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WHAT CAN BE THE LIMIT IN THE CLT FOR A FIELD OF

MARTINGALE DIFFERENCES ?

DAVIDE GIRAUDO, EMMANUEL LESIGNE, DALIBOR VOLNÝ

Abstract. The now classical convergence in distribution theorem for well normalized sums

of stationary martingale increments has been extended to multi-indexed martingale increments

(see [8] and references in there). In the present article we make progress in the identification of

the limit law.

In dimension one, as soon as the stationary martingale increments form an ergodic process,

the limit law is normal, and it is still the case for multi-indexed martingale increments when

one of the processes defined by one coordinate of the multidimensional time is ergodic. In the

general case, the limit may be non normal.

The dynamical properties of the Z
d-measure preserving action associated to the stationary

random field allows us to give a necessary and sufficient condition for the existence of a non-

normal limit law, in terms of entropy of some random processes. The identification of a natural

factor on which the Z
d-action is of product type is a crucial step in this approach.
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1. Introduction

We study here limit theorems of CLT (Central Limit Theorem) type for stationary multipa-

rameters martingale indexed by Z
d. In order to limit the number of suspension points and make

the text easier to read, we choose d = 3, but all what is said for this particular case can be

extended to any integer d ≥ 2. Some results are specific to the case d = 2 (and unknown for
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d > 2), in which case they will be stated (and proved) with d = 2.

We consider a Z
3 measure preserving action T = (Ti,j,k)i,j,k∈Z on a probability space (Ω,A, µ),

equipped with a completely commuting invariant filtration (Fi,j,k)i,j,k∈Z, that is a family of sub-

σ-algebras of A satisfying for all (i, j, k) and (i′, j′, k′) in Z
3,

(i) Fi,j,k = T−i,−j,−kF0,0,0 ;

(ii) For all integrable function f , E
[

E [f | Fi,j,k] | Fi′,j′,k′
]

= E
[

f | Fmin(i,i′),min(j,j′),min(k,k′)

]

.

Note that property (ii) implies that Fi,j,k ∩ Fi′,j′,k′ = Fmin(i,i′),min(j,j′),min(k,k′) and in particular

Fi,j,k ⊂ Fi′,j′,k′ when i ≤ i′, j ≤ j′ and k ≤ k′.

We will use classical notations for the limit sub-σ algebras when parameters go to ±∞ :

F−∞,j,k =
⋂

i∈Z
Fi,j,k and F∞,j,k =

∨

i∈Z
Fi,j,k,

and so on.

A field of martingale differences is a field of random variables (Xi,j,k)i,j,k∈Z of the type

Xi,j,k = f ◦ Ti,j,k

where f ∈ L
2(Ω,F0,0,0, µ) satisfies

(1) E [f | F−1,∞,∞] = E [f | F∞,−1,∞] = E [f | F∞,∞,−1] = 0.

(We will say simply that f is a martingale difference adapted to the filtration (Fi,j,k))

From a previous article [8], we know that, for any such field, we have convergence in law of

(2)
1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

Xi,j,k

when min(ℓ,m, n) goes to infinity.

Moreover the limit is normal as soon as one of the transformations T1,0,0, T0,1,0 or T0,0,1 is

ergodic (this was already established in [7]), but some easy examples show that the limit is

not normal in general. Indeed, following the example in [9], we can take Xi,j,k = UiViWj,

where (Ui)i∈Z, (Vj)j∈Z and (Wk)k∈Z are three mutually independent i.i.d. sequences of standard

normal random variables, then for each ℓ,m, n, the random variable defined by (2) has the same

distribution as the product of three independent random variables having standard normal

distribution. (Note that this example is produced by an ergodic Z
3-action.)

Let us also mention the papers [2] and [3], which bring further results and examples.

In all the sequel, we suppose that the Z
3-action T is ergodic on (Ω,A, µ). Moreover, we

suppose that F∞,∞,∞ = A which does not cost anything since the whole process we are interested

in is F∞,∞,∞-measurable.

Here is the general organization of this article.

In Section 2 we describe a particular factor I on which the Z
3-action is of product type. For

an action of this type, the possible limit distributions of (2) are fully understood, as described

in Section 4.
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In Section 5, where we restrict to the case of Z2-actions, we study what can happen on the

orthocomplement of the factor I. In particular we obtain the following results:

- if the transformation T1,0 acting on the factor of T0,1-invariants has zero entropy (or if the

transformation T0,1 acting on the factor of T1,0-invariants has zero entropy), then for any square

integrable martingale difference the limit distribution in the CLT is normal.

- if the transformation T1,0 acting on the factor of T0,1-invariants and the transformation

T0,1 acting on the factor of T1,0-invariants have positive entropies, then there exists a square

integrable martingale difference for which the limit distribution in the CLT is not normal.

2. A factor of product type

Let us denote by I1, I2 and I3 the σ-algebras of, respectively T1,0,0, T0,1,0 and T0,0,1 invariant

sets in A.

Let us denote by I1, I2 and I3 the σ-algebras of invariant sets under, respectively, Z2-actions

(T0,j,k), (Ti,0,k) and (Ti,j,0). In other words, we have

I1 = I2 ∩ I3 , I2 = I1 ∩ I3 and I3 = I1 ∩ I2.

(Note that, for an action of Zd we would have set I1 = I2 ∩ I3 ∩ · · · ∩ Id, and that for the

particular case d = 2, we have I1 = I2.)
Finally we note I the σ-algebra generated by the union of the It :

I = I1 ∨ I2 ∨ I3 .

Note that all these σ-algebras are invariant under the action T , hence they define factors of

the dynamical system (Ω,A, µ, T ).

Proposition 1. The σ-algebras I1, I2 and I3 are independent.

As a consequence of this proposition we can state that the action T on the probability space

(Ω,I, µ) is of product type, which means that it is isomorphic to a Z
3-action defined on the

product of three probability spaces (Ωt,At, µt) (t = 1, 2, 3) by a formula of the type

Ti,j,k(ω1, ω2, ω3) = (T i
1ω1, T

j
2ω2, T

k
3 ω3)

where each Tt is an invertible measure preserving transformation of (Ωt,At, µt).

