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ABSTRACT

Context. The GRAVITY beam-combiner at the Very Large Telescope Interferometer has recently made important contributions to
many different fields of astronomy, from observations of the Galactic centre to the study of massive stars, young stellar objects,
exoplanet atmospheres, and active galactic nuclei. These achievements were only made possible by the development of several key
technologies, including the development of reliable and high-performance fringe trackers. These systems compensate for disturbances
ranging from atmospheric turbulence to vibrations in the optical system, enabling long exposures and ensuring the stability of interfer-
ometric measurements.
Aims. As part of the ongoing GRAVITY+ upgrade of the Very Large Telescope Interferometer infrastructure, we aim to improve the
performance of the GRAVITY fringe tracker, and to enable its use by other instruments.
Methods. We modified the group-delay controller to consistently maintain tracking in the white-light fringe, which is characterised
by a minimum group delay. Additionally, we introduced a novel approach in which fringe-tracking is performed in the non-observable
optical path length state-space using a covariance-weighted Kalman filter and an auto-regressive model of the disturbance. We outline
this new state-space representation and the formalism we used to propagate the state vector and generate the control signal. While our
approach is presented specifically in the context of GRAVITY/GRAVITY+, it can easily be adapted to other instruments or interfero-
metric facilities.
Results. We successfully demonstrate phase-delay tracking within a single fringe, with any spurious phase jumps detected and cor-
rected in less than 100 ms. We also report a significant performance improvement, as shown by a reduction of ∼30 to 40% in phase
residuals, and a much better behaviour under sub-optimal atmospheric conditions. Compared to what was observed in 2019, the median
residuals have decreased from 150 nm to 100 nm on the Auxiliary Telescopes and from 250 nm to 150 nm on the Unit Telescopes.
Conclusions. The improved phase-delay tracking combined with white-light fringe tracking means that from now on, the
GRAVITY fringe tracker can be used by other instruments operating in different wavebands. The only limitation remains the need
for an adjustment of the optical path dispersion.

Key words. instrumentation: high angular resolution – instrumentation: interferometers – techniques: interferometric

1. Introduction
By combining the light from multiple telescopes, long-baseline
optical interferometry can achieve a much higher angular res-
olution than is possible with a single-dish telescope. Even in
the upcoming era of telescopes exceeding 30 m, the Very Large
Telescope Interferometer (VLTI) will continue to outperform
single-dish observations in terms of angular resolution (for an
up-to-date overview, see Eisenhauer et al. 2023). This is par-
ticularly useful for many applications, as shown by the broad
range of subjects to which it has been applied with ground-
breaking results (GRAVITY Collaboration 2018a,b,c, 2019a,b,c,
2020a,b,c,d,e,f, 2021, 2022).

One of the challenges that arise at this high angular reso-
lution is the need to manage disturbances, which can include
⋆ These authors contributed equally.

atmospheric turbulence, telescope vibrations, and other noise
sources, and which remain the primary limitations to the pre-
cision of interferometric measurements. These disturbances lead
to variations in the optical path length (OPL) of light travelling
through each telescope to the beam combiner, resulting in an
unstable interference pattern (unstable fringes).

To obtain stable interferometric measurements, these fringes
need to be controlled in real time, and any OPL fluctuations need
to be compensated for. In modern instruments, this is the role
of a specific subsystem: the fringe tracker. The crucial role of
fringe-tracking in optical interferometry has justified the exten-
sive development efforts made over the past decades (Shao et al.
1988; Sorrente et al. 2001; Delplancke et al. 2006; Le Bouquin
et al. 2008; Cassaing et al. 2008; Houairi et al. 2008; Colavita
et al. 2010; Lozi et al. 2011; Menu et al. 2012; Choquet et al. 2014;
Lacour et al. 2019). Various techniques have been proposed,

A184, page 1 of 16
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/202348771
https://orcid.org/0000-0002-6948-0263
https://orcid.org/0000-0002-2958-4738
https://orcid.org/0000-0002-1678-3535
https://orcid.org/0000-0002-5708-0481
https://orcid.org/0009-0006-6754-6931
https://orcid.org/0009-0005-3111-3651
https://orcid.org/0000-0002-6353-1111
https://orcid.org/0000-0002-2215-9413
https://orcid.org/0000-0002-0493-4674
https://orcid.org/0000-0003-0291-9582
https://orcid.org/0009-0001-3650-8573
https://orcid.org/0000-0003-0655-0452
https://orcid.org/0000-0003-0680-0167
https://orcid.org/0000-0002-4569-9009
https://orcid.org/0000-0002-2125-4670
https://orcid.org/0000-0001-5678-1182
https://orcid.org/0000-0002-0671-9302
https://orcid.org/0000-0002-0327-6585
https://orcid.org/0009-0008-3854-937X
https://www.edpsciences.org/en/
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Nowak, M., et al.: A&A, 684, A184 (2024)

based either on hardware or software solutions, but they all share
a common objective: to measure and stabilise the fringes, thereby
maximising the signal-to-noise ratio (S/N) of interferometric
measurements.

For the GRAVITY instrument, the fringe-tracker was ini-
tially designed to perform control in the six-dimensional optical
path delay (OPD) state-space, where measurements are avail-
able. The algorithm, described in Lacour et al. (2019, subse-
quently Paper I), was based on the use of an auto-regressive (AR)
model to model the disturbance in OPD space and on a Kalman
filter to propagate an OPD state-vector using an asymptotic
approximation of the optimal gain.

Deviating from this initial concept, we hereafter introduce
a novel approach in which fringe-tracking is performed in the
four-dimensional non-observable OPL state-space. The reduc-
tion in dimensionality alleviates the need for an asymptotic
approximation of the Kalman gain, whose optimal value is now
dynamically calculated at each iteration. This work is part of a
general upgrade of the GRAVITY Fringe-Tracker that was made
in late 2022 and 2023, and it can be considered as a follow-up to
Paper I.

The paper is divided as follows. Section 2 gives a general
description of how measurements are made within the fringe
tracker, and which quantities are observable. Section 3 describes
the details of the implementation of the upgraded fringe tracker,
in particular, the state-space model, and the two control loops
(phase and group delay). Section 4 reports the first on-sky results
obtained with this upgraded fringe tracker, with an emphasis on
the behaviour of the group-delay control loop. Finally, Sect. 5
gives some prospects and avenues for future work, and Sect. 6
gives our final conclusions.

2. Observables

2.1. From pixels to fluxes

In GRAVITY, the fringe-tracking beam combiner, like the sci-
ence combiner, is a silica-on-silicium integrated optics compo-
nent that uses an ABCD beam-combining scheme. This means
that for any given baseline j, k linking telescopes T j to Tk, the
beam combiner registers a set of four outputs, corresponding
to four values of additional phase shifts introduced between the
beams (0, π/2, π, and 3π/2),

a j,k =
〈
|E j|

2 + |Ek |
2 + 2Re

(
E jE∗k

)〉
, (1)

b j,k =
〈
|E j|

2 + |Ek |
2 + 2Re

(
E jE∗keiπ/2

)〉
, (2)

c j,k =
〈
|E j|

2 + |Ek |
2 + 2Re

(
E jE∗keiπ

)〉
, (3)

d j,k =
〈
|E j|

2 + |Ek |
2 + 2Re

(
E jE∗ke3π/2

)〉
, (4)

where E is the complex amplitude of the electric field at the input
of the combiner, ⟨.⟩ denotes the average over the integration time,
and the asterisk denotes the complex conjugate.

