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Abstract

This work presents a comparison of several high-order numerical methodologies

for simulating shock/turbulence interactions based on the supersonic Taylor-Green

vortex flow, considering a Reynolds number of 1600 and a Mach number of 1.25. The

numerical schemes considered include high-order Finite Differences, Targeted Es-

sentially Non-Oscillatory, Discontinuous Galerkin and Spectral Difference schemes.

The shock capturing methods include high-order filtering, localized artificial diffu-

sivity, non-oscillatory numerical fluxes and local low-order switching. The ability

of the various high-order numerical methodologies to both capture shocks and

represent accurately the development of turbulent vortices is assessed.

Keywords: Supersonic Taylor-Green Vortex; Turbulence; High-order; Targeted

Essentially Non-Oscillatory; Discontinuous Galerkin; Spectral Difference; Shock

capturing
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I. Introduction

The accurate representation of turbulent scales using high-fidelity modeling approaches

such as Direct Numerical Simulation or Large-Eddy Simulation is particularly challenging

in engineering practice due to the wide range of scales considered and their interaction

with numerical errors stemming from the discretization method. For such problems, it is

customary to employ high-order numerical methods that provide low levels of numerical

dissipation and dispersion, enabling an accurate representation of the small scales of

turbulence. However, high-order numerical schemes are often less robust than their lower

order counterparts, posing problems when considering stiff problems such as supersonic

flows and shock waves. A number of industrial applications involve shock/turbulence

interactions, such as cruising aircraft configurations or engines. In this context, it is of

the utmost importance to establish numerical schemes that are robust regarding shock

capturing and retain a high accuracy for the representation of the turbulent scales.

In the present paper, several of those methodologies are compared based on a canonical

shock/turbulence interaction flow problem, namely the supersonic Taylor-Green vortex.

The incompressible - or low Mach - Taylor-Green vortex flow problem1 has become a

widely used test case for assessing numerical flow solvers, and in particular their ability

to characterize precisely the development of turbulence scales2–5. More recently, a su-

personic version of this flow problem has been introduced6, which features turbulence

scales progressively breaking down and their interactions with shocks, allowing as as-

sessment of the ability of numerical methods to capture shocks, whilst still accurately

representing the turbulence cascade. This case is of great interest for comparing numerical

methods, as its initial condition is analytical and can be exactly reproduced in different

flow solvers. The supersonic Taylor-Green vortex case has been introduced recently and,

to the authors’ knowledge, this is the first time a cross-comparison involving several

numerical methodologies is performed for this test case. In terms of physical phenomena,

it features transition, fully developed turbulence, strong shocks and shock-turbulence

interaction. The closest configuration in terms of flow physics would be compressible

isotropic turbulence. This flow features small-amplitude shocks (or shocklets) interacting

with turbulence and might resemble the later stages of evolution of the supersonic Taylor

Green vortex case used in the present work7.
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In this work, established Finite Difference schemes and modern variants for shock

and turbulence capturing are considered, as well as more recent Discontinuous Finite

Element methods for which the treatment of such problems is still an open topic of in-

vestigation. Among the numerical methods considered, we consider Targeted Essentially

Non-Oscillatory (TENO)8, Discontinuous Galerkin (DG)9, Spectral Difference (SD)10,11,

Flux Reconstruction (FR)12, and compact Finite Difference (FD)13,14 schemes. Without any

specific treatment of the discontinuities, high-order solvers tend to produce oscillations

around shocks, which eventually lead to non-physical states, such as negative values of

density or pressure. In this study, shock capturing is handled either by non-oscillatory nu-

merical fluxes, high-order filters, Localized Artificial Diffusivity (LAD) or local switching

to a lower order, more robust scheme (i.e. an embedded Finite Volume TVD scheme). A

mesh convergence study is conducted and the ability of each method to capture large and

small turbulent scales, as well as shocks depending on the resolution, is assessed from

select quantities of interest.

The paper is organized as follows. First, the governing equations and description of the

Taylor-Green Vortex flow case are described in section II, as well as the reference solutions

and quantities of interest. Section III presents the various numerical methodologies

considered in the present work. Section IV concerns the description and analysis of the

results. Finally, conclusions are drawn in Section V.

II. Governing equations and flow problem specification

A. Compressible Navier-Stokes equations

The compressible Navier-Stokes equations governing compressible fluid flow motion

are considered:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂ρu

∂t
+∇ · (ρu ⊗ u + pI − τ) = 0 (2)

∂ρE

∂t
+∇ · (u(ρE + p)− τ · u + q) = 0 (3)
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where ρ is the density, E the total energy, u is the velocity vector, q = −λ∇T is the heat

flux and τ = µ(T)
(

∇u +∇u
T − 2

3(∇ · u)I
)

is the viscous stress tensor. The dynamic

viscosity is expressed as a function of temperature following Sutherland’s law:

µ(T) =
1.4042(T/Tre f )

1.5

T/Tre f + 0.4042
µre f (4)

The thermal conductivity is defined as λ = µ
Cp

Pr , with Pr the Prandtl number set to the

value 0.71. The pressure is a function of the conservative variables following the ideal gas

equation of state:

p = (γ − 1)

(

ρE −
1

2
u · u

)

(5)

where γ is the specific heat ratio set to the value 1.4 suitable for air.

B. Taylor-Green Vortex flow setup

The Taylor-Green vortex problem features the analytical initialization of large vortices

in a cubic, periodic computational domain and the subsequent transition and breakdown

of the initial vortices towards a turbulent state. The computational domain is a cubic box

Ω = [−πL, πL]3 with periodic boundary conditions. In terms of primitive variables, the

initialization features a constant temperature field and reads:

u(x, t = 0) =





















U0sin
(

x
L

)

cos
( y

L

)

cos
(

z
L

)

−U0cos
(

x
L

)

sin
( y

L

)

cos
(

z
L

)

0





















(6)

p(x, t = 0) = p0 +
ρ0U2

0

16

(

cos

(

2x

L

)

+ cos

(

2y

L

))(

2 + cos

(

2z

L

))

(7)

T(x, t = 0) = T0 (8)

T0 is set to the reference temperature Tre f of the Sutherland law. The Mach and Reynolds

numbers are defined as M0 = U0

√

ρ0
γp0

and Re = ρ0U0
µ0

, respectively. This particular

initialization features an isothermal flow field, with variations of the density and pressure

in the domain. Figures 1 illustrates the vortices and density gradients relative to this flow
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FIG. 1. TGV flow at Re = 1600 and M0 = 1.25: Q-criterion iso-surfaces colored by the density

gradient magnitude, extracted from a 2563 degrees of freedom simulations with 4th order of

accuracy using the CODA DG solver. Left: initial condition; Right: field at t = 10.

problem at the initial time and the time t = 10 for which the turbulent structures have

developed in the computational domain.

