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Abstract

The viability of a rockfall protection structure is vital for the hazard mitigation of habitations and

infrastructures. This article investigates the feasibility and potential of inverse analysis applied to data

collected on on-site rockfall protection structures exposed to real events. As an application case, a

rockfall protection wall made from interconnected concrete blocks which are piled up in a zig-zag pattern

is considered. The numerical model of this structure is created via the use of a Non-Smooth Contact

Dynamics (NSCD) method-based modelling technique. The NSCD model is developed using the Siconos

software and spatiotemporally calibrated from two real-scale impact experiments with 520kJ and 1020kJ

projectile energy. This model is used to investigate the variability in wall mechanical response against

different impact conditions. The simulation results served as input data for developing the inverse analysis

method. As a first application, it is proposed to use the inverse analysis to aid in remote decision-making

shortly after an event, based on real-time measurements. Then, the use of inverse analysis to retrieve the

impact condition characteristics (energy, location) from data collected after the event is addressed. The

proposed approach appeared efficient for back-analysing (i.e., output to input) data related to the wall

response for being used as a warning based on its displacement with respect to the protected element at

risk and damage to the wall with root mean square errors (RMSE) of 16 cm and 82 kJ respectively and

for a rockfall site survey with RMSE of 71 kJ energy transferred to the wall and position of impact with

37 cm.
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1. Introduction1

Passive rockfall protection mitigation measures such as embankments [1], galleries [2] or flexible bar-2

riers [3] are exposed to severe loading when intercepting rock blocks threatening elements at risk. During3

their normal operation, these structures thus experience significant deformation, displacement, and dam-4

age and possibly fail to withstand the impact or to satisfactorily control the rock blocks trajectory [4].5

In this context, and similarly, as for other gravitational natural hazards, increasing use is being made6

of equipment for monitoring on-site rockfall protection structures, to collect the data upon the impact7

of a rockfall [5]. On-site monitoring of structures with accelerometers or force sensors, for example, in8

particular aim at serving as a warning system for supporting decision-making (e.g., road closure) or9

for providing information regarding the loading amplitude or the structure response in real situations.10

On-site monitoring is becoming increasingly common in the field of landslides due to the improvement,11

miniaturisation and cost reduction of sensors, data acquisition and transmission systems [6, 7].12

Numerical models are widely used for addressing rockfall protection structures’ response as a forward13

problem. Published research demonstrates the accuracy of the model predictions as compared to experi-14

mental data (e.g. [8, 9, 10]) or addressing the structure response under some specific impact conditions15

(e.g. [11, 12]) or considering sets of realistic impact conditions (e.g. [13, 14]). By contrast, inverse analysis16

conducted (i.e., finding input from the output) based on numerical models have rarely been used in this17

field. To the best of the authors’ knowledge, the only exception concerns the work presented by Escallón18

et al. [15] who proposed an inverse optimisation process for determining the parameters of macroscopic19

FE models of steel wire-rope cables and steel wire-rings.20

This article investigates the feasibility of conducting an inverse analysis of the structure response21

for deriving information with added value for stakeholders and engineers. It is for example proposed to22

analyse the measured data pertinent to the structure’s performance to retrieve the impact conditions.23

The proposed inverse analysis consists of comparing data collected on-site during or after an event with24

the structure impact response as obtained from numerical simulations. This comparison relies on the25

use of statistical learning methods enhanced by meta-modelling tools. A statistically modelled series of26

different impact conditions and a learning-enabled link between input and output responses provide us27

with the necessary components to do the inverse analysis. Further, the establishment of a mathematical28

link between the structure’s response and the corresponding impact condition is enabled through the use29
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of meta-models having negligible computation costs.30

Here, we focus on an innovative passive rockfall protection structure made of pile-up concrete blocks31

to form a wall with a zig-zag pattern, for which a Non-Smooth Contact Dynamics (NSCD) method-based32

numerical model was previously developed. The calibration of this model was conducted against experi-33

mental data following a complex method involving statistical learning, resulting in improved confidence in34

the model’s predictive capacities, reported in [16]. In parallel, specific instrumentation including sensors35

(i.e. accelerometers and inclinometers), remote data acquisition and processing has been developed to36

equip these structures. In principle, the proposed approach for conducting an inverse analysis could be37

applied to any type of structure, and in particular structures exposed to dynamic loading such as flexible38

barriers.39

The paper is organised as follows: First, the NSCD model definition and its calibration are briefly40

presented. Then the mechanical response of the wall to impact is addressed thanks to NSCD model41

simulations. First, varying the impact location and then via six parameters collectively describing the42

rock block trajectory, kinematics and impact point on the wall. The impact simulation results highlight43

the intricacy of the structure response and suggest the simulation outputs which best allow differentiating44

the impact cases. Then, a method for conducting the inverse analysis of the collected data is developed45

to support the real-time decision and rockfall activity monitoring purpose of a given site.46