In principle, both the coherent flux Γ j,k =
〈
E jE∗k

〉
and the

incoherent flux F j + Fk =
〈
|E j|

2
〉
+
〈
|Ek |

2
〉

can be recovered by
linear combinations of these four outputs,

F j + Fk =
(
a j,k + b j,k + c j,k + d j,k

)
/4, (5)

Γ j,k = (a j,k − c j,k)/2 + i (d j,k − b j,k)/2. (6)

Each individual F j for j ∈ [1 . . . 4] can subsequently be
recovered by a second linear combination of the different
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Fig. 1. Open-loop response of the piezo control chain. This corresponds
to the response of the piezo in micrometers per volt as a function of time
(bottom axis) when submitted to an impulse command. Equivalently,
this also gives the values of the coefficients of the fifth-order model
used in Eq. (20) (top axis). Each colour represents a distinct actuator.

baselines,

F j =
∑
k, j

(F j + Fk)/3 −
∑
k,l, j
k<l

(Fk + Fl)/6. (7)

In the GRAVITY fringe tracker, the 24 outputs (4 outputs for
each of the six ABCD combiners) are dispersed over six wave-
length channels in the K band and are recorded on a SAPHIRA
detector (Finger et al. 2014). We refer to Fig. 1 in Paper I for
an overview of the pixel arrangement on the detector real time
display (RTD). As shown by Eqs. (1)–(7), for a given wave-
length channel, the column vector (q1, . . . , q24)T containing the
24 different intensity outputs and the column vector (F j,Γ j,k)T

containing the ten incoherent and coherent flux values are related
by a multiplication by a single matrix: the P2VM (pixel to
visibility matrix),

P2VM · (q1, . . . , q24)T = (F1, . . . , F4,Γ1,2, . . . ,Γ3,4)T . (8)

The incoherent and coherent fluxes are computed in real
time for each of the wavelength channels, which are treated
independently. Similarly, when the polarisation is split, the two
polarisations are treated independently.

In practice, the ABCD combiners are not perfectly balanced,
and the phase offsets can be different from their fiducial val-
ues, which means that the coefficients linking the ABCD outputs
to the complex amplitudes of the electric field in Eqs. (1)–(4)
can vary. Therefore, the P2VM must be calibrated, which in
GRAVITY is done during daytime using an internal source. This
P2VM formalism was initially introduced by Tatulli et al. (2007)
for the AMBER instrument (Petrov et al. 2007). It was then
adapted to ABCD combiners by Lacour et al. (2008), and more
details about its implementation can be found in these papers,
along with Paper I.

2.2. From fluxes to phase/group delays and closures

After the P2VM calculation, the resulting wavelength-dependent
coherent fluxes Γ j,k,λ are still affected by dispersion (atmospheric
dispersion, and dispersion in the fibre delay lines, FDDL), which
at first order introduces a phase curvature of the form eiD(1−λ0/λ)2

,
where λ0 = 2.2µm. This is corrected for by using an empirical
value for D that depends on the position of the star in the sky
and on the position of the FDDLs. This correction was calibrated
during the first year of on-sky observations.
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From this dispersion-corrected coherent flux measurement,
the OPD ϕ j,k is calculated for baseline ( j, k) using

ϕ j,k =
λ0

2π
× arg

 Nλ∑
λ=1

Γ j,k,λ

 . (9)

These values are concatenated to form the OPD vector Φ, using
the convention Φ = (ϕ21, ϕ31, ϕ41, ϕ32, ϕ42, ϕ43)T . The closure
phase θPD

j,k,l over the triangle linking telescopes T j,Tk, and Tl is
calculated in units of length using

θPD
j,k,l =

λ0

2π
× arg

〈 Nλ∑
λ=1

Γ j,k,λ

Nλ∑
λ=1

Γk,l,λ

Nλ∑
λ=1

Γ∗j,l,λ

〉
350DITs

 , (10)

where the incoherent flux is first averaged over 350 detector inte-
gration times (DITs, i.e., bout 385 ms at 909 Hz) to boost the
S/N, the phase closure being a notoriously noisy quantity.

The group delay ψ j,k and group closure θGD
j,k,lare obtained from

the coherent flux, which is first corrected for any phase offset
constant in wavelength by subtracting the phase delay, and then
averaged over 150 DITs (about 165 ms at 909 Hz), again to boost
S/N,

Γ′j,k,λ =

〈
Γ j,k,λ exp

[
−i

2π
λ0
ϕ j,k

]〉
150 DITs

. (11)

The group delay is then given by

ψ j,k =
λ − 02/∆λ

2π
× arg

Nλ−1∑
λ=1

Γ′j,k,λ+1Γ
′∗
j,k,λ

 , (12)

where ∆λ is the difference between the effective wavelength of
two pixel bins. From this, we also constructed another vector in
OPD space: Ψ = (ψ21, ψ31, ψ41, ψ32, ψ42, ψ43)T . The closure of
the group delay can be written as

θGD
j,k,l =

λ − 02/∆λ

2π
× arg

〈Nλ−1∑
λ=1

Γ′j,k,
λ+1
Γ′∗j,k,
λ

Nλ−1∑
λ=1

Γ′k,l,
λ+1
Γ′∗k,l,
λ

Nλ−1∑
λ=1

Γ′∗j,l,
λ+1
Γ′j,l,
λ

〉
350 DITs

 .
(13)

The last quantity of interest for the control algorithm is the
uncertainty on the OPD estimate, σ j,k. This uncertainty can be
computed by first introducing the interferometric S/N, defined as
the ratio of the modulus of the coherent flux and the square root
of its variance. This variance is approximated as the half sum of
the variance of the real and imaginary parts of the coherent flux,
and the S/N is averaged over three DITs1,

S/N j,k =

〈 ∣∣∣∑λ Γ j,k,λ

∣∣∣√
1
2
∑
λ Var(ℜΓ j,k,λ) + 1

2
∑
λ Var(ℑΓ j,k,λ)

〉
3 DITs

. (14)

The uncertainty on the phase can then be computed using a
similar approach as in the appendix of Shao et al. (1988),

1
σ j,k
=

2π
λ0
× S/N j,k. (15)

1 We thank the referee for pointing out that calculating this S/N as
the ratio between the average of the numerator and the average of the
denominator (as opposed to the average of the ratio) would likely result
in a better estimate. We plan on testing this and implementing it in a
future version of the fringe tracker.

In Eq. (14), the variance of the real and imaginary parts of the
coherent flux are estimated for each frame from the background,
detector, and photon noises. Using these OPD noise estima-
tors, and under the assumption that each baseline noise is
uncorrelated, we also write the covariance matrix W on Φ,

W = diag
(
σ2

21, σ
2
31, σ

2
41, σ

2
32, σ

2
42, σ

2
43

)
. (16)

The variance of Γ is estimated from the variance on the individ-
ual pixels q j, multiplied by the P2VM and P2VMT matrix, as
described in Sect. 3.4 of Paper I. Compared to Paper I, where
the σ j,k were computed coherently on five DITs, the new uncer-
tainties are now computed on individual DITs and then averaged
over only three DITs. This change was motivated by the use of
an adaptive gain in the new control algorithm, which strongly
benefits from a better estimate of the instantaneous S/N.

3. Control loop

3.1. Three challenges of building a fringe tracker

A first challenge that needs to be solved in the implementation
of a fringe tracker is the dichotomy between two distinct spaces.
The fringe tracker uses a set of four piezoelectric delay lines
(Pfuhl et al. 2014) to change the OPL of the four beams (one
per telescope). The feedback is provided by measurements of the
coherent fluxes (see Sect. 2), however, which are transformed
into a set of six measurements of OPD ϕ (one per baseline) and
group delay ψ. The OPL space itself is not observable, and this
mismatch between the control space and the measurement space
creates a paradox that needs to be solved by the system.

A second challenge arises from the need to regularly update
the model that is used to represent and predict the disturbance.
To do this, we chose to use a set of AR models, whose param-
eters are updated every few seconds via a model-fitting routine
performed on a separate computer (see the hardware description
in Sect. 4.1). In order to perform the model fitting, this computer
needs to be fed with measurements that only represent the dis-
turbance, excluding the additional piezo command. The control
must therefore work with a state model that explicitly sepa-
rates the OPL into two components: a disturbance component
L that represents both atmospheric and mechanical turbulence,
and the OPL introduced by the piezo actuators X. Only the
total OPD, which derives from the total OPL L + X, can be
observed by the fringe tracker. In order to be able to update
the disturbance model, however, the two components must be
kept separated.

