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Abstract

The viability of a rockfall protection structure is vital for the hazard mitigation of habitations and

infrastructures. This article investigates the feasibility and potential of inverse analysis applied to data

collected on on-site rockfall protection structures exposed to real events. As an application case, a

rockfall protection wall made from interconnected concrete blocks which are piled up in a zig-zag pattern

is considered. The corresponding numerical model is developed in a python-based open source software

Siconos which implements the Non-Smooth Contact Dynamics (NSCD) method. The numerical model

was previously spatiotemporally calibrated from two real-scale impact experiments with 520kJ and 1020kJ

projectile energy and used in this work to investigate the variability in wall mechanical response against

different impact conditions. The simulation results served as input data to develop the Bayesian inference

based inverse analysis method aided by the polynomial chaos expansion based metamodelling technique

for two purposes. First, to aid in remote decision-making shortly after an event, based on real-time

measurements and second, to retrieve the impact condition characteristics (energy, location) from data

collected after the event is addressed. The proposed approach appeared efficient for back-analysing (i.e.,

output to input) data related to the wall response for being used as a warning based on its displacement

with respect to the protected element at risk and damage to the wall with root mean square error (RMSE)

of 16 cm and 82 kJ respectively and for a rockfall site survey with RMSE of 71 kJ energy transferred to

the wall and position of impact with 37 cm.
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1. Introduction1

Passive rockfall protection mitigation measures such as embankments [1], galleries [2] or flexible bar-2

riers [3] are exposed to severe loading when intercepting rock blocks threatening elements at risk. During3

their normal operation, these structures thus experience significant deformation, displacement, and dam-4

age and possibly fail to withstand the impact or to satisfactorily control the rock block’s trajectory5

[4].6

In this context, and similarly, as for other gravitational natural hazards, increasing use is being made7

of equipment for monitoring on-site rockfall protection structures, to collect the data upon the impact8

of a rockfall [5]. On-site monitoring of structures with accelerometers or force sensors, for example, in9

particular aims at serving as a warning system for supporting decision-making (e.g., road closure) or10

for providing information regarding the loading amplitude or the structure response in real situations.11

On-site monitoring is becoming increasingly common in the field of landslides due to the improvement,12

miniaturisation and cost reduction of sensors, data acquisition and transmission systems [6, 7].13

Numerical models are widely used for addressing rockfall protection structures’ response as a forward14

problem. Published research demonstrates the accuracy of the model predictions as compared to experi-15

mental data (e.g. [8, 9, 10]) or addressing the structure response under some specific impact conditions16

(e.g. [11, 12]) or considering sets of realistic impact conditions (e.g. [13, 14]). By contrast, inverse analysis17

conducted (i.e., finding input from the output) based on numerical models has rarely been used in this18

field. To the best of the authors’ knowledge, the only exception concerns the work presented by Escallón19

et al. [15] who proposed an inverse optimisation process for determining the parameters of macroscopic20

FE models of steel wire-rope cables and steel wire-rings.21

In this work, we investigate the feasibility of conducting an inverse analysis of the structure response22

to derive the information with added value for stakeholders and engineers. It is for instance proposed23

to analyse the measured data pertinent to the structure’s performance to retrieve the impact conditions.24

The proposed inverse analysis presents means to correlate the data retrievable from an on-site structure25

during and after an rockfall event, with the corresponding impact response obtained from the numerical26

model simulation of that structure. This correlation relies on the use of statistical learning methods27

enhanced by meta-modelling tools. A statistically modelled series of different impact conditions and a28

learning-enabled link between input and output responses provide us with the necessary components to do29
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the inverse analysis. Further, the establishment of a mathematical link between the structure’s response30

and the corresponding impact condition is enabled through the use of meta-models having negligible31

computation costs.32

In this work, we focus on an innovative passive rockfall protection structure made of pile-up con-33

crete blocks to form a wall with a zig-zag pattern, for which a Non-Smooth Contact Dynamics (NSCD)34

method-based numerical model was previously developed. The calibration of this model was conducted35

against experimental data following a complex method involving statistical learning, resulting in im-36

proved confidence in the model’s predictive capacities, reported in Gupta et al. [16]. In parallel, specific37

instrumentation including sensors (i.e. accelerometers and inclinometers), remote data acquisition and38

processing has been developed to equip these structures. In principle, the proposed approach for conduct-39

ing an inverse analysis could be applied to any type of structure, and in particular structures exposed to40

dynamic loading such as flexible barriers.41

The article is organised as follows: First, the type of the protection structure considered in this study42

is described followed by the presentation of its numerical equivalent developed in the non-smooth contact43

dynamics (NSCD) framework - named the NSCD model. A brief description of the previously conducted44

NSCD model calibration using the displacement data from the impact response for two full-scale struc-45

tures is presented alongside. Then the mechanical response of the calibrated NSCD model wall to the46

model projectile impact is addressed via an extensive campaign of simulations. An illustrative structural47

response is first presented at three distinct sections of wall geometry followed by the generalised impact48

assessment via varying the six parameters collectively describing the rock block trajectory, kinematics49

and impact point on the wall. The impact simulation results highlight the intricacy of the structure50

response and suggest the simulation outputs which best allow differentiating the impact cases. Then, a51

method for conducting the inverse analysis from the acquired data is developed using a combination of52

meta-modelling and Bayesian inference techniques to support the real-time decision-making and rockfall53

activity monitoring purposes for a given site. A discussion on of predictive capability of the inverse54

analysis method, its limitations and the perspective on improvements towards future research concludes55

the work.56
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2. Experimental Structure and NSCD model57

2.1. Presentation58

The considered structure is a composition of concrete blocks, reinforced with internal rebars and placed59

together in a staggered pattern to form a wall whose geometry can be adapted to specific requirements60

(e.g., linear or zig-zag conformation along its longitudinal axis). Each block weighs about 1800 kg,61

is cuboid in shape with dimensions 1.56m×0.76m×0.8m having rounded extremities in the horizontal62

plane and is traversed by two cylindrical holes of diameter 154 mm along the vertical axis. The blocks63

are connected thanks to metallic tubes and cables passing through these holes, providing mechanical64

continuity to the structure [17]. There exist mechanical plays between concrete blocks of the same row65

as well as between the metallic tubes and the blocks.66

This type of articulated structure constitutes an alternative to other massive passive rockfall protection67

structures with reduced footprint [18, 19] with the advantages of high versatility in the design and68

deformability under impact. For such an application where the structure is exposed to a localised dynamic69

loading, tubes and cables increase the number of blocks involved in the structure’s response proportional70

to the impact loading.71

The dynamic response of this structure is evaluated thanks to two full-scale impact experiments carried72

out at the pendulum testing facility of the Université Gustave Eiffel test site (Montagnole, France). This73

testing facility enables the control of the impact position and constraining the projectile incidence angle74

and rotational velocity to zero. The blocks are arranged following a zig-zag pattern (at 45◦ angle) to75

improve the structure stability against tilting. The wall is made up of 38 blocks and four half-blocks76

stacked in four layers resulting in 3.2 m height and 14.1 m length, presented in Figure 1a. Notably,77

the layers from the ground up are named ‘base’, ‘second’, ‘third’ and ‘top’ for all future mentions. The78

projectile used for this purpose is 2600kg in mass and 1.1 m in dimension, corresponding to approximately79

1/3rd the wall height, conforming with the requirements of flexible barrier testing [20]. The released80

projectile impacted the wall at its mid-length and at a height of about 1.7 m from the ground. The81

velocity at impact was 20m/s and 28m/s during the first and second impacts, corresponding to kinetic82

energies of 520 kJ and 1020 kJ respectively.83

The wall displacement evolution data is recorded at a couple of points on the impact axis (at points84

Top and Base) and on the distant axis (at points C and D). Besides, the data from two points A and B85
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in the impact axis is also available which is used for the cross-reference purpose only. Measures along the86

impact axis were derived from video records while measures from cable extensometers were considered87

along the distant axis. Notably, due to the absence of this later data for the 520 kJ impact test at point88

C, the evolution obtained from simulations presented in Furet et al. [17] are considered. This exception89

is thought to have a minor influence due to the very small amplitude in displacement observed in this90

specific case. The experimentally recorded evolution of displacement with time at these four points for two91

impact tests can be referred to in Figure 2. Further information on the two real-scale impact experiments92

setup, instrumentation and data acquisition shall be referred to in Furet et al. [17].93
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Figure 1: (a) The experimental real-scale wall structure and (b) its numerical equivalent developed using Siconos software

based on the framework of non-smooth contact dynamics (NSCD) method, hereby referred to as NSCD model.

