
HAL Id: hal-04584032
https://hal.science/hal-04584032

Submitted on 22 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid network compression through tensor
decompositions and pruning

Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen

To cite this version:
Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen. Hybrid network compression through tensor
decompositions and pruning. 32nd European Signal Processing Conference, EUSIPCO 2024, Aug 2024,
Lyon, France. �hal-04584032�

https://hal.science/hal-04584032
https://hal.archives-ouvertes.fr


Hybrid network compression through tensor
decompositions and pruning

Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen
Université de Toulon, Aix Marseille Université, CNRS, LIS, UMR 7020, France

van-tien-pham@etud.univ-tln.fr, zniyed@univ-tln.fr, tpnguyen@univ-tln.fr

Abstract—The application of network compression methods,
combining tensor decompositions and pruning, has demonstrated
significant potential in harnessing the benefits of both strategies.
This research introduces NORTON (hybrid Network cOmpres-
sion thRough Tensor decompOsitions and pruNing), a novel
hybrid approach for network compression. The key innovation
lies in the introduction of filter decomposition, enhancing the
detailed breakdown of the network while preserving the mul-
tidimensional properties of filters. Our method incorporates a
structured pruning approach, seamlessly integrating the decom-
posed model. Through a comprehensive set of experiments across
various architectures, benchmark datasets, and representative
vision tasks, the efficacy of our approach is highlighted.

Index Terms—tensor decompositions, filter pruning, hybrid
network compression, inference acceleration

I. INTRODUCTION

The goal of network compression is to minimize the compu-
tational and memory demands of an existing model, making
it suitable for deployment in resource-limited environments
without compromising performance. Tensor decompositions
[1], [2] and structured pruning [3] have proven effective
and practical within the realm of model compression. Both
strategies operate under the assumption that the original model
is over-parameterized, allowing for the removal of redun-
dant information either by optimizing weight representation
through low-rank methods or by directly eliminating portions
of weights through filter pruning. Beyond their high compres-
sion rates, these approaches share the advantage of facilitating
the deployment of compressed models on devices with limited
resources, without the need for specialized support. However,
it is important to note that these techniques have largely
evolved independently in the literature, with only a few at-
tempts [4], [5] to explore their combined potential and leverage
their individual strengths synergistically. This underscores the
necessity for an integrated approach that capitalizes on the
advantages offered by both methods.

CNN weights possess both low-rank and sparse characteris-
tics [6], [7], which are partly complementary. Existing decom-
position techniques do not completely eliminate all redundant
channels [7], and post-pruning might inadvertently ignore low-
rank structures. Therefore, there is a natural inclination to
integrate these two compression strategies to improve network
compression [6]. For instance, in the context of the VGG-
16 architecture, RGP, a state-of-the-art filter pruning method
[8], achieved a maximal pruning of 90.5% of MACs, while
HALOC, representing the state-of-the-art in tensor decompo-

sitions [9], compressed a maximum of 86% of MACs. Notably,
no existing work has effectively compressed more than 91% of
MACs for this architecture. In contrast, NORTON achieves a
simultaneous compression of 99% of MACs and parameters by
combining both approaches, surpassing previous limitations.

