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Abstract
We seek the global minimum of a quadratic function f with box constrained
variables. For this goal, we underestimate f by a convex piecewise-quadratic
function defined as the maximum of p ≥ 1 convex quadratic functions (p under-
estimators). We show that when p → ∞ the optimal solution of this relaxation
converges to an optimal solution of the strong "Shor plus RLT" semi-definite
relaxation of the initial problem. To compute the new relaxation, we introduce an
iterative algorithm that adds convex quadratic cuts (or cutting-quadrics) one by
one in cutting plane fashion. The resulting convexification is tighter than the one
produced by previous related methods that use p = 1, i.e., using multiple under-
estimators leads to a stronger convexification than using a unique one (as in past
work). Its integration into a spatial branch-and-bound algorithm brings a second
advantage: compared to previous work, we can refine the lower bound at each
node of the branching tree. This is because we are able to compute underestima-
tors that act specifically on any particular node of the branching tree. Numerical
results show that even a small value of p ∈ {2, 3} can often be enough to reduce
the branching tree size by half compared to sticking to p = 1. The resulting
algorithm is also competitive in terms of CPU time compared to well-established
solvers that rely on other techniques.

Keywords: Quadratic Programming, piecewise-uadratic underestimator,
cutting-quadrics algorithm
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1 Introduction and literature review
Our goal is to find the exact solution of the following non-convex Quadratic Box-
constrained Program (QBP ):

(QBP )

{
min f(x) ≡ ⟨Q, xx⊤⟩+ c⊤x

ℓi ≤ xi ≤ ui ∀i ∈ I (1)

where ⟨A,B⟩ = ∑n
i=1

∑n
j=1aijbij , I = {1, . . . , n}, (Q, c, ℓ, u) ∈ Sn × Rn × Rn × Rn,

and Sn is the set of real symmetric matrices of order n. Without loss of generality,
we assume that the box constraints (1) take the form xi ∈ [0, 1] and that the feasible
domain of (QBP ) is non-empty.

(QBP ) is a fundamental NP-hard global optimization problem [1]. Although (1)
is the simplest non-convex quadratic optimization program, finding its global opti-
mum remains very challenging even for medium sized instances. Since f is a not a
convex function, many local optima may not be global; standard approaches for solv-
ing (QBP ) to global optimality include spatial branch-and-bound algorithms [2–4]
combined with convex relaxations to determine lower bounds (see for instance [5, 6]).
These convex relaxations are typically either linear, quadratic convex or semi-definite.
The solution space is partitioned by branching along the spatial branch-and-bound
execution, so as to tighten the convex relaxation as the nodes cover a smaller and
smaller feasible area. This family of methods also apply to more general classes of
quadratic problems involving quadratic constraints or mixed-integer variables (see for
instance [6–9]).

1.1 Main relaxations from the literature
Many relaxations from the literature express the quadratic function in an extended
space of variables, introducing new variables Yij that are meant to satisfy Yij = xixj ,
for all (i, j) ∈ I2 where I2 is the carthesian product of set I. This standard approach
was first used for linearizing f , obtaining the following reformulation of (QBP ):

(LP )


min fL(x, Y ) ≡ ⟨Q,Y ⟩+ c⊤x

ℓi ≤ xi ≤ ui ∀i ∈ I (2a)
Y = xx⊤ (2b)

Problem (LP ) is equivalent to problem (QBP ), since when (x∗, Y ∗) is a feasible solu-
tion to (LP ), x∗ is also feasible for (QBP ), and both problems have the same objective
value (i.e. fL(x∗, Y ∗) = f(x∗)). Thus, (QBP ) can be solved by a spatial branch-and-
bound based on the linear relaxation obtained by relaxing the non-convex feasible set
(2a)–(2b) by its convex hull. Since it may be hard to completely describe this convex
hull (see [10–12]), it is preferable to construct an outer approximation based on the
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McCormick’s envelopes [13] captured by the following set M:

M := (x, Y ) ∈ Rn × Sn :



Yij ≤ ujxi + ℓixj − ℓiuj (i, j) ∈ I2

Yij ≤ ℓjxi + uixj − uiℓj (i, j) ∈ I2

Yij ≥ ujxi + uixj − uiuj (i, j) ∈ I2

Yij ≥ ℓjxi + ℓixj − ℓiℓj (i, j) ∈ I2
ℓi ≤ xi ≤ ui ∀i ∈ I

(3a)

(3b)

(3c)

(3d)
(3e)

In the resulting linear relaxation called (LP ), inequalities (3a)–(3e) involve the
lower and upper bounds (ℓ and u) on the original variables x. Then, since the branching
rules update the interval [ℓ, u] at each node of the branching tree, these inequali-
ties become tighter and tighter in the course of the spatial branch-and-bound; this
improves the value of the relaxation along the search, as deeper and deeper sub-nodes
with shorter and shorter intervals [ℓ, u] are generated. This approach is used by several
authors (see for instance [13–15]). In order to tighten (LP ), several families of valid lin-
ear inequalities were introduced (see for instance [5, 16]) and added to the formulation
by use of a cutting-plane approach. This idea is used by most software implement-
ing the methods described above, see, e.g., Baron ([17]), GloMIQO ([8, 18, 19]), or
Gurobi ([20]). Although the evaluation of a linear relaxation is fast, the associ-
ated bound is often too weak, and the use of (LP ) or its extensions in a spatial
branch-and-bound often fails to solve medium-sized problems to global optimality.

In order to get tighter relaxations of (QBP ), using semi-definite relaxations within
branch-and-bound frameworks was also widely studied ([3, 4, 6, 21–23]). A semi-
definite relaxation of (QBP ) can be obtained by lifting x to a symmetric matrix
X = xxT where these non-convex constraints are relaxed to X−xxT ⪰ 0, where M ⪰ 0
means that M is positive semidefinite. By using the Schur complement, X − xxT ⪰ 0
is equivalent to (4e) below. After linking variables X and x with the McCormick con-
straints (4a)-(4d) and linearizing the objective function, we obtain the following model
(introduced in [21]) referred to as the “Shor’s plus RLT” relaxation of (QBP ). The
associated bound is very tight, but solving (SDP ) in practice may be prohibitively
slow even for medium-sized programs; this makes its direct and full integration into a
branch and bound framework rather impractical.

