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STABLE MINIMAL HYPERSURFACES IN R6

LAURENT MAZET

Abstract. Following the strategy developed by Chodosh, Li, Minter and Stryker, and
using the volume estimate of Antonelli and Xu, we prove that, in R6, a complete, two-sided,
stable minimal hypersurfaces is flat.

1. introduction

A minimal hypersurface Mn of Rn+1 is a critical point of the n-volume functional. It is
characterized by its vanishing mean curvature. If a unit normal vectorfield ν is defined along
M and ϕ is a function with compact support on M , one can consider a deformation of M
with initial speed ϕν. The computation of the second derivative of the n-volume along this
deformation at initial time gives ∫

M

|∇ϕ|2 − |AM |2ϕ2

where AM is the second fundamental form of M . So asking that this quantity is non neg-
ative for any ϕ means that M is a minimum at order 2 of the n-volume. Such a minimal
hypersurface is called stable.

The stable Bernstein problem asks wether a complete stable minimal hypersurface is a flat
affine hyperplane. We give a positive answer in the case n = 5.

Theorem 1.1. Let M5 # R6 be an immersed, complete, connected, two-sided, stable mini-
mal hypersurface. Then M is a Euclidean hyperplane.

A particular class of stable minimal hypersurface is given by minimal graphs over Rn.
In [4], Bernstein proved that a minimal graph over R2 has to be a plane. In the sixties,
the same question for higher dimensions was studied in a series of paper by Fleming [17],
De Giorgi [14], Almgren [1] and Simons [26]. They proved that minimal graphs over Rn

are planes if n ≤ 7. For n ≥ 8, Bombieri, De Giorgi and Giusti [5] were able to construct
counter-examples and gave also in R8 an example of a stable minimal hypersurfaces that is
not a hyperplane.

Concerning the stable Bernstein problem, the question was solved positively in R3 by
Do Carmo and Peng [15], Fischer-Colbrie and Schoen [16] and Porogelov [22] in the early
eighties. In higher dimension, Schoen, Simon and Yau [23, 24] were able to settle the stable
Bernstein in Rn+1, n ≤ 6, under a Euclidean volume growth assumption (see also the recent
work of Bellettini [3]).

Recently Chodosh and Li [9] were able to answer positively the stable Bernstein problem
in R4. Later two alternative proofs came out: one by Catino, Mastrolia and Roncoroni [8]
and one by Chodosh and Li [10]. Actually in [10], Chodosh and Li develop a second strategy
to prove the result. Then, in a joint work Minter and Stryker [12], they were able to apply
this strategy in the case of R5 to solved the stable Bernstein problem in this dimension as
well.

1
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As in [13, 12], it is well known that Theorem 1.1 comes with corollaries like curvature
estimates for stable minimal immersions in 6-dimensional manifolds and characterization of
finite Morse index minimal hypersurfaces in R6. For example, we have

Corollary 1.1. Let (X6, g) be a complete Riemannian manifold whose sectional curvature
satisfies |secg| ≤ K. Then any compact, two-sided, stable minimal immersion M5 # X
satisfies

|AM |(q) min(1, dM(q, ∂M)) ≤ C(K)

for q ∈M .

The basic idea to prove Theorem 1.1 is to obtain a Euclidean growth estimate for the
volume of M and then apply the work of Schoen, Simon and Yau. The strategy of Chodosh
and Li is a way towards this estimate. We refer to [10, 12] for a good presentation of
their ideas. Let us give some elements. Let M be a stable minimal hypersurface in Rn+1

with induced metric g. Inspired by the work of Gulliver and Lawson [18], they consider
the conformal metric g̃ = r−2g where r is the Euclidean distance to 0 in Rn+1. If M was
a hyperplane passing through the origin (M \ {0}, g̃) would be isometric to the Euclidean
product Sn−1 × R. In the general case, the idea of Chodosh and Li is that the stability
assumption implies that the geometry of (M \ {0}, g̃) should look like Sn−1×R. In [12], the
authors consider the bi-Ricci curvature which is a certain combination of sectional curvatures.
It was introduced by Shen and Ye in [25], already to study minimal surfaces (see precise
definition in Section 2). Notice that on Sn−1×R, the bi-Ricci curvature is lower bounded by
n−2. In [12], the authors prove that the stability of M implies a positive spectral lower bound
for the bi-Ricci curvature of (M \ {0}, g̃). More precisely they prove that, on (M \ {0}, g̃),