Prior works on tensor decomposition have predominantly
centered around the decomposition method itself [1], [2],
[10] and the selection of ranks [11]. However, a relatively
unexplored aspect in the existing literature revolves around
the direct decomposition of the weight tensor. Previous studies
have primarily concentrated on decomposing the entire layer
as a 4-order tensor [1], [10] or reshaping it into a 3-order tensor
before applying decomposition [2]. Yet, limited discussion
exists on determining the most effective approach for decom-
posing the weight tensor. The weight of a convolution layer is
a 4-order tensor, presenting various processing formats, each
with distinct consequences. In Fig. 1, we illustrate three pos-
sible methods for handling this weight tensor, including layer
decomposition [1], [10] and reshaped-based decomposition
[2], [11], while our proposed approach is referred to as filters
decomposition. Taking the Canonical Polyadic decomposition
(CPD) [12] as a representative example, we compare the
differences among these approaches. The approach presented
by [1] involves decomposing the entire layer, resulting in 4
factor matrices corresponding to 4 sublayers. Although this
method preserves the multidimensional nature of the weight
tensor, it processes the tensor at a coarse level, opening up
the potential for a more fine-grained treatment. In contrast, in
[2], the authors suggest reshaping the 4-order weight tensor
into a 3-order tensor, followed by CPD to obtain 3 factor
matrices and 3 sublayers. While justified by deeming the
kernel size small enough to ignore, this compromises the
multidimensionality of the weight tensor, leading to infor-
mation loss, especially in modern architectures with larger
kernel sizes. Our proposed approach operates on the weight
tensor in a filter-by-filter manner. The fundamental insight
stems from the convolution layer’s nature, where the input
undergoes convolution independently with each filter, and the
resulting outputs are aggregated to generate the final feature
map. Hence, it becomes intuitive to decompose each 3-order
filter tensor individually. The filters decomposition approach
provides a finer granularity compared to its counterpart, layer
decomposition. With filters decomposition, not only is the
multidimensional property strictly preserved, but the layer’s 4-
order weight is naturally interpreted as a set of 3-order filters.



≈

(a) 4-order
layer [1]

✗more fine-grained
✓preserved structure
✗simpler sublayers

≈

(b) 3-order
reshaped layer [2]
✗more fine-grained
✗preserved structure
✓simpler sublayers

≈

...
...

≈

≈

≈

(c) 3-order
filters (ours)

✓more fine-grained
✓preserved structure
✓simpler sublayers

Fig. 1: Comparison of tensor-based approaches.

Additionally, an intriguing outcome of filters decomposition
is a narrower range of ranks, simplifying the subsequent
rank selection process, as demonstrated later in subsection
II-A. Another notable distinction is that filters decomposition
replaces the original layer with 3 sublayers, while layer
decomposition necessitates 4 sublayers. This disparity may
potentially increase network depth unnecessarily and introduce
the risk of gradient vanishing issues.

The second consideration of this study is to synergize
filters decomposition and filter pruning, aiming to harness
the independent advantages of each method. While prior
investigations [4], [7], [13] have employed low-rank repre-
sentations and network pruning for compression, they have
not explored an orthogonal combination of these techniques.
In these instances, low-rank representations have been solely
utilized in the pruning step without directly contributing to
the reduction of the model size. In contrast, our approach
takes a divergent approach by sequentially applying low-rank
representations and pruning in two distinct phases, facilitating
a dual compression process. To the best of our knowledge, this
direction has not been extensively explored in the literature.

Two potential arrangements for combination exist: decom-
posing then pruning and pruning then decomposing. Previous
works [4], [5] have favored the pruning-then-decomposing
scheme, employing a Taylor expansion-based pruning criterion
and Tucker decomposition [12]. However, this approach [4]
lacks comprehensive analysis and experiments, leaving room
for further investigation. To address this gap, our study delves
into the decomposing-then-pruning scheme, wherein the model
is initially decomposed using CPD and then subjected to
filter pruning, as illustrated in Fig. 2. This order presents
greater challenges compared to its counterpart, as the model’s
architecture becomes more complex after decomposition, im-
posing specific constraints on the sublayers. To adapt to the
decomposed components, we propose using Principal Angles
Between Subspaces (PABS) [14] as a suitable filter pruning
metric. This work contributes in the following ways:

• Firstly, we introduce a novel filters decomposition
method, distinguishing it from existing layer decompo-

Conv 1 Conv 2 Conv N-1 Conv N...

CPDBlock 1 CPDBlock 2 CPDBlock N-1 CPDBlock N...

 Filter decomposition

Pruned
Block 1

Pruned
Block 2

Pruned
Block N-1

Pruned
Block N

...

