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Abstract—In this paper, we discuss preliminary numerical simu-
lation results that stem from an optimal control problem in breast
cancer chemotherapy. The objective of this control problem is to
minimize the growth of tumor cells while minimizing damage to
normal tissue, considering that chemotherapeutic agents affect
both tumor cells and healthy cells. The control variable is
drug concentration, and the state variable is the tumor density
in the breast. We first formulate the optimal control problem
by specifying a performance criterion and various constraints
and then investigate the necessary optimality conditions. Next,
we present an optimization algorithm for solving the control
problem. Finally, we present and discuss numerical simulations
to demonstrate the importance of the suggested optimal control
strategy for tumor cell eradication.
Index Terms—Optimal control problem, state constraint, cancer
chemotherapy, nonlinear reaction-diffusion systems, malignant
tumors, optimization algorithm, twin experiments, numerical
simulations.

I. INTRODUCTION AND MOTIVATION

Breast cancer is a disease in which abnormal breast cells grow
out of control and form a mass called a tumor, very localized
or more invasive when the tumor cells spread to neighboring
normal tissues until reaching the nearest lymph nodes. The
majority of deaths attributable to breast cancer are due to a
resistance of the tumor and invasion of tumor cells to other
organs (lungs, liver, brain) by a metastatic process to reach
and multiply in organs other than the one initially affected.
There are several mathematical models of treatment response
in the literature, notably [1]–[3]. The mathematical models
of treatment responses integrate clinical and experimental
data to predict tumor response to treatments and evaluate the
effectiveness of different treatments. Systemic chemotherapy
is one of the most commonly used methods for the treatment
of breast tumors. Still, it presents three clinical difficulties: the
drug’s toxicity to normal cells, the tumor’s resistance to the
drug, and the tumor’s resistivity after treatment. Recently, in
[1], an optimal control problem has been studied for breast
cancer chemotherapy with an ordinary differential equation
treatment response model. Even when we set constraints on the
control, the tumoral density can have an uncontrolled behavior
(decrease and grow during treatment) as shown in [1] for
instance. It is therefore interesting to add a constraint on the
density of tumor. For studying the growth of breast tumours

under treatment, we consider the following reaction–diffusion
equation that can be described by

∂u

∂t
= div(D∇u)−K1u

ρ1 +K2u− α0φu in Q,

−D∇u · n = K3u
ρ2 on Σ,

u(0,x) = u0(x) in Ω,

(1)

under the pointwise constraint

a(x) ≤ φ(t,x) ≤ b(x) a.e.(x, t) ∈ Q. (2)

and the state constraint

G(φ) = ∥u(t, ·)∥2L2(Ω)−ζ(t) ⩽ 0 a.e.t ∈ (0, T ), (3)

where the breast region Ω is an open bounded domain in R2

with a smooth boundary Γ = ∂Ω, T > 0 is a fixed constant
(a given final time), Q = (0, T )×Ω, Σ = (0, T )× Γ and the
vector n is the outward normal to Γ.
Here, u(t,x) is the tumor cell density at time t and location x
of the breast region Ω and K1 is the tumor proliferation rate.
The function K2 denote the intrinsic growth rate with a growth
coefficient ρ1 and K3 the invasion rate of the tumor or the mi-
gration capacity to other organs with a growth coefficient ρ2,
where ρi ≥ 2, for i = 1, 2, are integer numbers. The operator
φu is the treatment term describing the death of cells due to
chemotherapy, in which the control value φ(t,x) models the
concentration of drugs in chemotherapy treatment at time t and
location x and u0 is the initial density of the tumor at time
t = 0. The diffusivity coefficient of the tumor is assumed
to be variable in Q and satisfies ν1 ≥ D(t,x) ≥ ν0 > 0,
(where ν0 and ν1 are two positives constants). Furthermore,
the parameters ζ, a and b are sufficiently regular functions.
Remark 1.1:

1) The nonlinear problem (1) integrates a control dependent
on time and space, which considers the capacity of
invasion and migration of tumor cells to other organs
modeled by the function K3. This aspect is often ne-
glected (see, e.g., [1]–[3]). Indeed, for an intracranial
brain tumor, the invasion rate K3 = 0, but in the
case of a breast tumor, K3 ̸= 0, since we can witness
an increasing tumor flow which migrates towards other



organs through the lymph nodes which explains the risk
of invasion of tumor cells to other organs.

2) The control limit functions a,b are medicinal and can
be patient-specific (e.g., quality of life, comorbidities).
The inequality constraint (2) imposed on the parameter
φ makes it possible to avoid acute drug toxicity when
the drug concentration exceeds a maximum value.

Note that in (1), we have ten biological data whose units are
mentioned in the following

TABLE I: Table of units.