Based on these impact experiments, a numerical model of the structure was developed under the94

Non-Smooth Contact Dynamics (NSCD) framework implemented in a python-based software package95

Siconos [21]. The NSCD model of the structure is a collection of blocks and connectors, presented in96

Figure 1b. The detailed description of the model development and calibration is presented in Gupta et al.97

[16] and briefed hereafter.98

The NSCD method was developed to solve multi-body multi-contact problems with rigid and/or99
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deformable bodies with rigid contact laws such as Signorini’s model of unilateral contact and Coulomb’s100

dry friction without any kind of regularization (viscous friction) or compliance. It finds many modelling101

applications in the field of civil engineering and geomechanics such as masonry and stone structures102

exposed to static, cyclic, and dynamic loading, cohesive and non-cohesive granular materials and rockfall103

propagation on slopes to name a few.104

In the present work, the system is modelled as a collection of rigid blocks connected by unilateral105

constraints with Coulomb friction. The finite-freedom dynamics of rigid bodies with unilateral constraints106

are known to be non-smooth, in the sense that the velocities of the system possess jumps when a contact107

is closing with a positive relative velocity. These velocity jumps are described through the introduction of108

an impact law. Thereby, the NSCD method can perform the numerical time integration of the multi-body109

system under impacts in a dynamic condition.110

The NSCD model of the experimental structure is a collection of the model objects - i.e., blocks,111

connectors, projectile and ground, as shown in Figure 1b. The same block and projectile geometry is112

considered in the model as that in the real structure and the tubes and slings are collectively modelled113

as connectors. In the NSCD framework, these model objects are defined as a combination of different114

contactors, collectively making the model equivalent to the real structure. These contactors are defined115

with a uniquely assigned collision group to identify them and differentiate one from another. The inter-116

action between model bodies is assigned through Newton impact friction non-smooth law [22]. This law117

governs the interaction between a pair of contactors (identified through their respective collision groups)118

via a user-defined coefficient of friction (µ) and coefficient of restitution (e).119

2.2. Calibration120

The model parameters governing the interactions between the various bodies of the system were121

calibrated against the experimental database describing the spatio-temporal response of the wall during122

the two impact tests. The calibration was based on the displacement measured with time (at three-123

time instants) at the four locations previously mentioned. These three-time instances correspond to124

the evolving displacement from the start of the impact at (1) the initial nearly linear slope with a125

representative instance of 0.1 seconds for the impact axis and 0.25 seconds for the distant axis, (2)126

maximum block displacement and, (3) displacement at rest i.e., at 1.0 second.127

The model calibration was carried out for five parameters. The first two take into account the imposed128
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constraints for the block-connector (dz) and connector-connector (vp) interaction which collectively con-129

trols the relative flexibility of the wall and the relative looseness in the sling. The other three parameters130

concern the interaction laws between contacting bodies in the NSCD framework. They are defined as131

the friction coefficient between blocks i.e., concrete-concrete (µcc) and between blocks and ground i.e.,132

concrete-soil (µcs) and the restitution coefficient (e). The calibration was supported by the Bayesian133

inference statistical learning method, improving the confidence in the derived set of model parameters as134

6.8 cm, 7.1 cm, 0.316, 0.307 and 0.222 chronologically as mentioned above. Consequently, it enables the135

replication of the structure response with time and space, over a range of impact energies up to 1 MJ.136

In addition, the model being simple and developed under the NSCD method framework provides on137

average about 30 times faster computation times in comparison to conventional FE-based models [17]138

and allows envisaging running a large number of computations.139

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.32

0.64

0.96

1.28

D
is

p
la

ce
m

en
t-

x
 f
o
r 

im
p
ac

t 
ax

is
 (

m
)

Topexp

TopSW

TopLW

Baseexp

BaseSW

BaseLW

0.00

0.08

0.16

0.24

0.32

D
is

p
la

ce
m

en
t-

x
 f
o
r 

d
is

ta
n
t 

ax
is

 (
m

)

Cexp

CSW

CLW

Dexp

DSW

DLW

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.00

0.32

0.64

0.96

1.28

1.60

D
is

p
la

ce
m

en
t-

x
 f
o
r 

im
p
ac

t 
ax

is
 (

m
)

Topexp

TopSW

TopLW

Baseexp

BaseSW

BaseLW

0.00

0.16

0.32

0.48

0.64

0.80

D
is

p
la

ce
m

en
t-

x
 f
o
r 

d
is

ta
n
t 

ax
is

 (
m

)

Cexp

CSW

CLW

Dexp

DSW

DLW

(b)

Figure 2: Comparison of the wall displacement response for (a) 520 kJ and (b) 1020 kJ impact tests at ‘Top’ and ‘Base’

points (for impact axis) and ‘C’ and ‘D’ points (for distant axis) recorded experimentally (exp) with its counterpart evaluated

from the calibrated NSCD model of the short-wall (SW) and long-wall (LW).

In the present work, all simulations are conducted on a wall 3.2m high and about 28.2m long (Fig. 3).140

The increase in length as compared to that in Gupta et al. [16] aims at avoiding any potential boundary141

effects when varying the impact location along the wall longitudinal axis. For these simulations, the same142

projectile is considered. Moreover, the comparison of spatio-temporal displacement response for both143

small wall (SW) and large wall (LW) lengths (i.e., 14.1 and 28.2m respectively) for the two calibrated144
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impact cases are reported qualitatively and quantitatively similar, as presented in Figure 2. Therefore,145

the calibrated model constitution parameters as reported in Gupta et al. [16] are directly applied to the146

long wall model. Notably, the SW displacements are quantitatively slightly different (up to 4cm) from147

the one reported in Gupta et al. [16] due to the current computations in an updated version of Siconos.148

3. Impact response investigation149

Due to its zig-zag conformation, discrete nature and complex design where concrete blocks are in-150

terconnected thanks to metallic components and including mechanical plays, the structure response is151

expected to be highly sensitive to impact conditions, for example varying the impact location or the152

projectile pre-impact trajectory. Therefore, an extensive campaign of numerical simulations is carried153

out on the NSCD model of the structure to understand, evaluate and exploit the response under different154

impact conditions.155

First, the structural response variability is illustrated by considering three impact cases in similar156

conditions to that during the experiments but with different impact locations. Then the investigation is157

generalised varying the six parameters describing the impact conditions.158

3.1. Response for the illustrative impact conditions159

The wall response is addressed by varying the projectile impact location to illustrate its complexity160

and variability. The projectile with an impact energy of 520kJ is simulated where the point of impact161

is located in the centre of each of the distinct sections of the zig-zag pattern. The 520kJ impact energy162

is significantly below the wall nominal capacity of 1 MJ where severe block damage, loss of mechanical163

continuity and very large wall displacements are observed. Therefore, the 520kJ is considered to represent164

the structure’s serviceable impact energy levels, for which the complexity of the wall response is hereby165

illustrated. These sections are referred to as convex-wedge, angled-wedge and concave-wedge, when166

viewed from the impacted side, as presented in Figure 3. The origin of the wall structure for the ‘along167

length position’ (i.e., Y=0) is assigned at the wall centre and for the ‘wall movement due to impact’ (i.e.,168

X=0) at the rear face of the wall. The wall response is addressed in terms of block displacement, velocity,169

deflection and plastic damage hereafter.170
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Figure 3: Top view of the wall model highlighting the repetitive pattern and an identifier for different sections. Here, the

abscissa refers to the block position along the wall length where Y=0 is located at the wall centre. And, the ordinate refers

to the direction of wall movement when a projectile hits the wall from the impacted side where X=0 is located at the wall’s

rear face.

3.1.1. Displacement171

The displacement of the wall is extremely sensitive to the impact location, presented for three illustra-172

tive impact conditions (IC), via the top view of the wall in Figure 4. Here, the three simulated impacts173

one each at convex, angled and concave wedges are named IC-1, IC-2 and IC-3 respectively. The sensi-174

tivity to the impact location is particularly noticeable in terms of structure conformation. The impact on175

the concave-wedge results in aligned blocks (Fig. 4c), while an impact on the convex-wedge amplifies the176

amplitude of the zig-zag pattern (Fig. 4a). The length of the movement zone along the wall longitudinal177

axis varies from approximately 6 m in the case of an impact on the angled-wedge to 7 m for the two other178

impact cases, corresponding to four and six top-row blocks respectively. A significant difference in the179

displacement of the individual blocks is also observed in Figure 4, where the displacement is evaluated180

at the block’s centre of gravity. Larger block displacement is observed for impacts on the concave-wedge181

in comparison to the other two ICs.182

As this zig-zag patterned wall aims at protecting a given element at risk, it appears much more183

relevant to consider the residual distance to the so-called ‘Safety line’ shown in Figure 4 in addition to184

the displacement of the blocks. The safety line may be defined based on the position of the protected185

element at risk. It is here arbitrarily located at 1.5 m from the convex-wedge block’s rear face. From186

Figure 4, it can be deduced that the minimum residual distance to the safety line is much smaller in the187

case of the impact in the convex-wedge (0.5 m. approx.), as compared to the two other impact cases (1.3188

m approx.). With respect to this criterion, an impact on the convex-wedge thus reveals comparatively189

more critical than others.190
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Figure 4: Top view of the displaced component of the whole length of the wall structure before and after a 520-kJ impact

located in the centre of (a) the convex-wedge (IC-1), (b) the angled-wedge (IC-2) and (c) the concave-wedge (IC-3).

