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Abstract

In this article, we introduce a new bimetric model designed to describe a universe in which positive and
negative masses coexist. This model is based on a M4 manifold, equipped with two Lorentzian metrics,
solutions to a system of coupled �eld equations that we have constructed by Lagrangian derivation from
an action speci�cally designed for this geometric context. Our approach unveils new insights into the
interactions between masses of opposite signs, proposing a new paradigm in which our model becomes a
geometric extension of General Relativity in regions dominated by negative masses, such as the vicinity
of the "Dipole Repeller". Moreover, our model converges to the Einstein �eld equation in the limit of
weak �elds, as is the case near the Sun, making it a natural and elegant generalization of the classical
theory. We have also developed a non-stationary, homogeneous, and isotropic exact solution, which
explains the acceleration and expansion of the universe without resorting to a cosmological constant.
The Janus model provides an explanation for the lacunar structure observed in the mass distribution in
the universe, a phenomenon illustrated by the discovery of the "Dipole Repeller". The implications of our
theory, which suggests concrete predictions such as the dimming of brightness around vast negative mass
structures, are veri�able through observation and represent a potential advance in our understanding of
the universe.

1 Introduction

Here we propose a bimetric model describing a universe where positive and negative masses coexist. Particles
with non-zero positive mass move along non-zero length geodesics, while photons, with zero mass and positive
energy, follow zero-length geodesics. These two types of trajectories stem from metrics gµν and ḡµν . These
two Lorentzian metrics, with signature (+ − −−), are de�ned on a spacetime with a coordinate system
{x0, x1, x2, x3}. We construct the corresponding Ricci tensors Rµν and R̄µν , as well as the Ricci scalars R
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1 INTRODUCTION

and R̄ derived from them. In a heuristic manner1, we consider a system of �eld equations of the form:

Rµν − 1

2
Rgµν = χ [Tµν + Tµν ](1.1)

R̄µν − 1

2
R̄ḡµν = κχ

[
T̄µν + T̄µν

]
(1.2)

We choose not to introduce cosmological constants Λ and Λ̄. The tensors Tµν and T̄µν represent the
contributions to the �eld from positive and negative masses, respectively. The tensors Tµν and T̄µν will be
interaction tensors, representing the action of negative masses on positive masses and the action of positive
masses on negative masses, respectively.

In our numerical simulations, we have heuristically opted for the following interaction laws:

� Positive masses attract each other

� Negative masses attract each other

� Masses of opposite signs repel each other.

From a physical perspective, numerical simulations [3] indicate that in regions dominated by positive
masses, negative masses are almost nonexistent, and vice versa. Focusing on the Newtonian approximation,
in mixed notation, we express the tensors associated with the two types of matter as follows:

(1.3) T ν
µ ≈


ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(1.4) T̄ ν
µ ≈


ρ̄c̄2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


For negative masses to exert mutual attraction, it is necessary to choose a negative gravitational constant,

that is, to set κ = −1. Thus, we write:

Rν
µ − 1

2
Rδνµ = χ

[
T ν
µ + T ν

µ

]
(1.5)

R̄ν
µ − 1

2
R̄δνµ = −χ

[
T̄ ν
µ + T̄ ν

µ

]
(1.6)

The terms T ν
µ and T̄ ν

µ represent the interaction tensors. The �rst, T ν
µ , represents the contribution of

negative masses to the �eld experienced by positive masses, while the second, T̄ ν
µ , represents the contribution

of positive masses to the �eld experienced by negative masses. In a region dominated by positive masses,
which primarily contribute to the �eld, the interaction tensor T ν

µ can be neglected, thus simplifying the �rst
equation.

Rν
µ − 1

2
Rδνµ = χT ν

µ(1.7)

The equation in question is Einstein's equation, where the cosmological constant is set to zero. This
equation is at the origin of local phenomena predicted by general relativity, such as the perihelion precession
of Mercury and the de�ection of light by the Sun, con�rming that the Janus model is in agreement with

1The coupled �eld equations system of the model is obtained by Lagrangian derivation from an action that will be addressed
at the end of the article
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2 CONSTRUCTION OF A NON-STATIONARY, HOMOGENEOUS, ISOTROPIC EXACT SOLUTION [4]

these tests of general relativity at the local scale. Moreover, in regions dominated by negative masses, the
mutual attraction they exert on each other follows from the following equation:

R̄ν
µ − 1

2
R̄δνµ = −χT̄ ν

µ(1.8)

Since ρ̄ < 0 and p̄ < 0, this results in an attraction. This phenomenon also a�ects photons of negative
energy, whose trajectories are altered when they pass near a negative mass, following an attractive trajectory.