the operator −∆̃ + (B̃Ric− − 1) is non-negative where B̃Ric− is the punctual minimum of

the bi-Ricci curvature of g̃. This should be understood as a weak form of B̃Ric ≥ 1.
The second step of the strategy consists in the construction of a µ-bubble in (M \ {0}, g̃)

with a spectral lower bound for its Ricci curvature. In some sense, they identify in any
sufficiently large part of (M \ {0}, g̃) a hypersurface that play the role of Sn−1 × {t} in
Sn−1 × R.

The last step in [12] is to obtain a Bishop-Gromov volume estimate for the µ-bubble under
the spectral lower bound on the Ricci curvature. In their paper, the proof of this volume
estimate was specific to dimension 3. Recently, Antonelli and Xu [2] have proved such a
Bishop-Gromov estimate in any dimension.

Once the g̃-volume of the µ-bubble is controlled, this gives an estimate of its volume in the
original metric g and then control the growth of the volume of M tanks to an isoperimetric
inequality due to Michael and Simon [20] and Brendle [6].

In the present paper, we also follow the above strategy of [12]. Here we consider a weighted
bi-Ricci curvature BRicα where the parameter α does not give the same weight to all sectional
curvature in the combination (a similar idea appear in the recent article by Hong and Yan
[19]). We prove a spectral lower bound for the weighted bi-Ricci curvature: the operator

−a∆̃ + (B̃Ricα− − δ) is non-negative where a, δ ∈ R. At that step, a, α are two parameters
that should be chosen such that δ > 0.

By imposing some new constraints on a and α, we are then able to construct the µ-
bubble with a spectral lower bound on the Ricci curvature. At the last step, we apply the
Bishop-Gromov estimate of Antonelli and Xu [2]. In order to do so, this imposes some new
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constraints on the parameters a and α. Nevertheless, the choice a = 11
10

and α = 40
43

fits all
the constraints. The end of the proof then follows the line of [12].

Organization. In Section 2, we fix some notations that we use all along the paper. Section 3

is devoted to the proof the spectral lower bound for B̃Ricα for the Gulliver-Lawson metric
on a stable minimal hypersurface. In Section 4, we construct the µ-bubble with a spectral
lower Ricci bound. We end the proof of Theorem 1.1 in Section 5. Along the paper, we
specify the value of n, a and α only when it is necessary, we hope this allows to understand
where the constraints come from.

Acknowledgments. The author was partially supported by the ANR-19-CE40-0014 grant.
Part of this work was carried out during a stay at the Instituto de Matemáticas de la
Unversidad de Granada (IMAG), the author would to thank its members for their hospitality.

2. Preliminaries

Let (Mn, g) be a Riemannian manifold and (ei)1≤i≤n be an orthonormal basis of TpM . For
α ∈ R, we recall or define

• the Ricci curvature Ric(e1, e1) =
∑n

i=2R(e1, ei, ei, e1),
• the punctual minimum of the Ricci curvature λ(p) = minv∈TpM,|e|=1 Ric(e, e),
• the weighted bi-Ricci or α-bi-Ricci curvature

BRicα(e1, e2) =
n∑
i=2

R(e1, ei, ei, e1) + α
n∑
j=3

R(e2, ej, ej, e2)

• the minimum of the α-bi-Ricci curvature Λα(p) = min(e,f) orthonormal in TpM BRicα(e, f)

Notice that for α = 1, BRic1 is the classical bi-Ricci curvature as defined in [25].
If Σ#M is a hypersurface with unit normal ν. We use the following conventions:

• the second fundamental form of Σ is AΣ(X, Y ) = (∇Xν, Y ) = −(∇XY, ν) and
• the mean curvature of Σ is H = trAΣ.