A third challenge comes from the fact that the main phase
control loop is fed by phase measurements, which are only
known to a modulo 2π (or λ0, in terms of OPD). Thus, this
loop is blind to any potential fringe shift, and we therefore need
the additional group delay loop. In Paper I, the controller con-
sisted of two completely independent loops running in parallel,
with the potential of issuing conflicting commands. The algo-
rithm developed at the time ensured that the integrator of the
two controllers would not diverge too widely, but it did not
strictly constrain the absolute group delay. The consequence was
a tendency of the fringe tracker to jump between fringes during
a single observation. The updated architecture detailed in this
work provides a much more unified approach to controlling both
the group and phase delays, thereby avoiding conflicting com-
mands, mitigating phase jumps, and maintaining tracking of the
white-light fringe.
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3.2. State model

To solve these challenges, we adopted a state model in OPL
space that explicitly separates the disturbance and the OPL intro-
duced by the actuators. We used a set of two state vectors that
both have the unit of length and that we denote Xn and Ln. For
simplicity, these state vectors can be broken down into four inde-
pendent vectors, corresponding to each telescope. For a given
telescope Tk, the vector of the last N values of OPL introduced
by the piezo actuators (Xn,k) and by the disturbance (Ln,k) can be
expressed by

Xn,k = [xk(tn), xk(tn−1), . . . , xk(tn−N+1)]T, (17)

Ln,k = [lk(tn), lk(tn−1), . . . , lk(tn−N+1)]T, (18)

where xk(t j) and lk(t j) denote the OPL introduced by the piezo
actuator and the disturbance on telescope Tk at time t j, respec-
tively. These vectors have a total length of 150, which matches
the smoothing length of the group delay. The four telescopes can
be concatenated to give our two final state vectors Xn and Ln of
dimension 4 × 150 = 600,

Xn =


Xn,1
Xn,2
Xn,3
Xn,4

 Ln =


Ln,1
Ln,2
Ln,3
Ln,4

 . (19)

Each of the piezo control chains (which include the actuator
response as well as the pure delay introduced by the process-
ing) has a response function that we modelled as a fifth order,
where the position of the piezo at time tn was derived from the
command sent at the five last time steps,

xk(tn+1) = ck,0uk(tn) + ck,1uk(tn−1) + . . . + ck,4uk(tn−4). (20)

The c coefficients can be empirically measured by sending
an impulse command (in Volts) through the control chain and
measuring how the response evolves with time (Fig. 1).

The command vectors Un,k = [uk(tn), . . . , uk(tn−4)] are then
defined such that

xk(tn+1) =
[
ck,0 ck,1 ck,2 ck,3 ck,4

]
· Un,k. (21)

Again, the four telescopes can be concatenated to give Un of
dimension 4 × 5 = 20,

Un =


Un,1
Un,2
Un,3
Un,4

 . (22)

With these notations, the propagation of the piezo state
vector Xn takes the form

Xn+1 = AX · Xn +C · Un, (23)

where AX is a 600 × 600 block-diagonal matrix that just shifts
the xs for each telescope,

AX = diag(A, A, A, A), (24)

with

A =



0 0 . . . 0 0
1 0 . . . 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 . . . 0 1 0


, (25)

and C is also a block-diagonal matrix, but of size 600×20, which
contains the coefficients of the piezo responses,

C = diag(C1,C2,C3,C4), (26)

with

Ck =


ck,0 ck,1 ck,2 ck,3 ck,4
0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

 . (27)

For the disturbance state vector Ln, we used a model similar
to what was already in use on the GRAVITY fringe tracker (see
Paper I), which gave satisfactory results, and which consisted of
a set of six AR models in OPD space (see Appendix A). Since
the upgraded version of the fringe tracker now uses a state model
in OPL rather than in OPD space, this AR model needed to be
converted into OPL space. To do this, we first note that for a
four-telescope (six-baseline) interferometer such as GRAVITY,
an OPD vector Φ = (ϕ1,2, ϕ1,3, ϕ1,4, ϕ2,3, ϕ2,4, ϕ3,4)T and an OPL
vector (l1, l2, l3, l4)T are linked by the matrix equation

Φ = M · l, (28)

where M is a 6 × 4 matrix, defined as

M =



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


. (29)

Therefore, computing an OPL vector from the knowledge of the
OPD vector is under-constrained and yields multiple solutions. A
solution entails using the Moore-Penrose pseudo-inverse of M,

l = M+ · Φ. (30)

For reference, the value of M+ is

M+ =
1
4


1 1 1 0 0 0
−1 0 0 1 1 0
0 −1 0 −1 0 1
0 0 −1 0 −1 −1

 . (31)

This particular choice ensures that the mean value of the OPLs
on each telescope is 0, which is beneficial for a fringe tracker. It
helps to avoid runaway situations in which all the actuators move
toward a large offset and saturate the system.

These equations can be extended to our OPL state-space vec-
tor Ln as defined in Eq. (19), and a similarly defined OPD vector
Φn = (Φn,1,2, . . . ,Φn,3,4)T using similar matrices in which the 1s
are replaced by identity matrices of size 150,

M =



I150 −I150 0 0
I150 0 −I150 0
I150 0 0 −I150
0 I150 −I150 0
0 I150 0 −I150
0 0 I150 −I150


, (32)

M+ =
1
4


I150 I150 I150 0 0 0
−I150 0 0 I150 I150 0

0 −I150 0 −I150 0 I150
0 0 −I150 0 −I150 −I150

 . (33)
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With these matrices, the relations remain

Φn =M · Ln, (34)
Ln =M

+ · Φn. (35)

Our AR model fitting provides a set of six matrices A j,k that
can be used to propagate the individual Φn, j,k. These can be
combined into a block-diagonal matrix to propagate Φn itself,

Φn+1 =


A1,2 0 . . . 0

0 A1,3
. . .

...
...

. . .
. . . 0

0 . . . 0 A3,4

 · Φn. (36)

Switching to OPL space, we have

M · Ln+1 =


A1,2 0 . . . 0

0 A1,3
. . .

...
...

. . .
. . . 0

0 . . . 0 A3,4

 · M · Ln. (37)

At this point, we can note that

M+ · M = I600 −
1
4


I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150

 , (38)

which means that as long as our OPL vectors Ln+1 contain values
where the average on all telescopes is 0, we can consider that
M ·M is the identity matrix. In other words, as long as
I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150

 · Ln+1 = 0, (39)

we have

M+ · M · Ln+1 = Ln+1. (40)

Assuming temporarily that Ln+1 fulfils the condition given by
Eq. (39), we can left-multiply Eq. (37) byM+ to obtain

Ln+1 =

M
+ ·


A1,2 0 . . . 0

0 A1,3
. . .

...
...

. . .
. . . 0

0 . . . 0 A3,4

 · M
 · Ln. (41)

A block matrix multiplication inside the brackets gives the final
form of our model in OPL state-space,

L̂n+1 = AL · Ln, (42)

with

AL =


A1,2+A1,3+A1,4

4 −A1,2/4 −A1,3/4 −A1,4/4
−A1,2/4

A1,2+A2,3+A2,4

4 −A2,3/4 −A2,4/4
−A1,3/4 −A2,3/4

A1,3+A2,3+A3,4

4 −A3,4/4
−A1,4/4 −A2,4/4 −A3,4/4

A1,4+A2,4+A3,4

4

 . (43)

We can formulate two important remarks on the propagation
model given by Eq. (42). Firstly, since
I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150
I150 I150 I150 I150

 · AL = 0, (44)

our propagation model always guarantees that the condition
given by Eq. (39) is fulfilled. Physically, this stems from the
fact that our propagation model really is the conversion of an
OPD model into OPL space, where we used the freedom given
by the under-constrained nature of the conversion to explicitly
guarantee that the average piston is always 0,through the defini-
tion of M+ in Eq. (31). Secondly, the presence of L̂ with a hat in
Eq. (42) emphasises the fact that this is only a model-propagated
estimate of L. There is no hat for X in Eq. (23), since we consider
our piezo model to be perfect (or at least much better than our
atmospheric model).