The challenge lies in determining the exact form of the interaction tensors T ν
µ and T̄ ν

µ .

2 Construction of a Non-Stationary, Homogeneous, Isotropic Exact
Solution [4]

Numerical simulations, relying on the Newtonian approximation and starting from the principle that masses
of opposite signs repel each other in a manner proportional to the product of their masses and inversely
proportional to the square of the distance separating them, have yielded conclusive results. This leads us to
formulate the following hypothesis:

(2.1) T̄ ν
µ ≈


ρc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(2.2) T ν
µ ≈


ρ̄c̄2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


If we consider describing the behavior of the system under the assumptions of non-stationarity, isotropy,

and homogeneity, the interaction terms can be identi�ed, for the radiative phase where pressures can be
neglected, with forms 2.1 and 2.2, where the scalars are then functions of the chronological variable x0. The
metrics then take the following FLRW forms:

gµν = dx02 − a2
[

du2

1− ku2
+ u2dθ2 + u2 sin2 θdϕ2

]
(2.3)

ḡµν = dx02 − ā2
[

du2

1− k̄u2
+ u2dθ2 + u2 sin2 θdϕ2

]
(2.4)

A search for solutions yields negative curvature indices k = k̄ = −1.

If we introduce these metrics into the system of equations 2.5 and 2.6, considering 2.1 and 2.2, we obtain
a classical system of four equations whose compatibility conditions require having the form 2.7 of the two
functions Φ and ϕ of the chronological variable x0:

Rν
µ − 1

2
Rδνµ = χ

[
T ν
µ +ΦT ν

µ

]
(2.5)

R̄ν
µ − 1

2
R̄δνµ = −χ

[
T̄ ν
µ + ϕT̄ ν

µ

]
(2.6)

(2.7) Φ =
( ā
a

)3
, ϕ =

(a
ā

)3
, ϕ = Φ−1
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3 CONSTRAINTS ASSOCIATED WITH STATIONARY SOLUTIONS

This then leads to an equation that is none other than that of the conservation of energy and mass.
Here, in a similar situation, the compatibility condition is a conservation of energy extended to the two
populations:

(2.8) E = ρc2a3 + ρ̄c̄2ā3

As we will see later, the mathematical consistency of the system of two �eld equations (Bianchi conditions)
translates physically into conservation and balance equations. This leads to obtaining an exact solution in
the form of two di�erential equations:

(2.9) a2
d2a

dx02
=

χ

2
E

(2.10) ā2
d2ā

dx02
= − χ̄

2
E

To be in agreement with observational data, which suggest that in this phase where the radiation pressure
is negligible, the acceleration of the expansion of the positive species is positive, the total energy of the
system must be negative [5]. With a negative curvature index, both curves tend towards asymptotes.
This situation seems more satisfactory to the physicist than the one emerging from Einstein's equation
where this acceleration of expansion is then attributed to the cosmological constant, re�ecting an unknown
phenomenon. As this energy density does not evolve over time, this results in exponential growth. We note

that the coe�cients ϕ and Φ from 2.7 can respectively be identi�ed with the factor
√

g
ḡ and its inverse.

3 Constraints Associated with Stationary Solutions

In the system of coupled �eld equations 1.1 and 1.2, the terms on the left-hand side involve the Ricci tensors
Rµν and R̄µν and the corresponding Ricci scalars R and R̄. These terms are calculated from the two metrics
gµν and ḡµν .