(SDP )



min f(X,x) ≡ ⟨Q,X⟩+ cT x

Xij ≤ ujxi + ℓixj − ℓiuj (i, j) ∈ I2 (4a)

Xij ≤ ℓjxi + uixj − uiℓj (i, j) ∈ I2 (4b)

Xij ≥ ujxi + uixj − uiuj (i, j) ∈ I2 (4c)

Xij ≥ ℓjxi + ℓixj − ℓiℓj (i, j) ∈ I2 (4d)(
1 xT

x X

)
⪰ 0 (4e)

x ∈ Rn X ∈ Sn (4f)
A third family of classical approaches relies on convex quadratic relax-

ations, including in particular methods MIQCR (Mixed Integer Quadratic Convex
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Reformulation) and extensions ([24–26]). In these approaches, a quadratic convex
relaxation of (QBP ), referred to as (PS∗

0
) and formally defined below, is calculated

by exploiting the above (SDP) relaxation. The strength of this approach is that the
optimal value of (PS∗

0
) is equal to that of (SDP ). In fact, any SDP matrix S0 ⪰ 0 can

produce a relaxation (PS0
), but the optimal one is obtained by constructing matrix

S∗
0 from the optimal dual solution of (SDP ). We need to solve (SDP ) only once for

this very purpose.
Once the optimal S∗

0 is determined, the original problem is then solved by a
branch-and-bound based on the relaxation (PS∗

0
). The problem is also expressed in the

extended (x, Y ) space; the reformulated objective can be seen as a quadratic surface
(quadric) described by:

fS0(x, Y ) = ⟨S0, xx
⊤⟩+ c⊤x+ ⟨Q− S0, Y ⟩, (5)

where S0 ⪰ 0 can be any SDP matrix. It is easy to check that for any S0 ⪰ 0, the
function fS0 is convex; we also have fS0(x, Y ) = f(x) if Y = xx⊤. Note moreover
that if S0 is the positive semi-definite null matrix, we have fS0(x, Y ) = fL(x, Y ),
which corresponds to simply linearising f . In other words, the reformulated objective
function above includes the linear relaxation as special case (when taking S0 = 0).

Let us now formally define model (PS0). Considering all above information
together, the following model is equivalent to (QBP ) and the objective is convex for
any S0 ⪰ 0:

(PS0
)


min fS0

(x, Y ) ≡ ⟨S0, xx
⊤⟩+ c⊤x+ ⟨Q− S0, Y ⟩ (6a)

Y = xx⊤ (6b)
ℓi ≤ xi ≤ ui i ∈ I (6c)
Y ∈ Sn (6d)

Then, as for the linear relaxation, the non-convex feasible set can be relaxed with
the outer approximation based on the setM of McCormick envelopes, leading to the
following quadratic convex relaxation:

(PS0
)

{
min fS0

(x, Y ) ≡ ⟨S0, xx
⊤⟩+ c⊤x+ ⟨Q− S0, Y ⟩ (7a)

(x, Y ) ∈ M (7b)

One strength of this method is that (SDP ) is solved only once at the root node of
the spatial branch-and-bound leading to a quadratic convex relaxation with the same
value as the optimum of (SDP ). The equivalence between both problems holds at
the root node, i.e. for the initial lower and upper bounds ℓ and u only. In the course
of the spatial branch-and-bound of MIQCR, we use the same S∗

0 ; the same non-SDP
convex program (PS∗

0
) is solved at each sub-node of the branching tree, even if the

interval [ℓ, u] is updated along the execution. This is significantly faster than solving
a semi-definite optimization problem at each sub-node of the tree, i.e., for each [ℓ, u].
However, for a given sub-node (i.e., when ℓ and u are updated), the optimal value of
(PS∗

0
) is no longer equal to that of the (SDP ) program associated to the updated ℓ

and u.
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1.2 Our contributions
Our goal is to design an approach that aims at reaching the value of (SDP ) for any
interval [ℓ, u] corresponding to any sub-node of the branching tree. We can strengthen
the convexification at each sub-node by enriching (PS∗

0
) with quadratic convex cuts

(hyper-surfaces) specifically tailored to the current [ℓ, u] (corresponding to the current
sub-node). As mentioned previously problem (PS∗

0
) captures the tightness of (SDP )

at the root node (i.e. for the initial values of ℓ and u), but not for each sub-node (i.e.
with updated values of ℓ and u). We aim at improving the value of (PS∗

0
) at each

sub-node by strengthening it with specifically tailored quadratic cuts, to make the
convexification at the local sub-node for the current [ℓ, u] tend to the associated value
of (SDP ).

For this purpose, our main idea is to replace the unique function fS0
with multiple

functions fSk
,Sk ⪰ 0, with k = 0, 1, 2, . . . p and p a given integer. We then minimize,

over all (x, Y ) ∈M, the following function:

f∗(x, Y ) = max
k={1,...,p}

fSk
(x, Y )

Let us focus on Figure 1. Since each function fSk
is quadratic and convex, notice

we obtain a piecewise-quadratic convex underestimator f∗. In our main algorithm, the
idea is to generate the functions fk one by one as in a cutting-planes approach, since
each function fk+1 aims at cutting the current optimal solution (xk, Y k) at iteration k
by making it sub-optimal. In our new general scheme, the relaxation (PS0

) corresponds
to the case p = 1. Figure 1 also illustrates how this approach with multiple quadratic
cuts (p > 1) may generate a tighter more refined convexification than MIQCR (p = 1)
even without necessarily improving the value of the general lower bound.

fS2
fS0

fS1 A D B C (x,Y) 

f

Fig. 1: Convex function fS0
in black may reach its minimum over many solutions of the

(x, Y ) space (see the long flat segment [A,D]), because S0 may have a large null space, often of
dimension close to n

2 . The resulting convexification in light-gray is weaker than the piecewise-
quadratic convexification from the striped area (max of fS0

, fS1
and fS2

) that has the same
minimum; this latter convex function reaches its minimum over a segment [B,C] shorter than
[A,D].
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The above piece-wise quadratic function f∗ is convex, but it is particularly com-
putationally demanding to optimize it repeatedly. Each time f∗ integrates a new
quadric (at each iteration), we have to call a convex QCQP (quadratically constrained
quadratic programming) solver to determine its new optimal solution. This is the main
computational bottleneck of the overall approach and it is very important to accelerate
this solver in practice. We thus propose the following speed-up technique: identify the
variables that do no change too much from one QCQP call to another and strongly
limit their variation at each new QCQP call. The effect is similar to reducing the
number of variables. If the resulting optimal solution stays strictly inside the box
associated to the imposed variation limit, we considered the speed-up technique was
successful. Otherwise, the technique failed and we may have remove the box and call
the full solver; this is described in Section 4.2.

The road-map of the paper is as follows. Section 2 introduces (PK), a parameter-
ized family of piecewise-quadratic and convex relaxations of (QBP ). We then show
that for any [ℓ, u], the associated value of (SDP ) is equal to the optimal value of
(PK), i.e., it is equal to the best relaxation within this family. Section 3 introduces
an iterative Cutting Quadrics Algorithm (CQA) that iteratively refines convexifi-
cation (PK) by adding convex quadratic cuts one by one. This algorithm proceeds in
cutting-plane fashion, using quadratic hyper-surfaces (or quadrics) instead of hyper-
planes to iteratively tighten the relaxation. In Section 4, we integrate Algorithm CQA
within a branch-and-bound scheme to solve (QBP ) to global optimality. Finally,
Section 5 presents experimental results on the boxqp instances, suggesting that our
new approach is faster than state-of-the-art solvers, and is able to significantly reduce
the number of nodes in comparison to the basic MIQCR algorithm.