Proof of Proposition 1. Let At ∈ It, t = 1, 2, 3. By ergodicity of the Z
3-action, we have

lim
ℓ,m,n→∞

1

ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

(1A1
1A2

1A3
) ◦ Ti,j,k = µ(A1 ∩A2 ∩A3)

but, by invariance,

1

ℓnm

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

(1A1
1A2

1A3
) ◦ Ti,j,k =

(

1

ℓ

ℓ
∑

i=1

1A1
◦ Ti,0,0

)





1

m

m
∑

j=1

1A2
◦ T0,j,0





(

1

n

n
∑

k=1

1A3
◦ T0,0,k

)
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−→ µ(A1)µ(A2)µ(A3) ,

since each of the three systems (Ω,I1, µ, T1,0,0), (Ω,I2, µ, T0,1,0) and (Ω,I3, µ, T0,0,1) is ergodic.

�

3. Martingale property preserved by projection

Our aim here is to show that the martingale property is preserved by projection on the factor

I. We begin by a general abstract result, which is stated for a Z
2-measure preserving action

but which can be proved similarly for any Z
d−1-action.

Let (X,B, ν) be a probability space and U = (Ui,j) a Z
2-measure preserving action on this

space. We denote by J the σ-algebra of U -invariant elements of the σ-algebra B.
We denote by F a U -invariant sub-σ-algebra of B, meaning that Ui,j(F) = F for all i, j ∈ Z ;

we denote by C a sub-σ-algebra of F .

Proposition 2.

(a) For all f ∈ L
2(J ∨ C), E [f | F ] is J ∨ C-measurable.

(b) For all f ∈ L
2(F), E [f | J ∨ C] is F-measurable.

Corollary 1. The conditional expectations with respect to F and to J ∨ C are commuting : for

all f ∈ L
2(B),

E [E [f | J ∨ C] | F ] = E [E [f | F ] | J ∨ C] = E [f | F ∩ (J ∨ C)] .

Proof of Corollary 1. Suppose that D andD′ are two sub-σ-algebras such that, for all f ∈ L
2(D),

E [f | D′] is D-measurable. By ordinary properties of projections, we have, for any f ∈ L
2(B)

E
[

f | D ∩ D′] = E
[

E
[

E [f | D] | D′]D ∩D′]

which implies

E
[

f | D ∩ D′] = E
[

E [f | D] | D′]

since E [E [f | D] | D′] is D ∩D′-measurable. �

Proof of Proposition 2. Let f ∈ L
2(F) ; by the ergodic theorem, we have

E [f | J ] = lim
ℓ,m→∞

1

ℓm

ℓ
∑

i=1

m
∑

j=1

f ◦ Ui,j ,

hence E [f | J ] is F-measurable, since F is U -invariant.

For any f ∈ L
2(B), we have

E [f | F ] ◦ Ui,j = E

[

f ◦ Ui,j |U−1
i,j (F)

]

= E [f ◦ Ui,j | F ] ,

hence if f is J -measurable, then E [f | F ] is J -measurable.

Consider now g ∈ L
2(J ) and h ∈ L

2(C). Since C ⊂ F , we have E [gh | F ] = E [g | F ] h, so

E [gh | F ] is J ∨C-measurable. But the functions of the form gh with g ∈ L
∞(J ) and h ∈ L

∞(C)
generate a dense subspace of L2(J ∨ C), so that assertion (a) is proved.
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Consider now f ∈ L
2(F), g ∈ L

2(J ) and h ∈ L
2(C). We have

〈E [f | J ∨ C] , gh〉 = 〈f, gh〉 (because gh is J ∨ C-measurable),

= 〈f,E [gh | F ]〉 (because f is F-measurable),

= 〈f, hE [g | F ]〉 (because h is F-measurable),

= 〈E [f | J ∨ C] , hE [g | F ]〉 (we know that E [g | F ] is J -measurable),

= 〈E [f | J ∨ C] ,E [gh | F ]〉.

By the density argument, we conclude that, for all k ∈ L
2(J ∨ C),

〈E [f | J ∨ C] , k)〉 = 〈E [f | J ∨ C] ,E [k | F ]〉.

This identity applied to the function k = E [f | J ∨ C] shows that this function is F-measurable.

This is assertion (b). �

Another result we need is the following classical lemma and we give a short proof for the sake

of completeness.

Lemma 1. Let S be a measure preserving transformation of the probability space (X,B, ν), and
Fn = S−nF0 be an increasing filtration in B. Denote by K the sub-σ-algebra of S invariant sets.

Then K ∩ F∞ = K ∩ F−∞. In particular, if K ⊂ F∞ then K ⊂ F−∞.

Proof of Lemma 1. Let f ∈ L
2(ν). By purely Hilbert space arguments, we know that, in the

space L
2(X),

lim
n→−∞

E [f | Fn] = E [f | F−∞] and lim
n→∞

E [f | Fn] = E [f | F∞] .

Now suppose that f is invariant under S, that is f is K-measurable. Then

E [f | Fn] = E
[

f ◦ Sn |S−nF0

]

= E [f | F0] ◦ Sn.

Thus ‖E [f | F−m] ‖2 = ‖E [f | Fn] ‖2 and with n,m → ∞, we obtain ‖E [f | F−∞] ‖2 = ‖E [f | F∞] ‖2.
Since F−∞ ⊂ F∞, this implies E [f | F−∞] = E [f | F∞]. In particular, if f is F∞-measurable,

then it is F−∞-measurable, which is what we had to prove. �

We now come back to the situation described in the preceding section where the factor I is

defined, and here is the result we were looking for.

Theorem 1. Let f be a martingale difference adapted to the filtration (Fi,j,k). Then its pro-

jection E [f | I] is a martingale difference adapted to the filtration (Fi,j,k), as well adapted to

the filtration (I ∩ Fi,j,k). Moreover f − E [f | I] is also a martingale difference adapted to the

filtration (Fi,j,k).

Proof. We want to apply Proposition 2 to the Z
2-action Uj,k = T0,j,k on the space (Ω,A, µ). So

we have J = I1. We consider also C = I2 ∨ I3 and F = Fi,∞,∞, for a given i. We know that F
is U -invariant and, thanks to Lemma 1, we have I1 ⊂ F , hence C ⊂ F since C ⊂ I1.

