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Abstract. Counterfactual explanations have shown promising results
as a post-hoc framework to make image classifiers more explainable.
In this paper, we propose DiME, a method allowing the generation of
counterfactual images using the recent diffusion models. By leveraging
the guided generative diffusion process, our proposed methodology shows
how to use the gradients of the target classifier to generate counterfactual
explanations of input instances. Further, we analyze current approaches
to evaluate spurious correlations and extend the evaluation measure-
ments by proposing a new metric: Correlation Difference. Our experi-
mental validations show that the proposed algorithm surpasses previous
state-of-the-art results on 5 out of 6 metrics on CelebA.

1 Introduction

Convolutional neural networks (CNNs) reached performances unimaginable a
few decades ago, thanks to the adoption of very large and deep models with
hundreds of layers and nearly billions of trainable parameters. Yet, it is dif-
ficult to explain their decisions because they are highly non-linear and over-
parametrized. Moreover, for real-life applications, if a model exploits spurious
correlations of data to forecast a prediction, the end-user will doubt the validity
of the decision. Particularly, in high-stake scenarios like medicine or critical sys-
tems, ML must guarantee the usage of correct features to compute a prediction
and prevent counterfeit associations. For this reason, the Explainable Artificial
Intelligence (XAI) research field has been growing in recent years to progress
towards understanding the decision-making mechanisms in black-box models.

In this paper, we focus on post-hoc explanation methods. Notably, we concen-
trate on the growing branch of Counterfactual Explanations (CE) [63]. CE aim
to create minimal but meaningful perturbations of an input sample to change
the original decision given by a fixed pretrained model. Although the objec-
tive between CE and adversarial examples share some similarities [44], the CE’
perturbations must be understandable and plausible. In contrast, adversarial
examples [37] contain high-frequency noise indistinguishable to the human eye.
Overall, CE target four goals: (i) the explanations must flip the input’s forecast
using (ii) sparse modifications, i.e. instances with the smallest perturbation.
Additionally, (iii) the explanations must be realistic and understandable by a
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human. Lastly, (iv) the counterfactual generation method must create diverse
instances. In general, counterfactual explanations seek to reveal the learned cor-
relations related to the model’s decisions.

Multiple works on CE use generative models to create tangible changes in the
image [27, 48, 51]. Further, these architectures recognize the factors to generate
images near the image-manifold [4]. Given the recent advances within image
synthesis community, we propose DiME: Diffusion Models for counterfactual
Explanations. DiME harnesses the denoising diffusion probabilistic models [19]
to produce CE. For simplicity, we will refer to these models as diffusion models
or DDPMs. To the best of our knowledge, we are the first to exploit these new
synthesis methods in the context of CE.

Diffusion models offer several advantages compared to alternate generative
models, such as GANs. First of all, DDPMs have several latent spaces; each one
controls coarse and fine-grained details. We take advantage of low-level noise
latent spaces to generate semantically-meaningfully changes in the input image.
These spaces only have been recently studied by [38] for inpainting. Secondly,
due to their probabilistic nature, they produce diverse sets of images. Stochas-
ticity is ideal for CE because multiple explanations may explain a classifier’s
error modes. Third, Nichol and Dhariwal [42] results suggest that DDPMs cover
a broader range of the target image distribution. Indeed, they noticed that for
similar FID, the recall is much higher on the improved precision-recall met-
rics [32]. Finally, DDPMs’ training is more stable than the state-of-the-art syn-
thesis models, notably GANs. Due to their relatively new development, DDPMs
are under-studied, and multiple aspects are yet to be deciphered.

We contribute a small step into the XAI community by studying the low-level
noised latent spaces of DDPMs in the context of counterfactual explanations.
We summarize our contributions on three axes:

– Methodology: (i) DiME uses the recent diffusion models to generate coun-
terfactual examples. Our algorithm relies on a single unconditional DDPM to
achieve instance counterfactual generation. To accomplish this, (ii) we derive
a new way to leverage an existing (target) classifier to guide the generation
process instead of using one trained on noisy instances, such as in [11]. Ad-
ditionally, (iii) to reduce the computational burden, we take advantage of
the forward and backward diffusion chains to transfer the gradients of the
classifier under observation.