C. Flow diagnostics and reference solution

As flow diagnostics, we consider the time evolution of three quantities of interest,

spatially integrated over the computational domain Ω. For each quantity described,

we also present a mesh convergence study of the M0 = 1.25/Re = 1600 case obtained

with the OpenSBLI15 solver using a 6th order TENO scheme for consistency with the

original work on this benchmark problem6. TENO schemes8 are a fairly recent (2016)

addition to the family of Essentially Non-Oscillatory (ENO) shock-capturing schemes that

have been in use for several decades in high-speed CFD research. They improve upon

previous ENO and Weighted Essentially Non-Oscillatory (WENO) schemes by having

considerably lower numerical dissipation, while still retaining robust shock-capturing

capability6. These characteristics make them ideal for simulating compressible turbulence

with shockwaves and, therefore, a suitable choice for providing the benchmark solutions

in this work. TENO schemes achieve this behavior via a modified ENO-like staggered
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stencil layout, and a strong scale-separation procedure for controllable low dissipation.

TENO schemes have already been applied to a wide range of complex fluid flow problems.

A comprehensive review on the different variants and their applications was given in16.

The extremely fine meshes used for the reference solutions in this study required

substantial computational resources on distributed-memory supercomputing clusters.

For the finest mesh solution of 20483 DoFs provided by the OpenSBLI solver with a

6th-order TENO scheme, a total of 57,600 ARM-based Fujitsu A64FX CPU cores (1200

nodes, 48 CPU cores/node) were utilised. In addition to the compute requirements, the

reference solutions require large amounts of disk storage and memory. With 20483 DoFs,

each three-dimensional snapshot of the flow-field requires 520GB of storage in double

precision.

While OpenSBLI is more frequently used on GPU-based machines, the flexibility of the

OPS parallel library allowed us to explore a hybrid MPI+OpenMP CPU-based approach

for this study instead. In total, 4800 MPI ranks were used at N = 20483 (4 ranks per node,

1 distributed to each Core Memory Group (CMG)), with 12 OpenMP threads on each rank.

For a non-dimensional time-step of ∆t = 2.5 × 10−4, 80,000 time-steps were required for

a non-dimensional integration period of t = 20. For an average iteration time of around

1.53 seconds, the total runtime was 34 hours. On the requested resources this equates to

40,800 node hours, or, equivalently, 1.96 million core hours.

The first quantity is the kinetic energy, which is representative of the large scale motion

in the flow:

Ek =
1

2ρ0U2
0 |Ω|

∫

Ω

ρu · udΩ (9)

In terms of engineering practice, this quantity is of importance as it characterizes the

energy carried by the turbulent motion, and is therefore the target quantity of interest to

be captured accurately in turbulence simulations. It is carried mainly by the large vortices

in the flow. At sufficiently high Reynolds numbers, the kinetic energy is conserved in the

early stages of the large scale evolution, and starts being dissipated when the turbulence

cascade generates smaller scales, that are impacted by molecular viscous effects. As a

result, relatively coarse grids are able to capture this quantity, as it is carried by the large

scales in the flow that, depending on the accuracy of the scheme considered, require few

points per vortex to be precisely described numerically. Figure 2 displays the kinetic
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FIG. 2. Mesh convergence study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

kinetic energy using OpenSBLI/6th order TENO scheme.

energy evolution for a 6th order TENO scheme and resolutions ranging from 643 to 20483

spatial degrees of freedom (DoFs). We clearly see a fast mesh convergence of this quantity,

as the 1283 resolution is sufficient to capture accurately the kinetic energy carried by large

scales in the flow. Thus, this quantity will be of interest to assess the resolution needed for

a given numerical scheme to capture accurately large-scale vortices. The decaying part

is also relevant to evaluate how the energy transfers from large-scales into smaller-scale

turbulence are handled by the scheme.

The second quantity of interest is the solenoidal part of the kinetic energy dissipation,

which is directly related to the vortical motion in the flow:

ϵs =
L2

ReU2
0 |Ω|

∫

Ω

µ(T)

µ0
ω · ωdΩ (10)

where ω is the vorticity vector. This quantity is sensitive to the development of small scales

in the flow, which carry a significant vortical intensity. The magnitude of this quantity

increases significantly as the large scales break into smaller structures, and therefore

provides a good diagnostic to assess the ability of a given numerical scheme to represent
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FIG. 3. Mesh convergence study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

solenoidal dissipation using OpenSBLI/6th order TENO scheme.

accurately the breakdown mechanism and small-scale structures dynamics. Compared to

the kinetic energy, the solenoidal dissipation is more challenging to capture numerically,

and finer resolutions/more accurate schemes are required to represent accurately this

quantity. Figure 3 displays the mesh convergence for this quantity, showing here that with

the 6th order TENO scheme, a 5123 resolution is required for converging towards the exact

values and capture all turbulent scales. In this study, the amplitude of enstrophy will

be directly correlated to the ability of a given numerical scheme to represent accurately

small-scale turbulence.

The third quantity is the dilatational component of the kinetic energy dissipation, and

is related to compressibility effects:

ϵd =
4L2

3ReU2
0 |Ω|

∫

Ω

µ(T)

µ0
(∇ · u)2dΩ (11)

This quantity is strongly impacted by the onset of shocks in the flow, which are char-

acterized by peaks in the dilatational dissipation evolution. Figure 4 displays a mesh

convergence of the dilatational dissipation time evolution using the 6th order TENO
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FIG. 4. Mesh convergence study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

dilatational dissipation using OpenSBLI/6th order TENO scheme.

scheme. First, two peaks are clearly identified, the first being linked to shocks develop-

ing with little interaction with the vortices, while the second corresponds to the onset of

shock/turbulence interaction. It is interesting to see that mesh convergence is not achieved

on the first peak, as the shocks are becoming sharper corresponding to an increasing mag-

nitude of the divergence of velocity. Ultimately, a mesh convergence of velocity gradients

should be reached when the molecular viscosity operator is able to smooth the shocks,

which is not yet observed even with a 20483 resolution with 8 billion DoFs. The second

peak seems to be mesh converging faster, possibly due to the presence of multiple shock

systems, being less intense than the shocks present in the earlier flow development steps.