Using these two metrics, we then calculate the form of two operators known as covariant derivatives ∇µ

and ∇̄µ. It turns out that, due to their form, the two left-hand sides of both equations identically satisfy
the following relation:

∇µ

(
Rµν − 1

2
Rgµν

)
= 0(3.1)

∇̄µ

(
R̄µν − 1

2
R̄ḡµν

)
= 0(3.2)

The two tensors, Tµν and T̄µν , also satisfy the following condition:

∇µTµν = 0(3.3)

∇̄µT̄µν = 0(3.4)

We should also have:

∇µTµν = 0(3.5)

∇̄µT̄µν = 0(3.6)

At this stage, it can be said that it is precisely these two conditions that determine the form of these
interaction tensors. As for observational data, what is the constraint we must adhere to?
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4 INTERPRETATION OF THE DIPOLE REPELLER THROUGH THE JANUS COSMOLOGICAL MODEL

Numerical simulations have shown that the two populations mutually exclude each other. If we limit
ourselves to these two extreme situations, the system of coupled �eld equations 1.5 and 1.6 simpli�es, when
positive mass dominates, to:

Rν
µ − 1

2
Rδνµ = χT ν

µ(3.7)

R̄ν
µ − 1

2
R̄δνµ = −χT̄ ν

µ(3.8)

The �rst equation 3.7 reduces to Einstein's equation. This solution can be constructed, both in vacuum
and within masses, in which case the mathematical condition 3.3 translates into the equation established
in 1916 by Karl Schwarzschild and in 1939 by Tolman, Oppenheimer, and Volko�, known as the Tolman-
Oppenheimer-Volko� equation [2] [6] [7]. This solution can then extend to the description of the geometry
inside a neutron star.

There is no need to explicitly detail the form of the interaction tensor, present on the right-hand side of
equation 3.8, since the physical e�ect that ensues, the de�ection of negative energy photons by a positive
mass, eludes observation.

When, on the contrary, negative mass dominates, the system becomes:

Rν
µ − 1

2
Rδνµ = χT ν

µ(3.9)

R̄ν
µ − 1

2
R̄δνµ = −χT̄ ν

µ(3.10)

For equation 3.10, condition 3.4 re�ects the balance between pressure force and gravity within a body
�lled with negative mass matter. This yields a condition identical to the classic Tolman-Oppenheimer-Volko�
equation. The challenge then is to give a form to the interaction tensor T ν

µ in the �rst equation 3.9 that
satis�es condition 3.5.

4 Interpretation of the Dipole Repeller through the Janus Cosmo-
logical Model

When negative masses are predominant as near the Dipole Repeller ([1]), we are faced with potential obser-
vational data that will emerge sooner or later and will require a response.

Numerical simulations have shown that as soon as gravitational instability can play its role in both
populations, it is negative mass that dominates, given that negative mass density is predominant. In this
gravitational instability, we have a characteristic time, given by Jeans, which is:

tj =
1√

4πGρ
(4.1)

t̄j =
1√

4πG|ρ̄|
(4.2)

Since |ρ̄| ≫ ρ, the accretion time of negative masses is shorter. It is therefore within this second
population that a semi-regular population of spheroidal conglomerates will establish itself. Observationally,
this will create immense voids in the positive world, hundreds of millions of light-years in diameter. In 2017,
observation con�rmed this prediction [1]. This is the Dipole Repeller, located 600 million light-years from
our galaxy (Figure 1).

In the seven years following, other large voids of this kind have been identi�ed. These then behave
like immense proto-stars, composed of negative-mass anti-hydrogen and anti-helium. This concentration of
matter occurs until the ionization of hydrogen, which then stops this movement. Nevertheless, the geometry
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4 INTERPRETATION OF THE DIPOLE REPELLER THROUGH THE JANUS COSMOLOGICAL MODEL

Figure 1: Dipole Repeller from [1]. The �gure shows the location of the Dipole Repeller (highlighted by the
red circle) within the large-scale structure of the universe. The Dipole Repeller is a hypothesized region of
space where galaxies are pushed away from, counteracting the attractive force of the Shapley Supercluster.

inside this spheroid falls within the framework of the Newtonian approximation, that is, when the particle
agitation velocities are much smaller than the local speed of light2 and when curvature e�ects are negligible3.
This context also leads to the fact that pressure terms can be neglected.

We then need to propose a form of the source tensors such that the condition of zero covariant derivative
is asymptotically satis�ed in the limit of weak �elds4.