3.1.2. Velocity191

The variability in the wall’s response is here illustrated by the time evolution of the velocity of the192

concrete blocks during the impact. For this purpose, the velocity computed at the mid-bottom of the193

block rear vertical face ‘vface’ (i.e., on the side opposite to impact) is considered which represents the194

potential position for the sensor deployment in the in-situ structure. In this position, the instrumentation195

shall likely be with 1D accelerometers to capture the time evolution of the acceleration normal to the196

block. For a simplified analysis, the desired velocity profile from the NSCD model shall also be computed197

normal to the block face at all time instances. For this, the ‘vface’ vector is projected onto the unit normal198

vector (n̂b) to the block face. The computation process is presented in Equation 1.199

10



vface = vg + (pΩp−1)× q

vnb = (vface.n̂b)n̂b

(1)

where vg is the velocity at the block gravity centre, Ω is the rotational velocity, p is the quaternion200

(presenting block’s 3D orientation) and q is the relative position vector of the block face (envisaged sensor201

location) to its centre of gravity. The time evolution of velocity normal to block face computed for all202

three cases is presented in Figure 5 (all left). In addition, the peak velocity of the blocks and the time to203

reach this peak are plotted in Figure 5 (all right).204

A general trend where the peak velocity localises at the impacted block is observed. Besides, the205

number of blocks experiencing rapid displacement from the impact beginning is comparatively higher206

when the projectile impacts the concave-wedge (Fig. 5c). Indeed, three blocks close to the impact location207

experience very similar curves. The time for the wall to come to rest is smaller in case of an impact on208

the convex-wedge with a duration of about 0.5 as compared to 0.8 seconds after an impact on the angled-209

wedge in particular (Fig. 5a vs Fig. 5b). Overall, the velocity of all the blocks appears to provide rich210

information, with high amplitude as well as significant differences from one case to the other.211

The blocks with significant maximum velocities are located within a distance along the wall length212

ranging from 8 to 12 m approximately depending on the impact location. This observation is in line with213

the observation made in Figure 4. The shape of the maximum velocity pattern significantly differs from214

one impact case to the other. These observations suggest that the distribution of peak velocity along the215

wall could be specific to an impact case in a rather univocal manner.216

3.1.3. Deflection217

In addition to the displacement and velocity, the deflection of the wall blocks, i.e., their rotation218

around a horizontal axis, seems relevant to address as it relates to wall post-impact stability. In addition,219

deflection may be measured on-site with rather low-cost sensors. The post-impact deflection of all the220

blocks in the wall is presented in Figure 6. An impact on the concave-wedge results in block deflection221

over a wall length as large as 8 m. The maximum value of about 17◦ is observed at the upper row222

in the impact vicinity. Notably, the deflection results concerning the impact on the convex-wedge and223

angled-wedge are not presented as they induced nearly zero wall deflection.224

Conclusively, the deflection doesn’t provide sufficiently rich information to envisage relating it to the225

11



0.0 0.2 0.4 0.6 0.8 1.0
Time (sec)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5
V

el
oc

it
y
 (

m
/s

ec
)

Top

Third

Second

Base

Max

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

−8−6−4−202468
Y (m)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

M
ax

im
u
m

 v
el

oc
it
y
 (

m
/s

ec
) Top

Third

Second

Base

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
to

 m
ax

 (
se

c)

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Time (sec)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

V
el

o
ci

ty
 (

m
/s

ec
)

Top

Third

Second

Base

Max

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

−8−6−4−202468
Y (m)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

M
ax

im
u
m

 v
el

oc
it
y
 (

m
/s

ec
) Top

Third

Second

Base

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
to

 m
ax

 (
se

c)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Time (sec)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

V
el

oc
it
y
 (

m
/s

ec
)

Top

Third

Second

Base

Max

−8

−6

−4

−2

0

2

4

6

8

Y
 (

m
)

−8−6−4−202468
Y (m)

−1.5

0.0

1.5

3.0

4.5

6.0

7.5

M
ax

im
u
m

 v
el

oc
it
y
 (

m
/s

ec
) Top

Third

Second

Base

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
to

 m
ax

 (
se

c)

(c)

Figure 5: Evolution of the velocity of the concrete block in the movement zone (all left) and the corresponding mapping of

the maximum velocity for blocks in all four rows i.e., top, third, second and base (all right) for the illustrative impact cases

at (a) convex wedge (IC-1), (b) angled wedge (IC-2) and concave wedge (IC-3) respectively. Here, ‘Y’ refers to the global

position of the mid-bottom of the rear face of each block along the wall length.

impact conditions, in particular, because some impact conditions result in null deflection angle values226

and hence are not deemed appropriate to explore further.227
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Figure 6: Deflection of all blocks in four layers of the wall (i.e., top, third, second and base) with respect to the vertical at

rest for the impacts at concave wedge (IC-3) under 520kJ energy impact. The results for the impact at the convex-wedge

(IC-1) and angled-wedge (IC-2) are not presented because of their negligible magnitude.

3.1.4. Plastic damage228

The rockfall impact on the structure causes plastic damage to the blocks, dissipating a portion of the229

incident projectile kinetic energy. Notably, the NSCD model is created as an accumulation of rigid bodies230

where the contact law controls the interaction. Despite that, the quantitative estimation of the energy231

dissipation mechanisms is possible following the work reported by Acary [23] in the NSCD framework.232

Subsequently, the relation presented in Equation 2 is implemented in the present work to compute the233

energy dissipation due to plastic damage (Dp).234

Dp =

N∑
k=0

∑
α∈I

1

2

(
vαN,k+1 + vαN,k

)
Pα

N,k+1 (2)

Here, vN is the normal component of the velocity vector and PN is the normal impulse at a given time235

step ‘k’ (out of total N) at a contact point α ∈ I. The details of velocity and impulse computations can236

be referred to at Gupta et al. [16].237

The time evolution of Dp for the three illustrative cases with different impact locations is presented238

in Figure 7. A significant contribution of plastic damage is observed at the early time instance when the239

projectile impacts the wall. With reference to the zoomed-in window, the damage evolves relatively fast240

for the impact at convex-wedge (IC-1) and reaches a constant magnitude of about 380kJ in about 0.35241

seconds post-impact. The other two impact cases evolve for a relatively longer time (about 0.6 seconds)242
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Figure 7: Time evolution of the energy dissipation due to plastic damage for the three illustrative cases, with impact at the

convex-wedge (IC-1), the angled-wedge (IC-2) and concave-wedge (IC-3) and the zoom-in window between 300 and 400 kJ

before reaching a constant value towards the end of the one-second simulation time. This observation is243

in line with the duration over which the wall moves, as illustrated in Figure 5. Conclusively, the plastic244

damage is taken as a quantity of interest for structural response assessment as it presents the variability245

in response with different impact conditions.246

Notably, the remaining part of the energy transferred by the projectile to the wall is dissipated247

by friction at the contacts, as detailed in Lambert et al. [24] where it is also demonstrated that the248

computation scheme complies with the fundamental principle of energy conservation.249

3.2. Response to a large set of impact conditions250

Following the illustrative structural response description in the previous section, the numerical sim-251

ulation framework is extended to address the response considering a large set of impact conditions. In252

a similar way as previously done for flexible barriers [13, 25, 26], the parameters describing the incident253

projectile trajectory, kinematics and location, hereafter referred to as ICPs (Impact Conditions Param-254

eters) are varied over realistic ranges to account for nearly all possible distinct impact conditions which255

may occur during natural rockfall event. The ICPs and their magnitude ranges are given in Table 1.256

The first two parameters (i.e., translational and rotational velocities) account for the incident kinetic257
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Table 1: Projectile model impact condition parameters (ICPs), their magnitude range and the probabilistic distributions

for close-to-reality wall impact computations. Here, the Uniform (U) distribution characterised by the minimum (a) and

maximum (b) parameters, and Gaussian/Normal (N ) distribution characterised by mean (µ) and standard deviation (σ)

parameters are used.

Parameter Possible range Unit Distribution

Translational velocity (v) 10 - 25 m/s N (µ = 17.5, σ = 2.5)

Rotational velocity (Ω) 0.0 - 5.6 rot/sec U(a = 0.0, b = 5.6)

Impact position - along length ‘offset’ (y) 0.0 - -3.53 m U(a = 0.0, b = 3.53)

Impact position - along wall height (z) 0.55 - 2.10 m U(a = 0.55, b = 2.10)

Impact inclination (α) -60 - +60 ◦ U(a = -60, b = 60)

Impact deviation (β) -45 - +45 ◦ N (µ = 0, σ = 15)

energy of the projectile. Given the projectile geometric and mechanical characteristics considered in this258

study, the translation velocity results in a kinetic energy ranging from 130kJ to 800 kJ. The rotational259

velocity range is defined as per the work reported by Bourrier et al. [27] providing the rotational kinetic260

energy up to 240kJ for the projectile geometry used in this work.261

The impact location refers to the projectile’s centre of gravity at impact. The range for the impact262

locations along the wall length (Y axis) is defined considering that the structure consists of the repetition263

of a pattern. Thereby, the impact locations were restricted to a representative segment of the wall264

conformation inclusive of all three wedges (i.e., convex, angled and concave), defined as ‘y’ offset or265

simply ‘y’ for future mentions. By definition, the response observed for this segment is extendable to266

other parts of the wall, except for the wall extremities. Indeed, impacts at a close distance from the wall267

extremities shall result in a different impact response, in particular depending on some design choice with268

influence on the mobility of the blocks at the wall extremity (such as retaining cables or abutments).269

The case of impacts close to the wall extremities is thus not considered in the present work. The impact270

location along the vertical axis (z) is defined considering the wall height and the block size, which is 1.1m.271

The minimum value for the impact location along the vertical axis is half the projectile dimension. The272

maximum value corresponds to the distance between the projectile centre of gravity and the wall crest273

equalling the projectile diameter.274
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The inclination and deviation angles are varied over the ranges reported by Toe et al. [25]. The275

inclination angle (α) represents the relation of the z-component of projectile impact path with the normal276

to the wall face [13]. Negative α values thus correspond to upward trajectories (i.e., away from the277

ground). The β angle accounts for the deviation in the horizontal plane of the incident rock block278

trajectory with respect to the normal to the wall longitudinal axis (and not with respect to the impacted279

block uphill face). The range considered for β implies that the wall longitudinal axis is considered280

perpendicular to the line of the maximum gradient of the uphill slope. Also, β determines the planer281

