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Abstract

Diffusion or score-based models recently showed high performance in image gen-
eration. They rely on a forward and a backward stochastic differential equations
(SDE). The sampling of a data distribution is achieved by solving numerically the
backward SDE or its associated flow ODE. Studying the convergence of these mod-
els necessitates to control four different types of error: the initialization error, the
truncation error, the discretization and the score approximation. In this paper, we
study theoretically the behavior of diffusion models and their numerical implemen-
tation when the data distribution is Gaussian. In this restricted framework where
the score function is a linear operator, we can derive the analytical solutions of the
forward and backward SDEs as well as the associated flow ODE. This provides
exact expressions for various Wasserstein errors which enable us to compare the
influence of each error type for any sampling scheme, thus allowing to monitor
convergence directly in the data space instead of relying on Inception features. Our
experiments show that the recommended numerical schemes from the diffusion
models literature are also the best sampling schemes for Gaussian distributions.

1 Introduction

Over the last five years, diffusion models have proven to be a highly efficient and reliable framework
for generative modeling [25, 14, 24, 26, 7, 15]. First introduced as a discrete process, Denoising
Diffusion Probabilistic Models (DDPM) [14] can be studied as a reversal of a continuous Stochastic
Differential Equation (SDE) [26]. A forward SDE progressively transforms the initial data distribution
by adding more and more noise as time grows. Then, the reversal of this process, called backward
SDE, allows us to approximately sample the data distribution starting from Gaussian white noise.
Moreover, the SDE is associated with an Ordinary Differential Equations (ODE) called probability
flow [26]. This flow preserves the same marginal distributions as the backward SDE and provides
another way to sample the score-based generative model.

An important issue about diffusion models is the theoretical guarantees of convergence of the model:
How close to the data distribution the generate distribution is? There are four main source of errors
to study for deriving theoretical guarantees for diffusion models. First, the initialization error is
induced when approximating the marginal distribution at the end of the forward process by a standard
Gaussian distribution. Then, the discretization error comes from the resolution of the SDE or the
ODE by a numerical method. The truncation error occurs because the backward time integration is
stopped at a small time ε > 0 to avoid numerical instabilities due to ill-defined score function near
the origin. Finally the score approximation error accounts for the mismatch between the ideal score
function and the one given by the network trained using denoising score-matching.

Preprint. Under review.
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Figure 1: Wasserstein errors for the diffusion models associated with the CIFAR-10 Gaussian. Left:
Evolution of the Wasserstein distance between pt and the distributions associated with the continuous SDE,
the continuous flow ODE and four discrete sampling schemes with standard N0 initialization, either stochastic
(Euler-Maruyama (EM) and Exponential Integrator (EI)) or deterministic (Euler and Heun). While the continuous
SDE is less sensible than the continuous ODE (as proved by Proposition 4), the initialization error impacts all
discrete schemes with a comparable order of magnitude. Heun’s method has the lowest error and is very close
to the theoretical ODE, except for the last step that is usually discarded when using time truncation. Right:
Wasserstein errors due to time truncation for various truncation times ε. Using time truncation increases the
error for all the methods except Heun’s scheme due to instability near the origin. Interestingly, for the standard
practice truncation time ε = 10−3, all numerical schemes have a comparable error close to their continuous
counterparts.

Despite these numerous sources of errors, a lot of numerical and theoretical research has been led
to assess the generative capacity of diffusion models. Several articles [3, 10, 15] provide strong
experimental studies for the choices of sampling parameters. On the theoretical side, several works
derive upper bounds on the 1-Wasserstein or TV distance between the data and the model distributions
by making assumptions on the L2-error between the ideal and learned score functions and on the
compacity of the support of the data [19, 6, 4, 18, 1], eventually under an additional manifold
assumption [5, 28, 2]. Yet, on one hand, to the best of our knowledge, the derived theoretical bounds
mostly rely on worst case scenario and are not tight enough to explain the practical efficiency of
diffusion models. On the other hand, numerical considerations mostly rely on Inception feature
distributions through the FID metric [13].

Ideally, given a data distribution of interest, one would like to have an adapted estimation of the
discrepancy between the data and the diffusion model samples, thus enabling adaptive hyperparameter
selection for the sampling procedure. As a first step towards reaching this goal, in the present work
we study diffusion models applied to Gaussian data distributions. While this setting has a priori no
practical interest, since simulating Gaussian variates does not require a diffusion model, it provides a
large parametric family of distributions for which the errors involved in diffusion model sampling
can be completely understood.

When restricting the data distribution to be Gaussian, the resulting score function is a simple linear
operator. Exploiting this specificity allows us to derive the following contributions under the
assumption that the data is Gaussian:

• We give the exact solutions for both the backward SDE and probability flow ODE.

• We fully describe the Gaussian processes that occurs when using classical sampling dis-
cretization schemes.

• We derive exact 2-Wasserstein errors for the corresponding sample distributions and are able
to assert for the influence of each error type on these errors, as illustrated by Figure 1.

Our theoretical study allows for a thorough experimental analysis of any numerical sampler, either
stochastic or deterministic. In particular, it confirms the strength of best practice scheme such as
Heun’s method for the ODE flow [15].
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While our theoretical analysis relies on an exact known score function, we conduct additional
experiments to assess for the influence of the score approximation error. Surprisingly, in the context
of texture synthesis, we show that with a score neural network trained for modeling a specific
Gaussian micro-texture a stochastic Euler-Maruyama sampler is more faithful to the data distribution
than Heun’s method, thus highlighting the importance of the score approximation error in practical
situations.

Plan of the paper: First, we recall in Section 2 the continuous framework for SDE-based diffusion
models. Section 3 presents our main theoretical results detailing the exact backward SDE and
probability flow ODE solutions when supposing the data distribution to be Gaussian. Section 4
gives explicit Wasserstein error formulas when sampling the corresponding processes, yielding to an
ablation study for comparing the influence of each error type on several sampling schemes. Finally,
in Section 5 we study numerically a special case of Gaussian distribution for texture synthesis in
order to evaluate the influence of the score approximation error occurring with a standard network
architecture.