2 A family of convex piecewise-quadratic relaxations
Given a set K = {Sk ⪰ 0 , k = 0, 1, . . . , p} of SDP matrices, the multi-cut version of
(PS0

) from (6a)–(6d) takes the form below, forming a family of equivalent formulations
of (QBP ) indexed by set K:

(PK)



min t

t ≥ ⟨Sk, xx
⊤⟩+ c⊤x+ ⟨Q− Sk, Y ⟩ Sk ∈ K (8a)

Y = xx⊤ (8b)
ℓi ≤ xi ≤ ui i ∈ I (8c)
Y ∈ Sn, t ∈ R (8d)

Like in the mono-cut version (6a)–(6d), the only non-convexity of (PK) comes
from constraints (8b) that we can classically relax using the set M of McCormick
envelopes (3a)–(3d). We thus obtain (PK) a family of convex relaxations of (QBP )
indexed by the same set K as above:

(PK)


min t

t ≥ ⟨Sk, xx
⊤⟩+ c⊤x+ ⟨Q− Sk, Y ⟩, Sk ∈ K (9a)

(x, Y ) ∈ M (9b)
Y ∈ Sn, t ∈ R (9c)
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Clearly, for any set K, the problem (PK) is a relaxation of (QBP ), since for any
solution x̄ of (QBP ) of value t, the solution (x̄, x̄x̄⊤, t) is feasible for (PK) with the
same value t. Moreover, since all matrices Sk ∈ K are positive semi-definite, each
constraint (9a) define a quadratic convex set, and so, (PK) is a convex problem. Now,
given an integer p, we consider the problem (LBp) of determining the best set of
matrices K∗ = {S0, S1, . . . Sp}, in the sense of leading to the tightest lower bound of
(QBP ):

(LBp)

{
max

S0,S1,...Sp⪰0

v
(
PK={S0,S1,...Sp}

)
where v(P ) stands for the optimal value of problem (P ).

This connects our work with previous convex relaxations [24–26], since when we
restrict (PK) to p = 1 (i.e. K = {S0}), we obtain the original MIQCR method from [25].
It is proven in [26], that, the optimal solution of (LB1) can be derived from the
optimal dual solution of (SDP ) from (4a)–(4f). It is, moreover, proven in [26] that, if
strong duality holds for (SDP ), the optimal value of (LB1) equals the optimal value
of (SDP ) which is always the case in a quadratic box-constrained problem. We now
state Proposition 1
Proposition 1. v(LB∞) = v(LBp) = . . . = v(LB1) = v(SDP ).
Proof. The last equality (for p = 1) follows from [26, Theorem 3.1]. Moreover, by
construction, we obviously have v(LB∞) ≥ v(LBp) ≥ . . . ≥ v(LB1) = v(SDP ). We
now show v(LB∞) ≤ v(SDP ). Take a feasible solution (x,X) of (SDP) of objective
value f(X,x) = ⟨Q,X⟩+ cTx. The solution (Y = X,x = x) is feasible for (PK) with
a value of

max
k∈K
⟨Sk, xx

⊤ −X⟩+ c⊤x+ ⟨Q,X⟩ ≤ f(X,x)

since ⟨Sk, xx
⊤ − X⟩ ≤ 0, which is true for any Sk ⪰ 0 given that xx⊤ − X ⪯ 0 by

virtue of (4e). 2

Our idea in the rest of the paper is to use Proposition 1 to reinforce at each sub-
node of the spatial branch-and-bound the value of the lower bound, if possible up to
reaching the optimum (SDP ). Starting from any initial set K, we introduce a cutting
quadrics algorithm, which adds convex quadratic hyper-surfaces (which amounts to
add positive semi-definite matrices to set K) at each iteration. We will next present the
Cutting Quadrics Algorithm (CQA) algorithm as well as its proof of convergence.

3 An algorithm for computing a tight quadratic
convex relaxation

We now introduce our Cutting Quadrics Algorithm (CQA) that aims at solving
(LB∞) by extending the cutting-planes idea to the case of quadratic convex hyper-
surfaces. Our idea is to start from an initial relaxation (PK0

) associated to an initial
set K0 of positive semi-definite matrices. We consider the assumption that the set K0

contains at least the null matrix (denoted by 0n), but it can also be composed of any
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Y

x

f(x)

fS1(x0, Y0)–fS0(x0, Y0)

fS0

{

(x0, Y 0) =

opt(PK0
) and

x0x0>−Y 0 � 0

• Y

x

f(x)

•

fS1

(x1, Y 1) =

opt(PK1
) and

x1x1>−Y 1 � 0

•

Fig. 2: The Cutting Quadrics Algorithm (CQA) starts from an initial convex function fS0

(blue surface) of problem (PK0
) whose optimal solution is (x0, Y 0), see the small blue disk.

Then it generates matrix S1 to make point (x0, Y 0) reach a penalized higher objective value
of fS1

(x0, Y 0), as marked by the black vertical arrow in both figures. Thus, after adding
function fS1

(red surface) to (PK0
), the optimal solution of (PK1

) moves to (x1, Y 1).

other positive semi-definite matrices like for instance the best matrix S∗
0 determined

by MIQCR. At each iteration k, CQA calls a convex QCQP (quadratically constrained
quadratic programming) solver to determine the optimal solution (xk, Y k, tk) of (PKk

),
where tk is its optimal value. It then constructs a matrix Sk+1 ⪰ 0 such that solu-
tion (xk, Y k, tk) becomes sub-optimal for (PKk+1

), i.e., for the new program (9a)-(9c)
enriched with the following convex quadric:

t ≥ fSk+1
= ⟨Sk+1, xx

⊤⟩+ c⊤x+ ⟨Q− Sk+1, Y ⟩

Let us focus on Figure 2 please. Each new iteration k+ 1 aims at cutting solution
(xk, Y k) when solving (PKk+1

). We can say (xk, Y k) is separated in a cutting-planes
fashion, but we use convex quadratic cuts instead of separating hyperplanes.

The key idea is to determine a new matrix Sk+1 such that the additional quadric
penalizes (very heavily) the optimal solution from the previous iteration (xk, Y k). For
a given rk > 0, we take Sk+1 = rk ·vmaxv

⊤
max, where vmax is the eigenvector of matrix

(xkxk⊤−Y k) of maximum eigenvalue. With an appropriate setting of the parameter rk,
this choice ensures that solution (xk, Y k) will become sub-optimal in the new program
(PKk+1

), i.e., defining Sk+1 as above with a very large rk will induce a prohibitively
large penalty ⟨Sk+1, x

kxk⊤ − Y k⟩ on point (xk, Y k). The choice of matrix Sk+1 is
not unique, and in practice, we can also define Sk+1 = rk

∑
viv

T
i , where the sum is

carried out over all eigenvectors vi having a positive eigenvalue. This will enable the
new quadric to penalize larger areas of the (x, Y ) space, i.e., more solutions (x, Y )
such that ⟨Sk+1, xx

⊤ − Y ⟩ > 0.

The overall solution method is summed up in Algorithm 1, and we prove its conver-
gence in Theorem 1. Note that, as previously mentioned, we start with the assumption
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that set K0 will at least integrate the null matrix 0n, that corresponds to the standard
linearization of f .