– Evaluation: We show that the standard MNAC metric is misleading be-
cause it does not account for possible spurious correlations. Consequently,
we introduce a new metric, dubbed Correlation Difference, to evaluate subtle
spurious correlations on a CE setting.

– Performance: We set a new state-of-the-art result on CelebA, surpassing
the previous works on CE on the FID, FVA, and MNAC metrics for the
Smile attribute and the FID and MNAC for the Young feature.

To further boost research on counterfactual explanations, our code and mod-
els are publicly available on Github.

https://github.com/guillaumejs2403/DiME
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2 Related Work

Our work contributes to the field of XAI, within which two families can be distin-
guished: interpretable-by-design and post-hoc approaches. The former includes,
at the design stage, human interpretable mechanisms [2, 3, 6, 9, 22, 40, 71]. The
latter aims at understanding the behavior of existing ML models without mod-
ifying their internal structure. Our method belongs in this second family. The
two have different objectives and advantages; one benefit of post-hoc methods
is that they rely on existing models that are known to have good performance,
whereas XAI by design often leads to a performance trade-off.

Post-hoc methods: In the field of post-hoc methods, there are several ex-
plored directions. Model Distillation strategies [13, 58] approach explainability
through fitting an interpretable model on the black-box models’ predictions. In
a different vein, some methods generate explanation in textual form [17,43,68].
When it comes to explaining visual information, feature importance is arguably
the most common approach, often implemented in the form of saliency maps
computed either using the gradients within the network [8, 26, 33, 53, 64, 74] or
using the perturbations on the image [45, 46, 62, 70]. Concept attribution meth-
ods seek the most recurrent traits that describe a particular class or instance.
Intuitively, concept attribution algorithms use [29] or search [13, 14, 69, 75] for
human-interpretable notions such as textures or shapes.

Counterfactual Explanations (CE): CE is a branch of post-hoc expla-
nations. They are relevant to legally justify decisions made automatically by
algorithms [63]. In a nutshell, a CE is the smallest meaningful change to an
input sample to obtain a desirable outcome of the algorithm. Some recent meth-
ods [15, 65] exploit the query image’s regions and a different classified picture
to interchange semantic appearances, creating counterfactual examples. Despite
using the same terminology, this line of work [15, 61, 66] is diverging towards
a task where it merely highlights regions that explains the discrepancy of the
decision between the two real images, significantly differing from our evaluation
protocol setup. Other works [52,63] leverage the input image’s gradients with re-
spect to the target label to create meaningful perturbations. Conversely, [1] find
patterns via prototypes that the image must contain to alter its prediction. Sim-
ilarly, [36, 47] follow a prototype-based algorithm to generate the explanations.
Even Deep Image Priors [59] and Invertible CNNs [23] have shown the capac-
ity to produce counterfactual examples. Furthermore, theoretical analyses [24]
found similarities between counterfactual explanations and adversarial attacks.

Due to the nature of the problem, the generation technique used is the key
element to produce data near the image manifold. For instance, [12] optimizes the
residual of the image directly using an autoencoder as a regularizer. Other works
propose to use generative networks to create the CE, either unconditional [27,
41, 48, 54, 73] or conditional [34, 55, 60]. In this paper, we adopt more recent
generation approaches, namely diffusion models; an attempt never considered in
the past for counterfactual generation.

Diffusion Models: Diffusion models have recently gained popularity in the
image generation research field [19, 56]. For instance, DDPMs approached in-
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painting [49], conditional and unconditional image synthesis [10, 19, 42], super-
resolution [50], even fundamental tasks such as segmentation [5], providing per-
formance similar or even better than State-of-the-Art generative models. Fur-
ther, studies like [20,57] show score-based approaches and diffusion are alterna-
tive formulations to denoise the reverse sampling for data generation. Due to the
recursive generation process, DDPMs sampling is expensive. Many works have
studied alternative approaches to accelerate the generation process [31,67].