The dilatational dissipation is therefore a meaningful quantity as its amplitude allows for

assessing the sharpness of shocks developing in the flow, and oscillations in this quantity

are also a good diagnostic to detect the presence of Gibbs phenomena around the shocks,

and possible flaws in the numerical strategies for shock capturing.
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III. Numerical methodologies

A. Summary of numerical methodologies

This study involves different type of numerical discretization and shock capturing

approaches for the simulations of the supersonic turbulent flows. Mainly two classes of

solvers are considered, high-order finite difference solvers and high-order Discontinuous

Finite Element solvers. In the following, a brief description of the two families is provided:

• High-Order Finite Difference approaches: FD techniques are particularly suited

for turbulence simulation, as very high-orders of accuracy can be achieved on

structured grids. However, shock capturing coupled with such schemes can prove

difficult, as those schemes can become unstable in the presence of discontinuities.

Several stabilizing techniques can be employed. The NS3D17 solver utilizes the

high resolution of compact finite differences combined with high-order filtering,

for this study it was chosen to refrain from additional targeted shock-capturing

approaches to stabilize the simulations. SPADE18 uses a kinetic energy/entropy

preserving formulation coupled with a local switching to WENO flux reconstruction

near shocks to provide stable and accurate simulations. OpenSBLI15 uses high-order

TENO schemes with the shock capturing embedded in the definition of numerical

fluxes while providing an accurate representation of turbulence.

• Discontinuous Finite element approaches: the solvers SD3DvisP19 (abbreviated

SD3D), CODA20, FLEXI21 and H3AMR22 solve the Navier-Stokes equations using

piecewise polynomial approximations of arbitrary order of accuracy per mesh el-

ement. The polynomial bases are local, meaning the continuity of the solution is

not enforced at element interfaces. The elements are connected via numerical fluxes

defined for the computation of interface integrals. Typically, the element sizes em-

ployed for DG or SD are larger compared to FV or FD methods due to the subcell

variations of the numerical solution. This is problematic for shock capturing as a

shock located inside a cell is represented by a polynomial approximation which is

likely to display strong oscillations. The oscillations are controlled via a localized dif-

fusion operator for the DG (CODA) and SD (SD3D) codes or via an embedded Finite
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Volume solver with a limiter (FLEXI). DG and SD methods provide accurate shock

sensors, based on the amplitude of the highest polynomial modes of a given quantity

(typically the density or pressure), which provide an estimation of the smoothness

of the solution. SD3D features a Spectral Difference scheme which belongs to the

category of nodal DFEM, for which the DoFs are the conservative variables values

at given quadrature points inside the mesh elements and the Lagrange polynomial

basis is considered. CODA features a modal DG scheme for which the solution is

expressed as a superposition of spatial modes, the DoFs being the magnitude of

each mode (i.e. the weighting factors of the constant, linear, quadratic or higher

degree modes) and the basis functions being orthonormal and hierarchical poly-

nomials. FLEXI features a nodal DG scheme on a tensor product formulation of

Lagrange basis functions and a collocation of interpolation and integration nodes on

Legendre-Gauss-family sets.

All shock capturing approaches considered in this study, excluding the one of NS3D,

rely on a specific numerical treatment around shocks which are detected using discon-

tinuity or smoothness sensors, therefore it is expected that the orders of accuracy of the

schemes are preserved away from discontinuities. As regards NS3D, the simulations are

stabilized using a filter which order is greater than the order of accuracy of the scheme,

therefore it is expected as well to recover the nominal order of accuracy away from shocks.

As this study focuses on spatial accuracy, robustness and shock capturing assessment,

the time advance schemes considered for all flow solvers rely on classical third or fourth

order Runge-Kutta methods, which is the standard practice for the simulation of unsteady

compressible flows7.

In order to verify the correct implementation of the numerical set-up for each solver,

computations of the Taylor-Green vortex at low Reynolds and subsonic conditions have

been carried out at fine resolution and compared to ensure that all solvers provide similar

solutions in the absence of shocks, see Appendix A. The following sections describe in

more detail the flow solvers considered in the present study.

12

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
6
3
5
9



B. Flow solvers description

a. Discontinuous Galerkin Solver - CODA

CODA20 is the CFD software jointly owned and developed by ONERA, DLR and

Airbus with the purpose of applied research and aerodynamic design in the aeronautic

industry. CODA features several numerical schemes for solving Navier-Stokes and RANS

equations, including Finite Volumes and high-order Discontinuous Galerkin schemes

tailored for complex geometries and mixed-element unstructured grids (featuring hexahe-

dra, tetrahedra, pyramids or prisms). In this work, we are interested in the DG scheme

in CODA for which the numerical solution is expressed as a polynomial expansion of

degree p in each of the mesh elements. The polynomial basis is constructed to verify the

properties of hierarchy and orthonormality for any mesh elements23. The size of the basis

is determined using Pascal triangle products, yielding (p + 1)(p + 2)(p + 3)/6 basis func-

tions per element in three spatial dimensions. Additional details about the formulation

can be found in24. The numerical flux chosen for the integration of the convective face

fluxes is the Roe flux with an entropy fix, the entropy fraction is set to a standard value 0.1.