If Ω is a subset of M , we denote by Nρ(Ω) the ρ-tubular neighborhood of Ω: the set of
points at distance less than ρ from Ω.

We finish by a simple remark that we use in Section 3.

Remark 1. Let A ∈ Mn(R) be a positive definite symmetric matrix and B ∈ Rn. Then the
function f : X ∈ Rn 7→ X>AX + B>X ∈ R is lower bounded and its minimum is given by
−1

4
B>A−1B.

3. Spectral lower bound for the weighted bi-Ricci curvature

Let F : Mn # Rn+1 be a complete two-sided minimal hypersurface and g its induced
metric. We consider the Gulliver-Lawson conformal metric g̃ = r−2g where r is the Euclidean
distance function to 0. Notice that if F (p) = 0, g̃ is not defined. So we consider N =
M \ F−1(0). As it was observed by Gulliver and Lawson [18], the metric (N, g̃) is complete.

The first step of the proof of Theorem 1.1 consists in proving that the stability assumption
can be translated in a spectral lower bound for the α-bi-Ricci curvature of the metric g̃.
Actually we have the following result.
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Theorem 3.1. Let Mn # Rn+1 be a two-sided stable minimal hypersurface. Suppose n = 5,
then, for a = 11

10
, α = 40

43
and δ = 3

10
, there is a smooth function V such that

V ≥ δ − Λ̃α

and

(1)

∫
N

|∇ϕ|2g̃dvg̃ ≥
∫
N

1

a
V ϕ2dvg̃

for any ϕ ∈ C1
c (N).

3.1. Recalling some computations. We first recall some computations and results of [12].
We denote by ν the unit normal to M and by |dr| the norm of the differential of r along

M with respect to the g-metric.
Let (ei)1≤i≤n be an orthonormal basis for the metric g then, for the conformal metric g̃,

an orthonormal basis is given by ẽi = rei. The sectional curvatures of g and g̃ are related by

(2) R̃ijji = r2Rijji + 2− |dr|2 − dr(ei)2 − dr(ej)2 − (p, ν)(Aii + Ajj)

(see [12, Proposition 3.5]).
The second result that we want to recall is the writing of the stability inequality in the

conformal metric g̃. We have

(3)

∫
N

|∇ϕ|2dvg̃ ≥
∫
N

(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
ψ2dvg̃

for any ϕ ∈ C1
c (N) (see [12, Proposition 3.10]).

3.2. Estimating the curvature terms. In this subsection, we want to relate the curvature
term in the stability inequality (3) to the α-bi-Ricci curvature. We use the notations of the
preceding subsection.

Proposition 3.1.

B̃Ricα(ẽ1, ẽ2) =r2 BRicα(e1, e2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

− ((n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2)

− (p, ν)((n− 2− α)A11 + α(n− 3)A22)

Proof. Summing (2) and using trA = 0, we have

B̃Ricα(ẽ1, ẽ2) =
n∑
i=2

R̃1ii1 + α

n∑
j=3

R̃2jj2

=r2 BRicα(e1, e2) + 2(n− 1)− (n− 1)|dr|2 − (n− 1)dr(e1)2

− (|dr|2 − dr(e1)2)− (p, ν)((n− 1)A11 − A11) + 2α(n− 2)

− α(n− 2)|dr|2 − α(n− 2)dr(e2)2 − α(|dr|2 − dr(e1)2 − dr(e2)2)

− α(p, ν)((n− 2)A22 − A11 − A22)

=r2 BRicα(e1, e2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

− ((n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2)

− (p, ν)((n− 2− α)A11 + α(n− 3)A22)

�
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Proposition 3.2.

BRicα(e1, e2) = −
n∑
i=1

A2
1i − α

n∑
j=2

A2
2j − αA11A22

Proof. Applying Gauss formula we have

BRicα(e1, e2) =
n∑
i=2

(A11Aii − A2
1i) + α

n∑
j=3

(A22Ajj − A2
2j)

=−
n∑
i=1

A2
1i + α(−A22(A11 + A22)−

n∑
j=3

A2
2j)

=−
n∑
i=1

A2
1i − α

n∑
j=2

A2
2j − αA11A22

�

Using the above computation, we obtain the following estimate of the curvature term.
This estimate introduces some constraints on α and a second parameter a.