2 Preliminaries: Score-based models through diffusion SDEs

This preliminary section follows the seminal work of Song et al. [26] and introduces specific notation
to differentiate the exact backward process and the generative backward process obtained when
starting from a white noise. Given a target distribution pdata over Rd, the forward diffusion process
is the following variance preserving SDE

dxt = −βtxtdt+
√

2βtdwt, 0 ≤ t ≤ T, x0 ∼ pdata (1)

where (wt)t≥0 is a d-dimension Brownian motion and β is a positive weight function. The distribution
pdata is noised progressively and the function β is the variance of the added noise by time unit. We
denote by pt the density of (xt) for t > 0 since pdata can be supported on a lower-dimensional
manifold [5]. The SDE is designed so that pT is close to the Gaussian standard distribution that we
denote N0 in whole paper. Under some assumptions on the distribution pdata [21], the backward
process (xT−t)0≤t≤T verifies the backward SDE

dyt = βT−t(yt + 2∇ log pT−t(yt))dt+
√
2βT−tdwt, 0 ≤ t < T, y0 ∼ pT . (2)

The objective is now to solve this reverse equation to sample yT ∼ pdata. However, the distribution
pT is in general not known, and image1 generation is achieved by sampling

dỹt = βT−t(ỹt + 2∇ log pT−t(ỹt))dt+
√
2βT−tdwt, 0 ≤ t < T, ỹ0 ∼ N0. (3)

Note that approximating pT by N0 for the initialization y0 makes that the solution of the SDE (3) is
not exactly the target distribution pdata. An alternative way to approximately sample pdata is to use
that every diffusion process is associated with a deterministic process whose trajectories share the
same marginal probability densities (pt)0<t≤T as the SDE [26]. The deterministic process associated
with Equation (2) is

dxt = [−βtxt − βt∇x log pt(xt)] dt, 0 < t ≤ T, x0 ∼ pdata. (4)

This ODE can be solved in reverse-time to sample x0 from xT ∼ pT . Given (xt)0≤t≤T solution of
Equation (4), (xT−t)0≤t≤T is solution of

dyt = [βT−tyt + βT−t∇y log pT−t(yt)] dt, 0 ≤ t < T. (5)

Again, in practice, the ODE which is considered to achieve image generation is

dŷt =
[
βT−tŷt + βT−t∇ŷ log pT−t(ŷt)

]
dt, 0 ≤ t < T, ŷ0 ∼ N0, (6)

where pT is replaced by N0. As a consequence of this approximation, the property of conservation
of the marginals (pt)0≤t≤T does not occur. We denote by (q̃t)0≤t≤T , respectively (q̂t)0≤t≤T , the
marginals of (ỹt)0≤t≤T and (ŷt)0≤t≤T and p̃t = q̃T−t,p̂t = q̂T−t the marginals of

(
ỹT−t

)
0≤t≤T

and
(
ŷT−t

)
0≤t≤T

such that p̃t and p̂t are approximations of pt.

1Although we may refer to data as images, our analysis is fully general and applies to any vector-valued
diffusion model.
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3 Exact SDE and ODE solutions

Our approach relies on deriving explicit solutions to the various SDE and ODE. We begin with
the forward SDE in full generality obtained in applying the variation of constants (see the proof in
Appendix B.1). This resolution also provides an ODE verified by the covariance matrix of xt, that
we denote Σt = Cov(xt).
Proposition 1 (Solution of the forward SDE). The strong solution of Equation (1) can be written as:

xt = e−Btx0 + ηt, 0 ≤ t ≤ T, (7)

where Bt =
∫ t

0
βsds and ηt = e−Bt

∫ t

0
eBs

√
2βsdws is a Gaussian process independent of x0

whose covariance matrix is (1− e−2Bt)I . Consequently, the covariance matrix Σt of xt is

Σt = e−2BtΣ+ (1− e−2Bt)I. (8)
where Σ is the covariance matrix of x0 ∼ pdata. Futhermore, Σt is invertible for t > 0 and verifies
the matrix-valued ODE

dΣt = 2βt(I −Σt)dt, 0 < t ≤ T. (9)

For a general data distribution pdata, solving the backward SDE in infeasible, the main reason being
that the expression of the score function to integrate is unknown. To circumvent this obstacle, we
now suppose that the data distribution is Gaussian.
Assumption 1 (Gaussian assumption). pdata is a centered Gaussian distribution N (0,Σ).

Note that Σ may be non-invertible and thus pdata supported on a strict subspace of Rd, a special
case of manifold hypothesis. Consequently, the matrix Σt is in general only invertible for t > 0.
Under Gaussian assumption, (xt) is a Gaussian process with marginal distribution pt = N (0,Σt)
and consequently the score is a the linear function

∇ log pt(x) = −Σ−1
t x, 0 < t ≤ T. (10)

Note that the linearity of the diffusion score characterizes Gaussian distributions as detailed by
Proposition 5 in Appendix A.

The cornerstone of our work is that under Gaussian assumption we can derive an exact solution of the
backward SDE, without supposing that the initial condition is Gaussian.
Proposition 2 (Solution of the backward SDE under Gaussian assumption). Under Gaussian as-
sumption, the strong solution to Equation (2) can be written as:

yt = e−(BT−BT−t)ΣT−tΣ
−1
T y0 + ξt, 0 ≤ t ≤ T (11)

where ξt = e−(BT−BT−t)ΣT−t

∫ t

0
Σ−1

T−se
−(BT−BT−s)

√
2βT−sdws is a Gaussian process with

covariance matrix Cov(ξt) = ΣT−t − e−2(BT−BT−t)Σ2
T−tΣ

−1
T . Finally:

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T−t Cov(y0)Σ
−1
T ΣT−t − I

)
, (12)

and in particular, if Cov(y0) and Σ commute,

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

[
Σ−1

T Cov(y0)− I
]

(13)

While not as straightforward as the forward case, the proof also relies on applying the variation
of constants and is given in Appendix B.2. As shown by the following proposition (proved in
Appendix B.3), the flow ODE also has an explicit solution under Gaussian assumption which related
to optimal transport.
Proposition 3 (Solution of the ODE probability flow under Gaussian assumption). The solution to
the probability flow ODE (4) under Gaussian assumption corresponds to the optimal transport map
between pT and pdata. More precisely, for any y0,

yt = Σ
−1/2
T Σ

1/2
T−ty0, 0 ≤ t ≤ T,

is the solution of the reverse-time ODE (5). Consequently, the covariance matrix Cov(yt) verifies

Cov(yt) = Σ
−1/2
T Σ

1/2
T−t Cov(y0)Σ

1/2
T−tΣ

−1/2
T , 0 ≤ t ≤ T, (14)

and in particular, if Cov(y0) and Σ commute,

Cov(yt) = Σ−1
T ΣT−t Cov(y0), 0 ≤ t ≤ T. (15)
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Here we must highlight a subtle issue: Whatever the initial distribution is, the ODE solution consists
in applying the optimal transport map between pT and pdata. Since in practice one cannot truly
sample pT , the resulting flow is not an optimal transport flow and the distribution of yT differs from
pdata.

Links with related work. Some parts of the previous propositions have been stated in previous
work. The expression of the SDE solution of Proposition 1 is given without proof in [12] and the ODE
verified by the variance is given in [26] (citing [22]) but it is generalized here to the full covariance
matrix (Equation (9)). To the best of our knowledge, Proposition 2 is new and one the most important
contribution of the paper. Similar to our approach, Gaussian mixtures have been studied in the context
of diffusion model [29, 30, 23] since they also provide an explicit analytical score. However, solving
the backward SDE is not feasible for Gaussian mixtures as far as we know. The ODE [17, 16] can
be interpreted in the infinite time as an optimal transport (OT) between the prior distribution and
the Gaussian standard distribution. The relation between optimal transport and probability flow
ODE (also called Fokker-Planck ODE) has been discussed in [17, 16] in the asymptotic case where
T 7→ +∞. Both these papers discussed the Gaussian case, but our Proposition 3 highlights that the
generated process is not an optimal transport flow due to the intialiazation error.