The viscous fluxes are discretized using the BR1 approach by Bassi and Rebay25, while the

time integration is performed using a third-order explicit Runge-Kutta scheme. As regards

the BR1 approach, it is chosen over the BR2 approach26 as it avoids tuning the penalty

parameter for the BR2 gradient reconstruction on faces. The volume and face integrals

appearing in the variational formulation of the DG discretization are computed using

tensor-product Gauss-Legendre quadrature rules with (p+ 1)3 and (p+ 1)2 points, respec-

tively. The shock capturing technique is based on the Persson and Peraire sensor27 with the

formulation and calibration of Glaubitz et al.28. The idea is to identify troubled cells where

shocks are present based on the amplitude of highest density polynomial modes, build an

artificial viscosity scaled by the maximum wave-speed in the computational domain and

apply a localized artificial dissipation in those cells. The operator chosen for the diffusion

is a Laplacian acting on all conservative variables. To enable an accurate representation

of turbulence near shocks, the artificial viscosity is multiplied on each quadrature points

by the Ducros function29, which reduces its amplitude in vorticity-dominated regions.

Additionally, in order to enhance robustness of the flow solver, the positivity preserving

limiter of Wang et al.30 is applied whenever a negative pressure or density is detected at

13
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an element or face quadrature point of the DG discretization.

b. Conservative Finite Difference Solver - SPADE

Static Polymorphic Algorithms for Differential Equations (SPADE) is a newly-developed

library for the solution of spatially-varying differential equations using finite-volume and

finite-difference methods. SPADE is written in native C++20 and makes heavy use of

metaprogramming to provide a device-agnostic framework for the implementation and

optimization of arbitrary numerical kernels. The solver used in this study is a prototype

for a new version of the CHAMPS (Cartesian High-fidelity Adaptive Multi-Physics Solver)

code from University of Maryland31,32.

For this study, a conservative finite-difference formulation is employed. The viscous

fluxes are computed using a standard 2nd-order scheme. To compute the inviscid fluxes,

a hybrid scheme is employed as detailed in18: two fluxes are computed, one of which

is done using a centered kinetic energy and entropy preserving scheme33,34 (centered

schemes of order 2, 4, 6, and 8 are considered in this work), and the other is a 3rd-order

upwind flux reconstruction. The two schemes are combined with a linear homotopy using

the shock sensor from Ducros et al.29 as a parameter. There is no model introduced to

account for subgrid scales.

SPADE is developed jointly between the University of Oxford and the University of

Maryland.

c. High-order Finite Difference Solver - OpenSBLI

OpenSBLI15 is an open-source high-order compressible multi-block flow solver on struc-

tured curvilinear meshes, developed at the University of Southampton and JAXA. Written

in Python, OpenSBLI utilizes symbolic algebra to automatically generate a complete

finite-difference CFD solver in the Oxford Parallel Structured (OPS)35 Domain-Specific

Language (DSL). Users can define systems of partial differential equations to solve, which

are expanded and discretized symbolically to create a simulation code tailored to the

problem specified. The OPS library is embedded in C/C++ code, enabling massively-

parallel execution of the code on a variety of high-performance-computing architectures

via source-to-source translation, including GPUs. OpenSBLI is explicit in both space and

time, with a range of different discretization options available to users.

For smooth flows, spatial discretization is performed by arbitrary order central dif-

ferences written in quadratic and cubic split forms36. Central schemes are also used for

14
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computing diffusive and heat flux terms. Shock-capturing is performed via Weighted

Essentially Non-Oscillatory (WENO) and Targeted Essentially Non-Oscillatory (TENO)

schemes8 of arbitrary order. The shock-capturing schemes can either be used to solve

the convective terms directly, or, as a filter step to stabilize the non-dissipative central

schemes. The shock-capturing schemes use a Local Lax-Friedrich (LLF) method to build

the flux reconstruction. Time-advancement is performed by 3rd or 4th order low-storage

Runge-Kutta schemes37. The efficacy of the shock-capturing schemes in OpenSBLI was

assessed for the compressible Taylor-Green vortex case in6 and for compressible wall-

bounded turbulence in38. OpenSBLI also contains adaptive-TENO schemes, which further

lower numerical dissipation via tuning with the addition of a shock sensor. For simplicity,

however, the original 6th order standard TENO formulation8 is used in this work. A

TENO cut-off threshold value of CT = 1 × 10−6 is used here for a good balance between

low numerical dissipation and robust shock-capturing.

d. High-order Finite Difference Solver - NS3D

NS3D is a compressible high-order DNS code being continuously developed at the IAG

of the University of Stuttgart. NS3D is written in FORTRAN 2008 and solves the three-

dimensional, unsteady, compressible Navier–Stokes equations in conservative formulation

and Laplace formulation of the viscous terms. NS3D features fully three-dimensional

domain decomposition17; communication along the internal boundaries of the resulting

blocks is handled by MPI routines; in addition, the code is hybrid parallelized by means

of OpenMP directives. For spatial discretization, multiple high-order finite-difference

approaches are implemented; for all present computations, subdomain tridiagonal 6th-

order compact finite differences are used employing several ghost derivatives outside

the subdomain ends, see39,40. Time advancement is performed by the classical explicit

4th-order Runge-Kutta scheme, which can be coupled with unconditionally alternating

forward- and backward-biased finite differences for the convective terms, see14,39. In

addition, a compact 10th-order filter is used every full time step to stabilize the simulation41

(filter equal in all spatial directions, α = 0.4), further allowing to treat the convective terms

with purely central schemes for all present cases. For all NS3D simulations of the Taylor-

Green test case presented in the following, stable results were already obtained without

the additional use of shock capturing. Therefore, as a valuable comparison reference for

cases with active shock-capturing, it was decided to calculate all NS3D results without

15
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additional shock-capturing. Obviously, however, this approach only gives high-quality

results for cases with adequate DNS resolution but leads to strong oscillations in e.g. the

later shown Mach number profiles in the shock regions for the under-resolved cases. In

nondimensionalized units, the time steps for the four simulations have been chosen to

be ∆t = 0.00125, 0.0025, 0.005 and 0.01 for the 5123, 2563, 1283 and 643 resolution cases,

respectively. Post-processing is performed with 6th order compact finite differences and

thus with the same schemes as the simulations were run. For lower orders, e.g. explicit 4th

order finite differences, deviations in ϵs of up to 5% have been found for the supersonic

case.

e. High-order Spectral Difference Solver - SD3DvisP

The SD3DvisP solver, originally developed by Antony Jameson’s group at Stanford

University, is an MPI parallelized FORTRAN 90 code for compressible viscous flows

based on the high-order spectral difference (SD) scheme for unstructured hexahedral

elements.10,19,42,43‘ Inviscid numerical fluxes at element interfaces are computed via the