Biological Data D φ K1 K2 K3

Units mm2 · d−1 µM d−1 d−1 mm · d−1

α0 x t
µM−1 · d−1 mm days (d)

Contribution

The main objective of our contribution is to minimize the
tumor density by imposing two different constraints: a con-
straint on the control to limit the acute toxicity of drugs in
patients and a constraint on the density of tumor satisfied at
each treatment time to control the evolution of tumor density.
The control is a spatiotemporal function modeling the con-
centration of therapeutic agents in breast tumor chemotherapy.
The importance of constraining the density of tumor lies in the
fact that even in the presence of a resistant tumor we can find
an optimal therapeutic strategy with less damage to eradicate
the tumors. Our numerical simulations have yielded excellent
results, proving the effectiveness of our approach.

II. ASSUMPTIONS AND NOTATIONS

We introduce the following spaces (for q ∈]1,+∞] and θ ∈
[0, 1/2[)

Lq
+(Q) = {v ∈ Lq(Q); v ≥ 0},Hθ = H2θ+1(Ω),

Vθ = L2(0, T ;Hθ),Wθ = H1(0, T ;H′
θ),

Uθ = Vθ ∩Wθ

where H′
θ is the dual of Hθ. We note v+ the positive part of

v by v+ = max(v, 0).

We can now state the following assumptions for functions Ki,
for i = 1, 3 and parameters a and b

(H1) K1 ∈ L∞
+ (Q), K3 ∈ L∞

+ (Σ), a,b ∈ L
pρ

+ (Ω), with
pρ = 2ρ1

ρ1−1 . For the desired state ud and the initial condition
u0, we impose
(H2) ud ∈ L∞(0, T ;L2(Ω)) and u0 ∈ H1(Ω) ∩ L∞

+ (Ω).

Finally, we assume that the parameter ζ is chosen such that

ζ = max(∥ud∥2L∞(0,T ;L2(Ω)); ∥u0∥2L2(Ω)). (4)

According to assumptions (H1)-(H2) and [5] we have that
problem (1) admits one and unique solution u in Uθ∩L∞(Q).

Outline of the paper

The rest of the paper is presented as follows. In Sec. III,
we present the optimal control problem and its description.
In IV, first, we present the optimization algorithm to resolve
control problem and numerical simulation results to validate
optimization algorithm. Afterward, we present the numerical
simulations to optimal control problem for twin experiments
and in the case of breast tumor eradication. Finally, the
conclusion and future projections are presented in Sec. V.

III. OPTIMAL CONTROL PROBLEM

Let Sad = {φ ∈ Lpρ(Q) : a(x) ≤ φ(t,x) ≤ b(x), a.e., t ∈
[0, T ]} and F : φ ∈ Sad 7−→ F(φ) ∈ Uθ ∩ L∞(Q) such that
u = F(φ) is the unique solution of (1), corresponding to φ.
Now we introduce the following objective (or cost) functional
J , which measures the distance between pronostic variable u
and desired state ud, by

J(φ) =
1

2

∫
Q
(u− ud)

2dxdt+
λ

pρ

∫
Q
|φ|pρdxdt (5)

where the parameter λ > 0 is the price we pay for control.
The optimal control problem consists of obtaining a minimizer
of functional J with respect to φ. Precisely, we will study the
following problem : find φopt ∈ Sad such that functional J
is minimized with respect to φ subject to equations (1) and
constraints (2) and (3).
Our control problem (P) is then

inf
φ∈Sad

J(φ);

s.t. G(φ) ≤ 0.
(6)

The existence of optimal solutions of (P) is proven in [5],
as well as a differentiability result of solution map F and
the first-order necessary conditions of optimality under some
conditions in [5].
Throughout the rest of this paper, we choose ρ1 = 3, ρ2 = 2,
and then pρ = 2ρ1

ρ1−1 = 3.

IV. NUMERICAL SIMULATIONS

In this section, we present the numerical results obtained in
two parts. In the first, we present and validate the optimization
algorithm for solving the control problem. Afterward, we
present the numerical simulations of the solution to the control
problem in eradicating breast tumors. We used the implicit
Euler and Newton methods for numerical resolution of the
state problem. To consider the control and state constraints,
we modified the cost function J by penalizing the state and
control constraints to enforce them to be satisfied, resulting in
the modified cost function

J̃(φ) = J(φ) +
β1

3

∫
Q
(a− φ)3+dxdt+

β2

3

∫
Q
(φ− b)3+dxdt

+
β3

4

∫ T

0

G(φ)2+dt.