2. Structure and model presentation47

The considered structure is a composition of concrete blocks, reinforced with internal rebars and placed48

together in a staggered pattern to form a wall whose geometry can be adapted to specific requirements49

(e.g. linear or zig-zag conformation along its longitudinal axis). The blocks are connected thanks to50

metallic tubes and cables passing through vertical cylindrical holes in the blocks, providing mechanical51

continuity to the structure [17]. There exist mechanical plays between concrete blocks of the same row52

as well as between the metallic tubes and the blocks.53

This type of articulated structure constitutes an alternative to other massive passive rockfall protection54

structures with reduced footprint [18, 19] with the advantages of high versatility in the design and55

deformability under impact. For such an application where the structure is exposed to a localised dynamic56

loading, tubes and cables increase the number of blocks involved in the structure’s response proportional57
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to the impact loading.58

The dynamic response of this structure is evaluated thanks to two full-scale impact experiments with59

energies of 520kJ and 1020kJ on a wall 3.2 m in height and 14.1 m in length (Figure 1a). The projectile60

used for this purpose is 2600kg in mass and 1.1 m in dimension, corresponding to approximately 1/3rd61

the wall height, conforming with the requirements of flexible barrier testing [20]. The wall displacement62

evolution data is recorded at a couple of points on the impact axis (at points Top and Base) and on the63

distant axis (at points C and D) as further detailed in Furet et al. [17].64
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Figure 1: (a) The experimental real-scale wall structure and (b) its numerical equivalent developed using Siconos software

based on the framework of non-smooth contact dynamics (NSCD) method, hereby referred to as NSCD model.

Based on these impact experiments, a numerical model of the structure was developed under the65

Non-Smooth Contact Dynamics (NSCD) framework implemented in Siconos [21] software. The NSCD66

model of the structure is a collection of blocks and connectors (Figure 1b). The detailed description of67

the model development and calibration is presented in Gupta et al. [16].68

The same block geometry is considered in the model as that in the real structure. The cables and69

slings are modelled with connectors. The interaction between the structure model components, as well70

as the interaction with the projectile, abides with the framework of the NSCD method.71
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The model parameters governing the interactions between the various bodies of the system were72

calibrated against the experimental database describing the spatio-temporal response of the wall during73

the two impact tests. Notably, the calibration was based on the displacement measured with time (at74

three-time instants) at the four locations previously mentioned. The model calibration was supported by75

the Bayesian statistical learning method, improving the confidence in the derived set of model parameters,76

and thereby enabling the replication of the structure response with time and space, over a range of77

impact energies up to 1 MJ. In addition, the model being simple and developed under the NSCD method78

framework provides on average about 30 times faster computation times in comparison to conventional79

FE-based models [17] and allows envisaging running a large number of computations.80

In the following, all simulations are conducted on a wall 3.2m high and about 28.2m long (Fig. 2).81

The increase in length as compared to that in Gupta et al. [16] aims at avoiding any potential boundary82

effects when varying the impact location along the wall longitudinal axis. For these simulations, the same83

projectile is considered. Moreover, the comparison of spatio-temporal displacement response for both84

small and large wall lengths (i.e., 14.1 and 28.2m respectively) for the two calibrated impact cases are85

reported qualitatively and quantitatively similar. Therefore, the calibrated model constitution parameters86

as reported in Gupta et al. [16] are directly applied to the long wall model.87

3. Structure response investigation88

Due to its zig-zag conformation, discrete nature and complex design where concrete blocks are in-89

terconnected thanks to metallic components and including mechanical plays, the structure response is90

expected to be highly sensitive to impact conditions, for example varying the impact location or the91

projectile pre-impact trajectory.92

First, the structural response variability is illustrated by considering three impact cases in similar93

conditions to that during the experiments but with different impact locations. Then the investigation is94

generalised varying 6 parameters describing the impact conditions.95

3.1. Response for the illustrative impact conditions96

The wall response is addressed by varying the projectile impact location to illustrate its complexity97

and variability. Three impacts with a 520 kJ energy and located in the centre of each of the distinct98
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sections of the zig-zag pattern were simulated. These sections are referred to as convex-wedge, angled-99

wedge and concave-wedge, when viewed from the impacted side, as presented in Figure 2. The wall100

response is addressed in terms of block displacement, velocity, inclination and plastic damage.101
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Figure 2: Top view of the wall model highlighting the repetitive pattern and an identifier for different sections.

