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Abstract: It is well known that the Lagrangian and Hamiltonian descriptions of field theories
are equivalent at the discrete time level when variational integrators are used. Besides the
symplectic Hamiltonian structure, many physical systems exhibit a Hamiltonian structure
when written in mixed form. In this contribution, the discrete equivalence of Lagrangian,
symplectic Hamiltonian and mixed formulations is investigated for linear wave propagation
phenomena. Under compatibility conditions between the finite elements, the Lagrangian and
mixed formulations are indeed equivalent. For the time discretization the leapfrog scheme and
the implicit midpoint rule are considered. In mixed methods applied to wave problems the primal
variable (e.g. the displacement in mechanics or the magnetic potential in electromagnetism) is
not an unknown of the problem and is reconstructed a posteriori from its time derivative. When
this reconstruction is performed via the trapezoidal rule, then these time-discretization methods
lead to equivalent formulations.

Keywords: Hamiltonian formulation, Lagrangian formulation, mixed finite elements.

1. INTRODUCTION

Hamilton’s principle of least action is the fundamental
result behind classical field theories Marsden and Ratiu
(2013). The equations may be obtained in Lagrangian
or Hamiltonian form as the Euler-Lagrange equations
are equivalent to the Hamiltonian equations. The latter
equations are given by the canonical Poisson bracket
but can be as well described by a Poisson bracket that
defines a formally skew-adjoint differential operator. This
is the viewpoint adopted in the seminal paper on port-
Hamiltonian systems van der Schaft and Maschke (2002)
but also in mixed finite element formulation for dynamical
systems (see for instance the seminal paper by Geveci
(1988) on the velocity stress formulation of the wave
equation).

Recently in a series of papers, Sánchez et al. (2017, 2021,
2022), it was noticed that the continuous Galerkin and
mixed finite element formulation preserve the Hamiltonian
structure in general linear wave propagation phenomena.
Discontinuous Galerkin method also preserve the Hamil-
tonain if the numerical fluxes are chosen in a suitable
manner. Hybridizable discontinuous Galerkin methods re-
veal instead a dissipative Hamiltonian structure due to
presence of stabilization terms. The Hamiltonian structure
arises naturally from the Poisson brackets given by the
weak formulation. This is perhaps not surprising as the
Euler-Lagrange equations lead to the strong and weak
form of the equations of motion. Weak formulations based
on finite elements naturally replicate this variational struc-
ture.

The equivalence of continuous Galerkin (i.e. Lagrangian)
and mixed finite element discretization has been thor-
oughly explored in Joly (2003). Therein the authors mainly
focused on the semi-discretization in space. By using vari-
ational time marching schemes the symplectic (or Poisson)
structure can then be maintained at the fully discrete level.
In this contribution we take the example of the Newmark
time integration Newmark (1959); Kane et al. (2000) ap-
plied to Lagrangian dynamics. In particular two instances
of this integrator class will be considered: the leapfrog
(or Störmer-Verlet) method and the implicit midpoint
scheme. The first one is a partitioned Runge-Kutta method
that is symplectic when applied to separable Hamiltonian
systems. The second is the simplest Gauss Legendre collo-
cation method that leads to exact energy conservation in
the linear case Kotyczka and Lefèvre (2019); Mehrmann
and Morandin (2019). Mixed (or more generally port-
Hamiltonian formulations) discard the primal variable of
the problem (e.g. the displacement in elasticity or the
magnetic potential in electromagnetism) when it does not
contribute to the energy formulation. When this variable
is reconstructed via the trapezoidal rule and the finite
elements satisfy appropriate compatibility conditions, then
the classical Hamiltonian formulation and the mixed for-
mulation based on a Poisson bracket are equivalent.

The paper is organized as follows. In Sec. 2 the wave
and Maxwell equations are presented via the Hamilton
principles. The associated Lagrangian, Hamiltonian and
mixed formulations are detailed. The semi-discretization
and the equivalence between continuous Galerkin and
mixed formulation is discussed in Sec. 3. In Sec. 4 the
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fully discrete system is detailed for the wave equation only.
The complete algebraic equivalence between Lagrangian,
Hamiltonian and mixed scheme is investigated for the
aforementioned time-integration schemes.