Note that J ∨ C = I1 ∨ I2 ∨ I3 = I.
Now Corollary 1 tells us that the conditional expectation with respect to I commutes with

the conditional expectations with respect to Fi,∞,∞. Of course, we can exchange the roles of i,
5



j and k and we find as well that the conditional expectation with respect to I commutes with

the conditional expectations with respect to F∞,j,∞ and with the conditional expectations with

respect to F∞,∞,k.

By the complete commuting property of the filtration, we have

E [· | Fi,j,k] = E [E [E [· | Fi,∞,∞] | F∞,j,∞] | F∞,∞,k] ,

and we conclude that the conditional expectation with respect to I commutes with the condi-

tional expectations with respect to Fi,j,k : for all f ∈ L
2(A), for all i, j, k ∈ Z ∪ {∞},

(3) E [E [f | Fi,j,k] | I] = E [E [f | I] | Fi,j,k] = E [f | Fi,j,k ∩ I] .

The first thing we want to see now is that (I ∩ Fi,j,k) is a completely commuting invariant

filtration. The first point is

T−i,−j,−k(I ∩ F0,0,0) = I ∩ Fi,j,k

which is true thanks to (i) and the fact that I is invariant. The second point is that, for all

integrable function f ,

E
[

E [f | I ∩ Fi,j,k] | I ∩ Fi′,j′,k′
]

= E
[

f | I ∩ Fmin(i,i′),min(j,j′),min(k,k′)

]

,

which, thanks to (3), can be written

E
[

E
[

E [f | Fi,j,k] | Fi′,j′,k′
]

| I
]

= E
[

E
[

f | Fmin(i,i′),min(j,j′),min(k,k′)

]

| I
]

and is true thanks to (ii).

The second thing to verify is that if f satisfies the martingale condition (1) then E [f | I]
satisfies it. The facts that conditional expectations with respect to I and F0,0,0 commute and

that f is F0,0,0-measurable imply that E [f | I] is I ∩ F0,0,0-measurable. Moreover we have,

thanks to (3) and (1)

E [E [f | I] | F−1,∞,∞] = E [E [f | F−1,∞,∞] | I] = 0

and similarly

E [E [f | I] | I ∩ F−1,∞,∞] = 0.

We conclude that E [f | I] is a martingale difference (for any of the two filtrations), and

f − E [f | I] is also a martingale difference adapted to the filtration (Fi,j,k), just as difference of

two martingale differences. �

4. Limit law in the case of a product type action

In this section, we deal with the case where (Ω,A, µ) has the form Ω = Ω1 × Ω2 × Ω3,

A = A1 ⊗A2 ⊗A3 and µ = µ1 ⊗ µ2 ⊗ µ3, where A1 (respectively A2, A3) is a σ-algebra on Ω1

(respectively Ω2, Ω3) and µ1, µ2, µ3 are probability measures. We consider an action T of Z3

on Ω given by

Ti,j,k (ω1, ω2, ω3) =
(

T i
1ω1, T

j
2ω2, T

k
3 ω3

)

, i, j, k ∈ Z.

We assume that the action of T1 on Ω1 is ergodic, as well as that of T2 on Ω2 and T3 on Ω3.

For ℓ ∈ {1, 2, 3}, consider a sub-σ-algebra F (ℓ)
0 of Aℓ such that TℓF (ℓ)

0 ⊂ F (ℓ)
0 . Define the
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sub-σ-algebra Fi,j,k of A by

Fi,j,k =
(

T−i
1 F (1)

0

)

⊗
(

T−j
2 F (2)

0

)

⊗
(

T−k
3 F (3)

0

)

.

Proposition 3. The filtration (Fi,j,k)i,j,k∈Z is a completely commuting invariant filtration.

Proof. Invariance follows by construction. Let us show commutativity property, (ii). Replacing

f by g = E [f | Fi,j,k], it suffices to show that for each integrable and Fi,j,k-measurable function

g,

(4) E
[

g | Fi′,j′,k′
]

= E
[

g | Fmin(i,i′),min(j,j′),min(k,k′)

]

.

Since the set of linear combinations of products of indicator functions of the form (ω1, ω2, ω3) 7→
1A1

(ω1)1A2
(ω2)1A3

(ω3) with A1 ∈ T−i
1 F (1)

0 , A2 ∈ T−j
2 F (2)

0 and A3 ∈ T−k
3 F (3)

0 is dense in

L
1 (Fi,j,k), it suffices to prove (4) when g is of this form. We use the following notation for

fℓ ∈ L
2 (Ωℓ,Aℓ, µℓ), ℓ ∈ {1, 2, 3},

f1 ⊗ f2 ⊗ f3 (ω1, ω2, ω3) = f1 (ω1) f2 (ω2) f3 (ω3) .

One can check that if Bℓ, ℓ ∈ {1, 2, 3}, are sub-σ-algebras of Aℓ, then

(5) E [f1 ⊗ f2 ⊗ f3 | B1 ⊗ B2 ⊗ B3] = E1 [f1 | B1]⊗ E2 [f2 | B2]⊗ E3 [f3 | B3] .

Indeed, it suffices to check (5) when fℓ is the indicator of a set Aℓ of Aℓ. For Bℓ ∈ Bℓ, let us

write B = B1 ×B2 ×B3. Using independence, we have

E [(1A1
⊗ 1A2

⊗ 1A3
)1B] = E1 [1A1

1B1
] · E2 [1A2

1B2
] · E3 [1A3

1B3
]

= E1 [E1 [1A1
| B1]1B1

] · E2 [E2 [1A2
| B2]1B2

] · E3 [E3 [1A3
| B3]1B3

]

= E [E1 [1A1
| B1] · 1B1

· E2 [1A2
| B2] · 1B2

· E3 [1A3
| B3] · 1B3

]

= E [E1 [1A1
| B1] · E2 [1A2

| B2] · E3 [1A3
| B3] · 1B ]

which shows (5). When g = 1A1
⊗ 1A2

⊗ 1A3
with A1 ∈ T−i

1 F (1)
0 , A2 ∈ T−j

2 F (2)
0 and A3 ∈

T−k
3 F (3)

0 , B1 = T−i′

1 F (1)
0 , B2 = T−j′

2 F (2)
0 and B3 = T−k′

3 F (3)
0 , (5) gives exactly (4). �

In order to investigate the convergence of the partial sum process given by (2), we will need to

decompose the considered function f as a sum of functions which can be expressed as a product

of functions of a single ωℓ.