(x,y) components of Ω while the z-component is considered to have no magnitude such that the incoming282

projectile spin is always in line with its trajectory. Notably, the sketch in the Figure 11 visually illustrates283

the considered inclination and deviation angles.284

In this study, the kinetic energy is considered sufficient for describing the projectile kinematics in view285

of addressing the structure response. This obviously constitutes a simplification as it is evidenced that,286

for a given projectile kinetic energy, the response of a rockfall protection structure may be significantly287

influenced by the projectile mass-to-velocity ratio [28, 29]. Besides, the upper limit of the translational288

kinetic energy is kept less than the wall nominal capacity as observed during the experiments, which is289

above 1 MJ. This is motivated by two observations: (1) The representation of the model to correctly290

model the structure displacement and damage is lower at impact kinetic close to the nominal value (e.g.,291

due to loss of mechanical continuity in connectors [16]) and (2) The damage and displacement are severe292

for translational kinetic energy at impact higher than 800 kJ, imposing visit and repair/maintenance293

works without any doubts.294

3.2.1. Statistical sample295

A statistical set of 300 model computations, based on the Latin hypercube sampling (LHS) method [30]296

is retrieved to represent the model response under different impact conditions. The created statistical297

sample is presented in Figure 8, where the magnitudes of all parameters are in the range reported in298

Table 1. Here, the filled input space assures that possible combinations of the input variables are well299

considered in the finite set of ICPs. In general, 50-500 model runs are considered a ‘reasonable budget’300

to create the metamodels of the NSCD model presented later on. The NSCD model computation time301

is about 30-40 minutes for one projectile impact simulation and hence the computation cost of 300 runs302

is deemed sufficient. Such sample size also enables the creation of all requisite metamodels to exploit303
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various response mechanisms without optimising the sample size for each mechanism separately.304
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Figure 8: Input sample of size 300 (based on Latin hypercube sampling (LHS) sampling method) comprising six impact

condition parameters (ICPs) and their probability distribution in the respective ranges of variability.

Moreover, a probability distribution is assigned to each parameter to account for the influence of305

rockfall trajectory, inspired by the work reported in Lambert et al. [14]. A Gaussian distribution is306

chosen for the translational velocity (v) and deviation angle (β) indicating that the extreme limits of307

both these parameters are less probable. The parameter β distribution abides by the idea that the308

structure installation on-site is such that the projectile is most likely to impact normally to its face.309

Similarly, the parameter v distribution takes into account the most likely impacting projectile energy310

and keeps the low and high-energy cases as rare events. The uniform distribution is assigned for all the311

remaining parameters as no prior information is available on their probability of occurrence.312

It is worth highlighting that the ICPs were defined ignoring some correlations that may exist between313

the six parameters. For example, the velocity in the case of a downward projectile trajectory is higher314

on average than that for an upward trajectory. This results from the fact that a downward trajectory315

is associated with a rock block-free fall while an upward projectile trajectory immediately succeeds the316

rebound from the ditch which induces energy dissipation. This means that some combinations of param-317

eter values are not realistic (for instance, the lowest α value with the highest translational velocity, v).318
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A specific site-investigation-based ICP correlation can be established for a better representation of the319

input sample. However, this is out of the scope of the present work and hence we proceed further with320

the uncorrelated ICPs. Moreover, the Gaussian distribution for v and β parameters results in the repre-321

sentation of each ICP set as not equiprobable. Subsequently, it enables having less number of simulated322

cases corresponding to rare events.323

3.2.2. Displacements under impact324

The position of the top row blocks at the end of impact (i.e., at rest) for all 300 simulations is325

presented in Figure 9. The hollow circles correspond to the location of the extremity of the vertical326

connectors position. The blocks represented in blue correspond to the impact case resulting in the least327

distance from the wall to the safety line. Impacts in the convex-wedge resulted in a lower distance to328

the safety line which is consistent with observations made based on Figure 4. The movement zone for329

all simulated cases stays within approximately 7m on either side from the centre of the wall (i.e., Y =330

0). The cloud of points, together with the mean positions and the variability (estimated as twice the331

standard deviation), reveals that the amplitude of the displacement in the X- and Y-axis directions are332

much larger at a distance from the wall centre (i.e. at the concave wedge) and that it is significantly333

dependent on the impact location along the Y-axis.334
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Figure 9: Top view of the displaced component of the whole length of the wall as per sampled 300 sets of projectile impact

condition parameters. The position of the block holes position after impact is presented for each simulation and the impact

case resulting in the least distance to the safety line is highlighted for better visibility.
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3.2.3. Sensitivity analysis335

The variability in structure response is further addressed by investigating the influence of each pa-336

rameter on the different quantities of interest (QoI). In accordance with Section 3.1, the considered QoIs337

are the minimum distance to the safety line (usafety), the maximum displacement of the wall (umax), the338

maximum concrete block velocity recorded (vmax) during impact and plastic damage (Dp).339

The influence of each parameter on the QoIs is investigated through the Sobol sensitivity method also340

known as analysis of variance [31]. This method decomposes the variance of the output parameters as341

the sum of the contributions of the different input parameters including the possible interaction between342

input parameters. Each contribution is characterised by the ratios of the partial variance to the total343

variance, called Sobol sensitivity indices.344

The accurate computation of Sobol indices demands a large number of model computations (of order345

106). This is highly impractical in the present study if the NSCD model is used directly. This limitation346

is circumvented with the help of the meta-modelling technique which enables to create a surrogate of347

the NSCD model, allowing direct computation of Sobol indices at zero cost [32, 33]. In this case, a348

meta-model (or surrogate) can be defined as a mathematical operator describing the response envelope349

of the wall in the 6D space corresponding to the six variables defining the impact conditions related to350

the rock projectile.351

Here, a database of 300 model simulations is processed for each QoI to acquire the model output set and352

its corresponding ICPs. Then, the polynomial chaos expansion (PCE) based meta-modelling technique353

(as per UQlab PCE module [34], see Appendix A for details) is used to formulate a generalised link354

between the input ICPs and each output QoI. A total of four metamodels are created corresponding355

to four QoI, named Meta-usafety, Meta-umax, Meta-vmax and Meta-Dp. For each meta-model creation,356

a mathematical relation (as presented in Equation A.2), is established between the 300 distinct sets of357

input parameters and the corresponding displacement output set. The mathematical relation here can358

be analogically referred to as obtaining a regression for a 2D database. The accuracy of the PCE-based359

meta-model for each QoI is presented by the leave-one-out (LOO) error (Equation A.5), reported of360

order 10−2 for Meta-usafety, Meta-umax and Meta-Dp and of order 10−1 for Meta-vmax. Notably, these361

PCE-based meta-models are also used for the inverse analysis work, detailed in the section 4.362

The UQlab sensitivity analysis module [35] is used for the computation of the Sobol indices. The first363
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and total order Sobol indices for the QoI are presented in Figure 10, computed to evaluate the influence364

of each of the six ICPs on the four aforementioned QoI.365

Figure 10: Sobol sensitivity analysis of the ICPs on different QoI towards the representation of the generalised impact

assessment.

The first-order Sobol indices reflect the main effect of each ICP and the total order indices reflect366

the main effect plus the contribution from the interaction between different ICPs. Thereby, when there367

is no interaction between variables, the first and total index magnitudes shall be the same. However,368

the contrary is observed here which reflects the significant interaction between ICPs in terms of their369

influence on the QoIs. The main and the total effects of each ICP are briefly discussed as follows.370

The main effect of the rotational velocity (except for Dp), the vertical position of impact (z) and371

deviation (β) are observed to have the lowest sensitivity to all QoIs. On the contrary, all QoIs are372

reported to be highly sensitive to the other three input ICPs. The y position of projectile impact is373

observed to be highly influential confirming the structural response variability from convex to angled to374

concave wedges, as reported in Figures 4 and 9. The v and α parameters collectively account for the375

projectile velocity component parallel to the ground (xy plane) and the component parallel to the wall376

face (z-axis) as presented in Equation 3.377

vz = v sinα

vxy = v cosα

vx = vxy cosβ, vy = vxy sinβ

(3)

It is thus evident that these three input ICPs influence all resulting QoI directly. Notably, the378

parameter β determines the further division of projectile velocity (v) in x-y plane (i.e., vx and vy). Since379

20



β is observed to have a low influence on the QoI, the collective effect of projectile velocity in xy-plane is380

sufficient for further consideration. The negligible influence of ‘z’ infers the stability of the wall structure381

throughout its height. Lastly, the negligible influence of ‘Ω’ on block displacement and velocity indicates382

that the projectile spin induces a reaction from the block predominately in the vertical direction. A383

relatively significant influence on Dp further emphasises this interaction inferring that Ω contributes to384

the block damage with minimal induced displacement.385

The total effect of each ICP is observed to reflect the interaction between them as their total Sobol386

index is observed higher than the corresponding first-order index. It is an indication of the non-linearity387

in the model response. The v and α parameters collectively account for the energy transferred to the388

wall, which in turn influence all four evaluated QoIs. Thereby, an interaction between them is justified.389