Equation (42) is linear, and the covariance matrix on Ln is
propagated accordingly, using an additional 600× 600 matrix Q,
which represents the process noise,

P̂n+1 = AL · Pn · AL
T + Q. (45)

The process noise Q is derived from a set of 150 × 150 matrices
Q j,k using a similar block construction,

Q =


Q1,2+Q1,3+Q1,4

4 −Q1,2/4 −Q1,3/4 −Q1,4/4
−Q1,2/4

Q1,2+Q2,3+Q2,4

4 −Q2,3/4 −Q2,4/4
−Q1,3/4 −Q2,3/4

Q1,3+Q2,3+Q3,4

4 −Q3,4/4
−Q1,4/4 −Q2,4/4 −Q3,4/4

Q1,4+Q2,4+Q3,4

4

 . (46)

The matrices A j,k and Q j,k are recalculated every 5 s by an
asynchronous machine (wgvkalm described in Sect. 4.1) based
on OPD measurements. This computation makes use of the
Python toolbox time-series analysis (Seabold & Perktold 2010).
A detailed explanation of its implementation is provided in
Appendix A.

3.3. Phase control

Without any feedback, that is, without any additional informa-
tion about the state of the system, the internal model of the
fringe tracker would simply continue to indefinitely propagate
the state vector L using Eq. (42) and to dispatch commands to the
piezo actuators to respond to its own predictions. This behaviour
would probably be acceptable over a few iterations, but given the
uncertainties on the predictions of the disturbance, the internal
state vector Ln would quickly diverge from the real values. The
internal model is aware of this, as Eq. (45) shows that in this
scenario, the covariance matrix would slowly inflate due to the
accumulating process noise Q.

To properly track the fringes over long periods, the fringe
tracker therefore needs to integrate measurements into the loop.
These measurements should not be taken at face value either,
however, as they are also affected by varying levels of uncer-
tainties. Integrating noisy measurements into the loop without
careful consideration will create additional noise in the system,
thereby reducing its overall performance. The main task of the
Kalman controller in phase-delay loop is to determine how to
best balance the information from the state model propagation
and from the additional measurements performed on the system.
In Paper I, this was done using a fixed asymptotic Kalman gain,
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which could not react in real time to the quality of the model and
measurements. This new version of the Kalman provides an opti-
mal gain, calculated at each iteration to combine the two sources
of information in the best possible way.

At each time step tn, a set of six measurements of the phase
(or OPD) are obtained on each baseline, with an estimate of their
error bars. The measurement process is detailed in Sect. 2, and
for the context of this section, we simply denote Φn = (ϕ j,k(tn))
the column vector of size 6 containing the individual phase mea-
surements (see Eq. (9)), and Wn the associated 6 × 6 diagonal
covariance matrix, as defined from Eq. (15) in Eq. (16).

These measurements are related to our state vectors Ln and
Xn through the measurement equations,

ϕ j,k(tn) =
[
lk(tn) − l j(tn) + xk(tn) − x j(tn)

]
mod λ0

. (47)

This means that although our state vectors have a length of 600
to accommodate for the group-delay measurements, which are
averaged over 150 DITs, the OPD measurement itself only relies
on the first values (at time tn) for each telescope. In matrix form,
this can be written as

Φn =
[
Hϕ · (Ln + Xn)

]
mod λ0

, (48)

with Hϕ defined by

Hϕ =



u1 −u1 0 0
u1 0 −u1 0
u1 0 0 −u1
0 u1 −u1 0
0 u1 0 −u1
0 0 u1 −u1


, (49)

where u1 = (1, 0, . . . , 0)T is the first basis vector with a length of
150.

Given our assumption that the piezo state-vector Xn is per-
fectly known, the difference between the actual measurement
and the expected measurement Φ̂n = Hϕ · (L̂n + Xn) is directly
related to the difference between the actual state of the distur-
bance Ln and its estimate L̂n,

Φn − Φ̂n =
[
Hϕ ·
(
Ln − L̂n

)]
mod λ0

, (50)

and ignoring the modulo, it is therefore tempting to simply
update the state vector according to Ln = L̂n + Hϕ

+ · (Φ̂n − Φ).
This would reinject all the noise from the measurement into the
control loop, however, without any consideration for the respec-
tive levels of confidence of the measurement and the prediction
from the model propagation.

These levels of confidence are represented by the matrices P̂n
and Wn, which can therefore be used to calculate a Kalman gain
that properly weights the model prediction and the measurement
(Nowak 2019, Sect. 4.3, for a proper derivation of this gain),

Kn =
(
P̂n · Hϕ

T
)
·
(
Hϕ · P̂n · Hϕ

T +Wn

)−1
. (51)

The update state vector and its covariance matrix are then given
by

Ln = L̂n + Kn ·
[
Φ̂n − Φn + ΦCP,n

]
mod λ0

, (52)

Pn = P̂n + Kn · (Hϕ · P̂n · Hϕ
T +Wn) · Kn

T, (53)

which indeed reduces to Ln = L̂n +Hϕ
+ · (Φ̂n −Φn +ΦCP,n) in the

Wn ≪ P̂n regime and also to Ln = L̂n in the P̂n ≪ Wn regime.
The introduction of ΦCP in this equation ensures a zero

closure-phase on the measurement error. It is crucial to under-
stand that because the model is in OPL space, it cannot account
for any non-zero closure phase. This closure-phase issue was
already present in the first version of the fringe tracker, and
we refer to Sect. 4.2 of Paper I for a detailed explanation.
We simply recall here that ΦCP is constructed by setting three
of the four closure phases θPD

j,k,l to the appropriate baselines,
ignoring the closure phase on the triangle of the lowest
S/N,

ΦCP =



θPD
1,2,4

θPD
1,3,4
0

θPD
2,3,4
0
0


or



θPD
1,2,3
0

−θPD
1,3,4
0

−θPD
2,3,4
0


or



0
−θPD

1,2,3

−θPD
1,2,4
0
0

θPD
2,3,4


or



0
0
0

θPD
1,2,3

θPD
1,2,4

θPD
1,3,4


. (54)

It is also important to note with this definition, two fun-
damentally different types of variations of ΦCP can occur: (1)
ΦCP can change because of slowly varying closures phases
in the measurements, in which case it simply tracks actual
variations. (2) ΦCP can switch between options given in
Eq. (54), which occurs when the triangle of the lowest S/N
changes. The second case corresponds to a change in the
configuration, leading to an abrupt variation of ΦCP, and it
is therefore banned while the science detector is integrating.
This behaviour is controlled by an internal Boolean parame-
ter, called the mobility flag, which is “False” during science
integrations.

3.4. Group-delay control

The initial version of the fringe tracker described in Paper I
was designed for an instrument performing prolonged exposures
at a consistent wavelength of 2.2µm. As long as it stayed in
the coherence envelope of the fringes, the fringe tracker had
the freedom to transition from one fringe to the next. This is
unacceptable if the GRAVITY fringe tracker is to be used to
feed a different science instrument operating at a different wave-
length, as this would blur the fringes on the science detector.
In an effort to make the GRAVITY fringe tracker compatible
with the L-band combiner MATISSE (Lopez et al. 2022), the
group-delay controller was modified to consistently track the
same fringe during a scientific exposure. This new MATISSE
mode is called GRA4MAT (Woillez et al., in prep.), and is now
routinely offered to the community.

For this to work, the group-delay control loop must deter-
mine in real time which fringe is being tracked by the phase-
control loop, and it updates the state vector Ln by integer multiple
of λ0 if required, depending on which fringe it wishes to track.
These changes are completely transparent to the phase-control
loop due to the modulo λ0 in Eq. (50).

To implement this behaviour, we used a formalism similar to
the phase-delay loop. We first introduced the 6 × 600 measure-
ment matrix Hψ to relate the group delay Ψ to the state vectors
Ln and Xn,

Ψn = Hψ · (Ln + Xn), (55)
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with

Hψ =
1

150



1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1


, (56)

and where 1 = (1, 1, . . . , 1) is a row vector with a length of 150
full of 1s. This is similar to the definition of Hϕ, but includes an
averaging of the past 150 DITs.