Algorithm 1: The Cutting-Quadrics Algorithm (CQA)
Input : variable bounds ℓ and u, initial penalty parameter r0, precision

parameter δ, (optional) initial matrices K0

Output: The best lower bound on (LB∞)
K0 ← K0 ∪ {0n} // K0 may contain the optimal matrix used by MIQCR
(x0, Y 0, t0) ← Solve(PK0) // variable t0 is the optimum obj. value
k ← 0
while (xkx

k⊤ − Y k ⪯̸ 0) // In practice we use λmax(x
kx

k⊤ − Y k) ≥ δ
do

rk = r0 + k // A penalty parameter;
vk ←the eigenvector of xkxk⊤ − Y k of maximum eigenvalue
Sk+1 ← rk · vkv⊤k // Or rk ·∑ viv

T
i , where the sum is carried

// out over all eigenvectors vi having a positive eigenvalue
Kk+1 = Kk ∪ Sk+1

(xk+1, Y k+1, tk+1) ← Solve
(
PKk+1

)
k ← k + 1

return tk as the optimal solution of (QBP ) if Y k = xkxk⊤, or as a lower bound
otherwise

We now state Theorem 1 ensuring that our algorithm stops when tk reaches the
optimal value of (SDP ).
Theorem 1. When k → ∞, the value of the solutions tk generated by Algorithm 1
converge to the optimal value of (SDP ).
Proof. In order to prove that QCA converges to the optimal value of (SDP ), i.e. that
tk

∗
= v(SDP ), we decompose the proof in three steps:

i) we first show that each intermediate optimal solution (xk, Y k, tk) such that
λmax(x

kxk⊤ − Y k) > 0 will be separated by CQA;
ii) we prove that λmax(x

kxk⊤ − Y k) converges to 0 as k →∞;
iii) we finally prove that tk reaches the optimal value of (SDP ) when k →∞.

(i) Recall (xk, Y k, tk) is the optimal solution to (PKk
) of iteration k of objective value

tk. We first prove that the new quadric fSk+1
forces CQA to change the current optimal

solution (xk, Y k, tk), or equivalently that the value of (PKk+1
) at point (xk, Y k) is

always greater or equal than tk. Let vk be the eigenvector of matrix (xkxk⊤ − Y k)
of maximum eigenvalue λmax. By definition, we have Sk+1 = rk · vkv⊤k and we can
develop:
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fSk+1
(xk, Y k)− fSk

(xk, Y k) = ⟨Sk+1, x
kxk⊤⟩+ c⊤xk + ⟨Q− Sk+1, Y

k⟩
− ⟨Sk, x

kxk⊤⟩ − c⊤xk − ⟨Q− Sk, Y
k⟩

= ⟨Sk+1, x
kxk⊤ − Y k⟩ − ⟨Sk, x

kxk⊤ − Y k⟩
= ⟨rk · vkv⊤k , xkxk⊤ − Y k⟩ − ⟨rk−1 · vk−1v

⊤
k−1, x

kxk⊤ − Y k⟩
= rkλmax − ⟨rk−1 · vk−1v

⊤
k−1, x

kxk⊤ − Y k⟩
> rkλmax − rk−1λmax,

where the last inequality holds for any Sk of the form rk−1vk−1v
⊤
k−1, based on the

following well-known property [27, §3.2]:

λmax = max
u∈Rn||u||=1

⟨uu⊤, xkxk⊤ − Y k⟩

This proves fSk+1
(xk, Y k) > fSk

(xk, Y k) = tk, because rk > rk−1. Recall the first line
of the while loop constructs rk = rk−1+1 (and after another i iterations rk+i is even
higher) so that the penalty imposed on (xk, Y k) by the use of Sk+1 forces CQA to move
from (xk, Y k, tk) to another solution.

We still need to show that fSk+1
(xk, Y k) > fSk

(xk, Y k) also holds for the very first
step, when k = 0 and Sk no longer has a form rk−1vk−1v

⊤
k−1. The initial quadrics

belong to a set K0 provided by the user. The inequality remains true using a high
enough r0 since

fK0
(x0, Y 0) = max

Si∈K0

{⟨Si, x
0x0⊤⟩+ c⊤x0 + ⟨Q− Si, Y

0⟩}

fK0
(x0, Y 0) <⟨r0 · v0v⊤0 , x0x0⊤⟩+ c⊤x0 + ⟨Q− r0 · v0v⊤0 , Y 0⟩, (10)

where in the last inequality we used ⟨v0v⊤0 , x0x0⊤ − Y 0⟩ > 0 which is true because
vector v0 corresponds to the maximum eigenvalue of x0x0⊤ − Y 0 which is considered
positive here. Still, depending on the initial set K0, we may need a very large initial
r0 (in theory).
(ii) We will now prove that for any δ > 0 no matter how small, there exist some k
such that λmax

(
xkxk⊤ − Y k

)
< δ for any k ≥ k.

Suppose for the sake of contradiction that this is not the case. This means that the
algorithm generates an infinite number of matrices (xkxk⊤−Y k) ∈ Sn that all satisfy
λmax

(
xkxk⊤ − Y k

)
≥ δ. The Bolzano-Weierstrass theorem states that any infinite

sequence in a bounded set (recall that (x, Y ) belong to the unit hypercube) contains
a convergent subsequence. This means that there exists a subsequence (ki) such that
(xkixki⊤− Y ki) converges to some fixed point xx⊤− Y when i→∞. By assumption,
this convergence point satisfies λmax

(
xx⊤ − Y

)
≥ δ.

Let us study how the above subsequence (ki) stays in a box very close to (x,X).
For any infinitesimal ϵ, there exists some kϵ such that for any ki > kϵ in the above
subsequence, any element in matrix (xkixki⊤−Y ki) is at a distance smaller than ϵ from
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the corresponding element of (xx⊤−Y ), i.e., it stays in a neighborhood Nϵ of (xx⊤−Y )
of ∞-norm below ϵ. Moreover, since λmax is a continuous function, we also have for a
sufficiently small ϵ, λmax(xx

⊤−Y ) > δ′ > 0 ∀(x, Y ) ∈ Nϵ for some δ′ arbitrarily close
to δ. All points ki > kϵ in above subsequence will satisfy λmax(x

kixki
⊤ − Y ki) > δ′.

But here comes the contradiction : for a sufficiently large k̂i, we have rk̂i = r0 +

k̂i so that fSk̂i
(x, Y ) will include a penalty of at least rk̂iδ′ that can become large

enough to make any (x, Y ) ∈ Nϵ sub-optimal. In other words, at some iteration k̂i,
the weight rki will become large-enough to cut the whole box, since the associated
penalty rk̂iλmax(x

k̂ixk̂i
⊤
− Y k̂i) > rk̂iδ′ is very large. Thus, no iteration after k̂i of

above subsequence can stay in Nϵ and this is a contradiction.
(iii) We now prove that tk → v(SDP ).

Let us first take any convergence point (x, Y , t) of Algorithm 1 that has to satisfy
λmax(xx

⊤ − Y ) ≤ 0 according to point (ii) above. This means xx⊤ − Y ⪯ 0. We will
use this x and Y to build a feasible solution of (SDP ) such that t ≥ v(SDP ). Since
(xx⊤ − Y ) ⪯ 0, the solution (x = x,X = Y ) is feasible for (SDP ) with a value of
c⊤x + ⟨Q,Y ⟩ ≥ v(SDP ). The optimal value t can be written as below (regardless of
how exactly K was constructed):

t =max
S∈K

⟨S, xx⊤ − Y ⟩+ c⊤x+ ⟨Q,Y ⟩ = c⊤x+ ⟨Q,Y ⟩

The last equality holds since max
S∈K

⟨S, xx⊤ − Y ⟩ = ⟨0n, xx
⊤ − Y ⟩ = 0 which is true

because 00 ∈ K0 and because ⟨S, xx⊤ − Y ⟩ ≤ 0 for any positive semi-definite matrix
S ∈ K.