Proposition 3.3. Let a, α > 0 such that a > 1
2
, 2a ≥ α and

W = (a− 1

2
)
(
a− n− 2

2n
(1 + 2α)

)
− n− 2

4n
(1− α)2 > 0

Let us define

f =
(n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 + (1− α)2(a+

n− 2

2n
− 2

n
α)
)

Then

ar2|A|2 + f(1− |dr|2) ≥ −r2 BRicα(e1, e2) + (p, ν)((n− 2− α)A11 + α(n− 3)A22)

Proof. By Proposition 3.2, the right-hand side of the expected inequality satisfies to

−r2 BRicα(e1, e2)+(p, ν)((n− 2− α)A11 + α(n− 3)A22)

=r2
( n∑
i=1

A2
1i + α

n∑
j=2

A2
2j + αA11A22

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

)
=r2

(
A2

11 + αA2
22 + αA11A22 +

n∑
i=2

A2
1i + α

n∑
j=3

A2
2j

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

)
(4)
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The vector A∆ = (A11, · · · , Ann) belongs to the sub-space Fn = {X ∈ Rn | x1 +· · ·+xn = 0}.
We write a decomposition in an orthonormal basis of Fn as

A11
...

Ann

 =
n−3∑
i=1

 0
0
Ei

xi +
1√

2n(n− 2)


n− 2
n− 2
−2
...
−2

 z1 +
1√
2


1
−1
0
...
0

 z2

where (Ei)1≤i≤n−3 is an orthonormal basis of Fn−2. So we have

A2
11+αA2

22 + αA11A22 + (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

=(

√
n− 2√

2n
z1 +

z2√
2

)2 + α(

√
n− 2√

2n
z1 −

z2√
2

)2 + α(
n− 2

2n
z2

1 −
1

2
z2

2)

+ (
p

r2
, ν)
(√n− 2√

2n
(n− 2 + α(n− 4))z1 +

n− 2√
2

(1− α)z2

)
=
n− 2

2n
(1 + 2α)z2

1 +

√
n− 2

n
(1− α)z1z2 +

1

2
z2

2

+ (
p

r2
, ν)

n− 2√
2

(√n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2

)
(5)

For a > 0, we are interested in the minimum (if it exists) of

a(z2
1 + z2

2)−n− 2

2n
(1 + 2α)z2

1 −
√
n− 2

n
(1− α)z1z2 −

1

2
z2

2

− (
p

r2
, ν)

n− 2√
2

(

√
n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2)

(6)

The matrix of the quadratic part of the above expression is

a− n−2
2n

(1 + 2α) −
√

n−2
4n

(1− α)

−
√

n−2
4n

(1− α) a− 1
2


This matrix is positive definite if a > 1

2
and its determinant is positive:

W = (a− 1

2
)
(
a− n− 2

2n
(1 + 2α)

)
− n− 2

4n
(1− α)2 > 0
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If it’s the case, by Remark 1 with vector B = −( p
r2
, ν)n−2√

2

(√
n−2
n

(1 + αn−4
n−2

), (1 − α)
)
, the

quantity in (6) is lower bounded by

− (
p

r2
, ν)2 (n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 +

n− 2

n
(1− α)2(1 + α

n− 4

n− 2
)

+ (a− n− 2

2n
(1 + 2α))(1− α)2

)
=− (

p

r2
, ν)2 (n− 2)2

8W

(
(a− 1

2
)
n− 2

n
(1 + α

n− 4

n− 2
)2 + (1− α)2(a+

n− 2

2n
− 2

n
α)
)

=− (
p

r2
, ν)2f

Since (p
r
, ν)2 = (1− |dr|2), we have then proved that

a(z2
1 + z2

2) +
f

r2
(1− |dr|2) ≥n− 2

2n
(1 + 2α)z2

1 +

√
n− 2

n
(1− α)z1z2 +

1

2
z2

2

+ (
p

r2
, ν)

n− 2√
2

(

√
n− 2

n
(1 + α

n− 4

n− 2
)z1 + (1− α)z2)