Lemma 2. Denote by ∆ the set of square integrable functions satisfying the martingale property

defined as in (1), that is

∆ =
{

f ∈ L
2, f is F0,0,0-measurable and E [f | F−1,∞,∞] = E [f | F∞,−1,∞] = E [f | F∞,∞,−1] = 0

}

.

There exist random variables va,1, vb,2, vc,3, a, b, c ≥ 1, such that the collection of random

variables (ω1, ω2, ω3) 7→ va,1 (ω1) vb,2 (ω2) vc,3 (ω3) is a Hilbert basis of the space ∆.

Proof of Lemma 2. The space L
2
(

F (1)
0

)

⊖ L
2
(

F (1)
−1

)

is separable and admits a Hilbert basis

(va,1)a≥1. Similarly, we denote by (vb,2)b≥1 a Hilbert basis of L2
(

F (2)
0

)

⊖ L
2
(

F (2)
−1

)

and by

(vc,3)c≥1 a Hilbert basis of L2
(

F (3)
0

)

⊖ L
2
(

F (3)
−1

)

.
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We check that the collection of maps ua,b,c (ω1, ω2, ω3) 7→ va,1 (ω1) vb,2 (ω2) vc,3 (ω3) is a Hilbert

basis of the space ∆. Orthonormality follows from the product structure of Ω. We have to show

that if g ∈ ∆ is such that E [g · ua,b,c] = 0 for each a, b, c ≥ 1, then g = 0. To this aim, we write

the previous expectation as an integral over Ω1 ×Ω2 ×Ω3 and use Fubini’s theorem to get that
∫

Ω3

vc,3 (ω3)

(∫

Ω1×Ω2

va,1 (ω1) vb,2 (ω1) g (ω1, ω2, ω3) dµ1 (ω1) dµ2 (ω2)

)

dµ3 (ω3) = 0.

Since (vc,3)c≥1 is a Hilbert basis of L2
(

F (3)
0

)

⊖ L
2
(

F (3)
−1

)

, it follows that there exists Ω′
3 ⊂ Ω3

such that µ3 (Ω
′
3) = 1 and for each ω3 ∈ Ω′

3, the equality
∫

Ω1×Ω2

va,1 (ω1) vb,2 (ω1) g (ω1, ω2, ω3) dµ1 (ω1) dµ2 (ω2) = 0

takes place; doing the same reasoning gives sets Ω′
1 ⊂ Ω1, Ω

′
2 ⊂ Ω2 such that µ1 (Ω

′
1) = µ2 (Ω

′
2) =

1 and for ω1 ∈ Ω′
1, ω2 ∈ Ω′

2, g (ω1, ω2, ω3) = 0 hence g = 0 µ-a.s.. This ends the proof of

Lemma 2. �

Theorem 2. Let (Ω,A, µ) be a dynamical system of the form Ω = Ω1×Ω2×Ω3, A = A1⊗A2⊗A3

and µ = µ1⊗µ2⊗µ3, where A1 (respectively A2, A3) is a σ-algebra on Ω1 (respectively Ω2, Ω3)

and µ1, µ2, µ3 are probability measures. For ℓ ∈ {1, 2, 3}, consider a sub-σ-algebra F (ℓ)
0 of Aℓ

such that TℓF (ℓ)
0 ⊂ F (ℓ)

0 . Define the sub-σ-algebra Fi,j,k of A by

Fi,j,k =
(

T−i
1 F (1)

0

)

⊗
(

T−j
2 F (2)

0

)

⊗
(

T−k
3 F (3)

0

)

.

Let f be function such that (f ◦ Ti,j,k)i,j,k∈Z is a martingale difference random field.

There exist a family of real numbers (λa,b,c (f))a,b,c≥1 such that
∑

a,b,c≥1 λ
2
a,b,c (f) < ∞ and

such that if
(

N
(1)
a

)

a≥1
,
(

N
(2)
b

)

b≥1
and

(

N
(3)
c

)

c≥1
are three i.i.d. and mutually independent

sequences of standard normal random variables, then

1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f ◦ Ti,j,k →
∞
∑

a,b,c=1

λa,b,c (f)N
(1)
a N

(2)
b N (3)

c

in distribution as min {ℓ,m, n} → ∞.

It will be clear from the proof of this theorem that any square summable family (λa,b,c (f))a,b,c≥1

can appear in the expression of the limit in distribution.

Proof. We know by Lemma 2 that we can express f as

f (ω1, ω2, ω3) =

∞
∑

a,b,c=1

λa,b,c (f) va,1 (ω1) vb,2 (ω2) vc,3 (ω3) ,

where the convergence takes place in L
2 (µ).

Define

fK (ω1, ω2, ω3) :=
K
∑

a,b,c=1

λa,b,c (f) va,1 (ω1) vb,2 (ω2) vc,3 (ω3) .

Note that
(

fK ◦ T i,j,k
)

i,j,k∈Z is also a martingale difference random field. Suppose that we

proved for each K ≥ 1 Theorem 2 with f replaced by fK . By orthogonality of increments, for
8



all ℓ,m, n > 0,

P





∣

∣

∣

∣

∣

∣

1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f ◦ Ti,j,k −
1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

fK ◦ Ti,j,k

∣

∣

∣

∣

∣

∣

> ε



 ≤ 1

ε2
‖f − fK‖22

hence

lim
K→∞

sup
ℓ,m,n

P





∣

∣

∣

∣

∣

∣

1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

f ◦ Ti,j,k −
1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

fK ◦ Ti,j,k

∣

∣

∣

∣

∣

∣

> ε



 = 0.