Since (x̄, Ȳ ) is feasible for (SDP ), this proves that t ≥ v(SDP ).
We now show t ≤ v(SDP ). Take the optimal solution (x̃, Ỹ ) of (SDP) and notice

that it is feasible for (PKk
), i.e., for program (9a)-(9c) using any quadrics K = Kk

constructed by the algorithm. The value of t has to be lower or equal to the objective
value of (x̃, Ỹ ) in (PKk

) which is

max
S∈Kk

⟨S, x̃x̃⊤ − Ỹ ⟩+ c⊤x̃+ ⟨Q, Ỹ ⟩ = max
S∈Kk

⟨S, x̃x̃⊤ − Ỹ ⟩+ v(SDP ) ≤ v(SDP ),

where we simply used ⟨S, x̃x̃⊤ − Ỹ ⟩ ≤ 0. This follows from S ⪰ 0 and x̃x̃⊤ − Ỹ ⪯ 0,
which holds by virtue of (4e). 2

The proof of Theorem 1 implies the following Corollary.

Corollary 1. Algorithm 1 solves problem (SDP ). In particular, if (x, Y , t) is a con-
vergence point of Algorithm 1, (Y , x) is an optimal solution to (SDP ) with a value
of t = v(SDP ).

Theorem 1 thus states that Algorithm 1 computes a quadratic convex relaxation
that reaches the value of (SDP ). Within a branch and bound framework, we obtain
the same lower bound as MIQCR at the root node but we may obtain improved lower
bounds at the subnodes discovered by branching. Moreover, as mentioned previously,
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the additional quadrics may tighten the convexification by reducing the set of optimal
equivalent solutions at each sub-node (like in Figure 1). This increases the potential of
the new convexification when integrated within a spatial branch-and-bound algorithm.
The numerical experiments will show that the total number of nodes may be halved
even if Algorithm 1 only produces very few quadrics (few iterations of the while loop).

Recall that Algorithm 1 can start from any set K0. To improve its convergence,
we describe hereafter several ways to populate K0, whose size is not limited. The
first one consists of adding to K0 the optimal matrix calculated by MIQCR, which is
S∗
0 = Q+Φ1 +Φ2 −Φ3 −Φ4, where Φ1, Φ2, Φ3, Φ4 are the symmetric matrices built

from the optimal dual variables associated with the McCormick constraints (4a)–(4d)
of (SDP ). While this implies solving a large SDP problem at the root node, it can
reduce the number of CQA iterations. Another choice relies on extracting the convex
part of Q, by constructing the matrix

S+
0 =

∑
λiviv

T
i (11)

where the sum is carried over all non-negative eigenvalues λi of Q associated to eigen-
vectors vi. Preliminary tests show that integrating these constraints is a good choice
for all CQA variants.

4 The spatial branch-and-bound to optimally solve
(QBP )

We are now interested in computing the optimal solution of (QBP ). A classical way
is to use a branch-and-bound algorithm (see [28] for a complete description), where
the lower bound is computed at each node using the new CQA algorithm. We proved
in Section 3 that CQA converges to an optimal solution of (SDP ), but it is important
that each iteration of CQA provides a valid lower bound of (QBP ). Moreover, since
each CQA iteration solves a computationally-expensive convex optimization problem
(PKk

), we need to find the best trade-off between the tightness of the convexification
and its computation time. Thus, in our numerical experiments, we will only consider
CQA variants that perform relatively few iterations at each branch-and-bound node.

We first provide in Section 4.1 below the general framework of the branch-and-
bound. We then present in Section 4.2 two techniques to speed up the solution of
(PK), because the calls to the convex QCQP solver that optimizes (PK) represent the
main computational bottleneck of the overall method. Finally, we describe our upper
bounding procedure in Section 4.3.

4.1 The dynamics of the branch-and-bound tree construction
We consider a branching tree that contains only fully evaluated nodes, meaning that
the lower and upper bounds of each node are known at all times. Each lower bound
is determined by calling CQA and each upper bound is determined using the heuristic
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described in Section 4.3. A branching decision is automatically taken at the end of the
node evaluation, unless the node is pruned. However, there are two types of nodes:

– A node is closed if the branching decision was implemented and the node produced
two evaluated child nodes.

– A node is open or childless if, although evaluated, its branching decision was not
yet implemented to produce child nodes.

Each branch-and-bound step performs the following: (i) seek an open node; (ii)
implement the branching decisions determined when the parent node was evaluated
(at a previous moment) and (iii) evaluate the two resulting child nodes. The selected
parent node is thus no longer childless and is marked closed. Its two child nodes are
considered open. After evaluating the child nodes, we take right away a branching
decision that can be implemented later.

4.1.1 How many iterations per node

Each evaluation of the lower bound is performed from scratch, starting from the same
K0. We did try to enable certain nodes to inherit quadratic cuts from some ancestor
nodes, but the observed speed-up is not large enough to warrant complicating the
overall branch-and-bound. The most important decision for making CQA reach its full
potential in practice is related to the number of iterations that should be executed
on each branch-and-bound node. More iterations means fewer nodes in the general
branching tree, but this comes at the cost of needing more computational work per
node.

We thus consider two different stopping criteria for CQA. Since the algorithm is
supposed to stop when matrix (xkx

k⊤ − Y k) ⪯ 0, we replace this condition with
λmax(x

kx
k⊤ − Y k) > δ. Thus, by varying the value δ, we can choose to make an

additional iteration only if matrix (xkx
k⊤ − Y k) is far to be SDN, i.e., if its largest

eigenvalue can be considered large enough. Our second stopping criteria is simply a
bound on the number of iterations of the while loop in Algorithm 1.

4.1.2 The branching decision

The variable selection strategy is as follows. Let ϵb > 0 be a very small precision
parameter for considering an imperfect equality as satisfied. Denoting the solution of
(PKk

) at the current node by (xk, Y k), two cases are possible:
1. If −ϵb ≤ (Y − xx⊤)ij ≤ ϵb for all (i, j) ∈ I2, then (x, Y ) is the optimal solution

of the considered branch.
2. Else, we determine i∗ by only looking for the diagonal values so that x2

i ̸= Yii.
We first restrict to variables i with a decent range ui− ℓi above a given threshold
γ fixed to 0.1 in the beginning. We thus solve

i∗ = argmax
ui−ℓi>γ

|x2
i − Yii|
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If this scanning finds no satisfactory solution, we divide the above parameter γ
by 3. And the process is repeated until we find a satisfactory variable i to be split.

The feasible interval [ℓi∗ , ui∗ ] of the selected variable xi∗ is always split in half:
the two child nodes are xi∗ ∈

[
ℓi∗ ,

ℓi∗+ui∗
2

]
and xi∗ ∈

[
ℓi∗+ui∗

2 , ui∗

]
.

Regarding the selection of the next sub-problem to solve, we use the “best-first”
strategy, in the sense that we select the node with the highest evaluated lower bound.
If this lower bound is higher than the current best-known upper bound, the node is
pruned. Otherwise, we implement the branching decision and evaluate the child nodes
as described in Section 4.1.