Notation We denote by Ω an open set of the space R
d

of real d dimensional vectors. Given an Euclidean vector
space V, || · || denotes its Euclidean norm. Let T be a
time interval. For a generic field f : Ω × T → V, ||f ||L2

denotes its L2 norm and (·, ·)Ω the L2 scalar product. The
notation q̇ is used both for the partial and ordinary time
derivative of q. The notation H(D) = {u ∈ L2|Du ∈ L2}
where D ∈ {grad, curl, div} denotes the standard Sobolev
spaces. Whenever appropriate boundary conditions are
considered we write H0(D). The notation fn := f(n∆t)
indicates evaluation of a function at a particular time n∆t.

2. CONTINUOUS FORMULATIONS

In this section we detail the continuous formulation of
the wave and Maxwell equations in order to show the
affinities between the two. Indeed these models could
be presented in greater generality using the language of
exterior calculus and differential forms. We opted here
for a simpler representation based on vector calculus
formulations.

2.1 Wave equation

Consider q to be the vertical displacement of an elastic
membrane. The vibrations of the membrane are described
by the linear wave equation, that corresponds to the Euler-
Lagrange equations associated with the Lagrangian

L(q, q̇) =
1

2

∫

Ω

ρq̇2 − k||∇q||2dΩ,

where ρ is the density and k is the stiffness. Using Dirichlet
boundary conditions, this leads to the second order linear
partial differential equation (PDE)

ρq̈ = ∇ · (k∇q), q|∂Ω = 0. (1)

Denoting by δz the partial derivative with respect to the
variable z, we consider the conjugate momentum p = δq̇L
and the total energy or Hamiltonian

H(q, p) =

∫

Ω

pq̇ − L(q, p) dΩ. (2)

Note that the conjugated momentum and the Hamiltonian
are formally defined using the Legendre transform of the
Lagrangian, see Arnold (2012). The system can then be
rewritten in symplectic Hamiltonian form as[

ṗ
q̇

]
=

[
0 −I
I 0

] [
δpH
δqH

]
, q|∂Ω = 0, (3)

where δpH = q̇ and δqH = −∇ · (k∇q). This Hamilto-
nian system is also equivalent to a formulation using the
velocity instead of the linear momentum[

ρ 0
0 I

] [
v̇
q̇

]
=

[
0 −I
I 0

] [
v̇

−∇ · (k∇q)

]
, q|∂Ω = 0. (4)

Another formulation, initially proposed in the finite el-
ement community Geveci (1988), uses as variables the
velocity v = q̇ and the stress σ = k∇q, and leads to[

ρ 0
0 c

] [
v̇
σ̇

]
=

[
0 ∇·
∇ 0

] [
v
σ

]
, v|∂Ω = 0, (5)

where the compliance c := k−1 has been introduced. In
the finite element community this formulation is called
a mixed formulation and corresponds to a Hamiltonian
formulation, as the coefficient operator is skew-adjoint,
see Olver (1993). More generally this is also shown to
be a port-Hamiltonian formulation, see Jacob and Zwart
(2012), as it has an underlying Dirac structure. In this
formulation, the Hamiltonian of the system is given by

H(v,σ) =
1

2

∫

Ω

ρv2 + c||σ||2 dΩ. (6)

From this velocity-stress formulation one can reduce the
system to a second order formulation in the velocity
variable only

ρv̈ = ∇ · (k∇v), (7)

or in the stress variable only

cσ̈ = ∇(ν∇ · σ), (8)

where ν is the specific volume ν := ρ−1. The velocity only
formulation is just the time derivative of (1) and it is
therefore equivalent to it via integration in time.

A second mixed formulation is obtained by starting from
the symplectic Hamiltonian formulation (4) and introduc-
ing the stress σ as an additional unknown via[

ρ 0
0 I

] [
v̇
q̇

]
=

[
0 −I
I 0

] [
v̇

−∇ · σ

]
,

cσ = ∇q.

(9)

This is often the starting point for deriving mixed and
hybridizable discontinuous finite element formulations for
the wave equation, see Sánchez et al. (2017).

It should be noted that all the discussed formulations
have the same Hamiltonian, but are formulated in different
variables. This may lead to advantages when considering
limiting situations like letting the density go to zero of the
stiffness go to∞, see Mehrmann and van der Schaft (2023)
for a discussion in the finite dimensional case.