Similarly, the parameter y, despite being independent of the velocity parameter, accounts for the effect390

of the wall pattern (i.e., convex, angled and concave wedges) on the wall response. Therefore, abiding391

with the illustrative observations in Figure 4, the same energy impact at different locations results in a392

different response, i.e., sensitive to all four QoIs. The effect on Dp is observed least in comparison with393

the other three QoI which indicates that the damage to the block is predominantly influenced by the394

impact energy with a minor influence of the impact location. The reported Dp from the three illustrative395

impact cases (see Figure 7 ) supports this observation. Lastly, similar to the main effect, the contribution396

of Ω and z and β parameters in the total effect is observed relatively less.397

3.3. Towards inverse analysis398

The investigation of the structure response under close-to-reality conditions is of paramount impor-399

tance, first, for evaluating its on-site efficiency and, second, for defining the best strategy for developing400

the inverse analysis method.401

The wall response to impact is revealed extremely complex, with a significant dependence on pa-402

rameters describing the impact conditions (ICPs). Differences in response were revealed by the concrete403

blocks’ kinematics, in terms of displacement and velocity. The sensitivity to the impact point location404

along the wall’s longitudinal axis results from the wall’s zig-zag conformation and its discrete and ar-405

ticulated nature. For instance, in the case of IC-1 (i.e., an impact with a zero deviation and at a 520406

kJ impact energy), the length of the wall experiencing significant displacement is about 12m (from -6407

to +6), and similarly, it is about 8m for IC-2 and 9m for IC3 (see Figure 4). This is confirmed by the408
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distinct patterns of the peak concrete block velocity along the wall (see Figure 5). In addition, the wall409

response depends on the projectile orientation with respect to the wall face (α and β) which is attributed410

to the amount of energy that is transferred to the wall during impact (which will be further addressed in411

see section 5.2).412

The complexity of this response justified considering a specific approach for developing a relevant413

inverse analysis method. In addition, it is concluded that the deflection of the wall is not relevant for414

conducting an inverse analysis. On the contrary, the distribution of the concrete block’s peak velocity415

seemed to be impact-conditions-specific and is thus considered a good input data candidate for conducting416

inverse analysis based on real-time measurements made on-site. These conclusions suggest that the417

priority in terms of on-site structure instrumentation should be placed on accelerometers, from which418

the concrete block velocity can be derived. By contrast, it is less relevant to install inclinometers for the419

purpose of conducting inverse analysis.420

In this work, it is proposed to conduct inverse analysis based on real-time measurements, during421

impact, for the purpose of warning and decision-making upon impact. This requires installing sensors422

in different locations on the structure, connected to data aquisition and transfer equipment. Then, it is423

also proposed to conduct inverse analysis based on data collected on the structure after impact, such as424

a cloud of points revealing the structure envelope obtained from scanning tools. These data sets may be425

used for conducting post-impact inverse analysis in view, for example, of quantifying the consequence of426

the impact on the structure or retrieving information related to the event.427

In both cases, the inverse analysis consists of exploiting the data collected on-site to statistically428

establish a link with the various impact conditions. The inverse analysis relies on meta-models created429

based on a large set of NSCD model simulations of the structure response under close-to-reality conditions.430

The Bayesian inference statistical learning method is used where the data collected on-site shall be fed431

as evidence into the meta-models based forward model to find out the likelihood of obtaining the same432

result (a single value or a pattern) from a particular set of input parameters. A brief description of the433

Bayesian inference is presented in Appendix B and its implementation in the present work is detailed in434

section 4.2.435
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4. Inverse analysis based on real-time measurements436

4.1. General considerations437

The instrumented protective structures e.g., installed sensors, most often aim at warning the structure438

owner or the protected infrastructure manager of any event. Real-time measurements could also be used439

to improve decision-making over the next few moments after impact. Such a process could be based on440

images from cameras, but sensors have the advantage of providing reliable information independently of441

the light and scene conditions.442

Two decisions could be taken remotely immediately after an impact on a structure protecting a traffic443

line: traffic interruption and the need for structure inspection. Both are related to the consequences of444

the impact on the structure, in terms of displacement and damage. An excess magnitude may be critical445

to the safety of the traffic line or imply rapid repair or maintenance work. In this objective, the inverse446

analysis is intended to rapidly and remotely indicate the magnitude of the consequences of the impact, for447

example using consequence classes, rather than to provide a precise value of the displacement or damage.448

The inverse analysis is based on measurements that shall be retrieved from the on-site structure449

exposed to the natural rockfall impact event. The devices used for these measurements should con-450

sider cost constraints to be of interest in an operational context. In particular, the number and type451

of sensors should be optimised. The previous section suggested that a reliable inverse analysis could452

be conducted from the block velocity, which can be derived from the on-site acceleration measurements453

recorded during the impact. Based on this, the proposed inverse analysis is developed considering accel-454

eration measurements from uniaxial sensors, because of their much lower cost compared to triaxial ones.455

Also, it is developed to constrain the number of required data, meaning the number of measuring points456

on the structure (i.e., sensors). The number of measuring points is kept at a minimum while allowing a457

sufficiently good prediction accuracy of the inverse analysis.458

In this perspective, the sensor deployment scheme is defined for a representative wall length, in such a459

manner it can be replicated along the full wall length. Considering the minimum length of the movement460

zone observed in Figure 4, the choice is made to have at least 3 sensors per wall segment (i.e., component461

of the wall length comprising of one convex, angled and concave wedge each). More precisely, sensors462

shall be located in the centre of the vertical face of concrete blocks experiencing significant displacements463

whatever the ICPs. This number of sensors per representative length is presumed to be the minimum464
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number for allowing a reliable inverse analysis. It corresponds to 6 concrete blocks equipped with sensors465

over the maximum movement zone length, as shown in Figure 11. Here, the illustrative process of466

acceleration data acquisition followed by its integration to obtain velocity evolution with time for each467

sensor is also presented. The maximum velocity magnitude is identified and consequently, the pattern468

of maximum velocity for each sensor processed data is retrieved which is deemed unique for each impact469

condition.470
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The inverse analyses presented in the following make use of the maximum concrete block velocity along471

the direction normal to the block face at these 6 locations to represent the impact response corresponding472

to all possible sets of ICPs. The set of maximum block velocities recorded along the wall at these locations473

is in the following referred to as the maximum velocity pattern (MVP).474

4.2. Inverse analysis method475

The inverse analysis relied on the confrontation between the MVP that shall be obtained from an476

on-site measurements to that obtained from a large number of simulation-based results. The devel-477

oped method for conducting the inverse analysis comprised a combination of meta-models and Bayesian478

inference statistical learning methods. The flow diagram is presented in Figure 12 and detailed as follows.479

The rich database of NSCD model simulations for 300 different ICPs (Figure 8) is processed (as per480

Equation 1) to obtain the maximum velocity normal to the block face for all blocks where a sensor is481

planned to be installed. This provides a database of MVP for 300 model computations. This database482
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Figure 12: Computational workflow of the inverse analysis using a combination of meta-models, event data and Bayesian

inversion methods

is processed to create a PCE-based meta-model, named Meta-MVP, associating each set of ICPs to a483

distinct MVP.484

The accuracy of this meta-model is estimated via leave-one-out-error which is estimated of order 10−2
485

to 10−1 for 6 locations collectively making a MVP. Besides, the predictive capability of the Meta-MVP486

is presented by comparing the predicted vs true value from the NSCD model at all six sensor locations.487

For this, the same 300 simulations set complemented with an independent set of 300 simulations, where488

ICP sets generated using Halton sampling method [30] within the bounds reported in Table 1 are used.489

The collective outcome from a total of 600 simulations is presented in Figure 13.490

The prediction accuracy of the Meta-MVP is quantified via the predictability coefficient (Q2), esti-491

mated considering the results from the 600 simulations and 6 points, for a total of 3600 observations,492

as:493

Q2 = 1−

N∑
i=1

(
ypredi − ytruei

)2
N∑
i=1

(
ytruei − ymean

)2 (4)

where ypredi is the meta-model predicted value and ytruei is the value processed from the NSCD model494

for block (i) and ymean is the arithmetic mean of all ‘true’ predictions. The interest of using the meta-495

models is to generalise the maximum concrete block velocity data obtained from 300 (i.e., limited number496

of) simulations, to any possible ICP combination (i.e., a large number), which is a prerequisite for the497

25



Figure 13: Validation of the PCE-based meta-model of the maximum velocity pattern (Meta-MVP) by comparison of the

reported magnitude from 600 NSCD model simulations and the corresponding estimation by the meta-model.

next step.498

The Bayesian inversion process is deployed where the processed PCE-based meta-model is used as499

the forward model (or ‘prior ’, see Equation B.2). This approach is extensively used by many researchers500

(e.g., [36, 37, 16]) to accelerate Bayesian computations. The Bayesian inference is inspired by Bayes’501

theorem [38] - a representation of the changing beliefs - simply demonstrating that the probability of a502

‘hypothesis’ being correct becomes more reliable with supporting ‘evidence’. In our work, the ‘hypothesis’503

states that the 300 distinct sets of input parameters present a set of 300 distinct MVPs. The idea of504

reliability increase in our hypothesis is that, if we have the on-site recorded MVP as ‘evidence’, then505

there exists at least one set of ICPs (i.e., ‘posterior’, see Equation B.3) such that the recorded evidence506

is reproduced. The data that shall be obtained from on-site measurements for a real projectile impact507

on the wall event shall provide the MVP which serves as evidence for inverse analysis. The Bayesian508

process estimates the likelihood of this MVP amongst all possible MVPs recorded from the meta-models509

and predicts the corresponding set of ICPs.510

In the UQlab Bayesian inference framework [39], the uncertainty in the model prediction is assigned511

via added Gaussian discrepancy (see Equation B.5) when correlated with the data that shall be recorded512

from the real on-site event of the projectile impact on the wall. In the present work, as the inverse513

analysis relies on a single MVP that shall be recorded on-site, deemed less precise, the discrepancy with514

a known residual variance of order 10−3 is manually assigned.515
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The output from the Bayesian inference-based inverse analysis is a set of ICP values retrieved as point516

estimates ‘maximum a posteriori ’ and ‘mean’ (see Equation B.13). This predicted set of ICP values is517

then used to estimate the QoI (in this case damage to the wall or distance to the safety line). As a518

conventional approach, running a new NSCD model simulation with the predicted ICPs shall provide519

detailed information on the wall response from which the QoI can be extracted as a subset. However,520

this operation shall require about 30-40 minutes of computation time and added time for post-processing.521