Combining this with (4) and (5), if 2a ≥ α, we have

a|A|2 +
f

r2
(1− |dr|2) ≥a(|A∆|2 +

∑
i 6=j

A2
ij) +

f

r2
(1− |dr|2)

≥A2
11 + αA2

22 + αA11A22 + (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

+ a
∑
i 6=j

A2
ij

≥A2
11 + αA2

22 + αA11A22 +
n∑
i=2

A2
1i + α

n∑
j=3

A2
2j

+ (
p

r2
, ν)((n− 2− α)A11 + α(n− 3)A22)

≥− BRicα(e1, e2) +
(p, ν)

r2
((n− 2− α)A11 + α(n− 3)A22)

This is the expected estimate �

3.3. Proof of Theorem 3.1. Let us assume that the basis is chosen such that Λ̃α =

B̃Ricα(ẽ1, ẽ2). From (3), we are looking for a lower bound for r2|A|2 − n(n−2)
2

+ n2−4
4
|dr|2.

Under the assumptions of Proposition 3.3, α ≤ 1 (such that n− 2−α ≥ α(n− 3)) and using
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Proposition 3.1, we have

a
(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
≥− r2 BRicα(e1, e2) + (p, ν)((n− 2− α)A11 + α(n− 3)A22)

− f(1− |dr|2)− an(n− 2)

2
+ a

n2 − 4

4
|dr|2

≥− B̃Ricα(ẽ1, ẽ2) + 2(n− 1 + α(n− 2))− (n+ α(n− 1))|dr|2

−
(
(n− 2− α)dr(e1)2 + α(n− 3)dr(e2)2

)
− f(1− |dr|2)− an(n− 2)

2
+ a

n2 − 4

4
|dr|2

≥C(|dr|2)− Λ̃α

where

C(t) = 2(n− 1 + α(n− 2))− (2n− 2 + α(n− 2))t− f(1− t)− an(n− 2)

2
+ a

n2 − 4

4
t

C is an affine function and 0 ≤ |dr|2 ≤ 1, so C(|dr|2) ≥ min(C(0), C(1)). We have

C(1) =2(n− 1 + α(n− 2))− (2n− 2 + α(n− 2))− an(n− 2)

2
+ a

n2 − 4

4

= α(n− 2)− a(n− 2)2

4
= (n− 2)(α− an− 2

4
)

and

C(0) = 2(n− 1 + α(n− 2))− f − an(n− 2)

2

If we consider a = 11
10

and α = 40
43

, we have a > 1
2
, 2a ≥ α, α ≤ 1 and W = 26697

184900
> 0. So

the above computations apply. We have

C(0) =
731975

1530628
' 0.47 and C(1) =

543

1720
' 0.31

So for these values of a and α, and with δ = 3
10
≤ min(C(0), C(1)), we have

V = a

(
r2|A|2 − n(n− 2)

2
+
n2 − 4

4
|dr|2

)
≥ δ − Λ̃α

By (3), the spectral estimate (1) is true. Theorem 3.1 is proved.

4. The µ-bubble construction

In this section, we produce a warped µ-bubble with a spectral Ricci curvature lower bound.
So we start with a complete non-compact Riemannian manifold (Nn, ḡ) with a spectral lower
bound on the α-bi-Ricci curvature: there is a smooth function V on N such that

V ≥ δ − Λα

and

(7)

∫
N

|∇ϕ|2ḡdvḡ ≥
∫
N

1

a
V ϕ2dvḡ

for any ϕ ∈ C1
c (N)
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Theorem 4.1. Assume (N, ḡ) as above with n = 5, a = 11
10

, α = 40
43

and δ = 3
10

. Let Ω+ be
a domain in N . Then there is a domain Ω∗ with

• Ω+ ⊂ Ω∗ ⊂ N 100π(Ω+) and
• there is a smooth function V on Σ = ∂Ω∗ such that

V ≥ δ

2
− αλΣ

and

(8)
4

4− a

∫
Σ

|∇ϕ|2dvg ≥
∫

Σ

V ϕ2dvg

for any ϕ ∈ C1(Σ) where g is the induced metric on Σ.