2.2 Maxwell equations

In the absence of electric charges, the Maxwell equations
correspond to the Euler-Lagrange equations of the La-
grangian, see Marsden and Ratiu (2013),

L(A, Ȧ) =
1

2

∫

Ω

ε||Ȧ||2 − µ−1||∇ ×A||2 dΩ, (10)

where ε is the electric permittivity and µ is the magnetic
permeability. This leads to the second order PDE

εÄ = −∇× (µ−1∇×A), A× n|∂Ω = 0. (11)

Considering the conjugate momentum Y = δ
Ȧ
L = εȦ =

−D (whereD is the electric flux density), the total energy
(Hamiltonian) has the form

H(Y ,A) =

∫

Ω

Y Ȧ− L(A,Y ) dΩ. (12)

The equation can then be rewritten in symplectic Hamil-
tonian form as [

Ẏ

Ȧ

]
=

[
0 −I
I 0

] [
δY H
δAH

]
, (13)

where δY H = Ȧ and δAH = ∇ × (µ−1∇ × A). This
Hamiltonian system is also equivalent to a formulation
using the electric field E = −ε−1Y ,



[
ε 0
0 I

] [
Ė

Ȧ

]
=

[
0 I
−I 0

] [
Ė

∇× (µ−1∇×A)

]
. (14)

The mixed formulation uses as variables the electric and
magnetic field H = µ−1∇×A,[
ε 0
0 µ

] [
Ė

Ḣ

]
=

[
0 ∇×

−∇× 0

] [
E
H

]
, E×n|∂Ω = 0. (15)

The Hamiltonian of this system is given by

H =
1

2

∫

Ω

ε||E||2 + µ||H ||2 dΩ.

From the mixed formulation formulation one can reduce
the system to one for the electric field only

εË = −∇× (µ−1∇×E), (16)

or for the magnetic field only

µḦ = −∇× (ε−1∇×H). (17)

An alternative formulation is obtained using the variables
E,A but introducing the magnetic field definition[

ε 0
0 I

] [
Ė

Ȧ

]
=

[
0 I
−I 0

] [
Ė

∇×H

]
,

µH = ∇×A.

(18)

This is the formulation used to devise the hybridizable
discontinuous Galerkin method in Sánchez et al. (2022).

3. SEMI-DISCRETIZATION IN SPACE

In this section we consider the semi-discretization of the
wave and Maxwell equations. Once again the discussion in
more or less analogous in the two cases and may be unified
via the formalism of Finite Elements Exterior calculus
Arnold et al. (2006).

3.1 The semi-discrete wave equation

The classical Lagrangian formulation of the wave equation
can be discretized using conforming finite element spaces
Vh,0(grad) ⊂ H0(grad), see Arnold et al. (2006), leading
to the following weak formulation:

Find qh ∈ Vh,0(grad) such that

(ψh, ρq̈h)Ω = −(∇ψh, k∇qh)Ω for all ψh ∈ Vh,0(grad).
(19)

To establish the various equivalences between the different
formulations we make the following assumption.

Assumption 1. All the physical coefficients are assumed to
be constant.

Given Asumption 1, the weak form of the Hamiltonian
formulation (4) is clearly equivalent to (19) when one picks
qh, vh ∈ Vh,0(grad). For the mixed formulations, two possi-
bilities via integration by parts can be pursued. Integration
by parts on the first line leads to the formulation:

Find (vh,σh) ∈ Vh,0(grad) ×Wh ⊂ H0(grad) × L2 such
that

(ψh, ρv̇h)Ω = −(∇ψh, σh)Ω,

(ξh, cσ̇)Ω = (ξh, ∇vh)Ω,

for all ψh ∈ Vh,0(grad),

for all ξh ∈Wh.

(20)
If the spaceWh is such thatWh ⊂ ∇Vh,0(grad), and since
the coefficients are assumed to be constants, the second
equation holds pointwise, i.e., cσ̇ = ∇vh. One can then

take the time derivative of the first equation and use the
second equation to obtain the weak formulation:

Find vh ∈ Vh,0(grad)

(ψh, ρv̈)Ω = −(∇ψh, ∇vh)Ω, for all ψh ∈ Vh,0(grad).
(21)

This is exactly the continuous Galerkin weak form of the
second order formulation for the velocity and it is therefore
equivalent to the classical Lagrangian weak formulation
(19) when its time integration is performed.