 Filter pruning

Fine-tuning

Compact model

Original model

Fig. 2: Graphic illustration of the NORTON approach.

sition and reshaped decomposition methods.
• Secondly, we explore the sequential combination of fil-

ters decomposition and filter pruning, proposing a novel
filter pruning algorithm tailored to address the challenges
associated with this integration scheme.

• Third, we evaluate the proposed method on representative
vision tasks, benchmarking it against SOTA in low-rank
representations, structured pruning, and hybrid domain to
demonstrate its efficacy.

II. NORTON APPROACH

Figure 2 provides an overview of our approach, encom-
passing two primary phases: decomposition and pruning.
Initially, the original model undergoes decomposition into
CPDBlocks (as detailed in Subsection II-A). Subsequently,
the decomposed CPDBlocks are subjected to the filter prun-
ing algorithm (outlined in Subsection II-B). This algorithm
selectively removes filters from the CPDBlocks, effectively
reducing computational and memory requirements. Finally, a
fine-tuning process refines the compact model. This approach
is simultaneously applied to all convolution layers of the
original model. However, for clarity, subsequent sections will
concentrate on discussing one layer, as illustrated in Figure 3.

≈

...
...

≈

≈

...
...

≈

... ...

...
...

Fig. 3: The decomposition then pruning process for one layer.

A. Filters Decomposition Using the CPD

Consider a convolutional layer with the weight tensor
W ∈ RKh×Kw×I×O, where I and O represent the number
of input and output channels, and Kh and Kw represent the
kernel size. W can be viewed as a set of O individual 3-
order filters denoted as

{
W1,W2, . . . ,WO

}
. These weights

operate on an input tensor I ∈ RHin×Win×I to produce an



output tensor O ∈ RHout×Wout×O, where Hin, Win, Hout,
and Wout denote the height and width of the input and output
tensors, respectively. The convolution is given as:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

I(i+m, j + n, p) ·Wk(m,n, p),

(1)
where, for 0 ≤ k ≤ O − 1, Ok = O:,:,k, and is of size
Hout × Wout. Based on (1) and the CPD definition in [12],
we can apply the CPD to each individual filter Wk in order
to obtain a compact representation:

Wk(m,n, p) =

R−1∑
r=0

Ak(m, r) ·Bk(n, r) ·Ck(p, r), (2)

where Ak, Bk and Ck are 3 factor matrices of size Kh ×
R, Kw × R and I × R, respectively. This approximation is
graphically represented in the left half of Fig. 3.

By substituting (2) into (1), we obtain a new CPD-based
approach to compute the convolution. This approach involves
a sequence of mappings using the factor matrices instead of
high-order tensors, resulting:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

R−1∑
r=0

I(i+m, j + n, p)·

Ak(m, r) ·Bk(n, r) ·Ck(p, r).

(3)

Starting from (3), we observe that the CPD-based convolution
involves element-wise multiplications between the input tensor
I and the factor matrices Ak, Bk, and Ck. It is important
to note that the order of the convolutions can be rearranged
without affecting the final result. This flexibility allows us to
describe the computation as a sequential block of convolutions
with smaller kernels, followed by a summation:

OC
k (i+m, j+n, r) =

I−1∑
p=0

I(i+m, j+n, p) ·Ck(p, r), (4)

OB
k (i+m, j, r) =

Kw−1∑
n=0

OC
k (i+m, j+n, r) ·Bk(n, r), (5)

OA
k (i, j, r) =

Kh−1∑
m=0

OB
k (i+m, j, r) ·Ak(m, r), (6)

Ok(i, j) =

R−1∑
r=0

OA
k (i, j, r), (7)

where OC
k ∈ RHin×Win×R, OB

k ∈ RHin×Wout×R, and OA
k ∈

RHout×Wout×R.
One should note that equations (4), (5), and (6) can be

seen as convolutions and can be implemented using common
deep learning frameworks. Specifically, equation (4) can be
computed using a classical 2D convolution operation, while
equations (5) and (6) can be computed via group convolutions.
One can refer to Fig. 4, which illustrates the structure of the
CPDBlock. To ensure compatibility with classical frameworks,
certain preprocessing operations including reshaping and mode
permutations are required for adapting the kernel. Specifically,
for the O factors Ck of dimensions I × R, they need to
be reshaped into a kernel of size 1 × 1 × I × (R · O).
Additionally, for the group convolutions in equations (5) and
(6), the kernels should be remodeled as 1×Kw × 1× (R ·O)

and Kh× 1× 1× (R ·O), respectively. By this preprocessing,
the CPDBlock can be seamlessly integrated into existing deep
learning frameworks.