4.1. Construction of the µ-bubble. Because of the spectral control (7) on N , we know
(see [16]) that there is a positive function w on N such that

(9) −a∆w = V w ≥ (δ − Λα)w

Let us recall quickly the construction of the µ-bubble. Let Ω− be a domain in N such
that Ω+ ⊂⊂ Ω− ⊂ N 100π(Ω+). Let h : Ω− \ Ω+ → R be a smooth function such that
limp→∂Ω+ h(p) = +∞ and limp→∂Ω− h(p) = −∞. Let Ω be a domain with Ω+ ⊂⊂ Ω ⊂⊂ Ω−.

For any sets of finite perimeter Ω with Ω+ ⊂⊂ Ω ⊂⊂ Ω−, we consider the quantity

A(Ω) =

∫
∂∗Ω

wa −
∫
U

(χΩ − χΩ)hwa

where ∂∗Ω is the reduced boundary of Ω. By similar argument to the ones in [11, 28], there
there is a set of finite perimeter Ω∗ (Ω+ ⊂⊂ Ω∗ ⊂⊂ Ω−) which minimize the functional A.
Moreover its reduced boundary ∂∗Ω∗ = Σ is smooth (see for example [21, 27]).

4.2. Spectral Ricci-curvature bound of the µ-bubble. We denote by k = n − 1 the
dimension of Σ and by η the outgoing unit normal to Σ.

As in [12, Proposition 4.2], if ϕ is a function on Σ, writing the first variation of A for a
variation {Ωt} of Ω∗ generated by ϕη gives

0 =
d

dt
A(Ωt)|t=0 =

∫
Σ

(Hwa + awa−1dw(η)− hwa)ϕ =

∫
Σ

(H + aw−1dw(η)− h)waϕ

Since this is true for any ϕ,

(10) H = h− ad lnw(η)

Computing the second derivative of A(Ωt), we obtain

0 ≤ d2

dt2
A(Ωt)|t=0 =

∫
Σ

wa
(
− ϕ∆ϕ− (|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1∇2
w(η, η)ϕ2 − aw−1(∇w,∇ϕ)ϕ− dh(η)ϕ2

)
where B is the second fundamental form of Σ. So

0 ≤
∫

Σ

− div(waϕ∇ϕ) + wa
(
|∇ϕ|2−(|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1∇2
w(η, η)ϕ2 − dh(η)ϕ2

)
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Using ∇2
w(η, η) = ∆w −∆w −Hdw(η), we obtain

0 ≤
∫

Σ

wa
(
|∇ϕ|2−(|B|2 + Ric(η, η))ϕ2 − aw−2dw(η)2ϕ2

+ aw−1(∆w −∆w −Hdw(η))ϕ2 − dh(η)ϕ2
)(11)

For ϕ = w−a/2ψ, we have ∇ϕ = w−a/2∇ψ − a
2
w−a/2−1ψ∇w. So we can write∫

Σ

wa(|∇ϕ|2 − aw−1∆wϕ2) =

∫
Σ

|∇ψ|2 − aw−1ψ(∇w,∇ψ) +
a2

4
ψ2w−2|∇w|2 − aψ2w−1∆w

=

∫
Σ

|∇ψ|2 − a div(ψ2w−1∇w) + aw−1ψ(∇w,∇ψ)

− (a− a2

4
)ψ2w−2|∇w|2

=

∫
Σ

|∇ψ|2 + aw−1ψ(∇w,∇ψ)− (a− a2

4
)ψ2w−2|∇w|2

Using that w−1ψ(∇w,∇ψ) ≤ ε|∇ψ|2 + 1
4ε
ψ2w−2|∇w|2 with ε = 1

4−a , we get∫
Σ

wa(|∇ϕ|2 − aw−1∆wϕ2) ≤ 4

4− a

∫
Σ

|∇ψ|2

From (11) and (9), we then obtain

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

(
|B|2 + Ric(η, η) + aw−2dw(η)2 − aw−1∆w + aHd ln(η)