The recent method of [11] targets conditional image generation with diffusion
models, which they do by training a specific classifier on noisy instances to bias
the generation process. Our work bears some similarities to this method, but, in
our case, explaining an existing classifier trained uniquely in clean instances poses
additional challenges. In addition, unlike past diffusion methods, we perform the
image editing process from an intermediate step rather than the final one. To
the best of our knowledge, no former study has considered diffusion models to
explain a neural network counterfactually.

3 Methodology

3.1 Diffusion Model Preliminaries

We begin by introducing the generation process of diffusion models. They rely
on two Markov chain sampling schemes that are inverse of one another. In the
forward direction, the sampling starts from a natural image x and iteratively
sample z1, · · · , zT by replacing part of the signal with white Gaussian noise.
More precisely, letting βt be a prescribed variance, the forward process follows
the recursive expression:

zt ∼ N (
√

1− βt zt−1, βt I), (1)

where N is the normal distribution, I the identity matrix, and z0 = x. In fact,
this process can be simulated directly from the original sample with

zt ∼ N (
√
αtx, (1− αt)I), (2)

where αt :=
∏t

k=1(1 − βk). For clarification, through the rest of the paper, we
will refer to clean images with an x, while noisy ones with a z.

In the reverse process, a neural network recurrently denoises zT to recover
the previous samples zT−1, · · · , z0. This network takes the current time step t
and a noisy sample zt as inputs, and produces an average sample µ(t, zt) and a
covariance matrix Σ(t, zt), shorthanded as µ(zt) and Σ(zt), respectively. Then
zt−1 is sampled with

zt−1 ∼ N (µ(zt), Σ(zt)). (3)

So, the DDPM algorithm iteratively employs Eq. 3 to generate an image z0 with
zero variance, i.e. a clean image. Some diffusion models use external information,
such as labels, to condition the denoising process. However, in this paper, we
employ an unconditional DDPM.
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In practice, the variances βt in Eq. 1 are chosen such that zT ∼ N (0, I).
Further, the DDPM’s trainable parameters are fitted so that the reverse and
forward processes share the same distribution. For a thorough understanding on
the DDPM training, we recommend the studies of Ho et al. [19] and Nichol and
Dhariwal [42] to the reader. Once the network is trained, one can rely on the
reverse Markov chain process to generate a clean image from a random noise
image zT . Besides, the sampling procedure can be adapted to optimize some
properties following the so-called guided diffusion scheme proposed in [11]1:

zt−1 ∼ N (µ(zt)−Σ(zt)∇ztL(zt; y), Σ(zt)), (4)

where L is a loss function using zt to specify the wanted property of the generated
image, for example, to condition the generation on a prescribed label y.

3.2 DiME: Diffusion Models for Counterfactual Explanations

We take an image editing standpoint on CE generation, as illustrated Fig. 1.
We start from a query image x. Initially, we rely on the forward process starting
from xτ = x to compute a noisy version zτ , with 1 ≤ τ ≤ T . Then we go
back in the reverse Markov chain using the guided diffusion (Eq 4) to recover
a counterfactual (hence altered) version of the query sample. Building upon
previous approaches for CE based on other generative models [25,55,63], we rely
on a loss function composed of two components to steer the diffusion process: a
classification loss Lclass, and a perceptual loss Lperc. The former guides the image
edition into imposing the target label, and the latter drives the optimization in
terms of proximity.

In the original implementation of the guided diffusion [11], the loss function
uses a classifier applied directly to the current noisy image zt. In their context,
this approach is appropriate since the considered classifier can make robust pre-
dictions under noisy observations, i.e. it was trained on noisy images. Regardless,
such an assumption on the classifier under scrutiny would imply a substantial
limitation in the context of counterfactual examples. We circumvent this obsta-
cle by adapting the guided diffusion mechanism. To simplify the notations, let xt

be the clean image produced by the iterative unconditional generation on Eq 3
using as the initial condition zt. In fact, this makes xt a function of zt because
we denoise zt recursively with the diffusion model t times to obtain xt. Luckily,
we can safely apply the classifier to xt since it is not noisy. So, we express our
loss as:

L(zt; y, x) = E [λcLclass(C(y|xt)) + λpLperc(xt, x)] := E
[
L̃(xt; y, x)