The choice of rank R in CPD plays a crucial role in
balancing model compression and accuracy. Kruskal’s theory
provides a weak upper bound on the maximum rank [12],
expressed as:

R ≤ min
{
I ·Kh, I ·Kw,Kh ·Kw

}
. (8)

This upper bound offers a guideline for selecting an appro-
priate rank, ensuring a reasonable trade-off between model
compression and preservation of critical features. By fixing a
rank R, the CPDBlock achieves a significant reduction in the
number of parameters compared to the original layer, from O ·
I ·Kh ·Kw to O·R·(I +Kh +Kw). It also notably reduces the
computational complexity from O (I ·O ·Kh ·Kw ·H ·W )
to O (R ·O · (I +Kh +Kw) ·H ·W ).

B. CPDBlock Pruning

First, it’s crucial to recognize that each output Ok is
computed based on three factor matrices: Ak, Bk, and Ck.
Hence, when pruning the kernel associated with a specific
output, the removal of all three matrices must be considered.
This requires employing a pruning criterion that accounts for
the interdependencies among these three matrices. Second, it’s
noteworthy that when the CPD is unique, it is unique up to
scaling and permutation ambiguities. In other words, if two
3-order filters, Wi and Wj , are strictly similar and satisfy
the uniqueness conditions of the CPD [12], thenWi = [[Ai,Bi,Ci]],

Wj = [[Aj ,Bj ,Cj ]],
Wi = Wj .

⇏

Ai = Aj ,
Bi = Bj ,
Ci = Cj ,

(9)

where [[Ai,Bi,Ci]] is the compact representation of the CPD
of Wi. Instead, we have Ai = AjΠΛA, Bi = BjΠΛB , and
Ci = CjΠΛC , where Π is a permutation matrix, and the
diagonal scaling matrices satisfy ΛAΛBΛC = I, where I is
the identity matrix. For these reasons, we opted for PABS [14]
as a metric to measure the distance between two CPDs. The
use of PABS is justified in both unique and non-unique cases
of CPD. In the unique cases, PABS enables the capture of
distances between factor matrices, facilitating the identification
of redundant filters based on their distance patterns while
addressing scaling and permutation ambiguities. Let ϕ(., .)
be a function that computes the PABS between two factor
matrices [14]. Reconsider the example in (9) in the case of
unique CPDs, we have:Wi = [[Ai,Bi,Ci]],

Wj = [[Aj ,Bj ,Cj ]],
Wi = Wj .

⇒

ϕ(Ai,Aj) = 0,
ϕ(Bi,Bj) = 0,
ϕ(Ci,Cj) = 0.

(10)

Even in non-unique cases, PABS remains effective in identi-
fying redundancies. It captures the distance between different
sets of factor matrices representing the same tensor, as will be
confirmed in the simulations. This capability empowers the
pruning process to eliminate filters that contribute minimally
to model performance or display high similarity to other filters.
The outcome is a more compact model that preserves critical
features and maintains performance.



Padding = 
Stride = 

Padding = 
Stride = 
Groups = 

Padding = 
Stride = 
Groups = 

Vertical
group convolution

Horizontal
group convolution

Padding = 
Stride = 

Pointwise
convolution

Sum over
 dimension

 

CPDBlock

C
on

v2
D

C
on

v2
D

C
on

v2
D

C
on

v2
D

Fig. 4: Visualization depicting the structure of CPDBlock in popular deep learning frameworks.

