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A Power Tower Control: A New Sliding Mode Control

Malek GHANES and Jean-Pierre BARBOT

Abstract— A control based power tower function at order 2
is proposed in this paper. This leads to a new sliding mode
control, which allows employing backstepping technique that
combines both guaranteed and finite time convergence. The
proposed control is applied to a double integrator subject to
perturbation d. Both guaranteed and finite convergence are
ensured by the controller when d is considered constant and
bounded, without knowing its upper bound. For the case, when
d is variable and bounded with its upper bound known, only a
finite time convergence is obtained. Simulation results are given
to show the well founded of the proposed novel control.

Index Terms— Power tower, Backstepping, Guaranteed-finite
time convergence, sliding mode.

I. INTRODUCTION

There are a large number of iterative techniques to built

control or differentiator. These include: High order sliding

mode [7], [16], [25], homogeneous [1], [19], [20], [22]

backstepping [6], [14], [23], singular perturbation [13], [24],

[26], high gain [2], [10], [11], ... In this article we study

the possibility of constructing a finite-time control using

the power tower function [12], [18] truncated to second

order. Our original motivation was, similar to the case of the

variable exponent “Homogeneous” differentiator, to propose

a continuous variable exponent “Homogeneous” control. In

the case of the differentiator the variation law of the ho-

mogeneity exponent is a function of the measurement noise

[8] or of time to ensure guaranteed and finite convergence

[9]. For the control, in order to ensure both guaranteed and

finite time convergence with a continuous law exponential

variation, theoretical obstructions prevented us from finding

the control (see [27] for a discontinuous law) without a

specific continuous power function. Indeed, for our best

knowledge, a control combining guaranteed and finite time

without singular problems has not yet been considered in

the literature. Moreover, this kind of control has not been

formally associated with the backstepping approach. To solve

the problem of ensuring at the same time, guaranteed and

finite time convergence, the addition of at least two different

controllers are proposed in the literature (see [3], [17],

[20], [21],...). In this paper we propose to fix this control

problem by using only one controller. For this purpose, a

new control based on the power tower function is introduced.

This function, beyond its specific properties at the limits

or on the fractal topology [18] obtained the property of its
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derivative, allowed us to render possible the use of backstep-

ping techniques for convergence with both guaranteed1 and

finite time. By doing so, two parameters, power exponent and

linear gain, are needed for the control tuning in absence of

perturbation. In the presence of the latter, when it is variable,

bounded with its upper bound known, one exponet of the

power tower function is set to zero. When the perturbation

is constant and bounded, an integral action is necessary.

The remaining of the paper is organized as follows. Section

II presents the main result, which render possible the use

of backstopping technique that ensures a guaranteed-finite

convergence by using only one controller. In Section III,

the performances of the proposed control based power tower

function, in absence and presence of perturbation, are put

forward. A conclusion is given in section IV with some future

works.

II. MAIN RESULT

Our control exploits the power tower function of order

2 allowing us to propose a new guaranteed-finite time

backstepping based control. Before presenting this new idea,

we need to introduce the following lemma:

Lemma 1: The time derivative of the function ⌈a⌋|a|
α

with

a a function of time at least C1 and α a strictly positive

constant is for a 6= 0:

d⌈a⌋|a|
α

dt
= |a||a|

α

|a|α−1(1 + α ln(|a|))ȧ (1)

= |a||a|
α+α−1(1 + α ln(|a|))ȧ

with ȧ = d a
d t .

Proof: As

⌈a⌋|a|
α

= |a||a|
α

sgn(a),

we first time derive

|a||a|
α

.

In order to use the derivative of the composition of functions,

we set

|a||a|
α

= eln(|a|)|a|
α

and we obtain

d |a||a|
α

dt
= eln(|a|)|a|

α d ln(|a|)|a|α

d a
ȧ

or again

1The convergence is ensured to reach a vicinity of the equilibrium point
in a guaranteed time whatever the initial conditions are.



d |a||a|
α

dt
= eln(|a|)|a|

α

(|a|α−1 + ln(|a|)α|a|α−1)sgn(a)ȧ

which gives, multiplying both parts by sgn(a)

d ⌈a⌋|a|
α

dt
= eln(|a|)|a|

α

(|a|α−1 + ln(|a|)α|a|α−1)ȧ.

This ends the proof. �

Remark 1: If α > 1 then we have

Lima→0|a|
|a|α+α−1(1 + α ln(|a|)) = 0 (2)

which will be a guarantee of a bounded control law and

therefore feasible in the vicinity of a = 0. This also ensures

that for α > 1 and ȧ bounded the equation (1) is also defined

at a = 0 and is equal to zero.

Remark 2: An other property for α > 0 of the proposed

truncated power tower function is

Lima→0|a|
|a|αsgn(a) = Lima→0sgn(a). (3)

Consequently the closed loop behavior obtained with such

function refers to a sliding mode behavior.

Now, let us consider the following system:

ẋ1 = x2 (4)

ẋ2 = u+ d

where u is the control input and d the disturbance.