]
, (5)

where C(y|xt) is the posterior probability of the category y given xt, and λc and
λp are constants. Note that an expectation is present due to the stochastic nature
of xt. In practice, computing the loss gradient would require sampling several

1 In [11], the guided diffusion is restricted to a specific classification loss. Still, for the
sake of generality and conciseness, we provide its extension to an arbitrary loss.
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Fig. 1. DiME: Diffusion Models for Counterfactual Explanations. Given an
input instance x, we perturb it following Eq. 2 to get zτ (here τ = 5). At time step t, we
use the DDPM model to generate a clean image xt to obtain the clean gradient Lclass

and Lperc with respect to xt. Finally, we sample zt−1 using the guiding optimization
process on Eq. 4, using the previously extracted clean gradients.

realizations of xt and taking an empirical average. We restrict ourselves to a
single realization per step t for computational reasons and argue that this is not
an issue. Indeed, we can partly count on an averaging effect along the time steps
to cope with the lack of individual empirical averaging. Besides, the stochastic
nature of our implementation is, in fact, an advantage because it introduces more
diversity in the produced CE, a desirable feature as advocated by [48].

Using this strategy, the dependence of the loss on xt, rather than directly
from zt, renders the gradient computation more challenging. Indeed, formally it
would require to apply back-propagation from xt back to zt:

∇ztL(zt; y, x) =

(
Dxt

Dzt

)T

· ∇xtL̃(xt; y, x). (6)

Unfortunately, this computation requires retaining Jacobian information across
the entire computation graph, which is very deep when t is close to τ . As a result,
backpropagation is too memory intensive to be considered an option. To bypass
this pitfall, we shall rely on the forward sampling process, which operates in a
single stage (Eq. 2). Using the re-parametrization trick [30], one obtains

zt =
√
αtxt +

√
1− αtϵ, ϵ ∼ N (0, I). (7)

Thus, by solving xt from zt, we can leverage the gradients of the loss function
with respect to the noisy input, a consequence of the chain rule. Henceforth, the
gradients of L with respect to the noisy image become

∇ztL(zt; y, x) =
1

√
αt

∇xt
L̃(xt; y, x). (8)
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This approximation is possible since the DDPM estimates the reverse Markov
chain to fit the forward corruption process. Thereby, both processes are similar.

To sum up, Fig. 1 depicts the generation of a counterfactual explanation with
our algorithm: DiME. We start by corrupting the input instance x = xτ following
Eq. 2 up to the noise level t = τ . Then, we iterate the following two stages until
t = 0: (i) First, using the gradients of the previous clean instance xt−1, we guide
the diffusion process to obtain zt−1 using Eq. 4 with the gradients computed
in Eq. 8. (ii) Next, we estimate the clean image xt for the current time step
zt−1 with the unconditional generation pipeline of DDPMs. The final instance is
the counterfactual explanation. If we do not find an explanation that fools the
classifier under observation, we increase the constant λc and repeat the process.

Implementation Details. In practice, we incorporate additionally an ℓ1
loss, η||zt − x||1, between the noisy image zt and the input x to improve the ℓ1
metric on the pixel space. We empirically set η small to avoid any significant
impact on the quality of the explanations. Our diffusion model generates faces
using 500 diffusion steps from the normal distribution. We re-spaced the sam-
pling process to boost inference speed to generate images with 200 time-steps at
test time. We use the following hyperparameters settings: λp = 30, η = 0.05, and
τ = 60. Finally, we set λc ∈ {8, 10, 15} to iteratively find the counterfactuals.
We consider that our method failed if we do not find any explanation after ex-
hausting the values of λc. To train the unconditional DDPM model, we used the
publicly available code of [11]. Our model has the same architecture as the Im-
ageNet’s Unconditional DDPM, but we used 500 sampling steps. Furthermore,
the inner number of channels was set to 128 instead of 256 given CelebA’s lower
complexity. For training, we completed 270,000 iteration with a batch size of 75
with a learning rate of 1× 10−4 with a weight decay of 0.05.