Hence, if we consider the impact of the presence of negative masses on the geometry of spacetime struc-
tured by the metric tensor of the �rst �eld equation 3.9 associated with the population of positive masses,

24πr3p ≪ mc2 and 2Gm
c2r

≪ 1
3The inequality r ≫ 2m indicates that we are su�ciently far from the gravitational source for the e�ects of general relativity

to be negligible. Indeed, at large distances (r), the term 2GM
c2

becomes very small.
4All the details of the following calculations can be found in Hicham Zejli's book on [8].

6



4 INTERPRETATION OF THE DIPOLE REPELLER THROUGH THE JANUS COSMOLOGICAL MODEL

we can de�ne the corresponding interaction tensor 4.3 as follows:

(4.3) T ν
µ =


ρ̄c̄2 0 0 0
0 −p̄ 0 0
0 0 −p̄ 0
0 0 0 −p̄


Thus, the impact of the pressure gradient of negative masses on the geodesics followed by ordinary

matter and positive-energy photons according to the �eld equation 3.9 translates into the following Tolman�
Oppenheimer�Volko� equation:

(4.4)
p̄′

c̄2
= −

m− 4πGp̄r3

c̄4

r(r + 2m)

(
ρ̄− p̄

c̄2

)
Then, it's possible to build the Schwarzschild interior metric solution in this manner:

(4.5) ds2 =

[
3

2

√(
1 +

rn2

r̂2

)
− 1

2

√(
1 +

r2

r̂2

)]2
dx02 − dr2

1 + r2

r̂2

− r2
(
dθ2 + sin2 θdϕ2

)
Where rn is the star radius, and the characteristic radius r̂ is de�ned depending on the star's density ρ

as follows:

(4.6) r̂ =

√
3c2

8πGρ

And the Schwarzschild Radius is given by :

(4.7) Rs = 2
GM

c2

This metric can be connected to the Schwarzschild exterior metric:

(4.8) ds2 =

(
1 +

2GM

c2r

)
c2dx02 − dr2

1 + 2GM
c2r

− r2
(
dθ2 + sin2 θdϕ2

)
We can deduce that a particle of ordinary matter will undergo a repulsive gravitational �eld due to the

e�ect of a distribution of negative masses.

Then, when the source of the gravitational �eld of the second �eld equation 3.10 is created by a negative
mass, we can freely de�ne the following energy-momentum tensor as follows:

(4.9) T̄ ν
µ =


ρ̄c̄2 0 0 0
0 p̄ 0 0
0 0 p̄ 0
0 0 0 p̄


We can therefore deduce the following Tolman�Oppenheimer�Volko� equation:

(4.10)
p̄′

c̄2
= −

m̄+ 4πGp̄r3

c̄4

r(r − 2m̄)

(
ρ̄+

p̄

c̄2

)
Hence, the interior Schwarzschild metric can be constructed as follows:

(4.11) d̄s
2
=

[
3

2

√(
1− r̄n2

r̂2

)
− 1

2

√(
1− r2

r̂2

)]2
dx02 − dr2

1− r2

r̂2

− r2
(
dθ2 + sin2 θdϕ2

)

7



5 LAGRANGIAN DERIVATION OF AN ACTION YIELDING THE COUPLED FIELD EQUATIONS OF THE
JANUS MODEL

This metric matches the exterior Schwarzschild metric:

(4.12) d̄s
2
=

(
1− 2GM̄

c̄2r

)
c̄2dx02 − dr2

1− 2GM̄
c̄2r

− r2
(
dθ2 + sin2 θdϕ2

)
We can deduce that a particle of negative mass will undergo an attractive gravitational �eld due to the

e�ect of a distribution of negative masses.

Both solutions 4.4 and 4.10 reduces to the Euler equation approximately equal to −GM̄(r)ρ̄(r)
r2 in the

Newtonian limit, re�ecting hydrostatic equilibrium5.

The form of these two source tensors satis�es the Bianchi conditions. This would obviously not be the
case if the negative mass were to fall outside of this framework. For that, there would need to exist neutron
stars of negative mass. However, the characteristic time of evolution of conglomerates of negative mass,
their "cooling time", exceeds the age of the universe. These spheroidal conglomerates cannot evolve, so the
content of this negative spacetime will be limited to a mixture of negative mass anti-hydrogen and anti-
helium. Since nucleosynthesis cannot occur, there can be no anti-galaxies or anti-stars, regardless of their
mass. Consequently, there cannot exist anti-neutron stars.