We also introduced ΨCP, an analogue of ΦCP, which is cal-
culated using θGD

j,k,l instead of θPD
j,k,l in Eq. (54), and an additional

vector ΨZeroGD. This additional setpoint is used to select which
specific fringe is set at a group delay of 0, to be tracked by the
fringe tracker. Again, to avoid fringe jumps during a science
integration, a mobility flag is used to freeze ΨZeroGD during inte-
grations on the science detector. When the mobility flag allows
changes, the ΨZero GD setpoint is estimated so that[
Ψn − Ψ̂n − ΨCP − ΨZeroGD

]
mod lambda0

= 0. (57)

This condition is valid modulo λ0, which means that Eq. (57)
does not exactly determine which fringe is tracked. To lift this
uncertainty, two requirements must be added:
R1: Vector ΨZeroGD must be as small as possible.
R2: Vector ΨZeroGD must not have a closure phase.
The first requirement is to ensure that the system tracks the
white-light fringe. The second requirement is needed because
the closure phase has already been nulled by the PsiCP term.

Therefore, the zero group-delay setpoint is estimated by the
real-time computer as

ΨZeroGD = M ·
[
M† · (Ψn − Ψ̂n − ΨCP)

]
mod λ0

, (58)

where M was introduced in Eq. (29), and M† is a pseudo-inverse
weighted by the covariance matrix Wn, that is, the matrix that
solves the linear system Y = MX in the least-square sense, con-
sidering that Wn from by Eq. (16) is the covariance matrix of X.
This matrix M† can be calculated using

M† = (MT ·Wn · M)−1 · MT ·Wn. (59)

The controller ensures that the group delay never deviates
by more than λ0/2 from this setpoint. To do this, the con-
troller calculates at each cycle an error in the form of Ψ − Ψ̂ −
ΨCP −ΨZero GD. It converts this group-delay error into OPL space
using M† from Eq. (59). When this error exceeds λ0/2 on any
telescope, the controller subtracts λ0 to all the 150 values corre-
sponding to this telescope in the state vector L. Similarly, when
an OPL value falls below −λ/2, the elements of L corresponding
to this telescope are increased by λ0. These adjustments by inte-
ger multiples of λ0 never disturb the phase controller due to the
presence of a modulo λ0 in Eq. 52, and because the propagation
model is stationary (more details in Appendix A).

3.5. Commands to the actuators

The command for the actuators is obtained from

Un+1 = F · Ln + Usetpoint, n + Usearch, n . (60)

In this equation, Usetpoint is used to modulate the position of the
fringes in a process detailed in Paper I2. This setpoint can now
also be controlled externally by another machine, for example, to
correct non-common OPD, as described in Sect. 4.1.

The term Usearch is used to search for the fringes when they
are lost by one or more telescopes. This is made to ensure that
the fringe tracker continues to track the fringes on the baselines
where they remain visible, while searching on the others.

The term F · Ln cancels out the disturbance calculated by
the fringe tracker. More precisely, this term is used to negate
the influence of the disturbance within a given number of future
DITs. This number of DITs, d, is made to be adjusted to the mean
response speed of the fringe tracker. Practically, it is d = 2 at
909 Hz, and d = 1 at lower frequencies. Hence, F is calculated
such that

C · F · Ln = Hϕ · Ad · Ln. (61)

This is obtained to the best of our capabilities by taking

F =
1
4



1
CT1

1
CT1

1
CT1

0 0 0
−1

CT2
0 0 1

CT2

1
CT2

0

0 −1
CT3

0 −1
CT3

0 1
CT3

0 0 −1
CT4

0 −1
CT4

−1
CT4


· Hϕ · Ad (62)

with CTk representing the integrated impulse response of the
piezo actuator at telescope k,

CTk =

4∑
n=0

ck,n, (63)

where the c coefficients are the same as in Eq. (20).

3.6. Summary of the new control loop

The architecture of the new control loop is illustrated in Fig. 2.
In this updated architecture, the two control loops no longer run
in parallel, as was the case in Paper I. To some extent, the phase
loop can now be seen as the main control loop and the group-
delay control as an auxiliary loop that provides an additional
update of the state parameters to ensure proper tracking of the
group delay. The phase tracking is performed using a Kalman fil-
ter that no longer relies on asymptotic gain, but uses a real-time
covariance-weighted combination of a model prediction (in OPL
space) and a measurement update (in OPD space). The control
algorithm consists of the following steps:
1. At iteration n, we start with an estimate of the state vector

L̂n, propagated from the previous iteration. Our state vec-
tor L contains the path length at each telescope over a given
number N = 150 previous iterations. This estimate, which
also comes with a covariance matrix P̂n, represents our best
knowledge of the state parameters. We also have a state vec-
tor Xn that stores the position of the piezo actuators over the
last 150 iterations.

2. From these state vectors, we construct the total OPL at each
telescope, which is simply L̂n + Xn, and then calculate the
expected values for the phase and group delay (Φ̂ and Ψ̂n)
using a set of measurement matrices Hϕ and Hψ, given in
Eqs. (49) and (56), respectively, and which convert our OPL-
based vectors into our OPD-based measurements,

Φ̂n = Hϕ · (L̂n + Xn) (64)

Ψ̂n = Hψ · (L̂n + Xn). (65)
2 Usetpoint is called Umodulation in Paper I.
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3. A measurement Φ of the OPDs is performed, which comes
with an estimate of its uncertainties, in the process described
in Sect. 2. The difference between this measurement and the
expected value Φ̂n encodes some information on the state
of the disturbance. This information is combined with the a
priori knowledge of the state vector L̂n to give an updated a
posterori estimate Ln. This is a form of optimal data fusion
that uses the Kalman gain Kn, defined in Eq. (51)

Ln = L̂n + Kn ·
[
Φ̂n − (Φn − ΦCP,n)

]
mod λ0

. (66)

The use of ΦCP arises from fact that the controller, which
works in OPL, cannot account for a non-zero phase closure.
At this step, the covariance Pn on Ln is propagated from P̂n,
using Eq. (53).

4. The measured and expected group delays Ψ and Ψ̂ are used
to determine whether Ln needs to be further modified by an
increment of integer multiples of λ0. This is the group-delay
tracking explained in Sect. 3.4.

5. The vector Ln contains our best estimate of the disturbance
and is used to generate a command Un+1 in the process
described by Eq. (60).

6. The state vectors are propagated according to their respective
model,

Xn+1 = AX · Xn +C · Un+1 (67)

L̂n+1 = AL · Ln. (68)

The covariance matrix Pn on Ln is also propagated into P̂n+1
using

P̂n+1 = AL · Pn · AL
T + Q. (69)

After this propagation, the next iteration can start.

Science
Instrument

2304 Pixels
(Analog)

TTP

RMN ring

NGC
workstation

Detector
wgvkalm

Piezoslgvttp
wgvfft

A
L,

 Q
, 

F

O
PD

se
tp

oi
nt

, 
m

ob
ili

ty
 f
la

g

Piston

Tip/Tilt
sensor

Fig. 3. Hardware architecture of the GRAVITY fringe tracker. The real-
time controller operates within the wgvfft Linux workstation. Another
Linux workstation, wgvkalm, is dedicated to calculating the Kalman
filter parameters based on the observed OPDs. A Motorola CPU in the
lgvttpworkstation integrates the piston information with tip-tilt sensor
data to accurately adjust the mirrors mounted on piezoelectric actua-
tors in the tip-tilt piston (TTP). Additionally, an external workstation
can provide the fringe tracker with piston setpoints and a mobility flag,
which influences the controller behaviour.

4. On-sky performances

4.1. Hardware implementation

In November 2022, a substantial upgrade of the GRAVITY
fringe-tracker hardware was carried out to increase the comput-
ing power, as outlined by Abuter et al. (2016). As a result, the
computing time was markedly reduced, opening up the possibil-
ity of implementing the updated and more complicated control
algorithm. This new hardware setup is depicted in Fig. 3.