4 Experiments

Dataset. In this paper, we study the CelebA dataset [35]. Following standard
practices, we preprocess all images to a 128 × 128 resolution. CelebA contains
200k images, labeled with 40 binary attributes. Previous works validate their
methods on the smile and young binary attributes, ignoring all other attributes.
Finally, the architecture to explain is a DenseNet121 [21] classifier. Given the
binary nature of the task, the target label is always the opposite of the prediction.
If the model correctly estimates an instance’s label, we flip the model’s forecast.
Otherwise, we modify the input image to classify the image correctly.

Experimental goals. In this section, we evaluate our CE approach using
standard metrics. Also, we develop new tools to go beyond the current evalua-
tion practices. Let us recap the principles of current evaluation metrics, following
previous works [48, 55]. The first goal of CE is to create realistic explanations
that flip the classifier under observation. The capacity to change the classifier
decision is typically exposed as a flip ratio (FR). Following the image synthe-
sis research literature, the Frechet Inception Distance [18] (FID) measures the
fidelity of the image distribution. The second goal of CE methods is to create
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Smile Young

Method FID (↓) FVA (↑) MNAC (↓) FID (↓) FVA (↑) MNAC (↓)

xGEM+ [27] 66.9 91.2 - 59.5 97.5 6.70

PE [55] 35.8 85.3 - 53.4 72.2 3.74

DiVE [48] 29.4 97.3 - 33.8 98.2 4.58

DiVE100 36.8 73.4 4.63 39.9 52.2 4.27

DiME 3.17 98.3 3.72 4.15 95.3 3.13

Table 1. State-of-the-Art results. We compare our model performance against the
State-of-the-Art on the FID, FVA and MNAC metrics. The values in bold are the best
results. All metrics were extracted from [48]. Our model has a 10 fold improvement on
the FID metric. We extracted all results from Rodriguez et al.’ work [48].

proximal and sparse images. Among other tools, the XAI community adopted the
Face Verification Accuracy [7] (FVA) and Mean Number of Attributes Changed
(MNAC) [48]. On the one hand, the MNAC metric looks at the face attributes
that changed between the input image and its counterfactual explanation, dis-
regarding if the individual’s identity changed. Finally, the FVA looks at the
individual’s identity without considering the difference of attributes.

As a quick caveat, let us mention that this set of standard metrics displays
several pitfalls that we shall address in more detail later. First, these metric
do not evaluate the diversity of the produced explanations, whereas this is an
important factor. Besides, some of the metrics are at odd with a crucial purpose
of CE, namely the detection of potential spurious correlations.

4.1 Realism, Proximity and Sparsity Evaluation

To begin with, the FVA is the standard metric for face recognition. To measure
this value, we used the cosine similarity between the input image and its pro-
duced counterfactual on the feature space of a ResNet50 [16] pretrained model
on VGGFace2 [7]. This metric considers that two instances share identity if the
similarity is higher than 0.5. So, the FVA is the mean number of faces shar-
ing the same identity with their corresponding CE. Secondly, to compute the
MNAC, we fine-tuned the VGGFace2 model on the CelebA dataset. We refer
to the fine-tuned model as the oracle. Thus, the MNAC is the mean number of
attributes for which the oracle switch decision under the action of the CE. For
a fair comparison with the state-of-the-art, we trained all classifiers, including
the fine-tuned ResNet50 for the MNAC assessment, using the DiVE’s [48] avail-
able code. Finally, previous studies [48,55] compute the FID, the FVA, and the
MNAC metrics considering only those successful counterfactual examples.

DiVE do not report their flip rate (FR). This raises a concern over the fair-
ness comparing against our method. Since some metrics depend highly on the
number of samples, especially FID, we recomputed their CE. To our surprise,
their flip ratio was relatively low: 44.6% for the smile category. In contrast, we
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Fig. 2. Spurious Correlation Detection. We show the top 9 most correlated at-
tributes in the label space with “smile”. We obtained the Pearson Correlation Coef-
ficient from the ground truth on the training set. Albeit the difference in the MNAC
measure, DiME and DiVE achieve to detect the correlations similarly.

achieved a success rate of 97.6 and 98.9 for the smile and young attributes, re-
spectively. Therefore, we calculated the explanations with 100 optimization steps
and reported the results as DiVE100. The new success rates are 92.0% for smile
and 93.4% for young.