Roe’s Riemann solver with entropy fix44. In particular, the first Harten and Hyman

entropy correction is considered45,46. As regards the viscous fluxes, the centered flux

introduced by Sun, Wang, and Liu 42 is considered. The time integration is done explicitly

with a third-order, three-stage, total variation diminishing (RK33-TVD) Runge-Kutta

scheme.47 The shock capturing technique considered for SD3DvisP is described in detail in

Lodato 48 and is based on the sub-cell shock capturing method27,49 with the shock sensor

based on density modes and the artificial viscosity parameters (including the ramp and

threshold parameters) being set using a self-calibration procedure. The amplitude of

artificial viscosity Cε is set to 0.5 instead of 1 to avoid too strong CFL restrictions. The

artificial viscosity is first computed as a single value in each mesh element, then made C0

continuous via linear interpolation. To do so, an average of the artificial viscosity values is

computed at each node of the mesh from the values in the surrounding elements, then

local linear interpolations weights are found using the 8 nodal values per hexahedral

element corresponding to the elements vertices. The artificial viscosity values are then

interpolated at volume quadrature points. The artificial diffusion operator considered

is the one presented in Tonicello, Lodato, and Vervisch 50 , where the artificial diffusion

acts as a bulk viscosity on the momentum equations, and as a thermal diffusivity on the

energy equation. No artificial diffusion is considered for the mass conservation equation.
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A positivity preserving procedure is also employed to enhance the robustness of the

simulations.48,51

f. Discontinuous Galerkin Spectral Element solver - FLEXI

FLEXI52 is an open source framework for solving hyperbolic - parabolic systems of

equations on unstructured grids via a high order Discontinuous Galerkin Spectral Element

Method (DGSEM)21. The main areas of application of FLEXI are multiscale / multiphase /

multiphysics problems of compressible aerodynamics53. FLEXI is developed and main-

tained by the Numerics Research Group at the IAG of the University of Stuttgart. The

framework consists of the open source high order preprocessor HOPR54 for handling

and generation of curved, unstructured grids, the PDE solver FLEXI and a high order

postprocessing suite with ParaView plugin. All parts are written in FORTRAN 2008

and parallelized with MPI3.0; strong scaling on up to 262.000 CPUs shows superlinear

behaviour down to one element per processor55.

In this study, FLEXI discretizes the compressible Navier-Stokes equations by a fourth

order accurate DGSEM scheme in space, optionally combined with a subcell finite volume

method to capture regions with shocks. Temporal integration is performed by a fourth

order accurate low storage, explicit Runge-Kutta scheme37. In the DGSEM formulation,

the solution is approximated by tensor products of 1D-Lagrange polynomials of arbitrary

degree N on a reference element. The local polynomial degree can be adapted dynamically

to the solution. The nodes for this basis are chosen as Legendre-Gauss or Legendre-

Gauss-Lobatto points. This collocation of interpolation and integration points transfers

the tensorproduct structure to the DG operator and results in dimension-by-dimension

operations, as opposed to volume operations in other DG variants. As an inviscid numeri-

cal flux function, the approximate Riemann solver by Roe with an entropy fix is used. The

second entropy fix of Harten and Hyman was used46, which has the benefit of not having

a user-defined constant entropy-fix threshold. For the viscous fluxes, the first method of

Bassi and Rebay is chosen25. Various subgrid scale closure models for LES computations

are available, however in this study, no explicit modelling of the unclosed terms is present.

Shock capturing is based on a hybrid Finite Volume / DGSEM scheme. In grid elements

in which a suitable sensor detects the occurence of a shock wave, the DG solution is

projected onto a compatible FV subgrid (Cartesian in reference space) that shares the same

data-structure as the DG solution. On this element-local subgrid, instead of the DGSEM

17
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scheme, a second order TVD FV scheme with a generalized minmod limiter56 is solved. To

detect discontinuous solution features, an indicator based on the modal decomposition of

the polynomial solution ansatz is employed. It is evaluated on the pressure and infers the

smoothness of the element local solution from the exponential decay rate of the modes57,58.

The combination of a high order DG scheme with a local and robust FV formulation

allows an efficient resolution of smooth regions and a sharp capturing of discontinuities

through an adaptation of the approximation space to the underlying solution. More details

on this hybrid DGSEM / FV scheme, its implementation and validation for single- und

multiphase flows can be found in57,59,60.

g. Flux Reconstruction solver - H3AMR

H3AMR (HySonic, High-Order, Hybrid Adaptive Mesh Refinement)22,61,62 is an in-

house code developed by HySonic Technology, LLC. The code solves the compressible

Navier-Stokes equations using the flux reconstruction12 numerical scheme for unstruc-

tured meshes. The solver is block-spectral based10 therefore the simulation domain is

divided into blocks - or mesh elements - and inside each element, the solution is stored

at N Gauss-Legendre quadrature points in each direction, N corresponding here also

to the spatial order of accuracy. Hence, the number of elements is equal to the number

of DoFs divided by N3. The code has several capabilities from different LES and shock

capturing methods to h and p refinement capabilities. For the purpose of this work, we are

going to explain only the functionality used for this simulation. Time advancement is a

third-order Runge-Kutta method. The flux reconstruction method relies on an average of

different orders of Radau polynomials to compute the correction functions and the fluxes

are updated at the faces using the Rusanov method. The shock capturing method is a new

numerical method developed in Carlo Scalo’s group at Purdue University called Block

Spectral Stresses (BSS)63, able to do shock-capturing and turbulence modeling at the same

time. The modeling is specifically developed for the flux reconstruction method and it

relies on the spectra of the velocity gradient to compute the sub-filter stresses, heat flux,

and pressure-work.

h. Summary of shock capturing approaches

In this paragraph, the various shock capturing strategies considered for the present

study are briefly reviewed. All of them introduce additional numerical dissipation or

limiting with the aim of smoothing the numerical solution around shocks and mitigate the

18
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Gibbs oscillations.

To do so, SD3D, CODA and H3AMR use a dissipation operator explicitly added to

the Navier-Stokes equations. For SD3D and CODA, it takes the form of a Laplacian

operator impacting all conservative variables, while for H3AMR the dissipative operator

mimicks a molecular dissipation, impacting the momentum and total energy variables.