Remark 3: To design a backstepping type control law in

guaranteed-finite time we will refer to the lemma 1 and not

to the derivative of |a|θ which has an unbounded limit for

1 > θ > 0 and a → 0+.

Theorem 1: If d = 0, the following power tower control

law:

u = −K2⌈z2⌋
|z2|

γ

−
(

x1K1|x1|
|x1|

β+β−1 (5)

+ (1 + β ln(|x1|))(−K1⌈x1⌋
|x1|

β

+ z2)
)

where β > 1, γ > 0, K1 > 0, K2 > 0 and

z2 = x2 − x∗
2 (6)

with x∗
2 = −K1⌈x1⌋

|x1|
β

, ensures a guaranteed-finite time

convergence of (4) to x1 = x2 = 0.

Proof: Based on the well known backstepping method [15],

the proof is given in two steps.

First step. The first step consists on stabilizing x1 by a fictive

control x∗
2. For that, we define this control as a power tower

control, that is

x∗
2 = −K1⌈x1⌋

|x1|
β

(7)

with β > 1. Setting

V1 =
x2
1

2
. (8)

The time-derivative of (8) reads

V̇1 = −K1|x1|
1+|x1|

β

+ x1z2 (9)

If x∗
2 = x2 (i.e., z2 = 0), then the guaranteed-finite time

convergence of x1 to zero is achieved when d = 0. However,

at this step, (6) is not converged to zero, that is why the

following second step is important to design the real control.

Second step. Let first compute the time-derivative of (6). For

that, we use the result of lemma 1 (see equation (1)). Then

we obtain

ż2 = u+K1|x1|
|x1|

β+β−1(1 + β ln(|x1|))ẋ1. (10)

Now considering the Lyapunov function

V2 = V1 +
z22
2
. (11)

The time-derivative of (11) is:

V̇2 = −K1|x1|
1+|x1|

β

+ x1z2 (12)

+ z2

(

u+K1|x1|
|x1|

β+β−1

(1 + β ln(|x1|))(−K1⌈x1⌋
|x1|

β

+ z2)
)

.

By setting u as proposed in (5) (including (7)), (12) becomes

V̇2 = −K1|x1|
1+|x1|

β

−K2|z2|
1+|z2|

γ

(13)

From (13) the guaranteed-finite time convergence follows

and this end the proof. �

From Theorem 1, we can set our first corollary:

Corollary 1: If d is bounded and its bound is know i.e.

|d| < Dmax, the following control law:

u = −K2sgn(z2)−
(

x1 +K1|x1|
|x1|

β+β−1

(1 + β ln(|x1|))(−K1⌈x1⌋
|x1|

β

+ z2)
)

(14)

with K2 > Dmax, β > 1, K1 > 0, and z2 = x2 +
K1⌈x1⌋

|x1|
β

ensures a finite time convergence of (4) to

x1 = x2 = 0.

Proof: By using the same Lyapunov function V2 defined in

(11), we obtain:

V̇2 = −K1|x1|
|x1|

β

− z2(−K2sgn(z2) + d) (15)

and as K > Dmax, we have a convergence in finite time

but note in guaranteed time. �

Corollary 2: If d is constant, bounded and its bound is

unknown, the following control law:

u = w −K2⌈z2⌋
|z2|

γ

−
(

x1 +K1|x1|
|x1|

β+β−1

(1 + β ln(|x1|))(−K1⌈x1⌋
|x1|

β

+ z2)
)

(16)

ẇ = −z2



with β > 1, γ > 0 and z2 = x2 + K1⌈x1⌋
|x1|

β

ensures a

guaranteed-finite time convergence of (4) to x1 = x2 = 0.

Proof: By considering a new Lyapunov function as follows

V3 = V2 +
(d− w)2

2
, (17)

where V2 is defined in (11), we get:

V̇3 = −K1|x1|
1+|x1|

β

−K2|z2|
1+|z2|

γ

. (18)

From LaSalle theorem, we deduce that the system (4) con-

trolled by the input (16) converges in guaranteed-finite time

to the invariant set IS:

IS = {x1 = 0, x2 = 0 and w ∈ R} (19)

This ends the proof. �

We end this section with a remark that highlights the

usefulness of the power tower function in the case of terminal

sliding mode.

Remark 4: Let us consider the system (4), taking the

following terminal sliding surface [28] based on a power

tower function

s = x2 + k⌈x1⌋
|x1|

β

(20)

instead of the one proposed in [28]

s = x2 + k⌈x1⌋
q/p,

with p > q > 0. The time derivative of s defined in (20) is

ṡ = u+ d+ k|x1|
|x1|

β+β−1(1 + βln(|x1|)x2. (21)

From (21), we can deduce following power tower terminal

control law

u = −⌈s⌋|s|
γ

− k|x1|
|x1|

β+β−1(1 + βln(|x1|)x2, (22)

which has no singularity at x1 = 0 for β > 1, because

lim|x1|→0|x1|
β−1ln(|x1|) = 0. The choice of β > 1

bypasses the singularity in a different way that the one

proposed in [4], [5] (i.e., define an equivalent sliding mode

surface s = x1 + k⌈x2⌋
p/q , 1 < p/q < 2).