4 Exact Wasserstein errors

The specificity of the Gaussian case allows us to study precisely the different types of error with
the expression of the explicit solution of the backward SDE. In what follows, we designate by
Wasserstein distance the 2-Wasserstein distance which is known in closed forms when applied to
Gaussian distributions[8]. For two centered Gaussians N (0,Σ1) and N (0,Σ2) such that Σ1,Σ2

are simultaneously diagonalizable with respective eigenvalues (λi,1)1≤i≤d , (λi,2)1≤i≤d,

W2(N (0,Σ1),N (0,Σ2))
2 =

∑
1≤i≤d

(
√

λi,1 −
√
λi,2)

2. (16)

In the literature, the quality of the diffusion models is measured with FID [13] which is the W2-error
between Gaussians fitted to the Inception features [27] of two discrete datasets. Here we use the
W2-errors directly in data space, which is more informative and allows us to provide theoretical
W2-errors. To illustrate our theoretical results, we consider the CIFAR-10 Gaussian distribution, that
is, the Gaussian distribution such that Σ is the empirical covariance of the CIFAR-10 dataset. As
shown in Appendix C, images produced by this model are not interesting due to a lack of structure,
but the corresponding covariance has the advantage of reflecting the complexity of real data.

The initialization error. As discussed in Sections 2 and 3, the marginals of both generative
processes ỹ and ŷ following respectively Equation (6) and Equation (3) slightly differs from pt due
to their common white noise initial condition. This implies an error that we call the initialization
error. The distance between (p̃t)0≤t≤T , (p̃t)0≤t≤T and (pt)0≤t≤T can be explicitly studied in the
Gaussian case with the following proposition (proved in Appendix B.4).
Proposition 4 (Marginals of the generative processes under Gaussian assumption). Under Gaussian
assumption, (ỹt)0≤t≤T and (ŷt)0≤t≤T are Gaussian processes. At each time t, p̃t is the Gaussian
distribution N (0, Σ̃t) with Σ̃t = Σt + e−2(BT−Bt)Σ2

tΣ
−1
T (Σ−1

T − I) and p̂t is the Gaussian
distribution N (0, Σ̂t) with Σ̂t = Σ−1

T Σt. For all 0 ≤ t ≤ T , the three covariance matrices Σt, Σ̃t

and Σ̂t share the same range. Furthermore, for all 0 ≤ t ≤ T ,

W2(p̃t, pt) ≤ W2(p̂t, pt) (17)

which shows for t = 0 that the SDE sampler is a better sampler than the ODE sampler when the
exact score is konwn.

In practice the initialization error for the SDE and ODE samplers may vary by several orders of
magnitude, as shown for the CIFAR-10 example in Figure 1.(a) (solid lines).

The discretization error. The implementation of the SDE and the ODE implies to choose a discrete
numerical scheme. We propose to study four different schemes presented in Table 1. The classical
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Euler-
Maruyama
(EM)

{
ỹ∆,EM
0 ∼ N0

ỹ∆,EM
k+1 = ỹ∆,EM

k + ∆tβT−tk

(
ỹ∆,EM
k − 2Σ−1

T−tk
ỹ∆,EM
k

)
+

√
2∆tβT−tk

zk, zk ∼ N0
(19)

Exponential
integrator
(EI)

{
ỹ∆,EI
0 ∼ N0

ỹ∆,EI
k+1 = ỹ∆,EI

k + γ1,k

(
ỹ∆,EI
k − 2Σ−1

T−tk
ỹ∆,EI
k

)
+

√
2γ2,kzk, zk ∼ N0

where γ1,k = exp(BT−tk
− BT−tk+1

) − 1 and γ2,k = 1
2 (exp(2BT−tk

− 2BT−tk+1
) − 1)

(20)
O

D
E

sc
he

m
es Explicit

Euler

{
ŷ∆,Euler
0 ∼ N0

ŷ∆,Euler
k+1 = ŷ∆,Euler

k + ∆tf(tk, ŷ
∆,Euler
k ) with f(t,y) = βT−ty − βT−tΣ

−1
T−ty

(21)

Heun’s
method


ŷ∆,Heun
0 ∼ N0

ŷ∆,Heun
k+1/2

= ŷ∆,Heun
k + ∆tf(tk, ŷ

∆,Heun
k ) with f(t,y) = βT−ty − βT−tΣ

−1
T−ty

ŷ∆,Heun
k+1 = ŷ∆,Heun

k +
∆t
2

(
f(tk, ŷ

∆,Heun
k ) + f(tk+1, ŷ

∆,Heun
k+1/2

)
) (22)

Table 1: Stochastic and deterministic discretization schemes. EM and EI disctretize the backward SDE (3),
Euler and Heun schemes discretize of the probability flow ODE (6).

Euler-Maruyama (EM) is used in [26] and the exponential integrator (EI) in [5] to sample from the
SDE (3). The Euler method is the simplest ODE solver and Heun’s scheme is recommended in [15]
to model the ODE (6). Under Gaussian assumption, the eigenvalues of the covariance matrix can
be computed numerically recursively for each scheme to evaluate the Wasserstein distance. More
precisely, all the covariance matrices are diagonalizable in the diagonalization basis of Σ, and thus
Equation (16) is valid. For example, denoting (λt

i)1≤i≤d the eigenvalues of Σt and
(
λEM,k
i

)
1≤i≤d

the eigenvalues of the covariance matrix of the Euler-Maruyama discretization of the SDE at the kth
step, 1 ≤ k ≤ N − 1, the relation verified by these eigenvalues is

λEM,k+1
i =

(
1 + ∆tβT−tk(1− 2

λ
T−tk
i

)
)2
λEM,k
i + 2∆tβT−tk , 1 ≤ i ≤ d, 0 ≤ k ≤ N − 2 (18)

with initialization λ0,EM
i = 1, 1 ≤ i ≤ d. For each scheme, we recursively compute the eigenvalues

at each time discretization and present the observed Wasserstein distance in Figure 1.(a). We can
observe that Heun’s method provide the lower Wasserstein distance, followed by EM, EI and the
Euler scheme. Note that the discrete schemes does not preserve the range of the covariance matrix,
contrary to the continuous formulas. This explains the fact that the Wasserstein distance increases at
the final step.

The truncation error. As discussed in [26], it is preferable to study the backward process on [ε, T ]
instead of [0, T ] because the score is a priori not defined for t = 0, which occurs in our case if Σ
is not invertible. This approximation is called the truncation error. As a consequence, even without
error initialization, the backward process leads to pε and not p0. Under Gaussian assumption, it is
possible to explicit this error with the expression given in Proposition 3 and 2 as done in Figure 5.(b)
for both continuous and numerical solutions. For the standard practice truncation time ε = 10−3

[26, 15], all numerical schemes have an error close to the corresponding continuous solution. Using a
lower ε value is only relevant for the continuous SDE solution.