3.1.1. Displacement102

The displacement at the top of the wall is extremely sensitive to the impact location, presented for103

three illustrative impact conditions (IC), via the top view of the wall in Figure 3. Here, the three simulated104

impacts one each at convex, angled and concave wedges are named as IC-1, IC-2 and IC-3 respectively.105

This is particularly noticeable in terms of structure conformation. The impact on the concave-wedge106

results in aligned blocks (Fig. 3c), while an impact on the convex-wedge amplifies the amplitude of107

the zig-zag (Fig. 3a). The length of the movement zone along the wall longitudinal axis varies from108

approximately 6 m in the case of an impact on the angled-wedge to 7 m for the two other impact cases,109

corresponding to four and six number of top-row blocks respectively. Figure 3 also suggests a difference110

in the displacement of the individual blocks. Larger block displacement is observed for impacts on the111

concave-wedge.112

As this zig-zag patterned wall aims at protecting a given element at risk it appears much more113

relevant to consider the residual distance to the so-called safety line shown in Figure 3 in addition to of114

the displacement of the blocks. The safety line may be defined based on the position of the protected115

element at risk. It is here arbitrarily located at 1.5 m from the convex-wedge block’s rear face. From116

Figure 3, it can be deduced that the minimum residual distance to the safety line is much smaller in the117

case of the impact in the convex-wedge (0.5 m. approx.), as compared to the two other impact cases (1.3118

m approx.). With respect to this criterion, an impact on the convex-wedge thus reveals comparatively119

more critical than others.120
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Figure 3: Top view of the structure before and after a 520-kJ impact located in the centre of (a) the convex-wedge (IC-1),

(b) the angled-wedge (IC-2) and (c) the concave-wedge (IC-3).

3.1.2. Velocity121

The variability in response is here illustrated by the time evolution of the velocity of the concrete122

blocks. For this purpose, the velocity computed at the mid-bottom of the block rear vertical face ‘vface’123

(i.e., on the side opposite to impact) is considered which represents the potential position for the sensor124

deployment in the in-situ structure.125

Instrumentation of on-site structures is likely to consist of 1D accelerometers installed on the concrete126

block faces for measuring the acceleration normal to the block with time. For a simplified analysis, the127

desired velocity profile from the NSCD model shall also be computed normal to the block face at all time128

instances. For this, the ‘vface’ vector is projected onto the unit normal vector (n̂b) to the block face. The129

computation process is presented in Equation 1.130
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vface = vg + (pΩp−1)× q

vnb = (vface.n̂b)n̂b

(1)

where vg is the velocity at the block gravity centre, Ω is the rotational velocity, p is the quaternion131

(presenting block’s 3D orientation) and q is the relative position vector of the block face (envisaged sensor132

location) to its centre of gravity.133

The time evolution of velocity normal to block face computed for all three cases is presented in134

Figure 4 (all left). In addition, the peak velocity of the blocks and the time to reach this peak are plotted135

in Figure 4 (all right).136

A general trend where the peak velocity localises at the impacted block is observed. Besides, the137

number of blocks experiencing rapid displacement from the impact beginning is comparatively higher138

when the projectile impacts the concave-wedge (Fig. 4c). Indeed, three blocks close to the impact location139

experience very similar curves. The time for the wall to come to rest is smaller in case of an impact on140

the convex-wedge with a duration of about 0.5 as compared to 0.8 seconds after an impact on the angled-141

wedge in particular (Fig. 4a vs Fig. 4b). Overall, the velocity of all the blocks appears to provide rich142

information, with high amplitude as well as significant differences from one case to the other.143

The blocks with significant maximum velocities are located within a distance along the wall length144

ranging from 8 to 12 m approximately depending on the impact location. This observation is in line with145

the observation made in Figure 3. The shape of the maximum velocity pattern significantly differs from146

one impact case to the other. These observations suggest that the distribution of peak velocity along the147

wall could be specific to the impact case in a rather univocal manner.148

3.1.3. Inclination149

In addition to the displacement and velocity, the inclination of the wall blocks, i.e., their rotation150

around a horizontal axis, seems relevant to address as it relates to wall post-impact stability. In addition,151

inclination may be measured on-site with rather low-cost sensors. The post-impact inclination of all the152

blocks in the wall is presented in Figure 5. An impact on the concave-wedge results in block inclination153