The fundamental concept behind CPDBlock pruning is
to create a distance matrix D, where each element Dij

corresponds to the distance between the factor matrices
[[Ai,Bi,Ci]] and [[Aj ,Bj ,Cj ]]. The pruning process involves
iteratively identifying the pair of decompositions, i and j, with
the minimum value of Dij and removing one of them. In our
strategy, the decompositions between i and j are iteratively
assessed, and the one that most closely resembles the rest of
the decompositions is removed. This ensures that the pruned
one retains a representation most similar to the remaining ones.
The distance matrix D ∈ RO×O can be expressed as

Dij = αDA
ij + βDB

ij + γDC
ij , (11)

where DA
ij = ϕ(Ai,Aj) (similarly for DB

ij and DC
ij), and α,

β, and γ are weight parameters whose sum is equal to 1. A
straightforward configuration is to set α = β = γ = 1

3 . The
pruning strategy is outlined in Algorithm 1, complemented by
a visual representation in the right half of Figure 3.

Algorithm 1 CPDBlock Pruning
Require: The decompositions of O filters{

A1,B1,C1

}
, . . . ,

{
AO,BO,CO

}
and the number of

filters after pruning O′.
Ensure: Selected factors{

Ap1 ,Bp1 ,Cp1

}
, . . .,

{
ApO′ ,BpO′ ,CpO′

}
.

1: Compute distance matrix D following (11).
2: for t = 1 to O −O′ do
3: Find the shortest distance: (i, j) = argmin

(x,y)

x ̸=y

Dx,y

4: if
O∑

k=1
k ̸=i

Di,k ≤
O∑

k=1
k ̸=j

Dj,k then

5: Delete factors of decomposition i.
6: else
7: Delete factors of decomposition j.
8: end if
9: Delete row/column of the deleted decomposition in D.

10: end for

III. EXPERIMENTS

NORTON is compared with SOTAs in the fields of low-
rank decompositions (D), structured pruning (P), and hybrid
methods (H). The model is assessed via accuracy, required

TABLE I: Compression results of VGG-16-BN on CIFAR

Method Type Top-1 MACs (CR) Params (CR)

VGG-16-BN 93.96 313.73M (00) 14.98M (00)
DECORE-500 [3] P 94.02 203.08M (35) 5.54M (63)
RGP-64 16 [8] P 92.76 78.78M (75) 3.81M (75)
NORTON (Ours) H 94.11 74.14M (77) 3.60M (76)
DECORE-100 [3] P 92.44 51.20M (82) 0.51M (96)
ALDS [11] D 92.67 66.95M (86) 1.90M (96)
Dai et al. [5] H 93.03 37.76M (87) 0.43M (97)
Lebedev et al. [1] D 93.07 68.53M (78) 3.22M (78)
HALOC [9] D 93.16 43.92M (86) 0.30M (98)
EDP [7] H 93.52 62.40M (80) 0.66M (96)
NORTON (Ours) H 93.84 37.68M (88) 1.94M (87)
RGP-64 6 [8] P 91.45 31.37M (90) 1.43M (90)
DECORE-50 [3] P 91.68 36.85M (88) 0.26M (98)
NORTON (Ours) H 92.54 13.54M (96) 0.24M (98)
NORTON (Ours) H 90.32 4.58M (99) 0.14M (99)

Multiply Accumulate Operations (MACs), and the number of
parameters (Params). The compression ratio (CR) is defined
as the percentage reduction in MACs/Params when compared
to the original model. Top-1/top-5 accuracy is employed for
classification tasks, while mean average precision (AP) and
recall (AR) are used on detection/segmentation tasks.

Tab. I shows compression results of VGG-16-BN on
CIFAR-10. In all compression levels, compared with other
methods, NORTON consistently achieves the highest accuracy
while reducing much more computation costs and enjoying a
similar number of parameters. Notably robust at high com-
pression rates, NORTON can reduce 88% of FLOPs and 87%
of parameters with just 0.12% loss, or 96% of MACs and 98%
of parameters with a modest 1.42% loss. Even at an ultra-high
99% reduction in MACs and parameters, NORTON remains
resilient, experiencing only a modest loss.