Moreover,

lim
K→∞

∥

∥

∥

∥

∥

∥

∞
∑

a,b,c=1

λa,b,c (f)N
(1)
a N

(2)
b N (3)

c −
K
∑

a,b,c=1

λa,b,c (f)N
(1)
a N

(2)
b N (3)

c

∥

∥

∥

∥

∥

∥

2

2

= lim
K→∞

∥

∥

∥

∥

∥

∥

∞
∑

a,b,c=1

1max{a,b,c}≥K+1 λ
2
a,b,c (f)

∥

∥

∥

∥

∥

∥

2

2

= 0

hence we would get the conclusion of Theorem 2 by an application of Theorem 4.2 in [1]. We

thus have to prove that for each K,

(6)
1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

fK ◦ Ti,j,k →
K
∑

a,b,c=1

λa,b,c (f)N
(1)
a N

(2)
b N (3)

c

in distribution as min {ℓ,m, n} → ∞. By definition of fK ,

1√
ℓmn

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

fK ◦ Ti,j,k

=
K
∑

a,b,c=1

λa,b,c (f)

(

1√
ℓ

ℓ
∑

i=1

va,1 ◦ T i
1

)





1√
m

m
∑

j=1

vb,2 ◦ T j
2





(

1√
n

n
∑

k=1

vc,3 ◦ T k
3

)

.

Consider the random vector Vℓ,m,n of dimension 3K, where the first K entries are 1√
ℓ

∑ℓ
i=1 va,1 ◦

T i
1, 1 ≤ a ≤ K, the entries of index between K + 1 and 2K are 1√

m

∑m
j=1 vb,2 ◦ T

j
2 and the last

K are 1√
n

∑n
k=1 vc,3 ◦ T k

3 . By the Cramer-Wold device, the Billingsley-Ibragimov Central Limit

Theorem for martingale differences and the fact that ‖va,1‖2 = ‖vb,2‖2 = ‖vc,3‖2 = 1, the vector

Vℓ,m,n converges in distribution as min {ℓ,m, n} → ∞ to

V :=
(

N
(1)
1 , . . . , N

(1)
K , N

(2)
1 , . . . , N

(2)
K , N

(3)
1 , . . . , N

(3)
K

)

,

where N
(1)
a , N

(2)
b and N

(3)
c are like in the statement of Theorem 2. Now, (6) follows from an

application of the continuous mapping theorem, that is, g (Vℓ,m,n) → g (V ), where g : R3K → R

is defined as

g (x1, . . . , xK , y1, . . . , yK , z1, . . . , zK) =
K
∑

a,b,c=1

λa,b,c (f)xaybzc.

This ends the proof of Theorem 2. �
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5. Limit law in the general case, for 2-dimensional field

As shown in [8], for a random field of martingale differences we have a CLT with convergence

towards a mixture of normal laws (see Theorem below). In Section 4, for f I-measurable it was

precised which mixtures can appear as limit laws (for definition of the factor I see Section 2).

Here we deal with the same question for the general case of a martingale difference f ∈ L
2. We

reduce our study to the case of (ergodic) Z
2-actions. In many cases it is because we have not

succeeded to extend the proofs to d > 2.

As shown in Section 3, if f is a martingale difference, so is E [f |I] and also f −E [f |I]. Recall
that the limit laws for the random field generated by E [f |I] have been determined in Section

4). In Subsection 5.1, we give a sufficient condition guaranteeing convergence of the random

field generated by f −E [f |I] to a normal law. We show in Subsection 5.3 that, under the same

condition the random field generated by f is the convolution of the preceding ones.

In Subsection 5.2 we establish the result announced at the end of the Introduction.

Eventually in Subsection 5.4 we give an example of a field of martingale differences generated

by f − E [f |I] where the limit law is not normal. It remains an open question which mixtures

of normal laws can appear as limits in the CLT for f − E [f |I].
In all this Section, f◦Ti,j is a field of martingale differences adapted to a completely commuting

filtration Fi,j.

5.1. Limit law for an increment orthogonal to the factor of product type. Recall that

f ◦Ti,j is a field of martingale differences and as shown in Part 1, (f−E [f |I])◦Ti,j are martingale

differences as well.

Let us begin by recalling Theorem 1 in [8] which gives information on the limit law in the

CLT. It will be stated and used here for d = 2 but extends to any dimension.

Theorem. When min{m,n} → ∞ the random variables 1√
mn

∑m
i=1

∑n
j=1 f ◦ Ti,j converge in

distribution to a law with characteristic function E
[

exp(−η2t2/2)
]

where η2 is a positive random

variable such that E
[

η2
]

= ‖f‖2. The random variables 1
mn

∑m
i=1

(

∑n
j=1 f ◦ Ti,j

)2
converge in

distribution to η2.

Comment on the Theorem. In fact, by the ergodic theorem, limm→∞
1
m

∑m
i=1

1
n

(

∑n
j=1 f ◦ Ti,j

)2

exists for each n and the distribution of η2 is the limit in distribution of this quantity when

n → ∞. (This can be seen as well in the proof of the Theorem or as a consequence of it.)

Proposition 4. Let f ∈ L
2 ⊖ L

2(I) be a martingale difference. If, moreover, f ∈ L
4 and

(7) lim
ℓ→∞

‖E [f | F∞,−ℓ ∨ I1]‖2 = 0.

then for min{m,n} → ∞, (1/
√
mn)

∑m
i=1

∑n
j=1 f ◦ Ti,j converge in distribution to a centered

normal law with variance E
[

f2
]

.

Remark 1. We have I2 ⊂ F∞,−ℓ (for every ℓ) hence I ⊂ F∞,−ℓ ∨ I1. Therefore ‖E [f | I] ‖2 ≤
‖E [f | F∞,−ℓ ∨ I1] ‖2 and, for any f ∈ L

2, (7) implies E [f | I] = 0.

10



Remark 2. For any f ∈ L
2, the sequence

(

(E [f | F∞,−ℓ ∨ I1])2
)

is uniformly integrable ;

indeed, denoting (Gℓ) a family of sub-σ-algebra we have

E

[

(E [f | Gℓ])
2
1|E[f |Gℓ]|≥C

]

≤ E
[

E
[

f2 | Gℓ

]

1|E[f |Gℓ]|≥C

]

= E
[

f2
1|E[f |Gℓ]|≥C

]

→ 0

when C → ∞.

As a consequence the property (7) is equivalent to the convergence of (E [f | F∞,−ℓ ∨ I1]) to zero

in probability.

Similarly, for f ∈ L
4, condition (7) implies that

(8) lim
ℓ→∞

‖E [f | F∞,−ℓ ∨ I1]‖4 = 0.

Remark 3. Of course, condition (7) implies

(9) E [f | F∞,−∞ ∨ I1] = 0 .