The second possibility consists in integrating by parts the
second line, leading to the weak formulation:

Find (vh,σh) ∈Wh × Vh(div) ⊂ L2 ×H(div) such that

(ψh, ρv̇h)Ω = (ψh, ∇ · σh)Ω,

(ξh, cσ̇)Ω = −(∇ · ξh, vh)Ω,

for all ψh ∈Wh,

for all ξh ∈ Vh(div).
(22)

Analogous to the previous case, if the space Wh satisfies
Wh ⊂ ∇ ·Vh(div), then the first equation holds pointwise,
i.e., ρv̇h = ∇ · σh, and then taking the time derivative of
the second equation one obtains

(ξh, cσ̈h)Ω = −(∇ · ξh, ν∇ · σh)Ω. (23)

An alternative mixed formulation is obtained using (9),

(ψh, ρv̇h)Ω = (ψh, ∇ · σh)Ω,

(ψh, q̇h)Ω = (ψh, vh)Ω,

(ξh, cσh)Ω = −(∇ · ξh, qh)Ω,

for all ψh ∈ Wh,

for all ψh ∈ Wh,

for all ξh ∈ Vh(div).

(24)

This formulation is equivalent to (22) by taking the time
derivative of the last equation.

The equivalence between different formulations is dis-
cussed in detail in Joly (2003). Therein, however, the
geometric interpretation of the different formulations is
not discussed. Geometry plays, however, a fundamental
role as the connection between (20) and (22) is given
by the Hodge operator, that maps differential forms to
their dual space isomorphically. In a classical mixed finite
element formulation, the Hodge operator is expressed by
a projection between dual spaces of finite elements. This
projection entails a loss of information. An isomorphic
Hodge star requires dual meshes and this is the approach
in the Discrete Exterior Calculus, Hirani (2003).

In the following we make a second assumption.

Assumption 2. The finite element spaces satisfy the com-
patibility conditions

Wh ⊂ ∇Vh,0(grad), Wh ⊂ ∇ · Vh(div).

3.2 The semi-discrete Maxwell equations

The Lagrangian formulation of the Mawxell equations can
be discretized using conforming finite elements Vh,0(curl) ⊂
H0(curl), leading to the following weak formulation:

Find Ah ∈ Vh,0(curl) such that for all ψh ∈ Vh,0(curl),

(ψh, εÄh)Ω = −(∇×ψh, µ
−1∇×A)Ω. (25)

The weak form of the Hamiltonian formulation (13) and
(14) is clearly equivalent to (25) when one picks E0

h,A
0
h ∈

Vh,0(curl). The integration by parts on the first line leads
to the formulation:

Find (Eh,Ah) ∈ Vh,0(curl) ×Wh ⊂ H0(curl) × L2(Rd)
such that



(ψh, εĖh)Ω = (∇×ψh, Hh)Ω,

(ξh, µḢ)Ω = −(ξh, ∇×Eh)Ω,

for all ψh ∈ Vh,0(curl),

for all ξh ∈Wh.

(26)
If the space Wh is such that Wh ⊂ ∇ × Vh,0(curl), then

the second equation holds pointwise, i.e., µḢ = −∇×Eh.
The weak formulation when using only the electric field
takes the form:

Find Eh ∈ Vh,0(curl) such that for all ψh ∈ Vh,0(curl)

(ψh, εËh)Ω = −(∇×ψh, µ
−1∇×E)Ω. (27)

This is equivalent to the classical Lagrangian weak formu-
lation (19).

The second possibility consists in integrating by parts the
second line, leading to the weak formulation:

Find (Eh,Hh) ∈Wh×Vh(curl) ⊂ L2×H(curl) such that

(ψh, εĖh)Ω = (ψh, ∇×Hh)Ω,

(ξh, µḢ)Ω = −(∇× ξh, Eh)Ω,

for all ξh ∈Wh,

for all ψh ∈ Vh,0(curl).

(28)
If Wh ⊂ ∇ × Vh(div), then the first equation holds

pointwise, i.e., εĖh = ∇ × Hh. Then taking the time
derivative of the second equation one obtains

(ξh, µḦh)Ω = −(∇× ξh, ε
−1∇ · σh)Ω. (29)

An alternative mixed formulation is obtained using formu-
lation,

(ψh, Ėh)Ω = (ψh, ∇×Hh)Ω,

(ψh, Ȧh)Ω = (ψh, Eh)Ω,

(ξh, µHh)Ω = (ξh, ∇×Ah)Ω.