The upgraded real-time hardware of the controller, termed
wgvfft, is now based on a Linux workstation. The application
cycle is initiated by the arrival of detector data frames from the
ESO New General detector Control (NGC) workstation, facili-
tated through an sFPDP communication link. This application is
executed on dedicated cores, with a portion of the RAM isolated

A184, page 8 of 16



Nowak, M., et al.: A&A, 684, A184 (2024)

1000
0

1000 UT3-UT4

1000
0

1000 UT3-UT4

1000
0

1000 UT2-UT4

1000
0

1000 UT2-UT4

1000
0

1000 UT1-UT4

1000
0

1000 UT1-UT4

1000
0

1000

OP
D 

re
sid

ua
ls 

(n
m

)

UT2-UT3

1000
0

1000

OP
D 

re
sid

ua
ls 

(n
m

)

UT2-UT3

1000
0

1000 UT1-UT3

1000
0

1000 UT1-UT3

0 20 40 60 80
Time (seconds)

1000
0

1000 UT1-UT2

76.5 76.6 76.7 76.8 76.9 77.0 77.1 77.2 77.3
Time (seconds)

1000
0

1000 UT1-UT2

76.7 76.8 76.9 77.0 77.1
Time (seconds)

2000

1000

0

1000

OP
D 

re
sid

ua
ls 

(n
m

) UT2-UT4

+ CP

CP ZeroGD

Fig. 4. Observation of star HR 8799 using GRAVITY. The data are taken from a single DIT exposure on the spectrometer, spanning 100 s. The black
curves denote the OPD, derived from the phase delay (Φ − ΦCP). The blue curves illustrate observations from the group delay (Ψ − ΨCP − ΨZeroGD).
Each panel represents a different baseline. At t1 = 76.81 s, a noticeable fringe jump occurred on UT2. The effect of this jump across all baselines
is depicted in the right panels. Impressively, the group delay identified and corrected the jump within 100 ms. The lower panel offers a magnified
perspective of the baseline between UT2 and UT4, and the predictions from the controller state Φ̂ and Ψ̂ are overlaid. Notably, at t2 = 76.9 s, all
predictions shifted by 2200 nm, marking the detection of the jump. To shift the OPD by one λ, the phase delay took 3 DITs (3.3 ms), while the
group delay took 150 DITs (165 ms), which is attributed to the smoothing length of the observable.

from the Linux kernel, ensuring efficient access by the reflective
memory (PCIE-5565PIORC) via direct memory access (DMA).

The Kalman filter parameters (AL, Q, and F) are recalculated
every 5 s by another Linux workstation (wgvkalm). This work-
station is also fitted with a PCIE reflective memory card, which
allows it to record the OPDs calculated by wgvfft through the
VLTI reflective memory network (RMN) ring. This RMN ring
is also used to transfer the Kalman filter parameters back to
wgvfft.

An optional external machine, also connected to the RMN
ring, can be used by another instrument to control the fringe
tracker in real time. A workstation like this would have the possi-
bility to send to wgvfft fringe-tracking setpoints (the Usetpoint).
It can also be used to send the mobility flag introduced after
Eq. (54).

The piston-correction values calculated by the wgvfftwork-
station are transmitted to another workstation named lgvttp
using the RMN ring network. The lgvttp workstation operates
with a Motorola CPU and is built around an mv6100 single-board
computer, incorporating a VME bus for system communication.
There, they are combined with external measurements of tip-tilt
to form a comprehensive correction signal. This signal in analog
form is then sent out to control four active mirrors mounted on
piezoelectric tip-tilt platforms provided by Physik Instrumente.

The commissioning of the updated hardware was con-
ducted in late 2022 as part of the GRAVITY+ upgrade

(Eisenhauer 2019; GRAVITY+ Collaboration 2022) and was
promptly made available to the scientific community. We could
enable the white-light fringe tracking a few months later, allow-
ing the GRA4MAT mode of MATISSE (Woillez et al., in prep.).
Similarly, the new Kalman filter state model, introduced in
June 2023, was immediately offered to the community upon
commissioning.

4.2. Performance of the group-delay control loop: Analysis
of a fringe jump

On 2 July 2023, we observed the exoplanet HR 8799 e during a
scientific run of the ExoGRAVITY large programme (ESO LP
1104.C-0651). The atmospheric conditions were average, with a
coherence time of 4 ms and a seeing of 0.8′′. The planet was
at a separation of 440 mas, and we observed using the off-axis
dual-field mode of the fringe tracker. We used the roof mirror to
split the field, so that all the flux from the star was injected in the
fringe tracker fibre and all the flux of the planet in the science
fibre.

Because the exoplanets are faint, these observations require
extended integration times on the science channel, specifically,
DITs of 100 s in this example. To optimise contrast, the fringe
tracker was instructed to remain on the same fringe for the entire
100 s duration. Figure 4 shows that the fringe tracker was able
to properly track the fringes on all six baselines. The residual
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Fig. 5. Spectra of the residual OPD (shown in black) and the recon-
structed perturbation (Hϕ · L, depicted in red) for two observations. The
upper panels present data on HR 8799 for one baseline from the UTs,
corresponding to the data shown in Fig. 4. The standard deviation of
the OPD is 151 nm. The panel below shows a dataset from the ATs
for HR 7672 with an OPD standard deviation of 86 nm. The cumulative
spectrum for these two dataset are also shown. The data for all baselines
are presented in Appendix B.

OPD of this constant tracking is plotted in the upper left panel
of Fig. 4. HR 8799 is a bright star with a magnitude of 5.24 in
K band and is no challenging target for the fringe tracker, which
easily tracks these fringes at an interferometric S/N of ∼45. The
power spectrum of the OPD residuals is shown in Fig. 5 and in
Appendix B.

Over a 100-second integration period, the phase-delay con-
troller consistently tracked constant OPD values, maintaining
a standard deviation of 150 nm in the residual OPDs. Intrigu-
ingly, the group-delay residuals are notably higher, but they
manifest at lower frequencies and vary over timescales of sev-
eral seconds. The peak-to-peak amplitude of these variations
remains below 1000 nm. As a result, the group-delay controller
perceived no need for fringe adjustment and avoids any false trig-
gers for a phase-jump detection. Consequently, the phase-delay
fringe tracker operated smoothly and successfully maintained its
tracking in the same phase.

Nonetheless, sporadic events can sometimes prompt the
fringe tracker to transition abruptly from tracking one fringe to
the next a full wavelength, λ0, apart. This phenomenon, unno-
ticed by the phase delay, is referred to as a fringe jump. A
quintessential instance of this can be observed in Fig. 4. This
fringe jump manifested itself at t1 = 76.81 s across all base-
lines related to UT2. The lower panel of the figure gives the
phase delay (Φ − ΦCP), represented by solid black curves. This
phase delay has already accounted for the closure phase vec-
tor, as outlined in Eq. (10). The dashed black curve displays the
estimation Φ̂ derived from the state parameters. Surrounding t1,
the OPD fluctuates, but the Kalman filter overlooks the phase
jump, and the λ0 deviation in the OPD is not registered by Φ̂.

This jump manifests itself in the group delay, represented by the
solid blue curve in the figure. Owing to its smoothing over 150
DITs, the group delay gradually moves to a value close to −λ/2
at t2 = 76.9 . At this point, all the UT2-related OPL state param-
eters of the phase control loop undergo a shift by λ0, induced by
the group-delay controller. This is evidenced in the figure by the
abrupt λ0 shift of the phase- and group-delay state predictions
(Φ̂ and Ψ̂).

This example perfectly illustrates the behaviour of the group-
delay controller and shows that it required a span of 90 ms to
detect the fringe jump. This interval represents the response time
of the group-delay control loop and is dictated by the group-
delay smoothing length (the 150 DITs). This setting represents a
balance between responsiveness and the potential for false posi-
tives due to noise3. As illustrated in the top right panels of Fig. 4,
it is challenging to predict this noise because it does not appear
to be purely random. The value of 150 retained in the algorithm
has a mostly empirical basis.

4.3. Performance of the phase-delay control loop: OPD
residuals

In Paper I, we discussed the OPD residuals observed in 2019,
noting a significant dependence on the coherence time, τ0. Dur-
ing unfavourable conditions (τ0 < 3 mas), the values typically
exceeded 380 nm. Under average conditions (3 mas < τ0 <
7 mas), these values ranged around 150 nm (ATs) or 250 nm
(UTs), and under optimal conditions (τ0 > 7 mas), the UTs
observed values down to 220 nm. We hypothesised that the
inability of the UTs to reach residuals below 220 nm even in
the best atmospheric conditions was due to vibrations.