)
ψ2

+ adh(η)ψ2

≥
∫

Σ

(
|B|2 + Ric(η, η) + δ − Λα + aw−2dw(η)2 + aHd ln(η)

)
ψ2

+ adh(η)ψ2

(12)

Let (e1, . . . , ek) be an orthonormal basis of Σ. Using Gauss equation, we have

αRicΣ(e1, e1) = α
k∑
j=2

RΣ
1jj1 =α

k∑
j=2

(R1jj1 +B11Bjj −B2
1j)

=BRicα(η, e1)− Ric(η, η) + α
k∑
j=2

(B11Bjj −B2
1j)

So assuming that e1 is such that RicΣ(e1, e1) = λΣ, we have

Ric(η, η)− Λα ≥ Ric(η, η)− BRicα(η, e1) = −αλΣ + α

k∑
j=2

(B11Bjj −B2
1j)
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So the above inequality and using trB = H in (12), we then get the inequality

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(
δ − αλΣ + |B|2 + α

k∑
j=2

(B11Bjj −B2
1j) + a(d lnw(η))2

+ aHd lnw(η) + adh(η)
)

≥
∫

Σ

ψ2
(
δ − αλΣ + |B|2 + αHB11 − α

k∑
j=1

B2
1j + a(d lnw(η))2

+ aHd lnw(η) + adh(η)
)

Using (10), we have

K := |B|2 + αHB11 − α
k∑
j=1

B2
1j + a(d lnw(η))2 + aHd lnw(η) =

|B|2 + αHB11 − α
k∑
j=1

B2
1j +

1

a
(H − h)2 +H(h−H)

Let us denote by Φ the traceless part of B and let Φ∆ denote the vector (Φ11, . . . ,Φkk) ∈ Fk.
Thus, for α ≤ 2, we have

K ≥ 1

k
H2 + |Φ∆|2 +

α

k
H2 + αHΦ11 − α(

1

k
H + Φ11)2 +

1

a
(H − h)2 +H(h−H)

We can write a decomposition of Φ∆ in an orthonormal basis of Fk

Φ∆ =
k−2∑
i=1

(
0
Ei

)
xi +

1√
k(k − 1)


k − 1
−1
...
−1

 z

where (Ei)1≤i≤k−2 is an orthonormal basis of Fk−1. We then have

K ≥1

k
H2 + z2 +

α

k
H2 + αH

√
k − 1

k
z − α(

1

k
H +

√
k − 1

k
z)2 +

1

a
(H − h)2 +H(h−H)

≥(
1

k
+
α

k
− α

k2
+

1

a
− 1)H2 + (1− αk − 1

k
)z2 +

1

a
h2 + α

√
k − 1

k
(1− 2

k
)Hz + (1− 2

a
)Hh

The above expression is a quadratic form in (H, z, h) associated to the matrix

G =


1
k

+ α
k
− α

k2
+ 1

a
− 1 α

2

√
k−1
k

(1− 2
k
) 1

2
− 1

a

α
2

√
k−1
k

(1− 2
k
) 1− αk−1

k
0

1
2
− 1

a
0 1

a


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Notice that this matrix is positive definite if 1 − αk−1
k

> 0 and det(G) > 0. Actually for

k = 4, a = 11
10

, α = 40
43

, we have 1− αk−1
k

= 13
43
> 0 and

det
(
G−

0 0 0
0 0 0
0 0 1

22

) =
2599

1789832
> 0

So K ≥ 1
22
h2. Finally, for our values of the parameters, we have

(13)
4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(δ

2
− αλΣ

)
+ ψ2

(δ
2

+
1

22
h2 + adh(η)

)
4.3. End of the proof. We need to choose the domain Ω− and the function h. Let Ψ :
N\Ω+ → R+ be a smoothing of the distance function dḡ(·, ∂Ω+) such that 1

2
dḡ(·, ∂Ω+) ≤ Ψ ≤

2dḡ(·, ∂Ω+) and |∇Ψ|ḡ ≤ 2. Let ε > 0 small such that (1 + ε)11π
√

88
15

is a regular value of Ψ.