(7)



We thus solve a modified optimal control problem (P̃) without
constraints given by

inf
φ∈L3(Q)

J̃(φ). (8)

To characterize the optimal control, we introduce the following
adjoint problem corresponding to the state problem:

−∂ũ

∂t
− div(D∇ũ) + (3K1u

2 + α0φ−K2)ũ = (u− ud)

+β3uG(φ)+ in Q,

−D∇ũ · n+ 2K3uũ = 0 on Σ,

ũ(T, ·) = 0 in Ω.
(9)

For a given desired function ud and cost function J̃ by
using the successive resolutions of both the state and adjoint
problem, we derive the gradient of J̃ relative to the control
variables φ by

∇J̃(φ) = λφ2−α0F(φ)ũ−β1(a−φ)2++β2(φ− b)2+. (10)

For the optimization process, we used BFGS1 to solve (P̃).
For all the numerical simulations, we used the Freefem++
2. To calibrate the state problem, we used the following data:

D = D0 e
−γ0σ; σ = σ0 e

−δ0|x|2t in Q,

K1 =
k1 − k2 e

−γ0σ

e−γ0σ(1− e−2γ0σ)
, K2 = θ2K1, in Q,

a = 0, b(x) = b0 e
−b1[(x−x1)

2+(y−y2)
2], in Ω,

and K3 = k3K1 on Σ.

We choose the

u0(x) = e−
1
ε [(x−x0)

2+(y−y0)
2],

which represents the density of a tumor whose center is at
(x0, y0), (see Fig. 1 for his graph). The optimization algorithm
can be summarized in table (III) and J̃ is minimized until some
convergence criteria are attained. For the desired state ud, we
build it as follows:

ud,ϵ = u · (1 + ϵ · fper), (11)

where fper a perturbation defined on Q, u is the solution of
the state problem given by the control ϕ0 and ϵ a percentage
parameter. The control ϕ0 was used to obtain ud.

1The solver BFGS solves the complex nonlinear optimization problem
within FreeFEM++.

2https://freefem.org/

TABLE II: Data table

Parameters Values and Definitions
D0 0.09 mm2 · d−1 : Diffusion coefficient
σ0 2.1 kPa: Mechanical coupling coefficient
γ0 0.47 kPa−1: Coupling constant
k2 2.0 d−1: Proliferation rate
k1 4.0 d−1 : Coupling constant
k3 3.0 mm : Coupling constant
δ0 5.55×10−5 mm−2 · d−1 : Coupling constant
α0 1/d · µM: Coupling constant
T 20 days: The final horizon
b0 102 µM: Coupling constant
b1 0.90 mm2: Coupling constant
θ 3.16 : Coupling constant

TABLE III: Optimization Algorithm

Control Function φ
State Problem
u = F(φ)

Modified Objective
Function J̃ and

Comparison with ud

Adjoint Problem
ũ = F̃(φ, u, β3)

Gradient of J̃
∇J̃(φ)

BFGS(J̃ , ∇J̃ , ς)
Convergence Test:
∥∇J̃(φ)∥ ⩽ ς,

with ς small.

Optimal Solution: uopt = F(φopt)

φ := φ− γ∇J(φ)

Convergence

A. Validation of Our Approach

The objective of this subsection is to find an optimal control
φopt that the optimal state uopt = ud, and satisfies the
state constraint. We note by RError1 (respectively RError2)
the relative error between φopt and ϕ0 in standard L3(Q)
(respectively between uopt and ud in standard L2(Q) :

RError1 =
∥φopt − ϕ0∥3L3(Q)

∥ϕ0∥3L3(Q)

, RError2 =
∥uopt − ud∥2L2(Q)

∥ud∥2L2(Q)

.

The table V displays the evolution of tumor density in the
absence of treatment, i.e., for φ = 0 in (1) at several days.

Breast domain Ω. Initial tumor density u0.

Fig. 1: The domain Ω and initial tumor density u0.



TABLE IV: Discretization informations

Parameters Value Definitions
∆ t 0.2 days (d) Time Step
x (x; y) 2D space position
∆ x 1 mm Space Discretizations (x)
∆ y 1 mm Space Discretizations (y)
ne 780 Total Mesh Elements
np 415 Total Mesh Points
(x0; y0) (7/3; 4) Tumor center
(x1; y1) (2; 3.5)
ε 0.01

TABLE V: Tumor density without treatment

u at 5th day. u at 10th day.

u at 15th day. u at 20th day.

1) Optimal state uopt and desired state ud in absence of
perturbation

This subsection presents the constraints satisfaction on the
optimal control φopt and optimal state uopt. The optimization
parameters are as follows: λ = 10−2; β1 = 103; β2 = 3 · 104;
β3 = 103, and without perturbation i.e., ϵ = 0.
In this case, the desired function ud satisfies (1), and Fig. 2
proves that all constraints are satisfied. The optimal control
φopt and state uopt satisfy all constraints.
Fig. 3 presents the relative errors RError1 and RError2 for
various values of λ, and proves that uopt near ud for small
values of λ.
The graph of the optimal control and optimal state are given
respectively in table VI and table VII at several days.