In Subsection 5.5 we give an example where
⋂

ℓ

F∞,−ℓ ∨ I1 6= F∞,−∞ ∨ I1 ,

showing that (9) can be satisfied without (7). But we do not know if (9) is sufficient in order to

obtain the conclusion of Proposition 4.

Proof of Proposition 4. Define

(10) Vm,n =
1

m

m
∑

i=1





1√
n

n
∑

j=1

f ◦ Ti,j





2

.

Following the Theorem just recalled above, it is sufficient to prove that

lim
n

lim
m

Vm,n = ‖f‖22 .

By the ergodic theorem

lim
m

Vm,n = E









1√
n

n
∑

j=1

f ◦ T0,j





2

| I1





and the square terms give the expected limit; indeed, again by ergodic theorem,

lim
n

E





1

n

n
∑

j=1

f2 ◦ T0,j | I1



 = E
[

E
[

f2 | I2
]

| I1
]

and E
[

E
[

f2 | I2
]

| I1
]

= E
[

f2
]

since the algebra I1 and I2 are independent.

Thus it remains to prove that

(11) lim
n

E





1

n

∑

1≤j<k≤n

f ◦ T0,j f ◦ T0,k | I1



 = 0
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We’ll need to work with order two moments of these sums, which are finite thanks to the

assumption that f ∈ L
4.

Let us write, for ℓ > 0,

1

n

∑

1≤j<k≤n

f ◦ T0,j f ◦ T0,k

=
1

n

n
∑

k=ℓ+1

f ◦ T0,k

k−ℓ
∑

j=1

f ◦ T0,j +
1

n

n
∑

k=2

f ◦ T0,k

k−1
∑

j=(k−ℓ+1)∨1
f ◦ T0,j =: I + II.

The sequence
(

f ◦ T0,k
∑k−1

j=(k−ℓ+1)∨1 f ◦ T0,j

)

k>1
is a sequence of square integrable martingale

differences (remember that f ∈ L
4), adapted to the filtration (F0,k). Pythagore followed by

Cauchy-Schwarz gives

‖II‖22 =
1

n2

n
∑

k=2

∥

∥

∥

∥

∥

∥

f ◦ T0,k

k−1
∑

j=(k−ℓ+1)∨1
f ◦ T0,j

∥

∥

∥

∥

∥

∥

2

2

≤ 1

n2

n
∑

k=2

‖f ◦ T0,k‖24

∥

∥

∥

∥

∥

∥

k−1
∑

j=(k−ℓ+1)∨1
f ◦ T0,j

∥

∥

∥

∥

∥

∥

2

4

Burkholder’s inequality (see for example [5] gives
∥

∥

∥

∥

∥

∥

k−1
∑

j=(k−ℓ+1)∨1
f ◦ T0,j

∥

∥

∥

∥

∥

∥

2

4

≤ 3

k−1
∑

j=(k−ℓ+1)∨1
‖f ◦ T0,j‖24 ≤ 3ℓ ‖f‖24

hence

(12) ‖E [II | I1]‖2 ≤ ‖II‖2 ≤
√
3 ‖f‖24

√

ℓ

n
.

The sequences
(

f ◦ T0,k
∑k−ℓ

j=1 f ◦ T0,j

)

k>ℓ
is a sequence of square integrable martingale dif-

ferences (remember that f ∈ L
4), adapted to the filtration (F0,k). Applying Proposition 2 to

the Z-action (Tk,0), I = I1, F = F∞,k and C trivial, we obtain that conditional expectations

with respect to I1 and F∞,k commute. Moreover, since I1 ⊂ F0,∞, conditional expectations

with respect to I1 and F0,∞ commute. Using the commuting property of the filtration (Fi,j),

we affirm that conditional expectations with respect to I1 and F0,k commute. As a consequence

the sequence

E







f ◦ T0,k

k−ℓ
∑

j=1

f ◦ T0,j | I1









k>ℓ

is a sequence of martingale differences, and in particular it is an orthogonal sequence in L
2.

Using successively Pythagore, invariance under T0,k, properties of the conditional expectation,

Cauchy-Schwarz and Burkholder, we write

‖E [I | I1]‖22 =
1

n2

n
∑

k=ℓ+1

∥

∥

∥

∥

∥

∥

E



f ◦ T0,k

k−ℓ
∑

j=1

f ◦ T0,j | I1





∥

∥

∥

∥

∥

∥

2

2

12



=
1

n2

n
∑

k=ℓ+1

∥

∥

∥

∥

∥

∥

E



f

−ℓ
∑

j=1−k

f ◦ T0,j | I1





∥

∥

∥

∥

∥

∥

2

2

=
1

n2

n
∑

k=ℓ+1

∥

∥

∥

∥

∥

∥

E [f | F∞,−ℓ ∨ I1]
−ℓ
∑

j=1−k

f ◦ T0,j

∥

∥

∥

∥

∥

∥

2

2

≤ ‖E [f | F∞,−ℓ ∨ I1]‖24
1

n

n
∑

k=ℓ+1

∥

∥

∥

∥

∥

∥

1√
n

−ℓ
∑

j=1−k

f ◦ T0,j

∥

∥

∥

∥

∥

∥

2

4

≤ 3 ‖E [f | F∞,−ℓ ∨ I1]‖24 ‖f‖
2
4 .

This estimation, associated with (12), gives
∥

∥

∥

∥

∥

∥

E





1

n

∑

1≤j<k≤n

f ◦ T0,j f ◦ T0,k | I1





∥

∥

∥

∥

∥

∥

2

≤
√
3

(

‖E [f | F∞,−ℓ ∨ I1]‖4 ‖f‖4 + ‖f‖24
√

ℓ

n

)

,

hence for each ℓ,

lim sup
n→∞

∥

∥

∥

∥

∥

∥

E





1

n

∑

1≤j<k≤n

f ◦ T0,j f ◦ T0,k | I1





∥

∥

∥

∥

∥

∥

2

≤
√
3 ‖E [f | I1 ∨ F∞,−ℓ]‖4 ‖f‖4 ,

and, thanks to (8), we conclude that (11) is true. �

5.2. Entropy condition for convergence to a normal law.

Theorem 3. There exists a martingale difference f ∈ L
2 with non normal limit in the CLT if

and only if T1,0 is of positive entropy in I2 and T0,1 is of positive entropy in I1.