Moreover, in the case where this negative spacetime would generate hyperdense stars through an as yet
unknown mechanism, it would then be necessary to reconsider the form of these tensors. However, the
current con�guration satis�es all currently available and potentially available observational data.

Photons of positive energy emitted by sources located behind the Dipole Repulsor will experience a sig-
ni�cant decrease in their magnitude due to the negative gravitational lensing e�ect. These photons then
freely traverse this vast void. The e�ect will be maximal when the photons brush past this spheroidal con-
glomerate, where the entirety of the mass must be taken into account. However, it will be negligible when
these photons pass through the central neighborhood (Figure 2).

Thus, we predict that when a map is established by the JWST telescope, the invisible mass will manifest
its presence by a brightness attenuation, not over the entire disk, but in a ring.

5 Lagrangian Derivation of an Action Yielding the Coupled Field
Equations of the Janus Model

Let us now consider the interaction between two entities: ordinary matter with positive mass interacting
with negative mass through gravitational e�ects. This model involving negative mass takes into account the
in�uence of both dark matter and dark energy.

We can describe this system of two entities with respective metrics gµν and ḡµν . Let R and R̄ be the
corresponding Ricci scalars. We then consider the following two-layer action6:

(5.1) A =

∫
E

(
1

2χ
R+ S + S

)√
|g|d4x+

∫
E

(
κ

2χ̄
R̄+ S̄ + S̄

)√
|ḡ|d4x

The terms S and S̄ will give the source terms related to the populations of the two entities, while the
terms S and S̄ will generate the interaction tensors. χ and χ̄ are the Einstein gravitational constants for

5Where the pressure at the center of this negative mass spheroid is balanced by the negative gravitational force depending
on density and mass

6Integration over E using the element d4x is a method for computing the total action in the bimetric spacetime, re�ecting the
four-dimensional nature of this bimetric universe. This implies considering the entire spacetime as the domain of integration,
integrating the contributions from each point to the action. The term d4x represents an in�nitesimal element of hypervolume of
this bimetric spacetime, used to "measure" each segment during integration. Thus, it is a multiple volume integral performed
over the four dimensions of spacetime, accumulating contributions to the total action from each four-dimensional volume segment
corresponding to each metric.

8



5 LAGRANGIAN DERIVATION OF AN ACTION YIELDING THE COUPLED FIELD EQUATIONS OF THE
JANUS MODEL

Figure 2: Deviation of positive-energy photons by a negative mass. The trajectories, when the curvature
remains moderate, are very close to hyperbolas. The angle of deviation reaches a maximum (C) when the
geodesic is tangent to the limit of the mass. It then decreases steadily to zero at very large distances (D).
The angle of deviation is null, due to symmetry, when the geodesic passes through the center of the mass
(A).

each entity. g and ḡ are the determinants of the metrics gµν and ḡµν . For κ = ±1, we apply the principle of
least action. The Lagrangian derivation of this action gives us:

(5.2)

0 = δA

=

∫
E

δ

(
1

2χ
R+ S + S

)√
|g|d4x

+

∫
E

δ

(
κ

2χ̄
R̄+ S̄ + S̄

)√
|ḡ|d4x

=

∫
E

δ

[
1

2χ

(
δR

δgµν
+

R√
|g|

δ
√
|g|

δgµν

)

+
1√
|g|

δ(
√

|g|S)
δgµν

+
1√
|g|

δ(
√

|g|S)
δgµν

]
δgµν

√
|g|d4x

+

∫
E

δ

[
κ

2χ̄

(
δR̄

δḡµν
+

R̄√
|ḡ|

δ
√
|ḡ|

δḡµν

)

+
1√
|ḡ|

δ(
√

|ḡ|S̄)
δḡµν

+
1√
|ḡ|

δ(
√

|ḡ|S̄)
δḡµν

]
δḡµν

√
|ḡ|d4x

For any variation δgµν and δḡµν , we locally obtain:
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5 LAGRANGIAN DERIVATION OF AN ACTION YIELDING THE COUPLED FIELD EQUATIONS OF THE
JANUS MODEL