4.2 Using boxes to speed-up the QCQP solver that iteratively
optimizes the programs (PKk

)

We now present a technique that may speed-up the convex solver that is called
iteratively at each sub-node to optimize (PKk

), because this operation is the main com-
putational bottleneck of the overall method. The solvers we are aware of can not take
advantage of the fact that program (PKk+1

) is simply program (PKk
) enriched with a

new quadratic constraint. The Simplex algorithm may simply perform a unique pivot-
ing step when a new linear constraint is added, but – far from such a re-optimization
potential – our QCQP solver restarts from scratch when a new constraint is added. Any
future research or improvement in QCQP re-optimization may speed-up our algorithm.

Generally, our speed-up idea relies on restricting the allowed variation of certain
variables, by putting a box around them. If the optimal solution of the resulting
overly-restricted convex program is strictly inside the box, then this is the also the
optimal solution of the initial relaxation. Otherwise, we remove the artificial box and
the convex solver may have to be called a second time.

4.2.1 Boxes in relation to father and ancestor nodes

The optimal solution in a child node is sometimes not fundamentally different from
that of the father node, in the sense that many variables stay fixed in both the current
and the father nodes. To speed up the first call to the convex solver at each node,
we restrict the decision variables as follows. We first identify the variables that never
changed in any ancestor node on the genealogical lineage upwards for β levels, where
β is a parameter. We first solve the node by strongly limiting the variation of these
variables (we almost fix them) compared to their value in the father node. If the
optimal solution is within the box we succeed in speeding up this optimization stage.
Otherwise, we failed because we have to call the convex solver a second time after
removing the box. In many cases, there are multiple optimal solutions. If at least some
of them stay inside the box, this technique will succeed.

4.2.2 Boxes acting on the iterations of CQA

While the above technique is applied before starting the while loop of Algorithm 1, we
now present a technique to be applied inside this while loop. We build the following
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box. First, we compute the maximum variation xMax (or Y Max respectively) over all
optimal x (or Y , resp.) values observed during the convex solver calls from previous
iterations (including at the QCQP call before the while loop). We then limit the
variation of variables x and Y within a box of radius xMax and Y Max, respectively.
If the obtained optimal solution stays inside the box, we succeeded in speeding-up
the QCQP convex solver. Otherwise, we failed and we do not consider the reported
solution and node lower bound reliable. In the latter case, we simply do not update
the evaluated lower bound of the considered node; yet, we do not call the convex solver
a second time.

4.3 A heuristic for computing upper bounds
We use a rather basic coordinate descent heuristic to determine upper bounds. We
start from the solution xk of (PKk

) at the current node (ignoring all Y k components),
that is also feasible for the original (QBP ). Our coordinate descent begins by iter-
ating over all i ∈ [1..n]; for each i, we fix all variables to their current values except
for xk

i . We then solve an optimization sub-problem with only one decision variable,
namely xk

i . This requires minimizing a simple quadratic function in dimension one
that can be determined using elementary mathematics, regardless of its convexity
status. We decided to keep xi in its range [li, ui], but this could be relaxed. After
scanning all variables once, we can repeat the process as long as there is at least one
variable i for which we detect a possible improvement.

5 Numerical results
To evaluate our new solution method hereafter called Cutting-Quadric
Branch-and-Bound (CQBB), we use two variants of CQA for computing the lower bound
at each node of the branch-and-bound tree, leading to methods CQBB-1 and CQBB-2.

− CQBB-1: the stopping criteria of CQA is λmax(x
kx

k⊤ − Y k) > δ, with δ = 0.8. Addi-
tionally, we limit for each node the maximum number of iterations of the while
loop to 3.

− CQBB-2: We perform exactly one iteration of the while loop of CQA, taking δ = 0.

We will compare these two methods with the solvers Cplex 12.9 [29], Baron
21.1.13 [17], and Gurobi 9.1.1 [20], as well as with the original algorithm MIQCR [26].
In fact, we will use a new implementation of MIQCR, with a new branching strategy, a
different upper bound heuristic and with many other updated parameters.

We run our experiments on the boxqp instances [3, 4], that consist in minimizing
a continuous quadratic function within box constraints. The sizes of the instances
vary from n = 20 to 125 and the densities (% of non-zero elements) of matrix Q from
20% to 100%.

Both CQBB-1 and CQBB-2 start from the initial set K0 = {S+
0 , S∗

0 ,0}, where S+
0 is

given by (11) and S∗
0 is the optimal matrix of method MIQCR. It is obtained by solving

(SDP ) heuristically by calling the solver Mosek [30] together with the Conic Bundle
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library [31] within a Lagrangian duality framework as described in [32]. We only use
r0 = 1000 to compute all Sk with k ≥ 1, a value that proved more than sufficient
to make inequality (10) hold. The QCQP solver for optimizing (PKk

) at each CQA
iteration calls the Mosek solver using the C interface. We define Sk+1 = rk

∑
viv

T
i ,

summing over all eigenvectors vi associated to an eigenvalue no smaller than 0.01.
We computed all eigenvalues and eigenvectors using the C++ Eigen library.

Regarding the parameters of the boxes in relation to ancestor nodes (described in
Sections 4.2.1), we use β = 3 for instances with up to 90 variables (i.e., we restrict the
variables that did not change for the father, grandfather or great-grandfather node),
and β = 12 for the instances with n ≥ 100.

We set the time limit to 1 hour for the instances with up to 90 variables and to 3
hours for the largest ones (for all compared methods); the relative optimality gap of
the branch-and-bound to ϵb = 10−4.

We describe hereafter the settings of the compared solvers:

• For MIQCR, we solve (SDP ) heuristically using the Conic Bundle library as described
above for algorithm CQBB.

• For the solvers Cplex 12.9 [29] and Gurobi 9.1.1 [20], we use the AMPL [33]
interface and the default parameters.

• For the solver Baron 21.1.13 [17], we use the Gams [34] interface and the default
parameters.

We run our experiences on a cluster under Open Suze Linux with 2 CPU Intel
Xeon of 2.3 GHz, each of them having 32 threads.

5.1 Comparing CQBB-1 and CQBB-2 with the starting point MIQCR

Tables 1-3 report the results of methods MIQCR, CQBB-1 and CQBB-2 on small instances
(20 ≤ n ≤ 40), medium-sized instances (50 ≤ n ≤ 90) and respectively large instances
(n ≥ 100). For each of these three tables, the column “Instance” represents the instance
under the name n-d-k, where n is the number of variables, d is the density in percents,
and k is a numeration label. The column “Nodes” report the total number of nodes
needed by the branch-and-bound; Column “CPU ” provides the CPU time (in seconds)
required for solving the instance to global optimality; a “–” symbol means that the
instance was not solved within the indicated time limit. Finally, the columns “#calls”
indicate the total number of calls to the QCQP solver.

The general rankings of the 3 algorithms are the following:

number of nodes: 1) CQBB-2; 2) CQBB-1; 3) MIQCR.
cpu time: 1) CQBB-1; 2) CQBB-2; 3) MIQCR.