Proof. 1. Suppose that T0,1 is of positive entropy in I1 and T1,0 is of positive entropy in I2. For
a measure preserving and bimeasurable transformation S, positive entropy implies existence of

a nontrivial i.i.d. sequence of the form h ◦Si. In the factor of product type given by I = I1 ∨I2
we thus get a non trivial field of Wang-Woodroofe type.

2. Suppose that the transformation T0,1 is of zero entropy on I1. Then I1 is an invariant

sub-σ-algebra of the Pinsker sigma algebra for T0,1 hence by Theorem 2 in [6] we have that for

any integrable and F∞,0-measurable function g, E [g | F∞,−ℓ ∨ I1] = E [g | F∞,−ℓ] for all ℓ > 0.

Hence, if g is a square integrable martingale difference, we have

(13) E [g | F∞,−ℓ ∨ I1] = 0 for all ℓ > 0.

Thus, by Proposition 4, we know that if f is a martingale difference with finite fourth moment,

then the CLT applies with a normal limit. For a square integrable martingale difference f we

will use a Peligrad-Volný trick (see [4]) writing f as a sum of a bounded martingale difference

and a rest small in L
2. We’ll conclude that the CLT applies to f with a normal limit. Here are

the details of this approximation argument.
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Theorem 4.2 in [1] tells that for stochastic processes (YC,n)C,n≥1, (Y
′
n)n≥1, (ZC)C≥1, and a

random variable Z, satisfying

YC,n −→ ZC in distribution, as n → ∞, for each C,

ZC −→ Z in distribution, as C → ∞,

lim
C→∞

lim sup
n→∞

P
(∣

∣Y ′
n − YC,n

∣

∣ > ε
)

= 0, for all ε > 0,

we may conclude that Y ′
n → Z in distribution.

Such a result extends readily to the case of a double-indexed process where the minimum

of the indices go to infinity, by considering sequences (mk, nk) which both go to infinity. By

bounding the lim sup in the last condition by a supremum, we thus get that for (YC,m,n)C,m,n≥1,
(

Y ′
m,n

)

m,n≥1
, (ZC)C≥1, and a random variable Z, satisfying

YC,m,n −→ ZC in distribution, as min {m,n} → ∞, for each C,

ZC −→ Z in distribution, as C → ∞,

lim
C→∞

sup
m,n≥1

P
(∣

∣Y ′
m,n − YC,m,n

∣

∣ > ε
)

= 0, for all ε > 0,

we may conclude that Y ′
m,n → Z in distribution as min {m,n} → ∞.

We apply this in the following setting: define

fC := f1|f |≤C − E
[

f1|f |≤C | F−1,0

]

− E
[

f1|f |≤C | F0,−1

]

+ E
[

f1|f |≤C | F−1,−1

]

,

Y ′
m,n =

1√
mn

m
∑

i=1

n
∑

j=1

f ◦ Ti,j, YC,m,n =
1√
mn

m
∑

i=1

n
∑

j=1

fC ◦ Ti,j

By Proposition 4, we know that for each C, YC,m,n −→ ZC in distribution as min {m,n} → ∞,

where ZC has a centered normal distribution with variance E
[

f2
C

]

. Moreover, ‖f − fC‖2 ≤
4
∥

∥f1|f |>C

∥

∥

2
hence ZC −→ Z in distribution as C goes to infinity, where Z has a centered

normal distribution with variance E
[

f2
]

. Finally, using the fact that f − fC is a martingale

difference, we get, by Tchebychev’s inequality,

sup
m,n≥1

P
(∣

∣Y ′
m,n − YC,m,n

∣

∣ > ε
)

≤ 1

ε2
sup

m,n≥1
E









1√
mn

m
∑

i=1

n
∑

j=1

(f − fC) ◦ Ti,j





2

 =
1

ε2
E

[

(f − fC)
2
]

,

which goes to 0 as C goes to infinity. �

Notice that Theorem 3 improves the result in [7] which tells that the limit distribution is

normal as soon as one of the σ-algebra I1 or I2 is trivial. However, the result in [7] applies to

all d > 1 while here it applies to d = 2 only. The case of d > 2 remains open.

5.3. When the two parts are asymptotically independent. We refer here once more to

Theorem 1 in [8] which has been recalled in sub-section 5.1.
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Proposition 5. Let the characteristic functions of the limit laws for the random fields generated

by f , E [f | I] and f − E [f | I] be respectively

ϕ1(t) = E

[

e−
1

2
t2η2

1

]

, ϕ2(t) = E

[

e−
1

2
t2η2

2

]

, ϕ3(t) = E

[

e−
1

2
t2η2

3

]

.

If η23 is a constant, in particular if (7) holds true, then ϕ1(t) = ϕ2(t)ϕ3(t), hence the limit law

for the random field generated by f is the convolution of limit laws for E [f | I] and f −E [f | I].

Proof. Let

Fi,v =
1√
v

v
∑

j=1

f ◦ Ti,j, Hi,v =
1√
v

v
∑

j=1

E [f | I] ◦ Ti,j, Hi,v =
1√
v

v
∑

j=1

(f − E [f | I]) ◦ Ti,j .

From [8] it follows that when v → ∞

E
[

F 2
1,v | I1

]

→ η21 , E
[

H2
1,v | I1

]

→ η22 and E

[

H
2
1,v | I1

]

→ η23 ,

these convergences being in distribution. By definition we have F1,v = H1,v +H1,v and because

H1,v is I-measurable and E
[

H1,v | I
]

= 0, we have

E
[

H1,vH1,v | I1
]

= E
[

E
[

H1,vH1,v | I
]

| I1
]

= E
[

H1,vE
[

H1,v | I
]

| I1
]

= 0,

therefore

E
[

F 2
1,v | I1

]

= E
[

H2
1,v | I1

]

+ E

[

H
2
1,v | I1

]

and if one of these three random variables converges (in distribution) toward a constant we can

affirm that

η21 = lim
v→∞

E
[

F 2
1,v | I1

]

= lim
v→∞

E
[

H2
1,v | I1

]

+ lim
v→∞

E

[

H
2
1,v | I1

]

= η22 + η23 .

�

5.4. Example of a non-normal limit law, in the orthocomplement of the product

factor. Here we give an example of an ergodic Z
2-action and a martingale difference f which

is orthogonal to the factor I but for which the limit distribution in the CLT is not normal.