Tab. II shows compression results on ImageNet using
ResNet-50. Across all evaluated scenarios, NORTON consis-
tently outperforms other approaches in terms of both perfor-
mance and complexity reduction. Our method can reduce 50%
MACs while still enjoying an accuracy increment of 1.88%
compared to Hinge [13], another hybrid method. At a 78%
reduction in MACs, NORTON exhibited a 1.59% and 0.97%
higher accuracy than DECORE [3] and RGP [8], respectively.



TABLE II: Compression results of ResNet-50 on ImageNet

Method Type Top-1 Top-5 MACs (CR) Params (CR)

ResNet-50 76.15 92.87 4.09G (00) 25.50M (00)
Kim et al. [10] D 75.34 92.68 N/A 17.60M (31)
DECORE-8 [3] P 76.31 93.02 3.54G (13) 22.69M (11)
Hinge [13] H 74.70 N/A 2.17G (47) N/A
NORTON (Ours) H 76.58 93.43 2.08G (50) 13.51M (47)
CC-0.6 [6] H 74.54 92.25 1.53G (63) 10.58M (59)
RGP-64 30 [8] P 74.58 92.09 1.92G (53) 11.99M (53)
Phan et al. [2] D 74.68 92.16 1.56G (62) N/A
C-SGD-60 [15] P 75.29 92.39 1.82G (55) 12.37M (52)
EDP [7] H 75.34 92.43 1.92G (53) 14.28M (44)
NORTON (Ours) H 75.95 92.91 1.49G (64) 10.52M (59)
DECORE-5 [3] P 72.06 90.82 1.60G (61) 8.87M (65)
RGP-64 16 [8] P 72.68 91.06 1.02G (75) 6.38M (75)
NORTON (Ours) H 73.65 91.64 0.92G (78) 5.88M (77)

TABLE III: Results of RCNN on COCO-2017

Model AP AR MACs (CR) Params (CR) FPS ∆(ms)

FasterRCNN 0.37 0.51 134.85G (00) 41.81M (00) 12 85
NORTON 0.32 0.48 93.39G (31) 22.01M (47) 25 41
MaskRCNN 0.34 0.47 134.85G (00) 44.46M (00) 9 111
NORTON 0.32 0.46 93.39G (31) 24.65M (45) 20 50
KeypointRCNN 0.65 0.77 137.42G (00) 59.19M (00) 8 125
NORTON 0.63 0.75 95.97G (30) 39.39M (34) 17 59

Using our compressed ResNet-50/Imagenet as the backbone
for training Faster/Mask/Keypoint-RCNN on COCO (see Tab.
III), NORTON significantly enhances inference throughput,
achieving over a 2× FPS improvement compared to baseline
models. FasterRCNN experiences a drop in end-to-end latency
∆ from 85 ms to 41 ms, achieving a real-time framerate of 25
FPS. These evaluations, conducted on an RTX 3060, strongly
demonstrate the real-world utility of NORTON in demanding
computer vision tasks including detection and segmentation.

To investigate the impact of rank selection, which directly
relates to the approximation error and compression gain, ad-
ditional experiments are conducted on CIFAR-10 using VGG-
16. Table IV presents the complexity reduction, approximation
error (Normalized Mean Square Error), and accuracy before
and after fine-tuning. Without fine-tuning, higher ranks lead to
better weight approximations but result in less compression.
With 5 ≤ R, our filter decomposition method produces compa-
rable accuracies (maximum 1.46% drop) to the original model
without fine-tuning. This indicates that our decomposition step
performs well even without fine-tuning.