(5.3)
1

2χ

(
δR

δgµν
+

R√
|g|

δ
√
|g|

δgµν

)
+

1√
|g|

δ(
√

|g|S)
δgµν

+
1√
|g|

δ(
√

|g|S)
δgµν

= 0

(5.4)
κ

2χ̄

(
δR̄

δḡµν
+

R̄√
|ḡ|

δ
√
|ḡ|

δḡµν

)
+

1√
|ḡ|

δ(
√

|ḡ|S̄)
δḡµν

+
1√
|ḡ|

δ(
√

|ḡ|S̄)
δḡµν

= 0

Let us then introduce the following tensors:

Tµν = − 2√
|g|

δ(
√
|g|S)

δgµν
= −2

δS

δgµν
+ gµνS(5.5)

T̄µν = − 2√
|ḡ|

δ(
√
|ḡ|S̄)

δḡµν
= −2

δS̄

δḡµν
+ ḡµν S̄(5.6)

Tµν = − 2√
|ḡ|

δ(
√
|g|S)

δgµν
(5.7)

T̄µν = − 2√
|g|

δ(
√
|ḡ|S̄)

δḡµν
(5.8)

We obtain then from equations 5.7 and 5.8:

(5.9)

√
|ḡ|
|g|

Tµν =

√
|ḡ|
|g|

−2√
|ḡ|

δ(
√

|g|S)
δgµν

=
−2√
|g|

δ(
√
|g|S)

δgµν
= −2

δS
δgµν

+ gµνS

(5.10)

√
|g|
|ḡ|

T̄µν =

√
|g|
|ḡ|

−2√
|g|

δ(
√

|ḡ|S̄)
δḡµν

=
−2√
|ḡ|

δ(
√
|ḡ|S̄)

δḡµν
= −2

δS̄
δḡµν

+ ḡµν S̄

Introduced into equations 5.3 and 5.4, we can thus deduce the coupled �eld equations describing the
system of the two entities:

(5.11) Rµν − 1

2
gµνR = χ

(
Tµν +

√
|ḡ|
|g|

Tµν

)

(5.12) R̄µν − 1

2
ḡµνR̄ = κχ̄

(
T̄µν +

√
|g|
|ḡ|

T̄µν

)

Where Tµν and T̄µν are the interaction tensors of the system of the two entities corresponding to the
"induced geometry", meaning how each matter distribution on one layer of the universe contributes to the
geometry of the other7.

7Interaction between populations of positive and negative masses.
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6 CONCLUSION

6 Conclusion

This model sheds light on several fundamental aspects of the universe:

� It describes the temporal evolution of the universe in its material phase, based on the assumption that
the involved mediums are isotropic and homogeneous. In this context, positive masses are accelerated.
With a negative curvature index, the model anticipates a decrease of this acceleration towards zero,
eventually leading to a linear expansion of the universe. This conclusion contrasts with predictions
stemming from the use of a cosmological constant, which suggest an asymptotic expansion.

� It accounts for stationary states corresponding to an SO(3) symmetry, thus illustrating the model's
ability to reproduce con�gurations classically associated with Einstein's equation. For an SO(2) sym-
metry, the model, like Einstein's, only describes the geometry of empty space, where mathematical
coherence conditions are inherently respected.

� The analysis of the exact instationary solution provided by the model reveals results in accordance
with observations, underlining its adequacy with real phenomena observed in the universe [5].

� It predicts a patchy structure for positive mass, forming around spaces left by conglomerates of negative
mass in a spheroidal shape, arranged in a regular manner. This prediction received initial observa-
tional con�rmation with the discovery of the Dipole Repeller in 2017 [1]. Subsequently, the detection
of numerous other cosmic voids, each extending over a hundred million light-years in diameter, further
strengthens this theory.

� The model also predicts a decrease in the apparent magnitude of objects located behind the Dipole
Repeller in an annular region, a phenomenon applicable in the long run to all similar formations. This
attenuation is due to the e�ect of these massive negative structures on the distribution of light in the
universe.

In summary, our model o�ers a comprehensive understanding of phenomena classically associated with
Einstein's equation, while providing predictions veri�able by observation.
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