This added delay time between on-site observation and warning system activation is unfavourable.522

A procedure by which the QoI is instantly computed is developed to reduce the reaction time. The523

computational workflow components for this process are highlighted in the dashed box of Figure 12. The524

database of NSCD model simulation results is processed to evaluate the QoI as outputs. The resulting525

database of QoI is then used to create the PCE-based meta-model for each QoI. It serves as a surrogate526

of the NSCD model where the input ICPs are processed to compute the corresponding QoI output.527

The leave-one-out (LOO) error of order 10−2 is reported for the two PCE-based meta-models created528

for the two QoI (i.e., distance to safety and wall damage), named as Meta-usafety and Meta-Dp (see529

section 3.2.3). The predicted ICPs are then fed into this surrogate of the NSCD model as input which is530

then evaluated to eventually predict the QoI and the whole computational process terminates.531

Notably, in the absence of an exhaustive database of the MVP that shall be retrieved from the532

structure exposed to the natural rockfall events, the essential ‘evidence’ database (i.e., recorded MVP) to533

test the inverse analysis process is not available. Therefore, the concrete block velocity patterns from the534

same set of 300 model simulations and the new independent set of 300 simulations with different impact535

conditions are used as pseudo-evidences to test the process as the realisation of the natural rockfall events536

on the structure..537

Each of these 600 known block velocity patterns is individually fed as input into the inverse analysis538

using the multiple model output feature of Bayesian analysis in UQlab (demonstrated in Equation B.8),539

providing the predicted ICP values set. The evaluation of the reliability of the inverse analysis is based540

on the comparison between the QoI reported via the ICP set used for running the simulation and the one541

estimated from evaluating the ICP set predicted by the inverse analysis onto the meta-model created for542

the same QoI.543
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4.3. Inverse analysis for warning purpose544

First, the inverse analysis addresses the traffic interruption issue for which the post-impact minimum545

distance of the wall to the safety line constitutes the QoI. The higher the distance, the higher the safety.546

The predictive capability of the inverse analysis workflow presented in Figure 12 is tested for the maximum547

concrete block velocity database obtained from the 600 NSCD model simulations. The MVPs from the548

three impact cases mentioned in Section 3.1 are also used to predict the minimum distance to the safety549

line.550

The comparison between the predictions from the inverse analysis + meta-model and the simulation551

results is presented in Figure 14. The relative proximity of the predictions to the ideal diagonal reflects552

the potential of the presented methodology. Points above the diagonal concern cases for which the inverse553

analysis overestimates the distance to the safety line. On the contrary, the inverse analysis underestimates554

the distance to the safety lines for points below the diagonal, which is on the safe side.555

The root mean square (RMS) error of the deviation from the expected response for the 600 simulations556

is 16 cm. About 58% of this RMS error is due to the surrogate of the NSCD model (i.e., dashed box557

component of the workflow). Besides, the presented process is also tested for the three illustrative impact558

cases, reflecting a good prediction. In fact, in some sectors of the 6D space of the six ICPs, this surrogate559

locally fails in precisely capturing the wall response, in particular due to the presence of non-linearities.560

As an alternative, the reliability of the inverse analysis could be improved by running an NSCD model561

simulation with the predicted ICPs in place of using the surrogate of the NSCD model, at the expense562

of a longer reaction time upon event.563

For practical purposes, it is proposed to classify the impact response into three classes depending on564

the distance to the safety line: [0-0.75 m], [0.75-1.25 m] and [1.25-1.5m]. These classes correspond to565

decreasing criticality concerning transport corridor safety, respectively high (H), medium (M) and low566

(L) criticality. NSCD model simulation results indicate that 15%, 59% and 26% of the impact cases are567

classified in class H, M and L respectively. Notably, the relatively high number of simulated cases are in568

the middle category as a consequence of the Gaussian distribution of the magnitude of the velocity input569

parameter. Predictions based on the inverse analysis + metamodel give values of 12%, 63% and 25% for570

classes H, M and L respectively. Besides, the false negative predictions are estimated to be about 24%571

and 10% among all in the H and M classes respectively. The remaining predictions i.e., good and false572
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Figure 14: Comparison of the minimum distance from the safety line, estimated from the NSCD model and the corresponding

prediction from the inverse analysis tool accompanied with Meta-usafety . Here, the predictions are divided into three zones

reflecting high (H), medium (M) and Low (L) levels of severity inclusive of the corresponding zonal false positive (+) and

false negative (×) predictions. Results are based on a set of 600 impact conditions complemented with the impact cases

presented in section 3.1 (IC-1 to IC-3).

positives are in favour of the decision-making by the user, and hence are deemed acceptable.573

In the end, the predictions are considered sufficiently good to be used in an operational context for574

estimating the consequences of the rockfall event in terms of structure displacement. The undeniable575

interest in this approach is that it automatically and remotely provides stakeholders with information of576

great value for decision-making upon impact. No quantitative evaluation would be derived rapidly from577

data measured on-site in the absence of such an approach.578

4.4. Inverse analysis for structure damage quantification purpose579

Second, the inverse analysis is used to remotely estimate damage to the wall. It is defined as the580

cumulative energy dissipated by the plastic damage of all the wall concrete blocks, Dp, after the wall is581

at rest. Damage to all concrete blocks of the wall is computed from NSCD model simulation results as582

per section 3.1.4. The approach considered for this inverse analysis is the same as that for the previous583

warning criterion. Figure 15 provides a comparison between Dp values obtained from NSCD model584

simulations and the predicted ones. The RMS error of the deviation from the expected response is 82 kJ,585

which may be considered acceptable when considering all uncertainties associated with the quantification586

of plastic energy dissipation due to real rockfall impacts. Similar to the previous prediction of distance,587
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about 35% of the contribution to the RMS error is attributed to the surrogate of the NSCD model.588

Besides, the process is tested for the three illustrative cases, reflecting a good prediction except for the589

impact at the angled-wedge (i.e., IC-2).590

Figure 15: Comparison of the predicted damage to the wall, Dp, estimated from the NSCD model and the corresponding

prediction from the inverse analysis tool accompanied with Meta-Dp. Here, the predictions are divided into three zones

reflecting Low (L), medium (M) and high (H) levels of damage inclusive of the corresponding zonal false positive (+) and

false negative (×) predictions. Results are based on a set of 600 impact conditions and impact cases presented in section

3.1 (IC-1 to IC-3).

The cases in the right upper corner constitute the most critical impact cases. Points above the diagonal591

concern cases for which the inverse analysis overestimates the damage, which is on the safe side. For592

practical purposes, it is proposed to classify the damage into three classes depending on the value of Dp:593

[0-100 kJ], [100-300 kJ] and [300-800 kJ] for low (L), medium (M) or high (H) damage. These limits are594

arbitrarily defined from the distribution of Dp over all cases.595

The class limits refer to the level of damage to the wall corresponding to the fracture energy of one596

concrete block when a fracture propagates along a vertical plane in the middle of the concrete block.597

A classification based on the energy dissipation associated with the fracture of the considered concrete598

blocks following different patterns and mechanisms (compression or tension) and in different locations599

in each block (e.g., middle of the blocks and corners) would be more appropriate for the practitioners.600

However, such specific estimations are not possible in the framework of the NSCD method used for the601

definition of the NSCD model in the present work. Also, the experimental estimation of these specific602

energy dissipation magnitudes through dynamic tests is not in the scope of the present work. Thereby, in603
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the absence of specific dynamic test results for these large and reinforced concrete blocks, results obtained604

by Guo et al. [40] for a reinforced beam exposed to impact were extrapolated accounting for the difference605

in block section and resulted in a value of 100 kJ approx. This value is a rough estimate of the first limit606

for the considered concrete blocks.607

According to NSCD model simulations results presented in Figure 15, 8%, 72% and 20% of the impact608

cases result in damage classified as H, M and L respectively. Notably, the relatively higher number of609

cases in the middle category are a consequence of the Gaussian distribution of the magnitude of the610

velocity input parameter. Values of 6%, 76% and 18% for classes H, M and L are obtained from the611

predictions respectively. Besides, the false negative predictions are estimated to be about 38% and 5%612

among all in the H and M classes respectively. The remaining predictions i.e., good and false positives613

are in favour of the decision-making by the user, and hence are acceptable.614

The differences between simulation results and predictions are associated with points at a large dis-615

tance from the diagonal (Fig. 15). Further method developments could improve the accuracy of these616

predictions. Nevertheless, the predictions following the described inverse analysis are considered suffi-617

ciently good to be used in an operational context to aid in remote decision-making, the RMS error is 82618

kJ.619

4.5. Comments concerning the use of inverse analysis based on real-time measurements620

The results presented in section 4.3 and 4.4 demonstrate the feasibility of conducting an inverse621

analysis of data that shall be collected on-site during impact, focusing on two specific purposes.622