Let us define Ω− = Ω+∪{Φ ≤ (1+ε)11π
√

88
15
}. On Ω−, dḡ(·, ∂Ω+) ≤ 2(1+ε)11π

√
88
15
≤ 100π,

so Ω− ⊂ N 100π(Ω+).

On {0 < Ψ < (1 + ε)11π
√

88
15
}, we consider the function h defined by h = k ◦ Ψ

1+ε
where

k(t) = −
√

33

10
tan(

1

11

√
15

88
t− π

2
)

for t ∈ (0, 11π
√

88
15

). We have limp→∂Ω± h(p) = ±∞. Notice that k solves −k′ = 3
44

+ 5
242
k2

so

|adh(η)| = a|k′( Ψ(p)

1 + ε
)| |Ψ

′(p)|
1 + ε

≤ 2a

1 + ε
(

3

44
+

5

242
h2) ≤ 3

20
+

1

22
h2 =

δ

2
+

1

22
h2

Hence, the above construction applies and, for our choices of parameters, (13) becomes

4

4− a

∫
Σ

|∇ψ|2 ≥
∫

Σ

ψ2
(δ

2
− αλΣ

)
This ends the proof of Theorem 4.1.

5. Stable Bernstein problem

In this section we prove Theorem 1.1. This a consequence of the following volume growth
estimate.

Proposition 5.1. Let F : M5 # R6 be a complete, immersed, two-sided, simply-connected
stable minimal hypersurface. Let Bρ denote the geodesic ball of radius ρ > 0 centered at some
point p0 in M (for the induced metric g). Then

Vol(Bρ) ≤ Vol(B5)(
800

43
)5/2
(
2 exp(100π)

)5
ρ5

Proof. First, up to a translation, we may assume that F (p0) = 0. Let Ω+ be a smooth
compact domain in M such that Bρ ⊂ Ω+ ⊂ B2ρ and such that 0 /∈ F (∂Ω+). We consider
the Gulliver-Lawson conformal metric g̃ = r−2g. By Theorem 3.1 and Theorem 4.1, there

is Ω∗ a domain in M such that Ω+ ⊂ Ω∗ ⊂ Ñ100π(Ω+) and ∂Ω∗ satisfies the spectral Ricci
lower bound (8) for the metric induced by g̃.
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By [7, Theorem 1], M has one end. We consider Ω∗∗ the connected component of Ω∗ that
contains Bρ. We assume M is simply connected so the unbounded component of M \ Ω∗∗
has only boundary component Σ0. Let Ω′ be the bounded component of M \ Σ0. We have

Bρ ⊂ Ω′ and ∂Ω′ ⊂ Ñ100π(B2ρ).
On ∂B2ρ, the Euclidean distance function r is bounded by 2ρ. So, by [10, Lemma 6.2], on

Ñ100π(B2ρ), the Euclidean distance function r is bounded by 2ρ exp(100π).
Now, because of the spectral Ricci lower bound (8) and since 4

(4−a)α
= 43

29
< 3

2
= k−1

k−2
,

we can apply the volume estimate of Antonelli and Xu [2, Theorem 1] for the metric g̃ and
obtain

Volg̃(Σ0) ≤ (
δ

6α
)−2 Vol(S4) = (

800

43
)2 Vol(S4)

So scaling back to the Euclidean metric

Vol(Σ0) ≤ (
800

43
)2 Vol(S4)

(
2 exp(100π)

)4
ρ4

Finally we can apply the isoperimetric inequality for minimal hypersurfaces in Rn+1 [6, 20]
to obtain

Volg(Bρ) ≤ Volg(Ω
′) ≤ Vol(B5)(

800

43
)5/2
(
2 exp(100π)

)5
ρ5

�

Proof of Theorem 1.1. Let M # R6 be an immersed, connected,complete, two-sided, stable
minimal hypersurface. The stability assumption lifts to the universal cover, so we can assume
M to be simply connected. By Proposition 5.1, M has Euclidean volume growth. So by [23]
(see also [3]), we obtain that M is a flat hyperplane. �
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