The strategies in FLEXI, SPADE and OpenSBLI aim at switching locally to a lower-order

scheme featuring improved shock-capturing properties. FLEXI uses a second-order FV

scheme with the total variation diminishing property, while SPADE uses a third-order

weighted-essentially-non-oscillatory (WENO) scheme. As regards OpenSBLI, the switch

to lower-order is part of the design of the TENO method. NS3D considers a filtering of

the numerical solution using a high-order finite difference operator, which effectively

smoothes the solution at all time steps.

A second important ingredient common to all present methodologies, except NS3D,

is the sensor driving the local activation of the specific shock-capturing treatment. The

discontinuous finite element-based schemes SD3D, CODA, FLEXI and H3AMR exploit

the element-wise polynomial information to devise such sensor. SD3D and CODA use the

sensor introduced by Persson and Peraire27 which isolates the highest density polynomial

mode in the element, providing a local estimation of the smoothness of the numerical

solution. FLEXI uses a similar idea by estimating the exponential decay of the polynomial

modes magnitude in the elements58. H3AMR also uses the energy related to the high-

est polynomial mode of momentum to activate locally the shock-capturing treatment63.

SPADE uses the well known Ducros function29 - which tends to 0 when the vorticity

magnitude locally dominates the divergence of velocity magnitude and to 1 otherwise - to

blend the high-order and diffusive spatial schemes. The TENO scheme in OpenSBLI relies

as well on smoothness indicators based on the polynomials used for the reconstruction of

the numerical solution.
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TABLE I. Summary of numerical methods employed in the present study

Solver Numerical method Order of accuracy Shock capturing

CODA20 Modal DG 4 LAD

SPADE18 Central FD 8 Local upwinding

OpenSBLI15 FD-TENO 6 TENO

NS3D17 Central FD 6 HO filter

SD3DvisP19 SD 4 LAD

FLEXI21 DGSEM 4 subgrid FV

H3AMR22 FR 2 LAD

TABLE II. Number of mesh elements and DoFs for Discontinuous Finite element discretization

Solver Order of accuracy #Mesh elements #DoFs

CODA20 4 233 - 473 - 943 - 1893 243,340 - 2,076,460 -

16,611,680 - 135,025,380

SD3DvisP19 4 163 - 323 - 643 - 1283 643 - 1283 - 2563 - 5123

FLEXI21 4 163 - 323 - 643 - 1283 643 - 1283 - 2563 - 5123

H3AMR22 2 323 - 643 - 1283 - 2563 643 - 1283 - 2563 - 5123

IV. Supersonic Taylor-Green vortex simulations: Results and discussion

A. Integrated quantities

This section presents the results obtained with the various flow solvers introduced

in Section III for the simulation of the supersonic Taylor-Green vortex at Mach 1.25 and

Reynolds number 1600. A summary of the solvers, numerical methods, order of accuracy

and type of shock capturing is displayed in Table I. All solvers are considering high orders

of accuracy except for H3AMR which runs with a second order of accuracy. This is of

interest to assess how high-order schemes behave compared to standard second order

schemes for such problems. A mesh convergence study is performed considering four

resolution levels with respectively 643, 1283, 2563 and 5123 degrees of freedom. Regarding

finite difference-based solvers, the number of DoFs is equivalent to the number of mesh

points considered. However, for discontinuous finite element solvers, considering the
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polynomial resolution inside elements, the total number of DoFs is higher than the number

of mesh elements, and summarized in Table II. The 643 DoFs resolution is coarse and is

not expected to fully resolve the fine turbulent scales or the shock features. This coarse

resolution might be relevant for Large-Eddy Simulation modeling, however considering

the relatively low Reynolds number of this configuration, we assume in this work that

the inherent dissipative properties of the considered numerical schemes are sufficient

to mimic the subgrid dissipation. For the 5123 DoFs resolution, we expect the turbulent

scales to be fully or nearly fully resolved, while the shock profiles are expected to become

sharper but not fully resolved.

Figures 5, 6 and 7 display the time evolution of kinetic energy, dilatational dissipation

and solenoidal dissipation, respectively. The results are presented for all solvers and

resolutions.

Regarding the kinetic energy evolution, all solvers are able to capture it accurately with

1283 DoFs and above. Although the agreement is also good for the 643 grid, this resolution

features the most differences between flow solvers and is therefore interesting to discuss

further. An underestimation of kinetic energy levels in the early stages is observed for

the CODA (DG), SD3DvisP (SD) and OpenSBLI (TENO) flow solvers. This behavior is

likely to be related to the intrinsic numerical dissipation of these schemes, stemming from

Riemann-based numerical fluxes defined at the interfaces between elements. On the other

hand, the SPADE and NS3D solvers based on numerical dissipation-free high-order FD

strategies provide a very accurate prediction of kinetic energy on the coarse grid in the

early and intermediate flow regimes (about up to t = 12), but display slightly excessive

levels in the later stages (t > 12), for which the turbulence is fully developed and the large-

scale energy cascade communicates kinetic energy towards the smallest scales that can be

represented by the discretization. This behavior could be explained by a slight small-scale

energy pile-up located around the grid cut-off wavenumber and a lack of subgrid scale

closure, as in this case the central FD schemes (unlike upwinded schemes) do not introduce

a sufficient numerical dissipation that could mimic the subgrid dissipation. The results of

FLEXI are more consistent with the FD-based solvers SPADE and NS3D, despite using

the same Riemann-based flux approximations as CODA and SD3DvisP. However, the

shock capturing strategy of FLEXI and thus the introduced numerical diffusion differs

considerably from the LAD approaches, which likely explains these differences. Finally,
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the H3AMR second order 643 DoFs simulation displays underestimated kinetic energy

levels representative of an excess of numerical dissipation, typically found for second

order upwind schemes. It is interesting to verify that higher order schemes with the same

number of DoFs have better kinetic energy resolution properties in this case. Overall, the

present results confirm that all schemes considered provide an accurate representation of

the large turbulent scales in the flow and therefore low numerical dissipation levels in the

lower wavenumber range, which is a typical feature of high-order schemes that all solvers

manage to preserve in this compressible/shock-turbulence interaction case.