We show DiME’s performance in Table 1. Our method beats the previous lit-
erature in five out of six metrics. For instance, we have a ∼10-fold improvement
on the FID metric for the smile category, while the young attribute has an ∼8
fold improvement. We credit these gains to our generation process since it does
not require entirely corrupting the input instance; hence, the coarse details of
the image remain. The other methods rely on latent space-based architectures.
Thus, they require to compact essential information removing outlier data. Con-
sequently, the generated CE cannot reconstruct the missing information, losing
significant visual components of the image statistics.

Despite the previous advantages, we cannot fail to notice that DiME is less
effective in targeting the young attribute than the smile. The smile and young
attributes have distinct features. The former is delineated by localized regions,
while the latter scatters throughout the entire face. Thus, the gradients produced
by the classifier differ between the attributes of choice; for the smile attribute,
the gradients are centralized while they are outspread for the young attribute.
We believe that this subtle difference underpins the slight drop of performance
(especially with respect to FVA) in the young attribute case. This hypothet-
ical explanation should be confirmed by a more systematic study of various
attributes, though this phenomenon is out of scope of the paper.

4.2 Discovering Spurious Correlations

The end goal of CE is to uncover the modes of error of a target model, in particu-
lar its reliance on spurious correlations. Current evaluation protocols [55] search
to assess the counterfeit dependencies by inducing artificial entanglements be-
tween two supposedly uncorrelated traits such as the smile and gender attributes.
In our opinion, such an extreme experiment does not shed light on the ability to
reveal spurious correlations for two reasons. First, the introduced entanglement
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is complete, in the sense that in this experiment the two considered attributes
are fully correlated. Second, the entanglement is restricted to two attributes.
In fact, as depicted in Fig. 2, in real datasets such as CelebA, many labels are
correlated at multiple levels. As a result, this phenomenon calls the previously
proposed correlation experiment into question.

At the same time, the interpretation of some standard metric can be chal-
lenged when spurious correlations are present. This is the case for MNAC which
corresponds to the mean number of attributes that change under the action of
a CE method. Arguably, the classical interpretation is that attributes being un-
related, a CE method that change fewer attributes (in addition to the target)
is preferable. In other words between two CE methods, the one displaying the
smaller MNAC is reckoned as the better one. This interpretation is at odd with
the fact that the alternative method may display a higher MNAC because it
actually reveals existing spurious correlations.

Consequently, we design a new metric called Correlation Difference (CD),
verifying the following principles: (i) it quantifies how well a counterfactual rou-
tine captures spurious correlations. In other words, it estimates correlations be-
tween two attributes after applying the counterfactual algorithm and compare
these estimates to the true dataset correlations. (ii) It should apply an oracle
to predict the (unknown) attributes of counterfactual examples. (iii) The met-
ric should preferably rely on attribute prediction changes between the original
example and its explanation to mitigate potential errors of the oracle, rather
than solely on the prediction made on the counterfactual. Principle (i) actually
amends the failure of MNAC, while (ii) and (iii) maintain its desirable features.

To do so, we start from the definition of the Pearson correlation coefficient
cq,a between the target attribute q and any other attribute a. Denoting X a
random image sample, along with its two associated binary attribute labels Yq

and Ya, then cq,a = PCC(Yq, Ya), where PCC is the Pearson correlation coeffi-
cient operator. To cope with principle (i) we would like to estimate correlations
between attributes q and a and we would like our estimation to rely on the CE
method M targeting the attribute q. The main issue is that we do not know the
actual attributes for the CE, M(X, q), obtained from an image X. Yet, following
principle (ii), we may rely on an oracle to predict these attributes. More precisely,
letting Oa(X) be the oracle prediction for a given image X and for the label a,
we could simply compute the correlation coefficient between Oq(M(X, q)) and
Oa(M(X, q)). Such an estimate would be prone to potential errors of the or-
acle, and following principle (iii) we would prefer to rely on attribute changes
δMq,a(X) = Oa(M(X, q))−Oa(X).