The proposed method, making use of numerical modelling, meta-modelling and statistical approaches,623

revealed rather efficient in providing useful information which could not be derived from the direct624

observation of the data that shall be received from the site. The duration of the whole process for625

treating the input data typically lasts about five minutes with the developed script making it compatible626

with rapid reaction upon event. The analysis scripts are written in Matlab as per UQLab framework627

[41] allowing running this complex process in two operations (one for inverse analysis and the other for628

output of interest prediction). The accuracy of the predictions is considered sufficiently good for remotely629

classifying the events and aiding in decision-making. If required for another purpose, this accuracy could630

be improved further, for example by also accounting for other measure types, such as deflection, or by631

improving the used methodologies for creating the meta-models.632
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In real situations, the probability of occurrence of an impact in given conditions is extremely variable.633

By contrast, and as mentioned in section 3.2.1, the ICP sets considered in this work were defined by634

not considering any possible correlation between the various parameters. The statistical assessment of635

the inverse analysis predictive capacities is related to the considered ranges and distributions of the six636

ICPs. It should thus be considered indicative at this stage. It should be improved by accounting for637

the probability of each scenario considered in this evaluation, for example considering site-specific data638

describing the rock projectile trajectory.639

It is worth noting that, as the second step of the inverse analysis provides the set of ICP values640

resulting in an MVP similar to the observed one, a preliminary estimate of the projectile velocity at641

impact and consequently the impact energy can also be retrieved complementarily.642

5. Inverse analysis based on post-impact measurements643

5.1. General considerations644

In addition to real-time measurements, the wall conformation after impact can be easily obtained by645

employing techniques such as photogrammetry or Lidar. An accurate impact-induced displacements may646

be obtained if the same type of data is collected before the impact. In such a situation, the number of647

data that shall be from the site would be much larger than that for real-time response. Typically, the648

position of the centre of gravity of all blocks can be derived from these data sets and will be considered649

in the following.650

In this context, the aim of an inverse analysis could be to retrieve information related to the rock651

projectile kinematics at impact, such as its kinetic energy. This information could thus contribute to652

better quantifying the rockfall hazard at the wall location.653

The development of the inverse analysis method is based on the following considerations. In case there654

is damage to concrete blocks, notably in the impact location vicinity, the determination of the blocks’655

gravity centre will not be possible. This eventuality is accounted for in the development of the inverse656

analysis method. In addition, it is considered that the rock projectile volume and the impact location657

can be determined during the on-site visit. For the simplicity of executing the process, we assume that658

the NSCD model which is calibrated for a unique projectile mass is also able to predict the structure659

response for another rock projectile mass. In other words, this implies that for a given projectile kinetic660
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energy, the wall response is the same whatever the mass and velocity. Notably, this assumption is not661

tested via the NSCD simulations of varying mass of the projectile and hence we acknowledge that it can662

be considered a strong assumption. Under this assumption, the kinetic energy provided by the inverse663

analysis combined with the observed rock projectile mass gives an estimate of its velocity at impact.664

Thereby, the reliability of the prediction shall be relatively higher when the impacting rock mass in a665

natural event is close to the simulated projectile mass.666

The ICP comprise six physical parameters which describe the projectile kinematics and the point667

of impact on the wall. The accurate prediction of all parameters is of limited interest for post-impact668

measurements as the user is more focused on the estimation of the incident rock projectile kinetic energy.669

Therefore, it is proposed to use a reduced dimension of the input parameters space to create the metamodel670

from the 3D displacement database. The set of six ICPs is reduced to three by combining v, Ω, α and β671

to calculate the total kinetic energy of the projectile (KEproj) as per the Equation 5 below and keeping672

position parameters y and z intact.673

KEproj =
1

2
m
[
vxy

]2
+

1

2
m
[
vz
]2

+
1

2
I
[
2πΩ

]2
(5)

Further, the total kinetic energy of the projectile can be divided into two components: one accounting674

for the energy on the plane parallel to the ground (KEp) and the other accounting for the rest of the675

energy (KEnp). This is done by using only the planer component of the translational velocity (vxy)676

component to compute KEp and the remaining two components (i.e., vz and Ω) to compute KEnp.677

This division is motivated by the observation that KEp mainly governs the wall displacement, as it678

is integrally transferred to the wall (except if the projectile rebound velocity is significant, which is not679

the case here). On the contrary, the rest of the energy (which is associated with projectile rotation and680

velocity along the vertical direction) is marginally transferred to the wall and thus has very little influence681

on the wall response.682

This proposition is qualitatively explored by the Sobol indices evaluated on reduced ICPs for the683

maximum 3D displacement, presented in Figure 16. Here, KEp is observed highly influential for the684

resulting maximum displacement of the wall and as suspected, KEnp provides negligible influence. The685

y-position of the projectile impact is observed as influential and supports the conclusion presented in the686

previous section. The position-z is observed to have a negligible influence which supports the conclusions687
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Figure 16: Sobol sensitivity analysis of the impact condition parameters (ICPs) of derived and reduced dimensions (i.e.,

from 6 to 4) for the maximum 3D displacement

in the previous section as well. Thereby, observing from the Sobol indices, the inverse analysis is conducted688

taking into account the variability in the input KEp and y parameters only hereby referred to as reduced689

dimension ICPs.690

5.2. Inverse analysis method691

The process of inverse analysis for displacement-based prediction of the impact conditions follows the692

same workflow as illustrated in Figure 12, however by replacing some components detailed hereafter. The693

recorded database from 300 NSCD model simulations is associated with the reduced dimension ICPs,694

instead of 6 ICPs. The 3D displacement post-impact is evaluated at all blocks in the movement zone695

and the database of the displacement pattern (as a replacement for the MVP mentioned in the previous696

section) corresponding to each set of reduced dimension ICPs is obtained. A PCE-based metamodel697

is created to associate each reduced dimension ICP set to a distinct 3D-displacement pattern, named698

Meta-3DP.699

The accuracy of the Meta-3DP is estimated via the leave-one-out error, reported of order 10−1 for700

all 26 blocks in the movement zone collectively making a 3D-displacement pattern. Besides, the created701

meta-model for 3D displacement is validated by using the same simulation set and the independent set of702

300 simulations (presented in Section 4.2), thus a total of 600 simulations, and comparing the predicted vs703

true value (from NSCD model) at all 26 blocks in the movement zone, collectively presented in Figure 17.704

Here, the predictability coefficient (Q2) presents the prediction accuracy, estimated for N = 600 × 26 =705

15600 observations as per Equation 4.706
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Figure 17: Validation of PCE-based meta-model of the 3D displacement pattern (Meta-3DP) of 26 blocks by comparison

of the reported magnitude from 600 NSCD model simulations and the corresponding estimation by the meta-model

This created meta-model is used as a forward model for the Bayesian inference-based inverse analysis.707

The displacement data retrieved from real events shall serve as evidence for the inverse analysis, by708

replacing the ‘on-site MVP’ mentioned in the workflow of Figure 12. Notably, here, two threshold levels709

of displacement magnitude are considered at 0.2m and 0.05m based on the observation from processed710

displacement data from 300 simulations for all 26 blocks. The first threshold of 0.2m is assigned to limit711

the number of blocks in the displacement pattern to avoid overfitting. The second threshold of 0.05m is712

assigned to take into account a sufficient number of blocks for a small wall displacement situation where713

the first threshold limits the total number of moving blocks to a maximum of three.714

The corresponding reduced dimension ICPs are predicted and the inverse analysis process terminates.715

Notably, the workflow (in the dashed box of Figure 12) corresponding to the evaluation of the QoI and716

the associated process to create a meta-model serving as a surrogate of the NSCD model is therefore not717

required.718

5.3. Evaluation of the method719

Following the guidelines of the previous section, the predictions of the energy transferred to the wall720

and the position of impact are compared with the corresponding NSCD model simulation results. These721

comparisons are presented in Figure 18 for the simulated 600 distinct impact conditions and the three722

illustrative impact conditions.723
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(a) (b)

Figure 18: Comparison of displacement-scan inverse analysis-based predictions of (a) energy transferred to the wall and (b)

position along the wall length with the corresponding magnitude deduced from 600 different sets of the impact condition

parameters.

The energy transferred to the wall is predicted with an overall RMS error of 71 kJ (which is below the724

fracture energy of the concrete block) based on 600 simulations. The overall prediction is satisfactory for725

a wide range of energy magnitudes supporting the potential of the presented methodology. Nevertheless,726

two out of three illustrative cases are badly predicted with up to 120 kJ difference from the expected727

520kJ for all cases (IC-1 and IC-3).728

Further, the position of impact along the wall length is rather well predicted for impacts at convex729

and concave-wedges, including the illustrative impact tests in these two locations (IC-1 and IC-3). By730

contrast, the predictions for the angled wedge zone (between 1.2 to 2.2 m approx.) are significantly less731

accurate thereby contributing to the overall RMS error of 37 cm (which is about 24% of the length of a732

block). This significant difference in prediction accuracy is attributed to the zig-zag conformation of the733

wall, which amplifies the influence of the deviation angle (β) on the structure response depending on the734

impact location, as illustrated by the Sobol indices. Considering a reduced ICPs input space dimension735

suppresses the distinct contribution of β which in turn suppresses the variability of the impact at the736

angled wedge.737

Overall, the inverse analysis method based on the post-impact measurements is deemed acceptable738

to retrieve the incident projectile impact position and the energy transferred to the wall. The presented739
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method well captures the variability in the retrieved information. Further efforts can be made to improve740

the predictive capability of the inverse analysis method.741

6. Conclusions742

This work explored the potential of inverse analysis to obtain the information of interest in the opera-743

tional context of a rockfall protection structure. The inverse analysis relies on simulation-based evaluation744

of the structure response and makes use of the Bayesian inference and meta-modelling techniques. This745

work in particular focuses on rockfall protection walls made of piled-up and articulated concrete blocks746

for which an NSCD model was previously developed and calibrated against real-scale impact experiments.747