Ablation study. We propose in Table 2 an ablation study to monitor the magnitude of each error
and their accumulation for various sampling schemes for the CIFAR-10 example. In accordance
with Proposition 4, the initialization error influences the ODE schemes, while SDE schemes are not
affected. Schemes having a sufficient number of steps are not sensitive to the truncation error for
ε < 10−2. The discretization error is the more important approximation but it becomes very low for
a sufficient number of steps. The lower Wasserstein error is provided by Heun’s method with 1000
steps, ε = 10−5. As [15], our conclusions lead to the choice of Heun’s scheme as the go-to method.

Influence of eigenvalues. The above observations and conclusions are observed on the CIFAR-10
Gaussian. However, in general, they depend on the eigenvalues of the covariance matrix Σ. Indeed, as
seen in Equation (16), the Wasserstein distance is separable and each eigenvalue contributes to increase
it. In Figure 2, we evaluate the contribution of each eigenvalue by plotting λ 7→ |

√
λ −

√
λscheme|

for each scheme. Figure 2.(a) demonstrates that for the continuous equations, the error increases
with the eigenvalues except for a strong decrease for λ = 1. Besides, as proved in the proof of
Proposition 4 (see Appendix B.4), the error for the SDE is always lower than the error for the ODE.
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Continuous N = 50 N = 250 N = 500 N = 1000

pT N0 pT N0 pT N0 pT N0 pT N0

E
M

ε = 0 0 6.7E-4 4.77 4.77 0.65 0.65 0.31 0.31 0.15 0.16
ε = 10−5 2.5E-3 2.6E-3 4.77 4.77 0.65 0.65 0.31 0.31 0.16 0.16
ε = 10−3 0.17 0.17 4.67 4.67 0.69 0.69 0.39 0.39 0.27 0.27
ε = 10−2 1.35 1.35 4.56 4.56 1.69 1.69 1.50 1.50 1.42 1.42

E
I

ε = 0 0 6.7E-4 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16
ε = 10−5 2.5E-3 2.6E-3 2.81 2.81 0.57 0.57 0.30 0.30 0.16 0.16
ε = 10−3 0.17 0.17 2.91 2.91 0.66 0.66 0.41 0.41 0.28 0.28
ε = 10−2 1.35 1.35 3.93 3.93 1.76 1.76 1.55 1.55 1.45 1.45

E
ul

er

ε = 0 0 0.07 1.72 1.78 0.38 0.44 0.19 0.26 0.10 0.17
ε = 10−5 2.5E-3 0.07 1.72 1.78 0.38 0.44 0.20 0.26 0.10 0.17
ε = 10−3 0.17 0.19 1.72 1.78 0.42 0.48 0.27 0.32 0.21 0.25
ε = 10−2 1.35 1.36 2.21 2.25 1.41 1.43 1.37 1.38 1.36 1.37

H
eu

n

ε = 0 0 0.07 7.09 7.09 0.72 0.73 0.21 0.22 0.05 0.09
ε = 10−5 2.5E-3 0.07 6.48 6.48 0.64 0.65 0.18 0.20 0.05 0.09
ε = 10−3 0.17 0.19 0.56 0.57 0.13 0.15 0.16 0.18 0.17 0.19
ε = 10−2 1.35 1.36 1.37 1.38 1.35 1.36 1.35 1.36 1.35 1.36

Table 2: Ablation study of Wasserstein errors for the CIFAR-10 Gaussian. For a given discretization
scheme, the table presents the Wasserstein distance associated with the truncation error for different values of ε.
The columns pT and N0 show the influence of the initialization error. The continuous column corresponds to
the continuous SDE or ODE linked with the scheme (identical values for EM, EI and Euler, Heun).
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Figure 2: Eigenvalue contribution to the Wasserstein error. The magnitude of the Wasserstein error is
influenced by the eigenvalues of the covariance of the Gaussian distribution. Left: Contribution to the Wasserstein
error for the continuous equations and the discretization schemes with standard initialization N0. Right: Same
plot when using a truncation time ε = 10−3. All schemes use N = 1000 steps. While we prove that the
continuous SDE is always better than the continuous ODE (Proposition 4), it is not the same for the discrete
schemes. With a truncation time ε = 10−3 (b), Heun’s method is nearly as good as the continuous ODE solution
for all eigenvalues, which shows it is well-adapted to any Gaussian distribution.

Unfortunately, once discretized the stochastic schemes are not as good as the continuous solutions.
The EI scheme is the more stable along the range of eigenvalues but in the end it is in general more
costly than the others in terms of Wasserstein error. Without truncation time, Heun’s method fails for
low eigenvalues because Σ is not stably invertible. However, as seen in Figure 2.(b), with a truncation
time ε = 10−3, Heun’s method is very close to the continuous ODE solution. This shows that for any
Gaussian distribution Heun’s method introduces nearly no additional discretization error, making this
scheme the one to favor in practice.
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5 Numerical study of the score approximation

So far our theoretical and numerical study has been conducted under the hypothesis that the score
function is known, thus discarding the evaluation of the score approximation. In practice, for general
data distribution, the score function is parameterized by a neural network trained using denoising
score-matching. This learned score function is not perfect and while theoretical studies assume the
network to be close to the theoretical one (with uniform or adaptative bounds, see the discussion in
[5]), such an hypothesis is hard to check in practice, especially in our non compact setting. Thus, we
propose in this section to train a diffusion models on a Gaussian distribution and evaluate numerically
the impact of the score approximation.

The Gaussian ADSN distribution for microtextures. So far our running example was the CIFAR-
10 Gaussian but we will now turn to another example that produces visually interesting images, namely
Gaussian micro-textures. We consider the asymptotic discrete spot noise (ADSN) distribution [11]
associated with an RGB texture u ∈ R3×M×N which is defined as the stationary Gaussian distribution
that has covariance equal the autocorrelation of u. More precisely, this distribution is sampled using
convolution with a white Gaussian noise [11]: Denoting m ∈ R3 the channelwise mean of u and
tc =

1√
MN

(uc −mc), 1 ≤ c ≤ 3, its associated texton, for w ∼ N0 of size M ×N the channelwise
convolution x = m + t ⋆ w ∈ R3×M×N follows ADSN(u). This distribution is the Gaussian
N (m,Σ). To deal with zero mean Gaussian, adding the mean m is considered as a post-processing
to visualize samples and we study N (0,Σ). The matrix Σ is a well-known convolution matrix
[9], its eigenvectors and associated eigenvalues can be computed in the Fourier domain, as done
in Appendix E.2. Σ admits the eigenvalues λξ,ADSN

1 = |̂t1|2(ξ) + |̂t2|2(ξ) + |̂t3|2(ξ), ξ ∈ RM×N

and 0 with multiplicity 2MN and we can conduct the same analysis as before (see Appendix D).
To evaluate if a set of Nsamples sampled images is close to the ADSN distribution pdata, we evaluate
a problem-specific empirical Wasserstein distance: Supposing that the Nsamples are drawn from a
Gaussian distribution pemp. = N (0,Γ) such that Γ admits the same eigenvectors as Σ, we compute

Wemp.
2 (pemp., pdata) =

√√√√ ∑
ξ∈R3M×N

(√
λξ,emp.
1 −

√
λξ,ADSN
1

)2

+ λξ,emp.
2 + λξ,emp.