(30)

The same considerations concerning the time discretiza-
tion carry over to the Maxwell equations, leading to a
complete equivalence of discrete-time formulations of La-
grangian, Hamiltonian and mixed finite element descrip-
tions for electromagnetic phenomena.

4. TIME DISCRETIZATION

For the time discretization of the different second order
formulations, two different schemes will be considered: the
symplectic leapfrog method and the implicit midpoint rule.
These are particular instances of the Newmark method,
originally developed for structural dynamics in Newmark
(1959). A general Newmark scheme applied to a second
order system has the form

(ψh, ρa
n+1

h )Ω = −(∇ψh, ∇q
n+1

h )Ω,

vn+1

h − vnh
∆t

= γan+1

h + (1 − γ)anh,

qn+1

h − qnh
∆t

= vnh +∆t(βan+1

h + (
1

2
− β)anh),

(31.a)

(31.b)

(31.c)

where anh denotes the acceleration at time tn. For ease
of presentation the results will be presented for the wave
equation only as everything carries over to the Maxwell
equations case (and mutatis mutandis to the linear elas-
todynamics problem and derived models, like beams and
plates structural models).

4.1 The leapfrog scheme

The Newmark scheme is equivalent to the leapfrog scheme
when γ = 1

2
and β = 0, leading to the following system

(ψh, ρ(q
n+1

h −2qnh+q
n−1

h ))Ω = −∆t2(∇ψh, k∇q
n
h)Ω. (32)

This is shown by considering two consecutive updates for
the displacement (31.c) and using (31.b). This scheme is
also equivalent to the Störmer-Verlet method applied to
the weak formulation of (4) (see e.g. Hairer et al. (2003))

(ψh, ρ(v
n+ 1

2

h,L − v
n− 1

2

h,L ))Ω = −∆t(∇ψh, k∇q
n
h,L)Ω,

qn+1

h,L − qnh,L = ∆tv
n+ 1

2

h,L ,

(33.a)

(33.b)

where the subscript L stands for Lagrangian description.
For the mixed formulation (20) one obtains

(ψh, ρ(v
n+ 1

2

h,M − v
n− 1

2

h,M ))Ω = −∆t(∇ψh, σ
n
h,M )Ω,

(ξh, c(σ
n+1

h,M − σn
h,M ))Ω = ∆t(ξh, ∇v

n+ 1
2

h,M )Ω,

(34.a)

(34.b)

where the subscript M stands for mixed formulation.

Proposition 1. Suppose that σ0
h,M = k∇q0h,L and that

the field qn+1

h,M with q0h,M = q0h,L is reconstructed via the
trapezoidal rule

qn+1

h,M = qnh,M +
∆t

2
(vnh,M + vn+1

h,M ),

then the formulations (33) and (34) are equivalent.

Proof 1. It is sufficient to show that σn
h,M = ∇qnh,L, for all n

as this implies that the dynamic equations (33.a) and
(34.a) are the same. The reconstruction of qh is the same
by assumption.

Using the trapezoidal rule for q and (34.a) one has

σn+1

h,M − σn
h,M = k∇(qn+1

h,M − qnh,M ).

Since σ0
h,M = k∇q0h,L, the result is obtained by recursion.

Formulation (34) is also equivalent to a staggered leapfrog
discretization of (21) given by

(ψh, ρ(v
n+ 3

2

h −2v
n+ 1

2

h +v
n− 1

2

h ))Ω = −∆t2(∇ψh, k∇v
n+ 1

2

h )Ω.
(35)

To see this, it is sufficient to take the difference between
two consecutive step for the velocity update (34.a) and use
(34.b). In a dual manner, the application of the Störmer-
Verlet scheme to the mixed formulation (22)

(ψh, ρ(v
n+ 1

2

h,M − v
n− 1

2

h,M ))Ω = ∆t(ψh, ∇ · σn
h)Ω,

(ξh, c(σ
n+1

h,M − σn
h,M ))Ω = −∆t(∇ · ξh, v

n+ 1
2

h )Ω,
(36)

is equivalent to the leapfrog scheme applied to (23)

(ξh, c(σ
n+1

h −2σn
h+σ

n−1

h ))Ω = −(∇·ξh, ν∇·σn
h )Ω. (37)

The application of the Störmer-Verlet to the alternative
mixed formulation (24) leads to

(ψh, ρ(v
n+ 1

2

h − v
n− 1

2

h ))Ω = ∆t(ψh, ∇ · σn
h )Ω,

(ψh, q
n+1

h − qnh )Ω = ∆t(ψh, v
n+ 1

2

h )Ω,

(ξh, cσ
n+1

h )Ω = −(∇ · ξh, q
n+1

h )Ω.