TABLE VI: The optimal control φopt.

φopt at 5th day. φopt at 10th day.

φopt at 15th day. φopt at 20th day.
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state at the tumor center.
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Fig. 2: Constraints satisfaction and the evolution of desired
and optimal state.

TABLE VII: The desired state ud and optimal state uopt.

ud uopt

ud at 5th day. uopt at 5th day.

ud at 10th day. uopt at 10th day.

ud at 15th day. uopt at 15th day.

ud at 20th day. uopt at 20th day.

-15 -10 -5 0

log( )

-14

-12

-10

-8

-6

-4

-2

0

2
log(R

Error1
)

log(R
Error2

)

Fig. 3: The relative errors RError1 and RError2.



2) Optimal state uopt and desired state ud in presence of
perturbation

This subsection presents the constraints satisfaction on the
optimal control and state in the presence of the perturbation,
i.e., ϵ = 0.1. The optimization parameters are as follows:
λ = 10−2; β1 = 102; β2 = 3 · 104; and β3 = 104.
We note that in this case, the desired state ud is a low perturbed
of the solution of (1), and Fig. 4 proves that all constraints
are satisfied, and uopt near ud.
The graph of φopt and uopt are given respectively in table VIII
and table IX at several days.
Fig. 5 illustrates the error between the solution of the state
problem and the perturbed state uϵ

d for various values of ϵ,
where uϵ

d does not satisfy (1). From this, we can infer that the
desired state can be achieved for low perturbations.
The results obtained in both situations confirm our expecta-
tions and validate our approach.
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(c) The desired and optimal
state at the tumor center.
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Fig. 4: Constraints satisfaction and the evolution of desired
and optimal state.

TABLE VIII: The optimal control φopt.

φopt at 5th day. φopt at 10th day.

φopt at 15th day. φopt at 20th day.

TABLE IX: The desired state ud and optimal state uopt.

ud uopt

ud at 5th day. uopt at 5th day.

ud at 10th day. uopt at 10th day.

ud at 15th day. uopt at 15th day.

ud at 20th day. uopt at 20th day.
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Fig. 5: The relative errors RError1 and RError2.

B. Eradication of Breast Tumor

In this subsection, we aim to eradicate the breast tumor by
finding an optimal control φopt such that the optimal state
uopt near the desired state ud = 0. For this, the optimization
parameters are: λ = 10−2; β1 = 103; β2 = 108; β3 = 106.
Fig. 6 proves that all constraints are satisfied, and the optimal
tumor density uopt decreases to 0, the desired state.
The graph of the optimal control φopt and optimal state uopt

at several days are given respectively in table X and table XI.
We can observe that the optimal concentration of drugs
migrating into the tumor, proving the effectiveness of lo-
calized treatment. This instance proves that our approach is
very promising for a continuous 20-day therapeutic regimen,
corresponding to localized metronomic chemotherapy (see,
e.g., [4]). We have successfully treated many cases using this
type of treatment, including cure-based treatment (i.e., specific
treatments on certain days followed by rest on others), with
promising results.



0 5 10 15 20

time (days)

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

max (a-
opt

)

max (
opt

-b)

(a) Constraint satisfaction on
the optimal control.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

u
opt

(t,x
0
,y

0
)

(b) The evolution of the opti-
mal state at the tumor center.

0 5 10 15 20

time (days)

20

40

60

80

100

O
p

ti
m

a
l 
d

ru
g

 c
o

n
c
e

n
tr

a
ti
o

n
 [

M
]

opt
(t,x

0
,y

0
)

(c) The evolution of the opti-
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Fig. 6: Constraints satisfaction on the optimal control and state
and the evolution of the optimal control and state at the tumor
center.

V. CONCLUSION

This paper presents a new method to control tumor density
in breast cancer chemotherapy. This method uses an optimal
control problem with state constraint. We first conducted
numerical simulations to validate the optimization algorithm
by doing twin experiments. Then, we proved the importance
of state constraints in eradicating breast tumors. For such
an approach, some useful mathematical properties have been
analyzed, and numerical experiments prove the efficiency of
our study. We must still adapt our methodology to realistic
treatment protocols.
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TABLE X: The optimal control φopt.

φopt at 2th day. φopt at 4th day.

φopt at 5th day. φopt at 10th day.

φopt at 15th day. φopt at 20th day.

TABLE XI: The optimal state uopt.

uopt at 2th day. uopt at 4th day.

uopt at 5th day. uopt at 10th day.

uopt at 15th day. uopt at 20th day.


