS
candidates to 50%. This reduction represents an investment of
1,057,487 C - approximately 36% less. Note how for this
case, reducing the size of the installed IU results in more
constraint violation events compared to reducing the size of
ESS candidates. IUs appear to play a larger role in solving
violation events for this particular network.

It is important to highlight the versatility of the proposed
method: a designer can add customised candidates or remove
those less relevant/feasible. The influence scores of alternative
candidates can also be calculated and integrated into a new
BLP for alternative solutions. Since the computational time
is modest, the designer has significant flexibility on how the
problem is approached (i.e., multiple pools of candidates can
be evaluated faster). Furthermore, this method can be used
to contrast different technologies: once technology-agnostic
candidates are sized, economic and technical considerations
can be compared for different technology specifications (e.g.,
comparing Li-Ion, sodium sulphur, and lead acid ESS).

VI. CONCLUSION

This work presents a numerical method to define a list of
minimum-cost candidates (i.e., IU, VR and ESS), reducing
the search space for the DNEP problem, this is based on fore-
casted constraint violation events. The proposed methodology
presents reduced computational time, has low sensitivity to
inputs and has been validated through extensive simulation
work using two distribution networks. The results suggest
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Fig. 5: Percentage of constraint violation events solved for different candidate
sizing.

that applying the BLP solution solves 100% of forecasted
violation events. It was found that a combination of the
three types of candidates solves events at a lower total cost
compared to using a single candidate type. A study of this
nature is particularly useful for system operators, planners
and designers because it makes it possible to run multiple
simulations in little time. Numerous candidate pools can be
tested, including customised IU, VR and ESS installations and
different technologies.

The authors foresee the addition of three layers of com-
plexity to the method in future work. The first addresses
the main limitation of this work: a potentially overly con-
servative investment. This is possible by adjusting candidate
sizes following the “time dimension” given by power quality
standards (e.g., EN50160 [50]), where constraint violation
events are tolerable for a short duration. It is straightforward
to adjust the proposed methodology to solve less than 100%
of constraint violation events if their time duration is limited.
Such an adjustment is non-trivial for MILP-based DNEPs, in
which complicating constraints would be needed. Secondly, it
is possible to replace manufacturer’s line ratings to include
weather-dependent dynamic line ratings. Ultimately, this work
can be further developed if it is cast for multiple planning
steps. If the forecasted demand and generation information
is available for different discrete moments over a planning
horizon, each discrete value provides an answer on which
candidates have priority in the short and medium term. The
candidates selected in a discrete time step can become part of
the “current topology” for subsequent time steps.

Finally, we believe that there is value in exploring the
synergies between our method and a MILP-based approach:
our method could be run first, to reduce the candidate space
(and computational time) of the MILP. Adding such MILP
“step” might lead to lower-cost solutions.
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