3 (23)

where (λξ,emp.
i )ξ∈RM×N ,1≤i≤3 are estimators of the eigenvalues of Γ given in Appendix E.3.

Learning the score function. We train the network using the code2 associated with the paper
[26]. We choose the architecture of DDPM, which is a U-Net described in [14], with the parameters
proposed for the dataset CelebaHQ256 to deal with the 256×256 ADSN model associated with the
top-left image of Figure 3. We use the training procedure corresponding to DDPM cont. in [26].
β is linear from 0.05 to 10 with T = 1. We train over 1.3M iterations, and we generate at each
iteration a new batch of ADSN samples. We implement the stochastic EM and derministic Heun
schemes replacing the exact score by its learned version with N = 1000 steps and a trunction time
ε = 10−3. We name pEM

θ and pHeun
θ , the corresponding distributions and present samples in Figure 3.

Both distributions accumulate the four error types.

Evaluation of the score approximation. It is not possible to compute theoretically the Wasserstein
distance between pdata = ADSN(u) and pEM

θ , pHeun
θ due to the non-linearity of the learned score.

To compute an empirical Wasserstein error between it, we use Equation (23). Let us precise that
this approximation underestimates the real Wasserstein distance since it wrongly assumes that the
distributions pEM

θ , pHeun
θ are Gaussian with a covariance matrix diagonalizable in the same basis than

the covariance matrix Σ of ADSN(u). We complete this dedicated empirical measure with the
standard FID. This metrics are reported in Table 3 where for theoretical distributions that are fast to
sample we add the standard deviations computed on 25 different 50k-samplings. For this Gaussian
distribution, the score approximation is by far the most impactful source of error. We observe that
the stochastic EM sampling is more resilient to score approximation than the deterministic Heun’s
scheme, resulting in out-of-distribution samples (Figure 3). We may explain this behavior by recalling
the results of Proposition 4 that shows that SDE solutions are less sensitive to initialization errors
than ODE. Indeed, adding noise at each iteration tends to mitigate the accumulated errors, and score
approximation may be consider as some initialization error ocuring at each step.

2Code available at https://github.com/yang-song/score_sde_pytorch
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Figure 3: Texture samples generated with the learned score. First row: original image u and its DFT
modulus (for all DFT modulus we display the sum of the DFT modulus of the three color channels and apply a
logarithmic contrast change). Second row: three samples of ADSN(u) with their associated DFT moduli. Third
and fourth row: Samples generated with the learned score with EM and Heun’s discretization schemes and their
associated DFT moduli. While both schemes use the same learned score function, the generation with Heun’s
scheme can produce out-of-distribution samples, as seen with the third sample.

Exact score distribution Learned score distribution

p W2(p,pdata) ↓ Wemp.
2 (pemp.,pdata) ↓ FID(pemp.,pemp.

data) ↓ Wemp.
2 (pemp.

θ ,pemp.
data) ↓ FID(pemp.

θ ,pemp.
data) ↓

EM 5.16 5.1630±7E-5 0.0891±8E-4 15.6 01.02
Heun 3.73 3.7323±2E-4 0.0447±6E-4 56.7 19.48

Table 3: Numerical evaluation of the score approximation for a Gaussian microtexture model. For two
schemes, the EM discretization of the backward SDE and Heun’s method associated with the flow ODE, the
table shows the Wasserstein distance and FID for theoretical and learned distributions. The theoretical W2

value is computed with explicit formulas, as done in Table 4. The FID and empirical W2 w.r.t the theoretical
distribution are computed on 25 samplings of 50k images while only one sampling of 50k images is drawn for
the parametric distributions (to limit computation time).

6 Conclusion

By restricting the analysis of diffusion models to the specific case of Gaussian distributions, we
were able to derive exact solutions for both the backward SDE and its associated probability flow
ODE. Additionally, we characterized the discrete Gaussian processes arising when discretizing
these equations. This allowed us to provide exact Wasserstein errors for the initialization error, the
discretization error, and the truncation error as well as any of their combinations. This theoretical
analysis led to conclude that Heun’s scheme is the best numerical solution, in accordance with
empirical previous work [15].

To conclude our work we conducted an empirical analysis with a learned score function using standard
architecture which showed that the score approximation error may be the most important one in
practice. This suggests that assessing the quality of learned score functions is an important research
direction for future work.

Acknowledgements: The authors acknowledge the support of the project MISTIC (ANR-19-CE40-005).
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A Characterization of Gaussian distributions through diffusion models

The following proposition shows that our Gaussian assumption occurs if and only if the score function
is linear.

Proposition 5. The three following propositions are equivalent:

(i) x0 ∼ N (0,Σ) for some covariance Σ.

(ii) ∀t > 0,∇x log pt(x) is linear w.r.t x.

(iii) ∃t > 0,∇x log pt(x) is linear w.r.t x.

In this case, for t > 0, ∇x log pt(x) = −Σ−1
t x, with Σt defined in Proposition 1.

Proof. (ii) ⇒ (iii) is clear.

If (i), for t > 0, pt(x) = Ct exp
(
− 1

2x
TΣ−1

t x
)
. Consequently, ∇x log pt(x) = −Σ−1

t x and
(i) ⇒ (ii)

If (iii), there exists A such that ∇x log pt(x) = Ax. Consequently, pt(x) = Ct exp(− 1
2x

TAx)

and xt is Gaussian. This provides that x0 = eBtxt − ηt is Gaussian and (iii) ⇒ (i).
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B Proofs of Section 3

B.1 Proposition 1: Solution of the forward SDE

We aim at solving:

dxt = −βtxtdt+
√
2βtdwt, x0 ∼ pdata. (24)

By considering zt = eBtxt where Bt =
∫ t

0
βsds,

dzt = βte
Btxt + eBtdxt = βte

Btxt + eBt(−βtxtdt+
√
2βtdwt) =

√
2βte

Btdwt. (25)

Consequently, for 0 ≤ t ≤ T ,

zt = z0 +

∫ t

0

√
2βse

Bsdws, z0 = eB0x0 = x0 (26)

and for 0 ≤ t ≤ T ,

xt = e−Btzt = e−Btx0 + e−Bt

∫ t

0

eBs
√
2βsdws = e−Btx0 + ηt. (27)

By Itô’s isometry (see e.g [20]),

Var
(∫ t

0

eBs
√
2βsdws

)
=

∫ t

0

2βse
2Bsds = [e2Bs ]t0 = e2Bt − e2B0 = e2Bt − 1 (28)

which provides the covariance matrix of ηt:

Cov (ηt) = e−2Bt(e2Bt − 1)I =
(
1− e−2Bt

)
I. (29)

Because x0 and ηt are independent, Σt = e−2BtΣ+
(
1− e−2Bt

)
I .