Over the past 4 ye, significant efforts have been made to mit-
igate these vibrations. Alongside the upgraded fringe tracker,
these efforts have resulted in notable improvements. Figure 5 dis-
plays the spectrum of the OPD residuals for two targets, HR 8799
and HR 7672, over a single representative baseline. The descrip-
tion of the dataset and spectrum for all baselines is presented in
Appendix B.

For the UTs, vibrations are predominant, exhibiting signifi-
cant components at high frequencies, such as 20 nm vibrations
at 300 Hz and 40 nm at 150 Hz. The control system strives to
cancel these out, achieving partial success. However, it inadver-
tently reintroduces noise at other frequencies, resulting in no
substantial improvement in the OPD residuals down to 50 Hz.
This is evident in the cumulative spectrum, where the red and
black curves exhibit similar amplitudes from 50 Hz upwards.
Below 50 Hz, the fringe tracker is highly effective, cancelling
even broad-frequency vibrations around 40 Hz. For the UTs, the
most detrimental range is between 50 and 100 Hz, where a for-
est of spectral lines challenges the controller’s ability to correct
them, contributing to the observed ≈150 nm of residual. Poten-
tially, a faster response time in the control loop could further
reduce residuals within this range.

On the ATs, vibrations are not the dominant factor in
the residuals, which are characterised by a white-noise pat-
tern that aligns with the theoretically expected S/N. For
HR 7672, the dataset presented in Fig. 5, the interferometric S/N
3 In principle, this could be a tunable parameter that could be adjusted
on a per target basis. In the case of HR 8799, given the brightness of
the star and the high interferometric S/N obtained, decreasing this value
would likely result in better performances. However, in the framework
in which the GRAVITY fringe tracker is implemented, this change is
hard, and this value remains currently fixed at 150 DITs.
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Fig. 6. OPD residuals. Top panel: OPD residuals plotted against the S/N
per baseline for all data collected from June to August 2023. The orange
dots represent AT observations, and the blue dots denote UT observa-
tions. The dotted curve represents the theoretical limitation imposed by
the measurement noise (λ/2πσj,k). The vertical dashed lines indicate
the S/N observed with the UTs of a star at a given star magnitude. It
should be shifted by about 2.5 magnitude for the ATs. Bottom panels:
histogram of the same OPD residuals as in the upper panel for the ATs
(left) and UTs (right).

is around 8, equating to a white-noise level of 60 nm. The resid-
uals for different baselines range between 71 and 93 nm, which
means that the system OPD residuals are close to the photon-
and background-noise limitation. In this scenario, we observed
minimal vibrations that did not degrade the interferometric S/N.

This behaviour of the ATs is also substantiated statistically,
as demonstrated by the dataset present in the ESO archive on
datasets with a low S/N (S/N below 3). Figure 6 shows the OPD
residuals for all calibrators observed from June to August 2023.
To expand the dataset, additional observations within the Exo-
GRAVITY large programme during this period were included.
The upper panel of Fig. 6 indicates that at lower fluxes for the
ATs, the GRAVITY fringe tracker closely aligns with the the-
oretical phase error that arises from noise alone, indicating a
reach towards the theoretical limit of the S/N. However, when the
S/N surpasses 3 for both UTs and ATs, the performance begins
to diverge from this limit, potentially due to piston noise from
external factors such as the atmosphere.

In conclusion, the AT residuals at the 20%, 50%, and 80%
percentiles are 95 nm, 120 nm, and 170 nm (1σ), respectively,
and for the UTs, the corresponding values are 135 nm, 150 nm,
and 185 nm. These values are derived from the histograms in the
lower panels of Fig. 6. The dependence on the coherence time for
the performance is reduced. An optimal performance can now be
achieved even at a low τ0 of 2 ms.

5. Future prospects
5.1. Areas of improvement

At least three key areas require further attention to enhance the
capabilities of fringe tracking:

– Reducing the OPD residuals at high S/N;
– Enhancing the S/N for a given photon count;
– Boosting the sensitivity by operating at slower speeds.

OPD residuals. The critical question is whether OPD resid-
uals can be further reduced at high S/N. There appears to be
potential for improvement on the UTs, as their performance
despite notable advances still lags that of the ATs. If we ignore
injection-related issues, the atmospheric piston impact on an
8 m telescope should in theory be lower than on a 1.8 meter
telescope (Conan et al. 1995). Because the baselines in the astro-
metric configuration used in our AT observations of HR 7672
are very similar to the UT baselines, the fringe tracker should
have achieved better results on the UTs and it should be pos-
sible to reduce the OPD residuals below 80 nm on the UTs,
with an ultimate atmospheric limitation of 5 nm according to
Courtney-Barrer et al. (2022). The discrepancy in performance
might be attributed to instrumental vibrations, which are partic-
ularly high above 50 Hz (Fig. 5). The control loop struggle to
correct for this although they seem to be properly captured by
the model. Amplitude fluctuations induced by the performance
of the adaptive optics (AO), with lower Strehl ratios observed
on the UTs, are another major factor to take into account. A
better control of the vibrations, as well as a better AO correc-
tion, will certainly help us to further decrease the OPD residuals
on the UTs.

The signal-to-noise ratio. Another question worthy of inter-
est is whether the measured interferometric S/N matches the
expectations given the magnitude of our targets. The observa-
tions of the bright target HR 8799 in July 2023 yielded an event
rate of ne−/s/UT = 107 photons per telescope per second, suggest-
ing a combined transmission for GRAVITY and VLTI of about
1%. The photometric S/N can be calculated as

S/Nphotometric =

√
4ne−/s/UTδt

γ
. (70)

Here, the factor of 4 arises from the use of four telescopes,
and γ represents the efficiency of the recombination architec-
ture, with lower values being more desirable. At minimum, γ
is inherently limited by the number of degrees of freedom in the
system. Given the 16 degrees of freedom of our architecture (four
real fluxes and six complex coherent fluxes), an optimised beam
combiner could theoretically achieve a γ as low as 16. Assum-
ing γ = 16, δt = 0.000854 and given the fact that the visibility is
close to one for this unresolved target, the interferometric S/N for
HR 8799 should be around 46, which indeed matches our mea-
sured value of ∼45. This implies that the γ value for GRAVITY
is indeed close to 16, which is indicative of a well-designed com-
biner. Further improvements will require innovative approaches
such as the hierarchical fringe tracker, which might also decrease
the γ value by reducing the system degrees of freedom (Petrov
et al. 2022).

The ultimate sensitivity. During the June commissioning
run, the exact sensitivity limit of the fringe tracker on the UTs
4 The discrepancy between this integration time and the running fre-
quency of 909 Hz is explained by the detector readout and reset
time.
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remained undetermined because the AO performance started to
degrade at magnitudes below 10 (see the UT data in Fig. 6).
The introduction of laser guide stars in GRAVITY+ is antici-
pated to extend the AO limiting magnitude, potentially allowing
us to ascertain the true sensitivity of the enhanced GRAVITY
fringe tracker. When the S/N limit at 1 kHz is achieved, explor-
ing a 100 Hz mode becomes a viable option for further boosting
sensitivity by mitigating the detector readout noise. In theory,
as previously discussed, the theoretical atmospheric piston on
an 8-meter telescope should be minimal, which could even
enable an operation as slow as 10 Hz. However, achieving this
would necessitate a reduction in the instrumental piston caused
by vibrations. Mechanical solutions, such as directly remov-
ing vibrations or compensating for them using accelerometers
(as in the ongoing MANHATTAN-II project, Lieto et al. 2008;
Woillez et al. 2018), offer one approach. Alternatively, as these
vibrations are intrinsic to the VLTI infrastructure, the optical
path could be monitored and adjusted with a dedicated metrol-
ogy system, as proposed in the now-abandoned VibMET project
(Woillez et al. 2018).