Moreover, we demonstrate that our decomposition step
effectively works when followed by a fine-tuning step. The
results reveal that after fine-tuning, accuracy is completely
restored for all cases. However, it should be noted that the
achieved compression ratios are not as favorable as those
obtained with the proposed hybrid strategy. Importantly, our
proposed method has not encountered the degeneracy problem
(i.e., instability issue when training a CNN with decomposed
layers in the CP format), as seen in previous decomposition
approaches [1], [2]. We suspect that the filter decomposition
method is more fine-grained than the reshaped one. The
trend of NMSE demonstrates a strong correlation between the
approximation error and accuracy without fine-tuning.

TABLE IV: Complexity reduction, approximation error, and
accuracy with and without fine-tuning with respect to the rank

Rank MACs Params NMSE Accuracy (%)

CR CR Without FT With FT

1 88.03 87.06 0.6265 10.00 93.84
2 76.44 75.98 0.4114 10.00 94.11
3 64.85 64.91 0.2760 68.37 94.18
4 53.27 53.84 0.1837 88.30 94.07
5 41.69 42.76 0.1173 92.44 94.22
6 30.10 31.69 0.0698 93.45 94.15
7 18.51 20.61 0.0372 93.90 94.11
8 6.93 9.54 0.0137 94.03 94.03

IV. CONCLUSION

This work introduces NORTON, a hybrid compression
method combining tensor decompositions and structured prun-
ing. NORTON excels in reducing model complexity and
parameters, extending the boundaries of network compression.
The proposed CP filter decomposition offers fine-grained
control while PABS adapts to scaling and permutation ambi-
guities. Evaluation across architectures and datasets highlights
NORTON’s scalability, generalizability, and effectiveness.

REFERENCES

[1] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” in ICLR, 2015.

[2] A. Phan, K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavský,
V. Glukhov, I. Oseledets, and A. Cichocki, “Stable low-rank tensor
decomposition for compression of convolutional neural network,” in
ECCV, 2020.

[3] M. Alwani, V. Madhavan, and Y. Wang, “Decore: Deep compression
with reinforcement learning,” CVPR, 2022.

[4] S. Goyal, A. Roy Choudhury, and V. Sharma, “Compression of deep
neural networks by combining pruning and low rank decomposition,” in
IPDPSW, 2019.

[5] C. Dai, X. Liu, H. Cheng, L. T. Yang, and M. J. Deen, “Compressing
deep model with pruning and tucker decomposition for smart embedded
systems,” IoT-J, 2021.

[6] Y. Li, S. Lin, J. Liu, Q. Ye, M. Wang, F. Chao, F. Yang, J. Ma, Q. Tian,
and R. Ji, “Towards compact cnns via collaborative compression,” in
CVPR, 2021.

[7] X. Ruan, Y. Liu, C. Yuan, B. Li, W. Hu, Y. Li, and S. Maybank, “Edp:
An efficient decomposition and pruning scheme for convolutional neural
network compression,” TNNLS, 2021.

[8] Z. Chen, J. Xiang, Y. Lu, Q. Xuan, Z. Wang, G. Chen, and X. Yang,
“Rgp: Neural network pruning through regular graph with edges swap-
ping,” TNNLS, 2023.

[9] J. Xiao, C. Zhang, Y. Gong, M. Yin, Y. Sui, L. Xiang, D. Tao, and
B. Yuan, “Haloc: Hardware-aware automatic low-rank compression for
compact neural networks,” in AAAI, 2023.

[10] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” in ICLR, 2016.

[11] L. Liebenwein, A. Maalouf, O. Gal, D. Feldman, and D. Rus, “Com-
pressing neural networks: Towards determining the optimal layer-wise
decomposition,” in NIPS, 2021.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[13] Y. Li, S. Gu, C. Mayer, L. Van Gool, and R. Timofte, “Group spar-
sity: The hinge between filter pruning and decomposition for network
compression,” in CVPR, 2020.

[14] Åke Björck and G. H. Golub, “Numerical methods for computing angles
between linear subspaces,” Mathematics of Computation, 1973.

[15] T. Hao, X. Ding, J. Han, Y. Guo, and G. Ding, “Manipulating identical
filter redundancy for efficient pruning on deep and complicated cnn,”
TNNLS, 2023.