And,

dΣt = −2βte
−2Bt(Σ− I)dt = [−2βtΣt + 2βtI] dt = −(2βtΣt − 2βtΣ

−1
T )Σtdt. (30)

B.2 Proposition 2: Solution of the ODE probability flow under Gaussian assumption

We aim at solving

dyt = βT−t(yt + 2∇ log pT−t(yt))dt+
√

2βT−tdwt, 0 ≤ t ≤ T (31)

Denoting Ct =
∫ t

0
βT−sds, by considering zt = Σ−1

T−te
Ctyt,

dzt = eCtΣ−1
T−tdyt − eCtd[Σ−1]T−tytdt+ βT−tztdt (32)

=
[
Σ−1

T−te
CtβT−t(yt − 2Σ−1

T−tyt)− βT−tzt + 2βT−tΣ
−1
T−tzt

]
dt+

√
2βT−te

CtΣ−1
T−tdwt (33)

(using Equation (9)) (34)

= βT−t(1− 2Σ−1
T−t)ztdt− βT−tztdt+ 2βT−tΣ

−1
T−tztdt+ eCt

√
2βT−tΣ

−1
T−tdwt (35)

=
√

2βT−te
CtΣ−1

T−tdwt. (36)
(37)

Consequently,
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zt = z0 +

∫ t

0

√
2βT−se

CsΣ−1
T−sdws = Σ−1

T y0 +

∫ t

0

√
2βT−se

CsΣ−1
T−sdws. (38)

And,

yt = e−CtΣT−tzt = e−CtΣT−tΣ
−1
T y0 + e−CtΣT−t

∫ t

0

Σ−1
T−se

Cs
√
2βT−sdws. (39)

Finally,

yt = e−CtΣT−tΣ
−1
T y0 + ξt with ξt = e−CtΣT−t

∫ t

0

Σ−1
T−se

Cs
√
2βT−sdws. (40)

By the multidimensional Itô’s isometry,

Cov(

∫ t

0

Σ−1
T−se

Cs
√

2βT−sdws) = 2

∫ t

0

e2CsβT−sΣ
−2
T−sds. (41)

Now, remark that for As = e2CsΣ−1
T−s,

dAs = 2βT−sAsds− e2Csd
[
Σ−1

]
T−s

(42)

= 2βT−sAsds+ e2Cs
[
−2βT−sΣ

−1
T−s + 2βT−sΣ

−2
T−s

]
ds (43)

= 2e2CsβT−sΣ
−2
T−sds. (44)

Cov

(∫ t

0

Σ−1
T−se

Cs
√

βT−sdws

)
=

∫ t

0

dAs = [As]
t
0 = e2CtΣ−1

T−t −Σ−1
T . (45)

Finally, Cov(ξt) = Σ2
T−t

(
Σ−1

T−t − e−2CtΣ−1
T

)
= ΣT−t − e−2CtΣ2

T−tΣ
−1
T

We have the final formula considering:

Ct =

∫ t

0

βT−sds =

∫ T

T−t

βxdx =

∫ T

0

βxdx−
∫ T−t

0

βxdx = BT −BT−t (46)

that provides

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T−t Cov(y0)Σ
−1
T ΣT−t − I

)
. (47)

In particular, if Cov(y0) and Σ commute,

Cov(yt) = ΣT−t + e−2(BT−BT−t)Σ2
T−tΣ

−1
T

(
Σ−1

T Cov(y0)− I
)
. (48)

B.3 Proposition 3: Solution of the ODE probability flow under Gaussian assumption

As done in [16], the matrix Σ
1/2
t admits a derivative which is d

[
Σ1/2

]
t
= 1

2dΣtΣ
−1/2
t because it is

diagonalisable. Let us check that yt = Σ
−1/2
T Σ

1/2
T−ty0 is solution of the ODE (4),

dyt = −Σ
−1/2
T

1

2
dΣT−tΣ

−1/2
t y0dt (49)

= Σ
−1/2
T [βT−tΣT−t − 2βT−tI]Σ

−1/2
T−t y0dt (using Equation(9)) (50)

=
[
βT−t − 2βT−tΣ

−1
T−t

]
ytdt (51)

= [βT−t + 2βT−t∇y log pT−t(yt)]ytdt. (52)

13



Finally,

Cov(yt) = Σ
−1/2
T Σ

1/2
T−t Cov(y0)Σ

−1/2
T−t Σ

1/2
T . (53)

In particular, if Cov(y0) and Σ commute,

Cov(yt) = Σ−1
T ΣT−t Cov(y0). (54)

B.4 Proof of Proposition 4

For 0 ≤ t ≤ T , denoting (λt
i)1≤i≤d the eigenvalues of Σt, the eigenvalues of Σ̃t = Cov(ỹT−t) are

λ̃t
i = λt

i + e−2(BT−Bt)
(
λt
i

)2 1

λT
i

(
1

λT
i

− 1

)
, i = 1, . . . , d. (55)

and the eigenvalues of Σ̂t = Cov(ŷT−t) are

λ̂t
i =

λt
i

λT
i

, i = 1, . . . , d. (56)

Consequently, W2(pt, p̃t) is the sum of the squares of all:

√
λt
i −
√

λ̃t
i =

√
λt
i

(
1−

√
1 + e−2(BT−Bt)λt

i

1

λT
i

(
1

λT
i

− 1

))
. (57)

Similarly, W2(pt, p̂t) is the sum of the squares of all:

√
λt
i −
√
λ̂t
i =

√
λt
i

(
1−

√
1

λT
i

)
(58)

=
√
λt
i

(
1−

√
1 +

(
1

λT
i

− 1

))
. (59)

Let us now compare individually these differences.

e−2(BT−Bt)λt
i

1
λT
i

(
1
λT
i
− 1
)

1
λT
i
− 1

= e−2(BT−Bt)
λt
i

λT
i

(60)

= e−2(BT−Bt)
e−2Bt(λi − 1) + 1

e−2BT (λi − 1) + 1
(61)

=
(λi − 1) + e2Bt

(λi − 1) + e2BT
(62)

< 1. (63)

Case 1: 0 < λi < 1 and t > 0

In this case, λT
i < 1 and:

0 < e−2(BT−Bt)λt
i

1

λT
i

(
1

λT
i

− 1

)
<

1

λT
i

− 1. (64)

Thus,

14



∣∣∣∣√λt
i −
√
λ̃t
i

∣∣∣∣ =√λ̃t
i −
√
λt
i (65)

=
√
λt
i

(√
1 + e−2(BT−Bt)λt

i

1

λT
i

(
1

λT
i

− 1

)
− 1

)
(66)

<
√
λt
i

(√
1 +

(
1

λT
i

− 1

)
− 1

)
(67)

=

√
λ̂t
i −
√

λt
i (68)

=

∣∣∣∣√λt
i −
√
λ̂t
i

∣∣∣∣ . (69)

Case 2: λi = 0 and t = 0.