5.2. Unexplored possibilities

The use of the GRAVITY fringe tracker alongside other instru-
ments introduces a number of challenges in maintaining the
fringe-tracking accuracy across different wavelengths. At a basic
level, this requires the fringe tracker to avoid fringe jumps, a crit-
ical improvement implemented by the new algorithm described
in this paper. A notable observation also pertains to the issue
of varying atmospheric dispersion, however. The blue curves in
Fig. 4 display slowly changing dispersion patterns. While the
GD smoothing is approximately 150 ms, the blue curves exhibit
correlations over significantly longer durations, up to 10 s. This
can be attributed to fluctuations in water vapour, as investigated
by Colavita et al. (2013) and Müller et al. (2014). These signals
are relevant for infrared instruments, such as ELT/METIS (Absil
et al. 2022), but might also be addressed at the fringe-tracker
level to adjust the setpoint, ensuring stable fringes at another
wavelength despite the changing dispersion.

Machine-learning algorithms represent another unexplored
avenue in the realm of fringe tracking. These algorithms have
the potential to integrate a broader spectrum of information
compared to our current Kalman filter-based loop. Data from
AO wavefront sensors and/or telescope vibration sensors, for
instance, could substantially enhance the fringe-tracking capa-
bilities (Perera et al. 2022). A model trained on a comprehensive
dataset could leverage this additional information for a more
accurate performance. The success observed in AO, particu-
larly with reinforcement learning (Pou et al. 2022), indicates
the potential advancements that machine learning could bring
to fringe tracking.

6. Conclusion

We have introduced a new approach to fringe tracking that is
based on a Kalman filter working in OPL state-space. This
state-space is non-observable, which makes the integration of
measurements harder than in OPD space. In particular, this leads
to a somewhat cumbersome transformation of the AR model that
is used to predict the evolution of the OPD disturbances to OPL
space. The reward is a reduced dimensionality of the state-space
from six (the number of baselines, or OPDs) to four (the num-
ber of telescopes, or OPLs), however. In the case of the new

GRAVITY fringe tracker, this allows us to propagate covariance
matrices on the state vector and hence to use an optimal Kalman
gain that is dynamically calculated at each iteration.

We described this new algorithm specifically in the context
of GRAVITY, but the conceptual framework can seamlessly be
extended to various other instruments. As opposed to the number
of OPDs, which grows quadratically with the number of tele-
scopes in the array, the number of OPLs only grows linearly.
Therefore, the gain offered by this novel approach increases with
the size of the array, thereby offering a compelling solution for
future concepts such as the Planet Formation Imager (Monnier
et al. 2018).

In the meantime, with this new version of the GRAVITY
fringe tracker, ESO is now able to offer the interferometric
community a facility fringe tracker that not only delivers a
competitive performance, but also ensures seamless integration
within the VLTI environment. This new fringe tracker is already
in use with MATISSE (the GRA4MAT mode, described in
Woillez et al., in prep.). Beyond this, it could also accommo-
date visitor instruments, becoming a useful tool for a much larger
community.
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Appendix A: Determination of the propagation
matrix A j,k and process noise Q j,k

The goal of this appendix is to derive the A j,k and Q j,k represent-
ing the AR models in OPD space that are used in Equation 43
and 46. The A j,k and Q j,k matrices were both obtained using the
statsmodels Python library (Seabold & Perktold 2010) from a
sequence of 10,000 Φn vectors (≈ 10 s at 909 Hz). The challenge
in estimating the propagation matrix lies in its need to be resilient
to unwrapping errors. It should also not produce aberrant values
in situations where the fringes are undetected or lost.

To address this, the matrices are determined based on phase
differences rather than the phases themselves. Explicitly, for each
baseline, a quantity ∆ϕ j,k,n =

[
ϕ j,k,n − ϕ j,k,n−1

]
mod λ0

is computed.
To ensure reliable default operation during low signal-to-noise
ratios on this baseline (e.g. when fringes are absent or lost), we
set ∆ϕ j,k,n = 0.

The statsmodel time-series analysis is then employed to fit an
AR model to the 9,999 ∆ϕ j,k,n values, one baseline at a time. The
statsmodels.tsa.ar_model.AutoReg class is used to fit an
AR model of order 22 using conditional maximum likelihood.
The AR(22) model was chosen as it strikes a balance between
computational efficiency and its ability to fit low frequencies.
With 22 samples at 909 Hz, the minimum frequency and reso-
lution of the predictor can be expected to be around 40 Hz. In
practice, however, we find that the resolution is much better, and
we are able to fit for frequencies as low as ∼ 10 Hz, which is in
line with the fact that AR models are notoriously better in terms
of resolution than Fourier-transform based algorithm (Quirk &
Liu 1983; Tary et al. 2014).

The statsmodels.tsa.ar_model.AutoReg class fit gives
six vectors of 22 values for the AR model, gl, j,k, along with six
scale parameters ql, j,k. The AR(22) model of the phase difference
is then integrated to give an AR(23) model g′ of the phase itself,
using

g′0, j,k = g0, j,k, (A.1)

g′23, j,k = −g22, j,k, (A.2)

g′l, j,k = gl, j,k − gl−1, j,k for l between 1 and 22. (A.3)

This ensures the stationnarity of our model since
∑23

l=0 g
′
l, j,k = 0.

The propagation matrices representing the AR model are then

A j,k =



g′0, j,k g′1, j,k · · · g′21, j,k g′22, j,k 0 · · · 0
1 0 · · · 0 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 0 0
0 0 0 · · · 0 0 1 0


, (A.4)

These matrices have a dimension of 150 × 150, but only the
first 23 values and the sub-diagonal are non-zero. The AR(23)
could be represented by a 23 × 23 matrix, but the additional
dimensions are required by our state-space model, which also
needs to account for the group delay.

The matrix Q j,k also has the dimension 150 × 150. It is more
straightforwardly generated from the scale parameter q0, jk, which
corresponds to the variance of the residuals in the statsmodels

fit,

Q j,k =


q0, j,k 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 . . . . . . 0

 (A.5)

Appendix B: Power spectrum density

In Figs. B.1 and B.2, we present the Fourier transforms of
100 seconds of fringe-tracking OPD, Φ, acquired with the UTs
and ATs, respectively. The first dataset was obtained using the
UTs to observe HR 8799 (Kmag= 5.44) on July 2, with an
effective K magnitude of 4.4. The second dataset was captured
using the ATs in the astrometric configuration (A0-G1-J2-K0) to
observe HR 7672 (Kmag= 4.4) on 21 July. The exact file IDs for
these observations are GRAVI.2023-07-02T09:52:22.630 and
GRAVI.2023-07-21T06:16:19.030. The atmospheric conditions
were good during the HR 8799 observations with a seeing of
0.8′′ and a wind speed of 3.9–4.6 m s−1, and excellent during
the HR 7672 observations with a seeing of 0.4′′ and wind speed
of ∼ 2.8 m s−1. We used Welch’s method from the scipy library
to compute the spectrum and cumulative spectrum of the OPD.
The overall standard deviations of the OPDs are provided in the
figure captions.
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Fig. B.1. Power spectrum density (PSD) and cumulative sum of the PSD of phase residuals (Φn) for target HR 8799. The back curves represent
the close-loop values. The red curves represent the pseudo-open-loop values, signifying the scenario without a fringe tracker (Hϕ · L). The six
lower plots show the reverse cumulative sum of the power spectrum. Over 100 s of a single scientific DIT, the residual standard deviation is 158 nm
(UT3-UT4), 150 nm (UT2-UT4), 133 nm (UT1-UT4), 152 nm (UT2-UT3), 138 nm (UT1-UT3), and 124 nm (UT1-UT2).
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Fig. B.2. Power spectrum density and cumulative sum of the PSD of phase residuals (Φn) for target HR 7672. The back curves represent the close-
loop values. The red curves represent the pseudo-open-loop values, signifying the scenario without a fringe tracker (Hϕ · L). The six lower plots
show the reverse cumulative sum of the power spectrum. Over 100 s of a single scientific DIT, the residual standard deviation is 71 nm (UT3-UT4),
86 nm (AT2-AT4), 86 nm (AT1-AT4), 93 nm (AT2-AT3), 93 nm (AT1-AT3), and 80 nm (AT1-AT2).
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