III. SIMULATIONS

To test the validity of the proposed power tower control, 4

simulations are presented. They are conducted using Matlab

software, with a solver based on explicit Euler type where the

sampling time is fixed to 50µs. System (4) is considered with

the following initial conditions: x1(0) = 1, x2(0) = −1.5.

The control “gain” is very high when the initial conditions

are far from zero, which requires very small sample step. As

our sample step is limited to 10−6 sec and our solver is an

explicit Euler scheme, we have taken initial conditions not

too far from zero. When the perturbation d is different from

zero, controllers (16) and (14) are used, where w(t = 0) = 0
in (16) and K = 10 in (14).

A. Results with d = 0 and with sign function

In this part, the controller (5) is applied to (4). The control

gains are selected as follows β = 2, γ = 1.5, K1 = 1 and

K2 = 20. The obtained results are depicted in Fig. 1. We can

notice the very good performance of the proposed controller.

The state x1 converges to zero in a guaranteed-finite time.

The same conclusion is stated for x2, which converges to

zero in fixed-finite time. As z2 is function of x1 and x2, its

convergence to zero is also achieved. For the behavior of

the control (5), we can observe a chattering phenomena in

z2 when x1 converges to zero at t = 1.2s. This behavior

is natural and can be explained by (3). Moreover, at this

time, when x1 = 0, a peak on u is observed, it comes from

the fact that in the control law, to avoid any problems with

ln(x1) in the vicinity of x1 = 0, we cancel the product

|x1|
β−1ln(|x1|) around x1 = 0. To overcome the chattering

behavior, we propose to replace the discontinuous function

of this control by a continuous one when z2 and x1 reaches

zero. This introduces the next subsection.
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Fig. 1: z2, x1, x2 (top) and u (bottom)

B. Results with d = 0 and with tanh function

In this part, the sign function used in (5) is replaced by

the tanh function, where the gain of this function is fixed to

50 to be more close to the behaviour of the sign function.

The obtained results are depicted in Fig. 2. As excepted the

same results about the guaranteed-finite time convergences

of the states x1, x2 and z2 to zero are obtained. However,

we can notice that the chattering disappeared in the control

u, and the pic is reduced thanks to the tanh function.

C. Results with d 6= 0 constant and with tanh function

In this part, we test the performances of the controller

defined in (16) when it is applied to system (4) in presence

of a constant bounded perturbation d.The control gains as

selected as follows: β = 2, γ = 1.5, K1 = 1 and K2 = 20.
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We fixed d = 10 (any another value can be chosen). The

initial condition of the integrator in (16) is chosen equal

to zero (w0 = 0). The simulation results are shown in

(3). In Fig. 3 we can show that the control (16) performs

well in the sense that the perturbation d is exactly canceled

(u = −d in steady state) thanks to the integral term w in

(16). The latter is replaced by the tanh function with high

gain (50) to avoid chattering phenomenon. Even if the sign
function is approximated by the tanh function for avoiding

the chattering, the convergence of the states x1 and x2 seems

to be in guaranteed-finite time.
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D. Results with d variable and with tanh function

In this part, we test the performances of the controller

defined in (14) when it is applied to system (4) in presence

of a variable bounded perturbation d where its upper bound

is known. For that we took d as a sinus function: d = sin(t)
and β = 2 and γ = 0. The control gains are fixed β =
2, γ = 0, K1 = 1 and K2 = 20. Then, K2 > Dmax,

where Dmax = 1 is the upper bound of the sinus function.

The obtained results, plotted in Fig. (4), show very good

performances of the control (14), the perturbation d is exactly

canceled (u = −d) thanks to the sign function in (16), which

is replaced by tanh function (gain= 50) to avoid chattering

phenomenon. In this case the convergence of the states x1

and x2 are in finite time and not in guaranteed time for the

sign function and only asymptotic for tanh function. It can

be noticed also that z2 has not converged exactly to zero.

This is due to the fact the gain of the tanh function is not

chosen so big to avoid control pics.
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IV. CONCLUSION

In this paper, we propose a new control law on a power

tower function truncated to order 2. This function makes

it possible to use the backstepping technique in order to

propose convergence in guaranteed and finite time. In a

future work, the convergence finite times including the fixed

one will be derived and the non-matching perturbations

problem will be studied. The fixed-time will be computed

in function of K1 and K2 which multiply respectively

the term ⌈x1⌋
|x1|

β

and the term ⌈z2⌋
|z2|

γ

in the control

design. Moreover, the approach will be extended to higher

dimensional systems. In a second step, the behavior of such

law in an observer-based control scheme or with respect to

noisy measurements or actuator saturation or again under

sampling must be investigated.
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