Let us denote by (Ω,B, µ, S) the Bernoulli scheme
(

1
2 ,

1
2

)

on the alphabet {−1, 1}. This means

that Ω is the space of bilateral sequences of −1 or 1, equipped with the product σ-algebra, the

probability measure which makes the coordinate maps i.i.d. with law
(

1
2 ,

1
2

)

, and the shift S.

Another dynamical system is Z = {−1, 1} equipped with the permutation U and the uniform

probability.

On the product probability space Ω× Ω× Z, consider the Z
2-action T defined by

Ti,j(ω, ω
′, z) =

(

Siω, Sjω′, U i+jz
)

.

This space is equipped with the natural filtration (Fi,j) :

Fi,j = σ (Xk, Yℓ, z; k ≤ i, ℓ ≤ j) = σ (Xk; k ≤ i)⊗ σ (Yℓ; ℓ ≤ j)⊗ P(Z).

where of course Xk ((ωn)n∈Z) = ωk et Yℓ ((ω
′
m)m∈Z) = ω′

ℓ are the two independent Bernoulli

processes.
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The σ-algebra I1 of T1,0-invariants is the σ-algebra of events depending only on the second

coordinate :

I1 = (trivial σ-algebra of Ω)⊗ B ⊗ (trivial σ-algebra of Z).

And symmetrically for the σ-algebra I2 of T0,1-invariants. So that we have

I = B ⊗ B ⊗ (trivial σ-algebra of Z).

We consider now the random variable f(ω, ω′, z) = X0(ω)Y0(ω
′)z.

Since the expectation of z is zero, we have E [f | I] = 0. Associated to the Z
2-action and the

natural filtration, the function f is a martingale difference.

But it is easy to calculate the limit distribution of
(

1√
nm

∑n
i=1

∑m
j=1 f ◦ Ti,j

)

. Indeed,

1√
nm

n
∑

i=1

m
∑

j=1

f ◦ Ti,j(ω, ω
′, z) =

(

1√
n

n
∑

i=1

(−1)iXi(ω)

)





1√
m

m
∑

j=1

(−1)jYj(ω
′)



 z .

The limit distribution is the distribution of the product of two independent N (0, 1) random

variables, which is a non-normal Bessel law.

5.5. Remark on the asymptotic condition insuring a normal law. When looking to

Proposition 4 the following question appears naturally. Is it true that

(14)
⋂

ℓ≥0

(F∞,−ℓ ∨ I1) = F∞,−∞ ∨ I1 ?

We give here a negative answer, by the construction of an example. (Note however that, in this

example the transformation T2,0 is the identity so there will not exist any non zero martingale

difference.)

The space is the bidimensional torus T2 = R
2/Z2 ≃ [0, 1[2 equipped with the Borel σ-algebra

and the Lebesgue measure. The transformation T0,1 is the automorphism defined by the matrix
(

3 1

2 1

)

, that is T0,1(x, y) = (3x + y, 2x + y), and the transformation T1,0 is the translation

T1,0(x, y) =
(

x+ 1
2 , y
)

.

Transformations T0,1 et T1,0 are commuting :

T1,0T0,1(x, y) = T0,1T1,0(x, y) = (3x+ 2y +
1

2
, 2x+ y),

so they generate a Z
2-action denoted by T .

Let us denote by P the partition
{[

0, 12
[

× [0, 1[,
[

1
2 , 1
[

× [0, 1[
}

of the torus, and by (Fj) the

filtration generated by the transformation T0,1 and this partition :

Fj = σ (T0,−k (P) , k ≤ j) .

We know that the measure preserving dynamical system
(

T
2, T0,1

)

has the Kolmogorov property,

thus the limit σ-algebra F−∞ = ∩j∈ZFj is trivial (modulo the measure).

Note also that the partition P is invariant under the transformation T1,0.

Define, for all i, j ∈ Z, Fi,j = Fj .

We have Fi,j ⊂ Fi′,j′ if j ≤ j′.
16



We have Fi,j∩Fi′,j′ = F(i,j)∧(i′,j′) and E
[

E [f | Fi,j] | Fi′,j′
]

= E
[

f | F(i,j)∧(i′,j′)
]

for all integrable

function f .

Moreover, for all i, j ∈ Z, Fi,j = T−i,−j (F0,0).

This means that we have a completely commuting invariant filtration.

The σ-algebra F∞,−∞ = F−∞ is trivial thus F∞,−∞ ∨ I1 = I1.
Finally the following lemma shows that property (14) is not satisfied.

Lemma 3. For all ℓ ∈ Z, the σ-algebra F∞,ℓ ∨ I1 is the whole Borel algebra.

Proof. Let us show that, for any ℓ, the σ-algebra generated by I1 and the partition T0,−ℓ (P) is

the whole Borel algebra.

For each integer n, consider
(

3 1

2 1

)n

=

(

an bn

cn dn

)

A straightforward induction shows that, for all n ∈ Z, the number an is odd and the number

cn is even.

Any measurable function of the two-dimensional variable (2x, y) is I1 measurable and the

map (x, y) 7→ 1[0, 1
2
[(aℓx + bℓy) is T0,−ℓ (P)-measurable. By multiplication, we obtain that the

map (x, y) 7→ 1[0, 1
2
[(x) is T0,−ℓ (P)∨I1-measurable. Using the representation T = [0, 1[ we write

exp(2iπx) = exp

(

2iπ
1

2
(2x mod1)

)

1[0, 1
2
[(x)− exp

(

2iπ
1

2
(2x mod1)

)

1[ 1
2
,1[(x).

This shows that any character of the two dimensional torus is T0,−ℓ (P)∨I1 measurable, proving

that this σ-algebra is the whole Borel algebra.

�

Remark. The idea behind the previous construction owes a great deal to an example attrib-

uted to Jean-Pierre Conze and communicated to us by Jean-Paul Thouvenot : if we denote

by B(α) the σ-algebra of Borel subsets of the one-dimensional torus invariant by the transla-

tion x 7→ x + α, we have that the algebra
⋂

n∈N B(2−n) and
⋂

n∈N B(3−n) are trivial (modulo

the Lebesgue measure), but for each n the σ-algebra B(2−n)∨B(3−n) is the whole Borel algebra.
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