More precisely, we observe that MIQCR develops 34% more nodes than CQBB-1 on
average over all instances (solved within the time limit), and the number of nodes
is further significantly reduced by method CQBB-2 since MIQCR requires 74% more
nodes than CQBB-2 on average. As such, CQBB-2 was able to reduce the number of
nodes by half (or more) for almost a third of the small and medium instances. The
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Table 1: The main results of the two considered CQA versions against
the original MIQCR on the smallest instances

instance MIQCR CQBB-1 CQBB-2
nodes/time #calls nodes/time #calls nodes/time #calls

020-100-1 9 /0.2 9 3 /0.0 3 3 /0.0 4
020-100-2 13 /0.2 13 9 /0.1 9 9 /0.1 13
020-100-3 5 /0.1 5 3 /0.0 3 3 /0.0 4
030-060-1 33 /1.0 33 31 /0.5 31 27 /1.2 48
030-060-2 1 /0.0 1 1 /0.0 1 1 /0.0 1
030-060-3 29 /0.6 29 19 /0.3 19 19 /0.6 32
030-070-1 71 /1.9 71 63 /1.0 66 65 /2.2 105
030-070-2 5 /0.1 5 3 /0.1 3 3 /0.1 4
030-070-3 41 /0.9 41 37 /0.6 41 17 /0.5 27
030-080-1 69 /2.0 69 67 /1.4 100 73 /3.0 155
030-080-2 3 /0.1 3 5 /0.1 5 5 /0.2 7
030-080-3 13 /0.3 13 7 /0.1 7 9 /0.3 14
030-090-1 7 /0.2 7 3 /0.1 3 3 /0.1 4
030-090-2 13 /0.3 13 11 /0.3 17 3 /0.1 5
030-090-3 3 /0.1 3 3 /0.1 3 3 /0.1 4
030-100-1 11 /0.3 11 9 /0.2 9 7 /0.2 11
030-100-2 9 /0.3 9 9 /0.2 9 7 /0.3 11
030-100-3 27 /0.6 27 21 /0.4 23 13 /0.4 20
040-030-1 7 /0.3 7 3 /0.1 3 3 /0.1 4
040-030-2 13 /0.5 13 5 /0.2 5 5 /0.3 7
040-030-3 5 /0.2 5 3 /0.1 3 3 /0.2 4
040-040-1 445 /15 445 263 / 7 275 249 /12 416
040-040-2 7 /0.3 7 5 /0.2 5 5 /0.3 7
040-040-3 27 /1.0 27 23 /0.7 25 23 /1.3 38
040-050-1 29 /1.1 29 25 /0.7 25 25 /1.3 38
040-050-2 43 /1.6 43 35 /1.2 43 25 /1.5 42
040-050-3 25 /1.0 25 17 /0.6 21 11 /0.6 17
040-060-1 279 /11 279 219 / 7 251 209 /11 373
040-060-2 21 /0.9 21 13 /0.6 19 9 /0.5 15
040-060-3 7 /0.4 7 5 /0.2 5 5 /0.4 8
040-070-1 7 /0.3 7 5 /0.2 5 5 /0.3 7
040-070-2 7 /0.3 7 7 /0.2 7 5 /0.4 8
040-070-3 9 /0.4 9 5 /0.2 5 5 /0.4 8
040-080-1 5 /0.2 5 5 /0.2 5 5 /0.3 7
040-080-2 5 /0.3 5 7 /0.3 9 5 /0.4 8
040-080-3 13 /0.5 13 15 /0.5 15 11 /0.7 18
040-090-1 9 /0.4 9 5 /0.2 5 5 /0.3 7
040-090-2 9 /0.4 9 9 /0.3 9 9 /0.5 13
040-090-3 7 /0.3 7 5 /0.2 5 5 /0.3 7
040-100-1 13 /0.6 13 7 /0.2 7 7 /0.4 13
040-100-2 21 /1.8 21 17 /0.5 17 17 /1.0 27
040-100-3 221 /18 221 207 /6.3 245 177 /10 323

most spectacular improvement is visible on instance 080-25-1: CQBB-2 reduced the
number of nodes from 391 to 23.

Regarding the total CPU time, we observe that MIQCR is 56% slower than CQBB-1
on average over all the instances (solved within the time limit), and 15% slower than
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Table 2: The main results of the two considered CQA variants against the original
MIQCR on medium-size instances

instance MIQCR CQBB-1 CQBB-2
nodes / time #calls nodes / time #calls nodes / time #calls

050-030-1 13 / 0.8 13 9 / 0.5 11 7 / 0.8 12
050-030-2 19 / 1.1 19 17 / 0.9 19 15 / 1.4 24
050-030-3 31 / 1.6 31 27 / 1.4 35 13 / 1.2 20
050-040-1 9 / 0.7 9 9 / 0.6 12 5 / 0.6 8
050-040-2 43 / 2.5 43 31 / 1.3 31 25 / 2.1 40
050-040-3 7 / 0.5 7 7 / 0.4 7 5 / 0.6 8
050-050-1 5207 / 381 5207 4549 / 218 5088 4447 / 455 8286
050-050-2 65 / 3.7 65 67 / 3.2 77 53 / 4.5 88
050-050-3 155 / 8 155 121 / 7 180 63 / 5.8 114
060-020-1 13 / 1.2 13 5 / 0.5 5 5 / 0.8 7
060-020-2 11 / 1.0 11 5 / 0.5 5 5 / 0.8 7
060-020-3 61 / 4.7 61 33 / 2.1 33 33 / 4.2 54
070-025-1 77 / 8 77 41 / 3.7 41 33 / 6.5 57
070-025-2 199 / 22 199 129 / 11 133 109 / 21 209
070-025-3 225 / 25 225 145 / 15 168 105 / 17 174
070-050-1 183 / 21 183 159 / 17 184 145 / 26 255
070-050-2 29 / 3.6 29 25 / 3.0 31 23 / 4.7 40
070-050-3 9 / 1.4 9 11 / 1.6 15 7 / 1.7 11
070-075-1 65 / 7 65 59 / 6.1 63 55 / 11 108
070-075-2 1735 / 203 1735 1435 / 161 1750 1401 / 263 2592
070-075-3 819 / 96 819 729 / 86 990 585 / 113 1148
080-025-1 391 / 61 391 227 / 41 412 23 / 8 53
080-025-2 559 / 88 559 433 / 62 487 405 / 114 796
080-025-3 161 / 25 161 95 / 12 99 77 / 19 131
080-050-1 21543 /3532 21543 17953 /2631 21255 12597 /timeout 0
080-050-2 65 / 10 65 77 / 15 137 21 / 6.8 43
080-050-3 327 / 56 327 293 / 48 361 279 / 87 578
080-075-1 113 / 18 113 101 / 16 127 103 / 30 214
080-075-2 333 / 52 333 309 / 51 390 301 / 82 579
080-075-3 1149 / 183 1149 1049 / 168 1301 1075 / 294 2115
090-025-1 3243 / 668 3243 2141 / 418 2552 2149 / 728 3985
090-025-2 2683 / 561 2683 1703 / 350 2038 1567 / 516 2780
090-025-3 623 / 126 623 405 / 77 472 391 / 124 684
090-050-1 1707 / 387 1707 1413 / 321 1783 1419 / 550 2885
090-050-2 21 / 5.3 21 19 / 4.2 22 15 / 7.0 27
090-050-3 493 / 113 493 389 / 88 495 393 / 154 806
090-075-1 6037 /1209 6037 5919 /1347 7746 6387 / 2510 13509
090-075-2 5947 /1234 5947 5451 /1206 6831 5371 / 2005 10611
090-075-3 1353 / 282 1353 1251 / 298 1677 1231 / 487 2605

CQBB-2. In fact, despite a reduced number of nodes, the time spent at each node penal-
izes the overall branch-and-bound of algorithm CQBB-2. Clearly, the stopping criteria
of CQBB-1 that rely on the accuracy of the positivity of the maximum eigenvalue seems
to be a good trade-off between bound quality and CPU time.