(38)

Again this scheme is equivalent to (36), when qh is ob-
tained from vh using the trapezoidal rule.

4.2 The implicit midpoint rule

For γ = 1

2
and β = 1

4
the Newmark scheme leads to the

implicit midpoint rule

vn+1

h,L − vnh,L

∆t
= a

n+ 1
2

h ,
qn+1

h,L − qnh,L

∆t
= v

n+ 1
2

h , (39)



where the notation f
n+ 1

2

h :=
f
n+1

h
+fn

h

2
has been used. Then

system (31) is rewritten as

(ψh, ρ(v
n+1

h,L − vnh,L))Ω = −∆t(∇ψh, ∇q
n+ 1

2

h,L )Ω,

qn+1

h,L − qnh,L = ∆tv
n+ 1

2

h .

(40.a)

(40.b)

The midpoint rule applied to the mixed discretization (20)
leads to

(ψh, ρ(v
n+1

h,M − vnh,M ))Ω = −∆t(∇ψh, σ
n+ 1

2

h,M )Ω,

(ξh, c(σ
n+1

h,M − σn
h,M ))Ω = ∆t(ξh, ∇v

n+ 1
2

h,M )Ω.

(41.a)

(41.b)

Proposition 2. Under the assumptions of Proposition 1 the
formulations (40) and (41) are equivalent.

Proof 2. The proof is analogous to that of Proposition 1.

The implicit midpoint rule applied to (41) is equivalent to
the following iteration for (21)

(ψh, ρ(v
n+1

h −2vnh+v
n−1

h ))Ω = −∆t2(∇ψh, k∇v̂
n
h )Ω, (42)

where

v̂nh :=
1

4
(vn+1

h + 2vnh + vn−1

h ).

In an analogous fashion as for the leapfrog scheme, this is
shown by taking two consecutive time steps for the velocity
update (40.a) and using (40.b). For the dual formulation,
the implicit midpoint rule

(ψh, ρ(v
n+1

h,M − vnh,M ))Ω = ∆t(ψh, ∇ · σ
n+ 1

2

h )Ω,

(ξh, c(σ
n+1

h,M − σn
h,M ))Ω = −∆t(∇ · ξh, v

n+ 1
2

h )Ω,
(43)

leads to the following update when applied to (23)

(ξh, c(σ
n+1

h −2σn
h+σ

n−1

h ))Ω = −(∇·ξh, ν∇·σ̂n
h )Ω, (44)

with

σ̂n
h :=

1

4
(σn+1

h + 2σn
h + σn−1

h ).

The application of the implicit midpoint rule to system
(24) leads to

(ψh, ρ(v
n+1

h − vnh))Ω = ∆t(ψh, ∇ · σ
n+ 1

2

h )Ω,

(ψh, q
n+1

h − qnh )Ω = ∆t(ψh, v
n+ 1

2

h )Ω,

(ξh, cσ
n+ 1

2

h )Ω = −(∇ · ξh, q
n+ 1

2

h )Ω,

(45)

which is equivalent to (43) when qh is reconstructed via
the trapezoidal rule.

5. CONCLUSION

Several different formulations of standard and mixed fi-
nite element discretizations as well as appropriate time
discretization methods for linear wave phenomena have
been compared. It is shown that with appropriate choices
of space discretization methods, Hamiltonian, Lagrangian
and mixed formulations lead to equivalent formulations
and also appropriate time discretization schemes lead to
equivalent schemes.

A natural question that arises is whether the discrete
equivalence carries over to the numerical linear algebra
level. Indeed if one uses the Newmark integrator on a
second order system, a positive definite system has to
be solved. On the other hand the application of the
implicit midpoint to a mixed formulation leads to positive

mass matrix perturbed by a small skew-symmetric matrix.
Is seems then possible to implement equivalent iterative
solvers for these two different problems. Indeed it was
shown in Güdücü et al. (2022) that some iterative schemes
for the Hamiltonian formulation indeed lead to similar
convergence rate as the conjugate gradient (applied to
symmetric positive definite problems).
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