The dilatational dissipation levels, governed by the magnitude of divergence of veloc-

ity, are mainly driven by strong compression and dilatation effects, which in turn leads

to a significant contribution of shocks that are numerically correlated with important

divergence levels. Low levels of dilatational dissipation will tend to indicate that a given

shock capturing method is strong, and yield smooth and thick shock profiles. Conversely,

methods able to yield sharp shock profiles will display higher levels, with the risk of pro-

ducing oscillations which can also appear in the time evolution of dilatational dissipation.

We can clearly see that NS3D, which features a high-order central FD scheme coupled

with a high-order filtering, yielding overall low levels of shock-dissipation, produces the

highest magnitude of dilatational dissipation among the solvers considered, with oscilla-

tions around the first peak identified for all resolutions. FLEXI results display a slightly

lower dissipation and comparable oscillations for the lower resolutions. This behavior is

due to the switching of the DG operator to a FV operator and back for individual grid

elements as shock appear or decay. Next, CODA (DG) and OpenSBLI (TENO) provide

lower levels, but with reduced oscillations, in particular for OpenSBLI which is clear of

oscillations regardless of the grid resolution. CODA starts displaying slight oscillations

around the first peak with the 2563 resolution, which could be related to the locality of

artificial diffusivity, which transitions sharply from zero to maximal values in cells where

shocks are localized. SPADE, SD3D and H3AMR appear to be the most impacting solvers

with respect to shock capturing, and display the lower levels of dilatational dissipation on

all grids.

Lastly, the solenoidal dissipation, being correlated to the quality of resolution of the

smaller turbulent scales, is assessed. This quantity is more challenging to capture correctly

compared to the kinetic energy as seen from Figure 7, and is also likely to be impacted
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by the shock capturing strategy, which might dissipate excessively small turbulent scales.

Some discrepancies are observed between flow solvers, in particular considering the

coarser resolutions. The rate of convergence with respect to the resolution also differs

from method to method. CODA, FLEXI and NS3D display the highest levels on all

grids, which could be explained by their relatively lenient shock capturing approach,

which does not interfere much with the onset and dynamics of the small turbulent scales.

It is interesting to note that NS3D provides smooth solenoidal dissipation evolutions,

as well as satisfactory mesh convergence, which indicates that a mild shock capturing

approach does not seem to impact the characterization of small vortices. SPADE displays

lower levels, which in the same fashion can be explained by the interaction of the shock

capturing scheme with the development of small vortices. SD3D starts off with high levels

of solenoidal dissipation on the coarse grid, but falls in the lower range for more refined

resolutions. Here again, its strong shock capturing strategy is probably hindering to some

extent the development of small scales on the finer grids. Finally, OpenSBLI displays

low levels on coarse grids but good convergence properties, as its levels of solenoidal

dissipation move into the higher range among flow solvers when the grid is refined. As

regards the H3AMR results, they clearly show that second order schemes struggle with

capturing accurately fine turbulent scales, as the levels are lower compared to higher-order

solvers for all resolutions. Here again, the interest of increasing the order of accuracy

for an accurate capture of shocks interacting with small-scale turbulence is emphasized.

Overall, all solvers display a comparable and consistent behavior regarding the solenoidal

dissipation, showing that most of the turbulent dynamics is captured by all solvers using

a resolution of 2563 DoFs or above. For coarser grids, present results emphasize that

high-order schemes are still able to capture a significant part of the small-scale dynamics.

In particular, discontinuous finite elements schemes seem to be efficient in that respect.

For all high-order schemes, the solenoidal dissipation plots show that small turbulent

scales are better represented with respect to a second-order discretization.
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FIG. 5. Code comparison study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

kinetic energy for the four resolutions considered. Top left: 643 DoFs; Top right: 1283 DoFs; Bottom

left: 2563 DoFs; Bottom right: 5123 DoFs. Reference: 20483 sixth-order TENO simulation.
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FIG. 6. Code comparison study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

dilatational dissipation for the four resolutions considered. Top left: 643 DoFs; Top right: 1283 DoFs;

Bottom left: 2563 DoFs; Bottom right: 5123 DoFs. Reference: 20483 sixth-order TENO simulation.
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FIG. 7. Code comparison study for the TGV flow at Re = 1600 and M0 = 1.25: Time evolution of

solenoidal dissipation for the four resolutions considered. Top left: 643 DoFs; Top right: 1283 DoFs;

Bottom left: 2563 DoFs; Bottom right: 5123 DoFs. Reference: 20483 sixth-order TENO simulation.

26

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
2
0
6
3
5
9



B. Mach profiles

In this part, the numerical representation of shocks by the various methods is assessed

from Mach profiles extracted along x = z = 0 y lines in the computational domain. The

chosen time is t = 2.5, which corresponds to the peak of dilatational dissipation, for which

the shocks are the strongest.

The results are displayed in Figure 8 for the four resolutions considered. We can observe

different behavior between the various flow solvers. On the coarser grids featuring 643

and 1283 DoFs, NS3D, which only relies on a high-order filter for stabilization without

any particular treatment of shocks, clearly displays the strongest Gibbs oscillations. On

the other hand, SD3D, which features the strongest shock capturing approach, displays

oscillation-free but thick shock representations. The TENO6 scheme of OpenSBLI displays

sharp shocks and is oscillation-free for all cases considered. CODA also displays sharp

profiles with limited oscillations on all grids, emphasizing the potential of Discontinuous

Galerkin type of discretization to capture shocks efficiently despite the large element sizes.

The shock profiles produced by FLEXI are the sharpest ones due to the embedded FV

scheme. They match the reference solution shock profiles on the 2563 grid, but show oscil-

lations below this resolution. In summary, while all presented solvers converge towards

the reference solution, this comparison stresses the consequences of different numerical

strategies and highlights the complex, non-linear interplay between discretization proper-

ties, shock capturing and turbulent flows. In particular, this study shows the difficulty

of obtaining a consistent shock capturing technique accross all resolutions considered.