The main conclusions drawn from this research are :748

• Provided a well-calibrated model is available, it is possible to carry out reliable inverse analysis of749

the response of complex structures subjected to localised dynamic loading.750

• Investigating the structure response considering a wide range of impact conditions, representative751

of those encountered in situ is a prerequisite in view of defining the strategy for developing the752

inverse analysis method.753

• The inverse analysis may be based on real-time or post-impact measurements and may serve various754

purposes, in particular for remote warning upon impact or rockfall activity survey.755

• The presented inverse analysis framework is transferable to other types of such structures (such756

as flexible barriers) via the usage of the representative numerical model and the relevant recorded757

database on-site.758

• The inverse analysis process can be implemented to other wall configurations of the same constituent759

blocks and connectors considering the same calibrated model parameters and following the workflow760

presented in Figure 12.761

The purpose of the two presented inverse analysis processes (i.e., for real-time impact and post-impact762

conditions) is different and hence a direct comparative assessment is not representative. Nonetheless, as763

both analyses yield predictions of one distance-based parameter and one energy-based parameter, an764

indirect comparative assessment is made that can be useful in future research. The displacement pattern765

metamodel is about 8.3% less accurate than the velocity pattern metamodel accessed via the reported Q2
766
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values. The resulting energy-based prediction is 13% more accurate for the former whereas the distance-767

based prediction relative to the corresponding block dimension (i.e., length for position of impact and768

width for minimum distance to the safety line) is reported 11% less accurate for the former when accessed769

via the reported RMS errors.770

As a perspective, the predictive capability of the proposed methodology shall be improved by focusing771

on the accuracy of the individual components of the whole process. The improvement in the surrogate772

model via an increase in the Q2 coefficient and improvement in the inverse analysis method via (1)773

reducing the RMS error of the predictions and (2) reducing the number of false indicators cases ‘especially774

negative’ shall be adopted. As a supplementary outcome, the recorded concrete block velocity database775

for different impact conditions can be further exploited towards the optimisation of the sensor location.776

Moreover, the present method is limited to considering a single rock impact and therefore the assessment777

of multiple rocks impacting the wall at the same time is subjected to future research.778
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Appendix A. PCE based meta-model885

Consider the articulated structure model represented by a M(X) as an equivalent mathematical886

model. Here, X ∈ RM is a random vector with independent components described by the joint probability887

density function (PDF) fX. Consider also a finite variance computational model as a map Y = M(X),888

with Y ∈ R such that:889

E
[
Y 2

]
=

∫
DX

M(x)2fX(x)dx < ∞ (A.1)

Then, under the assumption of Equation A.1, the PCE of M(X) is defined as:890

Y = M(X) =
∑

α∈NM

yαΨα(X) (A.2)

where, the Ψα(X) are multivariate polynomials orthonormal with respect to fX, α ∈ NM is a multi-891

index that identifies the components of the multivariate polynomials Ψα and the yα ∈ R are the corre-892

sponding coefficients. In practical applications, the sum in Equation A.2 needs to be truncated to a finite893

sum by introducing the truncated polynomial chaos expansion:894

M(X) ≈ MPC(X) =
∑
α∈A

yαΨα(X) (A.3)
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where, A ⊂ NM is the set of selected multi-indices of multivariate polynomials.895

In this work, the least-angle regression (LARS) method is used to create the PCE meta-model trun-896

cated to the maximum polynomial degree (p) ranging from 1 to 20, and using hyperbolic truncation897

scheme (q) ranging from 0.5 to 1.898

AM,p,q = {α ∈ AM,p : ∥α∥q ⩽ p}, where ,∥α∥q =

( M∑
i=1

αq
i

)1/q

(A.4)

The accuracy of the constructed PCE is estimated by computing the leave-one-out (LOO) cross-899

validation error (ϵLOO). It consists in building N meta-models MPC\i, each one created on a reduced900

experimental design X\x(i) = {x(j), j = 1, ..., N, j ̸= i} and comparing its prediction on the excluded901

point x(i) with the real value y(i) = M
(
x(i)

)
[34]. The leave-one-cross-validation error can be written as:902

ϵLOO =

N∑
i=1

(
M

(
x(i) −MPC\i(x(i))

)2

N∑
i=1

(
M

(
x(i) − µ̂Y

)2
(A.5)

where, µ̂Y is the mean of the experimental design sample.903

Appendix B. Bayesian inference for inverse analysis904

Consider the computational model M that allows the analyst to predict certain quantities of interest905

gathered in a vector y ∈ RNout as a function of input parameters x:906

M : x ∈ DX ⊂ RM 7→ y = M(x) ∈ RNout (B.1)

The Bayesian inference for inverse analysis focuses on identifying the input parameters of a computa-907

tional model to recover the observations in the collected output data set. It comprises of a computational908

forward model M, a set of input parameters x ∈ DX that need to be inferred, and a set of experimental909

data Y. Here, Y def
= {y1, ...,yN} is a global data set of N independent measured quantities of interest910

(yi).911

The forward model x 7→ M(x) is a mathematical representation of the system under consideration.912

The lack of knowledge on the input parameters is modelled by considering them as a random vector,913

denoted by X which is assumed to follow a so-called prior distribution (with support DX), as presented914

in Figure 8 in the present work.915
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X ∼ π(x) (B.2)

The Bayesian statistics combine this prior knowledge of the parameters with the few observed data916

points to obtain a statistical model called posterior distribution (π(x | y)) of the input parameters, using917

Bayes’ theorem [38], expressed as:918

π(x | y) = π(y | x)π(x)
π(y)

(B.3)

Now, considering the available data set (Y) as independent realizations of Y | x ∼ π(y | x), the919

collected measurements result in the definition of the likelihood function L(x;Y), which is a function of920

input parameters x:921

L : x 7→ L(x;Y)
def
=

N∏
i=1

π(yi | x) (B.4)

This implicitly assumes in/dependence between individual measurements in Y. Intuitively the like-922

lihood function for a given x returns the relative likelihood of observing the data at hand, under the923

assumption that it follows the prescribed parametric distribution π(y | x).924

As all models are simplifications of the real world, a discrepancy term (ϵ) is introduced to connect925

real-world observations (Y) to the predictions by the model. In practice, the discrepancy term represents926

the effects of the measurement error and model inaccuracy. The discrepancy term introduced here reads:927

y = M(x) + ϵ (B.5)

Here, the ϵ is assumed as an additive Gaussian discrepancy [39] with a zero mean and given covariance928

matrix (Σ):929

ϵ ∼ N (ϵ | 0,Σ) (B.6)

Taking insights from the discrepancy term definition, a particular measurement point (yi ∈ Y, is a930

realization of the Gaussian distribution with mean valueM(x) and covariance matrixΣ. This distribution931

is named as discrepancy model and is expressed as:932

π(y | x) = N (y | M(x),Σ) (B.7)
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In application, the discrepancy model defines the connection between the supplied data (Y) and933

the forward model. In the present work, as the inverse analysis is conducted on the pseudo on-site934

measurement (as evidence), the discrepancy model with known residual variance is assigned.935

Afterwards, the N independent available measurements (in our case, maximum velocity pattern and936

3D displacement databases) gathered in the data-set (i.e., Y = {y1, ...,yN}) are used to define the937

likelihood function as:938

L(x;Y) =

N∏
i=1

N (yi | M(x),Σ)

=

N∏
i=1

1√
(2π)Nout det (Σ)

exp

(
− 1

2

(
yi −M(x)

)⊺
Σ−1

(
yi −M(x)

)) (B.8)

Thereby, following Bayes’ theorem, the posterior distribution π(x | Y) of the parameters (x) given939

the observations in Y can be written as:940

π(x | Y) =
L(x;Y)π(x)

Z
(B.9)

Here, Z is a normalizing factor, known as the marginal likelihood or evidence, is added to ensure that941

this distribution integrates to 1:942

Z
def
=

∫
DX

L(x;Y)π(x)dx (B.10)

The closed-form solutions do not exist in practice, and therefore the posterior distribution is obtained943

through Markov chain Monte Carlo (MCMC) simulations. In the present work, among many proposed944

algorithms in [39], the Adaptive Metropolis (AM) algorithm is used and 100 parallel chains with 1000945

steps are assigned to the MCMC solver. The start of the covariance adaptation in AM algorithm is946

assigned at the 100th step (see Wagner et al. [39] for more details).947

The output (y) predictive capabilities of the Bayesian inference is assessed through the comparison948

of prior (π(y)) and posterior (π(y | Y)) output distributions as:949

π(y) =

∫
DX

π(y | x)π(x)dx (B.11)

π(y | Y) =

∫
DX

π(y | x)π(x | Y)dx (B.12)
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Lastly, in the present studies, the purpose of the Bayesian inference is to obtain the ‘best set of impact950

condition parameters (ICPs)’. Given the posterior distribution (π(x | Y)), we are interested in finding a951

suitable set among the posterior computed set i.e., X | Y. This is done through a point estimator (x̂)952

computed from:953

π(y | Y)
def
= π(y | x̂) (B.13)

This point estimator can be a mean or mode (maximum a posteriori ‘MAP’) [39] of the posterior954

distribution as per the user’s choice.955
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