Finally, it may be interesting to comment on the number of calls to the QCQP
solver (Column #calls). As expected, method MIQCR performs exactly one call per
node. The number of calls for our new approaches is not fixed and depends on the
value of the solution (x0, Y 0) computed before the while loop of CQA (Algorithm 1).
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Table 3: The main results of the two considered CQA variants against the original
MIQCR on the largest instances

instance MIQCR CQBB-1 CQBB-2
nodes / time #calls nodes / time #calls nodes / time #calls

100-025-1 665 / 182 665 505 / 121 518 429 / 209 776
100-025-2 315 / 85 315 261 / 65 292 191 / 85 323
100-025-3 269 / 75 269 191 / 45 195 199 / 90 343
100-050-1 63553 /timeout 0 60229 /timeout 0 33709 /timeout 0
100-050-2 25421 / 7347 25421 23855 / 6657 27153 20433 /timeout 0
100-050-3 811 / 235 811 755 / 190 813 663 / 309 1225
100-075-1 12001 / 3480 12001 11929 / 3094 13170 11367 / 5092 20731
100-075-2 9479 / 2712 9479 9517 / 2557 10694 9077 / 4302 17313
100-075-3 8867 / 2509 8867 8829 / 2269 9575 8521 / 3913 16017
125-025-1 36504 /timeout 0 32189 /timeout 0 18271 /timeout 0
125-025-2 7249 / 3745 7249 5629 / 2570 6144 4769 / 4033 8372
125-025-3 1733 / 895 1733 1365 / 625 1419 1275 / 1024 2088
125-050-1 38318 /timeout 0 30221 /timeout 0 17973 /timeout 0
125-050-2 21909 /timeout 0 17530 /timeout 0 10269 /timeout 0
125-050-3 21173 /timeout 0 17723 /timeout 0 10129 /timeout 0
125-075-1 4841 / 2483 4841 4757 / 2949 7293 4763 / 4508 10748
125-075-2 20787 /timeout 0 21021 /timeout 0 12333 /timeout 0
125-075-3 20605 /timeout 0 16834 /timeout 0 10265 /timeout 0

Simply computing this (x0, Y 0) requires a first call to the QCQP solver. CQBB-1 can
call the QCQP solver up to 3 additional times because it performs at most 3 iterations
of the while loop. CQBB-2 always performs exactly one iteration, leading to 2 calls to
the QCQP solver (one before the while and one after). However, sometimes the while
loop may skipped completely, either because λmax(x

0x
0⊤ − Y 0) ≤ δ, or because the

lower bound associated to (x0, Y 0) is good enough to prune the node. As such, we do
not systematically have 2 QCQP solver calls per iteration in the case of CQBB-2.

5.2 General comparison with existing solvers
We now compare methods CQBB-1, CQBB-2 and MIQCR [26] with the standard
solvers Cplex 12.9 [29], Baron 21.1.13 [17], and Gurobi 9.1.1 [20]. For this,
we use a performance profile of the CPU times (see [35] for a complete descrip-
tion). The basic idea is the following: for each instance i and each solver s, we
denote by tis the time for solving instance i by solver s, and we define the perfor-
mance ratio as ris = tis

min
s

tis
. Let N be the total number of instances considered;

an overall assessment of the performance of solver s for a given τ is given by:
P (ris ≤ τ) = 1

N ∗ number of instances i such that ris ≤ τ .
Thus, in a performance profile of CPU times, each curve corresponds to a solver,

where each point of a curve gives, for a given factor τ , the percentage of instances
whose CPU time was at most τ times greater than the minimal CPU time reported
by any of all the solvers. In particular, for τ = 1, we have the proportion of instances
for which the considered solver was the fastest method.

We present the performance profiles of the CPU times for all compared algorithms
on the boxqp instances with up to 90 variables in Figure 3, and on the largest instances
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Fig. 3: Performance profile of the total CPU time for the boxqp instances with n = 20 to
90 within a time limit of 1 hour.

Fig. 4: Performance profile of the total CPU time for the boxqp instances with n ≥ 100
within a time limit of 3 hours

20



(with n ≥ 100) in Figure 4. We observe that our new approach CQBB-1 compares
well with MIQCR and all standard solvers in terms of the number of instances solved
(maximum τ). For the small and medium-sized instances (Figure 3), Cplex solves
73 instances, Baron 74 solves instances, Gurobi solves 78 instances, CQBB-1 solves
80 instances, and MIQCR and CQBB-1 solve 81 instances out of 81 (within the time
limit of 1 hour). However, note that the performance profile starts for τ = 1 with a
smaller value P (ris ≤ τ) for CQBB-1 than for the commercial solvers. This is because
the smallest instances are solved more rapidly by Gurobi, Cplex or Baron. However,
the focus of our algorithm is on the largest and denser instances, and, with regards
to them, Figure 4 shows that the (red) curve of CQBB-1 is above all other curves
except over the segment τ < 15 where it only dominated by Gurobi . On the long run
(τ > 15), the winner is CQBB-1 followed by MIQCR.

Considering the maximum time limit of three hours (maximum τ), CQBB-1 and
MIQCR both solve 11 instances but the curve of MIQCR is globally above that of MIQCR
in Figure 4. For the same time limit, CQBB-2 solves 10 instances, Gurobi 9 instances,
Cplex 4 instances and Baron 3 instances.

We also noticed that the average final gap of CQBB-1 over the larger instances
unsolved within the time limit is roughly 1%, while it is around 33% for Gurobi, 15%
for Cplex and 10% for Baron. This can be explained by the tightness of the SDP
convexification computed at the root node by CQBB-1.

6 Conclusions
We have presented a generic approach to solve box-constrained quadratic programs
to global optimality. The main idea is to combine the strength of quadratic con-
vex relaxations with the cutting-planes logic. Indeed, instead of considering a unique
convex quadric to underestimate the objective function, we propose a family of
convexifications indexed by an arbitrary number of quadrics.

We have proposed the idea to add these cutting-quadrics one by one, in a cutting-
planes fashion. The quadric generated at each iteration is actually a quadratic cut that
separates the current optimal solution, acting similarly to a hyper-plane in a cutting-
planes method. We proved that this iterative algorithm converges to the optimal value
of a tight semidefinite relaxation of (QBP).

This iterative algorithm was integrated into a spatial branch-and-bound method;
the lower bound of each branch-and-bound node is determined using the new multi-
quadric convexification. By generating quadrics specifically-tailored for each node,
we almost systematically reduced the total number of nodes compared to existing
methods that convexify using a unique quadric. The main computational bottleneck
comes from the convex QCQP solver that has to be called after adding each new
quadric; we managed to accelerate this step by using artificial tentative boxes over
the decision variables (that are lifted only if necessary). Numerical results suggest it is
more practical to use relatively few quadrics per node (p ≤ 3); the resulting methods
compete well not only with existing solvers based on other convexifications, but also
with other solvers that use completely different techniques.
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