Indeed, several shock capturing techniques are found to produce oscillations on coarse

grids, which vanish when the mesh is refined. TENO schemes and LAD-based schemes

seem to perform better at mitigating shock oscillations for all grid resolutions. This topic

could be investigated in future research to yield further improvements of the proposed

techniques.
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FIG. 8. Code comparison study for the TGV flow at Re = 1600 and M0 = 1.25: Mach profiles

extracted from the y line at x = z = 0, for the four resolutions considered. Top left: 643 DoFs; Top

right: 1283 DoFs; Bottom left: 2563 DoFs; Bottom right: 5123 DoFs.

V. Conclusions

Several high-order spatial schemes were tested for the shock-turbulence interaction

problem stemming from the supersonic Taylor-Green case at Reynolds 1600 and Mach

1.25. The spatial discretization approaches featured both high-order finite element and

high-order finite differences with a variety of shock capturing techniques including LAD,

filtering, upwind numerical fluxes and subcell limiting. From the time evolution of ki-

netic energy, integrated over the computational domain, the large-scale dynamics were

found to be accurately captured by all high-order schemes, even considering coarse grids.

Solenoidal dissipation plots also showed an accurate representation and fast mesh con-
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vergence regarding the small-scale dynamics. Mach profiles and dilatational dissipation

plots showed differences in the treatment of shocks by the various numerical strategies

considered. Strong shock capturing strategies yield thick shock profiles and low levels of

dilatational dissipation, while more lenient strategies tend to display Gibbs oscillations

and high levels of dilatational dissipation.

Overall, this study showed the capability of high-order schemes to represent accu-

rately turbulence dynamics in a compressible setting, with a low impact of the shock

capturing treatment on the representation of turbulent scales. A few notable points can be

highlighted:

• In terms of shock capturing methods, all approaches considered were able to provide

a qualitatively similar representation of shocks on fine grids. Most differences were

observed on coarser grids, for which it was found that approaches combining

artificial diffusion yield smooth but thick shock profiles, while approaches relying

on local switching to lower-order schemes tend to provide sharp but oscillating

shocks, except the TENO scheme which displays relatively sharp shocks without

oscillations. The finite difference scheme using only a high-order filter to stabilize

simulations provided the highest oscillations.

• In terms of spatial accuracy, all high-order schemes considered provided an accurate

representation of the kinetic energy and large turbulent scales, even considering

coarser grids. As regards solenoidal dissipation and small-scale dynamics, solvers

provided similar results on fine grids but differences were observed on the coarser

grids. Discontinuous finite element schemes - including DG, SD and DGSEM vari-

ants - captured well the small scales on coarser grids, as well as high-order finite

difference with high-order filtering stabilazation. Finite difference with local scheme

switching as well as high-order TENO yield more small-scale dissipation. Over-

all, better large and small-scale turbulence resolution properties were found for

high-order schemes against second-order solutions, even in the present challenging

compressible setting.

• The dilatational dissipation quantity provides valuable information on the represen-

tation of shocks by the numerical method. Its amplitude is directly related to the

strength of the shock capturing method and the shock thickness. Strong LAD-based
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shock capturing techniques, such as the one used in the SD3D code, yield the lowest

values and thicker shock profiles while NS3D, which features only a stabilization

technique with no specific shock treatment, yield the highest values and strong shock

oscillations. Oscillations in time of the dilatational dissipation were also found to

be correlated with Gibbs oscillations around shocks. In future studies, additional

quantities characterizing compressibility effects could be considered - such as the

temperature variance7 - in order to quantify better the quality of resolution of such

effects by the numerical methods.

This study has highlighted some methodological aspects that could benefit from future

improvements: reduce shock oscillations for approaches based on a local switch to a

lower-order scheme; increase shock sharpness while keeping low oscillations for artificial

viscosity-based approaches; pursue the development of shock or smoothness sensor to

maximize the quality of both shock and turbulence resolution for any grid refinement.

This study focused on the assessment of spatial discretization schemes, but future

investigation could also address the assessment of time integration schemes and their

influence on the accuracy and performance of simulations.

The current work showed promising progress in the development of a variety of high-

order schemes - including FD, SD, DG, DGSEM and FR - in order to perform accurate

and robust numerical simulations of complex phenomena involving strong shocks and

turbulence. Applications of interest involve cruising aircraft configurations, atmospheric

re-entry vehicles, supersonic engines or astrophysical fluid dynamics.

Future research will consider similar comparison of numerical approaches for more

complex cases, including shocks interacting with wall-bounded turbulence.

A. Code verification, TGV case at Re = 500, M0 = 0.5

This appendix presents a verification study of the flow solver implementations of the

Taylor-Green vortex case, including the various codes considered in the present study. To

alleviate the computational burden of this verification and the potential variations due

to shock capturing techniques, the flow conditions are set to Re = 500 and M0 = 0.5,

ensuring a limited turbulent scales development and a subsonic regime. The target

resolution is 2563 DoFs, which should suffice for most numerical schemes, based on the
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observation that a case at Re = 500 and M0 = 0.1 was fully resolved in terms of kinetic

energy and enstrophy using a Fourier spectral method and 1283 DoFs5. For the present

simulations, minor offsets were observed for the SPADE and SD3D codes using a 2563

resolution, hence 5123 and 3843 resolution were considered for these codes, respectively,

to ensure that the offsets were due to insufficient mesh convergence rather than problems

in the initialization and discretization. As regards H3AMR, a 3203 DoFs resolution with

a fourth order of accuracy was considered for this verification run. The simulations are

run up to t = 10 which is sufficient to assess the code behavior from the initial condition

to the end of the turbulent small-scales build-up process. The results of the verification

runs are shown in Figures 9 and 10. We find that the agreement between codes is perfect

for the time evolution of kinetic energy and solenoidal dissipation, showing an identical

representation of the full extent of turbulent scales by all codes and methods. The same

observation applies for the dilatational dissipation up to t = 9, after which there are minor

discrepancies between codes, probably due to high resolution needed for capturing short

acoustic waves radiated by the small-scale turbulent structures. Overall, the verification

test is successful in confirming that all codes provide a sound implementation of the

compressible Taylor-Green vortex case considered in the present study.
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FIG. 9. Code validation for the TGV flow at Re = 500 and M0 = 0.5: Time evolution of kinetic

energy.
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FIG. 10. Code validation for the TGV flow at Re = 500 and M0 = 0.5: Time evolution of solenoidal

dissipation (left) and dilatational dissipation (right).
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