Interestingly, cq,a can be reformulated as follows:

cq,a = PCC(δq, δa), (9)

where δa = Ya − Y ′
a (resp. δq = Yq − Y ′

q ), with (X,Yq, Ya) and (X ′, Y ′
q , Y

′
a) two

independent samples. In other words, cq,a can be interpreted as the correlation
between changes in attributes q and a among random pairs of samples. Accord-
ingly, we use δMq,q and δMq,a as drop-in replacements for δq and δa in Eq. 9 to
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Fig. 3. Diversity Counterfactual examples. The classifier predicts first two input
images as non-smiley and the last two as smiley. In this example all explanations fool
the classifier. Our CE pipeline is capable of synthesising diverse counterfactuals without
any additional mechanism.

obtain the estimate cMq,a of cq,a that relies on the label changes produced by the
counterfactual method M . Finally, CD for label q is merely:

CDq =
∑
a

|cq,a − cMq,a|. (10)

We apply our proposed metric on DiME and DiVE100’s explanations. We
got a CD of 2.30 while DiVE100 2.33 on CelebA’s validation set, meaning that
DiVE100 lags behind DiME. However, the margin between the two approaches is
only slender. This reveals our suspicions: the MNAC results presented in Table 1
give a misleading impression of a robust superiority of DiME over DiVE100.

4.3 Diversity Assessment

One of the most crucial traits of counterfactual explanations methodologies is
the ability to create multiple and diverse examples [39, 48]. As stated in the
methodology section, DiME’s stochastic properties enable the sampling of di-
verse counterfactuals. To measure the capabilities of different algorithms to pro-
duce multiple explanations, we computed the mean pair-wise LPIPS [72] metric
between five independent runs. Formally, setting N as the length of the dataset
and n = 5 as the number of samples, the Diversity metric σL is:

σL =
1

N

N∑
i=1

2

n(n+ 1)

n∑
j=1

n∑
k=j+1

LPIPS(xi
j , x

i
k), (11)
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Fig. 4. Qualitative Results. We visualize some images and its corresponding coun-
terfactual explanation produced by our proposed approach. Our methodology achieves
to incorporate small but perceptually tangible changes in the image. NS stands for
Non-Smiley.

A higher σL means increased perceptual dissimilarities between the explanations,
hence, more diversity. To compute the evaluation metric, we use all counterfac-
tual examples, even the unsuccessful instances, because we search the capacity
of exploring different traits. Note that we exclude the input instance to compute
the metric since we search for the dissimilarities between the counterfactuals. We
compared DiME’s performance with DiVE100 and its Fisher Spectral variant on
a small partition of the validation subset.

We visualize some examples in Fig. 3. All runs achieve similar performances
making DiME insensible to the initial random seed. We achieved a σL of 0.213. In
contrast, DiVE [48] and its Spectral Fisher variant obtained much lower LPIPS
diversity of 0.044 and 0.086, respectively. Recall that DiME does not have an
explicit mechanism to create diverse counterfactuals. Its only mechanism is the
stochasticity within the sampling process (Eqs. 3 and 4). In contrast, DiVE relies
on a diversity loss when optimizing the eight explanations. Yet, our methodology
achieves higher σL metric even without an explicit mechanism.

4.4 Qualitative Results

We visualize some inputs (left) and the counterfactual examples (right) produced
by DiME in Fig. 4. We show visualizations for the attributes smile and young.
At first glance, the results reveal that the model performs semantical editings
into the input image. In addition, uncorrelated features and coarse structure
remain almost unaltered. We observe slight variations on some items, such as the
pendants, or out-of-distribution shapes such as hands. DiME fails to reconstruct
the exact shape of these objects, but the essential aspect remains the same.
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Method FR (↑) FID+(↓) ℓ1(↓)

Direct 19.7 50.51 0.0454

Naive 70.0 98.93 ± 2.36 0.0624

Early Stopping 97.3 51.97 ± 0.77 0.0467

Unconditional§ 8.6 53.22 ± 0.98 0.0492

DiME 97.9 50.20 ± 1.00 0.0430

Table 2. DiME vs variations. This table shows the advantages of the proposed
adjustment to incorporate the classifier under observation. Including the clean gradients
benefits DiME on all metrics, especially the FR. § FID+ and ℓ1 are computed with the
same number of samples as the rest, but without filtering out unsuccessful CEs.