In this case, for 1 ≤ i ≤ d, λ̂T
i = λ̃T

i = 0.

Case 3: λi = 1.

In this case, for 1 ≤ i ≤ d, λ̂t
i = λ̃t

i = 1.

Case 4: 1 < λi.

In this case, λT
i ≥ 1, and

e−2(BT −Bt)λt
i

1

λT
i

(
1

λT
i

−1

)
1

λT
i

−1
= e−2(BT−Bt) λt

i

λT
i
< 1 provides

e−2(BT−Bt)λt
i

1

λT
i

(
1

λT
i

− 1

)
>

1

λT
i

− 1. (70)

Finally,

∣∣∣∣√λt
i −
√
λ̃t
i

∣∣∣∣ =√λt
i −
√
λ̃t
i (71)

=
√
λt
i

(
1−

√
1 + e−2(BT−Bt)λT

i

1

λT
i

(
1

λT
i

− 1

))
(72)

<
√
λt
i

(
1−

√
1 +

(
1

λT
i

− 1

))
(73)

=
√
λt
i −
√

λ̂t
i (74)

=

∣∣∣∣√λt
i −
√
λ̂t
i

∣∣∣∣ . (75)

This case study provides:

W2(p̃t, pt) ≤ W2(p̂t, pt). (76)
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C Gaussian CIFAR-10 samples

The Gaussian CIFAR-10 produces unstructured images. A grid of samples is presented in Figure 4.

Figure 4: CIFAR-10 Gaussian samples. Samples are generated from the Gaussian distribution
fitting the CIFAR-10 dataset.
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D Theoretical Wasserstein distance for the ADSN model

As done for the Gaussian CIFAR-10, the Wasserstein errors can be computed for the ADSN model as
shown in Figure 5 and Table 4.
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(a) Initialization error along the integration time.
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(b) Truncation error for different truncation time ε.

Figure 5: Wasserstein errors for the diffusion models associated with the Gaussian microtextures. Left:
Evolution of the Wasserstein distance between pt and the distributions associated with the continuous SDE,
the continuous flow ODE and four discrete sampling schemes with standard N0 initialization, either stochastic
(Euler-Maruyama (EM) and Exponential Integrator (EI)) or deterministic (Euler and Heun). While the continuous
SDE is less sensible than the continuous ODE (as proved by Proposition 4), the initialization error impacts all
discrete schemes. Heun’s method has the lowest error and is very close to the theoretical ODE, except for the
last step that is usually discarded when using time truncation. Right: Wasserstein errors due to time truncation
for various truncation times ε. Heun’s scheme is not defined without truncation time due to the zero eigenvalue.
Interestingly, for the standard practice truncation time ε = 10−3, all numerical schemes have a comparable error
close to their continuous counterparts.

Continuous N = 50 N = 250 N = 500 N = 1000

pT N0 pT N0 pT N0 pT N0 pT N0

E
M

ε = 0 0 5.2E-6 53.37 53.37 10.58 10.58 6.27 6.27 4.02 4.02
ε = 10−5 0.36 0.36 53.35 53.35 10.57 10.57 6.26 6.26 4.02 4.02
ε = 10−3 3.84 3.84 51.92 51.92 10.55 10.55 6.80 6.80 5.16 5.16
ε = 10−2 17.09 17.09 48.24 48.24 20.39 20.39 18.57 18.57 17.79 17.79

E
I

ε = 0 0 5.2E-6 30.91 30.91 8.85 8.85 5.71 5.71 3.84 3.84
ε = 10−5 0.36 0.36 30.92 30.92 8.85 8.85 5.72 5.72 3.84 3.84
ε = 10−3 3.84 3.84 31.94 31.94 9.74 9.74 6.76 6.76 5.24 5.24
ε = 10−2 17.09 17.09 41.49 41.49 21.02 21.02 18.95 18.95 17.99 17.99

E
ul

er

ε = 0 0 6.4E-3 5.69 5.70 3.27 3.27 2.50 2.51 1.87 1.87
ε = 10−5 0.36 0.36 5.70 5.71 3.28 3.28 2.53 2.53 1.90 1.90
ε = 10−3 3.84 3.84 6.79 6.79 4.85 4.85 4.41 4.41 4.14 4.14
ε = 10−2 17.09 17.09 18.52 18.52 17.35 17.35 17.22 17.22 17.15 17.15

H
eu

n

ε = 0 0 6.4E-3 - - - - - - - -
ε = 10−5 0.36 0.36 2.4E+3 2.4E+3 3.0E+2 3.0E+2 1.1E+2 1.1E+2 40.00 40.00
ε = 10−3 3.84 3.84 15.42 15.42 2.25 2.25 3.40 3.40 3.73 3.73
ε = 10−2 17.09 17.09 16.59 16.59 17.07 17.07 17.09 17.09 17.09 17.09

Table 4: Ablation study of Wasserstein errors for the Gaussian microtextures. For a given discretization
scheme, the table presents the Wasserstein distance associated with the truncation error for different values of ε.
The columns pT and N0 show the influence of the initialization error. The continuous column corresponds to
the continuous SDE or ODE linked with the scheme (identical values for EM, EI and Euler, Heun). Note that the
Heun scheme is not defined without truncation time due to the zero eigenvalue.
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E Study of the covariance matrix of the ADSN distribution

E.1 Reminders on the Discrete Fourier Transform (DFT)

For a given image v ∈ R3×M×N , we define the DFT of v, v̂ ∈ R3×M×N such that for 1 ≤ c ≤
3,ξ ∈ RM×N

v̂c,ξ =
∑

x∈M×N

vc,x exp(−
2iπx1ξ1

M
) exp(−2iπx2ξ2

N
), i2 = −1 (77)

where v̂c,ξ is the value of v̂ at coordinate ξ of the k-th channel of v̂. For u ∈ R3M×N , by defining
u ⋆ v the periodic convolution such that for 1 ≤ c ≤ 3, x ∈ RM×N :

(u ⋆ v)c,x =
∑

y∈M×N

uc,x−yvc,y (78)

we have:

û ⋆ v = û⊙ v̂, (79)

where ⊙ is the componentwise product.