4.5 Ablation study: Impact of the noise-free input of the classifier

As a major contribution, we have proposed an adjustment over the guided diffu-
sion process. It consists in applying the classifier on noise-free images xt rather
than on the current noisy version zt to obtain a robust gradient direction. One
can rightly wonder how important a role is played by this adjustment. To assess
this matter, we consider several alternatives to our approach. The first alterna-
tive, dubbed Direct, uses the gradient (without the factor 1/√αt) of the classifier
applied directly to the noisy instance zt. The second alternative, called Naive,
uses the gradient of the original input image at each time step to guide the opti-
mization process. Therefore, it is not subject to noise issues, but it disregards the
guidance that was already applied until time step t. The last variation is a near
duplicate of DiME except for the fact that it ends the guided diffusion process as
soon as xt fools the classifier. We name this approach Early Stopping. Eventually,
we will also evaluate the DDPM generation without any guiding and beginning
from the corrupted image at time-step τ to mark a reference of the performance
of the DDPM model. We will refer to this variant as the Unconditional one.

To validate all distinct variants, we created a small and randomly selected
mini-val to evaluate the various metrics. To make FID values more comparable
amongst all variants, we condition its computation only on the successful CE
and keep the same number of samples for all methods to mitigate the bias in
FID with respect to the number of samples. We denote this fair FID as FID+.
Likewise to the FR and FID+, we evaluate the ℓ1 metric on successful CE.

We show the results of the different variations in Table 2. The most striking
point is that when compared to the Naive and Direct approaches, the unim-
paired version of DiME is the most effective in terms of FR by a large margin.
This observation validates the need for our adjustment of the guided diffusion
process. Further, our approach is also superior to all other variations in terms of
the other metrics. At first glance, we expected the unconditional generation to
have better FID than DiME and the ablated methods. However, we believe that
the perceptual component of our loss is beneficial in terms of FID. Therefore,
the unconditional FID is higher. Based on the same rationale, on can explain
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the slightly higher FID displayed by the early stopping variant. Moreover, we
noticed that most instances merely shifted the decision boundary, reporting a
low confidence of the posterior probability. These instances are semifactual [28]
and contain features from both attributes, making them hard to analyze in the
context of explainability, in our opinion.

4.6 Limitations

Although we show the benefits of using our model to generate CE, we are far
from accomplishing all aspects crucial for the XAI community. For instance, we
observe that DiME has two limitations. On the one hand, we adopt the most
problematic aspect of DDPMs: the inference time. Namely, DiME uses ∼1800
times the DDPMmodel to generate a single explanation. This aspect is undesired
whenever the user requires an explanation on the fly. Regardless, DiME can haste
its generation process at cost of image quality since diffusion models enjoy from
different strategies to boost inference time. On the other hand, we require access
to the training data; a limitation shared by many studies. However, this aspect
is vital in fields with sensible data. Although access to the data is permitted in
many cases, we restrict ourselves to using the data without any labels.

5 Conclusion

In this paper, we explore the novel diffusion models in the context of counter-
factual explanations. By harnessing the conditional generation of the guided dif-
fusion, we achieve successful counterfactual explanations through DiME. These
explanations follow the requirements given by the XAI community: a small but
tangible change in the image while remaining realistic. The performance of DiME
is confirmed based on a battery of standard metrics. We show that the current
approach to validate the sparsity of CE has significant conflicts with the as-
sessment of spurious correlation detection. Our proposed metric, Correlation
Difference, correctly measures the impact of measuring the subtle correlation
between labels. Further, DiME also exhibits strong diversity in the produced ex-
planation. This is partly inherited from the intrinsic features of diffusion models,
but it also results from a careful design of our approach. Finally, we hope that
our work opens new ways to compute and evaluate counterfactual explanations.
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