E.2 Eigenvectors of the covariance matrix of the ADSN distribution

Let u ∈ R3×M×N and its associated texton t ∈ R3×M×N . The distribution ADSN(u) is the
Gaussian distribution of X = t ⋆w such that:

Xi = ti ⋆w ∈ RM×N , 1 ≤ i ≤ 3,w ∼ N0 (80)

Consequently, denoting Σ the covariance of ADSN(u), for v ∈ R3M×N ,

Σ̂vi = t̂it̂1v̂1 + t̂it̂2v̂2 + t̂it̂3v̂3 = t̂i

(
t̂1v̂1 + t̂2v̂2 + t̂3v̂3

)
(81)

This equation proves that the kernel of Σ contains the kernel of v ∈ R3×M×N 7→ t̂1v̂1 + t̂2v̂2 +

t̂3v̂3 ∈ RM×N which has a dimension greater than 2MN . Consequently, 0 is eigenvalue of Σ with
multiplicity greater than 2MN . Furthermore, for ξ ∈ RM×N , denoting u1,ξ such that:

û1,ξ
i (ω) = 1ω=ξ t̂i(ω), 1 ≤ i ≤ 3, ω ∈ RM×N (82)

we have,
Σu1,ξ = (|̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2)u1,ξ. (83)

Furthermore, the family
(
u1,ξ

)
ξ∈M×N

is orthogonal. Thus, the eigenvalues of Σ are(
|̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2

)
ξ∈M×N

and 0 with multiplicity 2MN .

For ξ ∈ RM×N , we denote u2,ξ,u3,ξ such that for ω ∈ RM×N :


û2,ξ
1 (ω) = −1ω=ξ t̂3(ω)

û2,ξ
2 (ω) = 0

û2,ξ
3 (ω) = 1ω=ξ t̂1(ω)

(84)


û3,ξ
1 (ω) = 0

û3,ξ
2 (ω) = −1ω=ξ t̂3(ω)

û3,ξ
3 (ω) = 1ω=ξ t̂2(ω)

(85)
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We have

Σu2,ξ = 0.u2,ξ (86)

Σu3,ξ = 0.u3,ξ. (87)

Then, applying the orthonomalization of Gram-Schmidt on each tuple (u1,ξ,u2,ξ,u3,ξ)ξ∈RM×N , we
obtain an orthonormal basis in the Fourier domain (v1,ξ,v2,ξ,v3,ξ)ξ∈RM×N of eigenvectors of Σ.
More precisely, for ξ1, ξ2 ∈ RM×N , 1 ≤ j1, j2 ≤ 3,

(
v̂
j1,ξ1

)T
v̂j2,ξ2 =

∑
x1∈M×N
x2∈M×N

v̂
j1,ξ1
x1

v̂j2,ξ2
x2

(88)

= 1j1=j2
ξ1=ξ2

(89)

which is applying the square root of Σ to the white Gaussian noise w. Furthermore, we can ensure
that for ξ ̸= ω ∈ RM×N , 1 ≤ j ≤ 3, v̂j,ξ(ω) = 0 such that only the frequency ξ is active in the
Fourier transform of vj,ξ. Consequently, for w ∈ R3M×N ,

ŵ
T
vj,ξ =

∑
1≤i≤3

ŵi(ξ)v̂
j,ξ
i (ξ). (90)

In particular,

(
v̂
j,ξ
)T

= ∥v̂j,ξ∥2 =
∑

1≤i≤3

∣∣∣vj,ξ
i (ξ)

∣∣∣2 = 1. (91)

E.3 Computation of the empirical Wasserstein error in the ADSN covariance diagonalization
basis

Let consider a Gaussian distribution N (0,Γ) such that there exists (λξ
1, λ

ξ
2, λ

ξ
3)ξ∈RM×N such that for

all ξ ∈ RM×N ,

Γvj,ξ = λξ
jv

j,ξ, 1 ≤ j ≤ 3. (92)

Let w ∼ N0 ∈ R3M×N , (v1,ξ,v2,ξ,v3,ξ)ξ∈RM×N is an orthonormal basis in the Fourier domain
such that:

ŵ =
∑

ξ∈RM×N

([
ŵ

T
v̂1,ξ

]
v̂1,ξ +

[
ŵ

T
v̂2,ξ

]
v̂2,ξ +

[
ŵ

T
v̂3,ξ

]
v̂3,ξ

)
(93)

(94)

A sample drawn from N (0,Γ) has the same distribution as Y given by

Ŷ =
∑

ξ∈RM×N

√
λξ
1

[
ŵ

T
v̂1,ξ

]
v̂1,ξ +

∑
ξ∈RM×N

√
λξ
2

[
ŵ

T
v̂2,ξ

]
v̂2,ξ +

∑
ξ∈RM×N

√
λξ
3

[
ŵ

T
v̂3,ξ

]
v̂3,ξ.

(95)

Note that the three channels of w are independent. Furthermore, for 1 ≤ j ≤ 3
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(
v̂
j,ξ
)T

Ŷ =

√
λξ
1

[
ŵ

T
v̂j,ξ

] ∥∥∥v̂j,ξ
∥∥∥2 =

√
λξ
1

[
ŵ

T
v̂j,ξ

]
(96)∣∣∣∣(v̂j,ξ

)T
Ŷ

∣∣∣∣2 = λξ
j

∣∣∣ŵT
v̂j,ξ

∣∣∣2 (97)

E

[∣∣∣∣(v̂j,ξ
)T

Ŷ

∣∣∣∣2
]
= λξ

jE
[∣∣∣ŵT

v̂j,ξ
∣∣∣2] (98)

E
[∣∣∣ŵT

v̂j,ξ
∣∣∣2] = ∑

1≤c1,c2≤3

E
[
ŵc1(ξ)ŵc2(ξ)

]
v̂j,ξ
c1 (ξ)v̂c2(ξ) by Equation (90) (99)

=
∑

1≤c≤3

E
[
|ŵc(ξ)|2

] ∣∣∣v̂j,ξ
c (ξ)

∣∣∣2 because the channels are inependent (100)

= 3MN
∑

1≤c≤3

∣∣∣v̂j,ξ
c (ξ)

∣∣∣2 because E
[
|ŵc(ξ)|2

]
= MN (101)

= 3MN by Equation (91). (102)

Finally,

E

[∣∣∣∣(v̂j,ξ
)T

Ŷ

∣∣∣∣2
]
= 3MNλξ

1 (103)

Finally, for a given sampling (Y k)1≤k≤Nsamples
following the distribution N (0,Γ), an estimator of λξ

j

is:

λξ,emp.
j =

1

3NsamplesMN

Nsamples∑
k=1

∣∣∣∣(v̂j,ξ
)T

Ŷ k

∣∣∣∣2 . (104)

The empirical Wasserstein distance between the Gaussian distribution N (0,Γ) and the ADSN model
with texton t is:

Wemp.
2 (N emp.(0,Γ),ADSN(u)) =

√√√√ ∑
ξ∈RM×N

((√
λξ,emp.
1 −

√
λξ,ADSN
1

)2

+ λξ,emp.
2 + λξ,emp.

3

)
(105)

with λξ,ADSN
1 = |̂t1(ξ)|2 + |̂t2(ξ)|2 + |̂t3(ξ)|2 for ξ ∈ RM×N .

Furthermore, the computations can be vectorized by componentwise products in the Fourier domain.
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