over a wall length as large as 8 m (Fig. 5). The maximum value of about 17◦ approx. is observed at the154

upper row in the impact vicinity. Results concerning the impact on the convex-wedge and angled-wedge155

are not presented as they induced nearly zero wall inclination.156
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Figure 4: Evolution of the velocity of the concrete block in the movement zone (all left) and the corresponding mapping of

the maximum velocity for blocks in all four rows i.e., top, third, second and base (all right) for the illustrative impact cases

at (a) convex wedge (IC-1), (b) angled wedge (IC-2) and concave wedge (IC-3) respectively. Here, ‘Y’ refers to the global

position of the mid-bottom of the rear face of each block along the wall length.

Conclusively, the inclination doesn’t provide sufficiently rich information to envisage relating it to the157

impact conditions, in particular, because some impact conditions result in null inclination angle values158

and hence are not deemed appropriate to explore further.159

9



−8−6−4−2024
Y (m)

0

4

8

12

16

20

In
cl

in
a
ti
on

 a
t 

re
st

 (
)

Top

Third

Second

Base

Figure 5: Inclination of all blocks in four layers of the wall (i.e., top, third, second and base) with respect to the vertical at

rest for the impacts at concave wedge (IC-3) under 520kJ energy impact. The results for the impact at the convex-wedge

(IC-1) and angled-wedge (IC-2) are not presented because of their negligible magnitude.

3.1.4. Plastic damage160

The rockfall impact on the structure causes plastic damage to the blocks, dissipating a portion of the161

incident projectile kinetic energy. Notably, the NSCD model is created as an accumulation of rigid bodies162

where the contact law controls the interaction. Despite that, the quantitative estimation of the energy163

dissipiation mechanisms is possible following the work reported by Acary [22] in the NSCD framework.164

Subsequently, the relation presented in Equation 2 is implemented in the present work to compute the165

energy dissipation due to plasticization (Dp).166

Dp =

N∑
k=0

∑
α∈I

1

2

(
vαN,k+1 + vαN,k

)
Pα

N,k+1 (2)

Here, vN is the normal component of the velocity vector and PN is the normal impulse at a given time167

step ‘k’ (out of total N) at a contact point α ∈ I. The details of velocity and impulse computations can168

be referred to at Gupta et al. [16].169

The time evolution of Dp for the three illustrative cases with different impact locations is presented170

in Figure 6. A significant contribution of plastic damage is observed at the early time instance when171

the projectile impacts the wall. With reference to the zoomed-in window (see Figure 6b), the damage172

evolves relatively fast for the impact at convex-wedge (IC-1) and reaches a constant magnitude of about173
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Figure 6: (a) Time evolution of the energy dissipation due to plastic damage for the three illustrative cases, with impact at

at the convex-wedge (IC-1), the angled-wedge (IC-2) and concave-wedge (IC-3), (b) zoom-in window between 300 and 400

kJ

380kJ at about 0.35 seconds post-impact. The other two impact cases evolve for a relatively longer time174

(about 0.6 seconds) before reaching a constant value. This observation is in line with the duration over175

which the wall moves, as illustrated in Figure 4. Conclusively, the plastic damage is taken as a quantity176

of interest for structural response assessment.177

Notably, the remaining part of the energy transferred by the projectile to the wall is dissipated by178

friction at the contacts, as detailed in [23] where it is also demonstrated that the computation scheme179

complies with the fundamental principle of energy conservation.180

3.2. Response to a large set of impact conditions181

Following the illustrative structural response description in the previous section, the numerical sim-182

ulation framework is extended to address the response considering a large set of impact conditions. In183

a similar way as previously done for flexible barriers [13, 24, 25], the parameters describing the incident184

projectile trajectory, kinematics and location, hereafter referred to as ICPs (Impact Conditions Param-185

eters) are varied over realistic ranges to account for nearly all possible distinct impact conditions which186

may occur in the field. The ICPs and their magnitude ranges are given in Table 1.187

The first two parameters (i.e., translational and rotational velocities) account for the incident kinetic188

energy of the projectile. Given the projectile geometric and mechanical characteristics considered in this189
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Table 1: Parameters considered for generating close-to-reality impact conditions

Parameter Possible range Distribution Unit

Translational velocity (v) 10 - 25 Gaussian m/s

Rotational velocity (Ω) 0.0 - 5.6 Uniform rot/sec

Impact position - along length (offset) (y) 0.0 - -3.53 Uniform m

Impact position - along wall height (z) 0.55 - 2.10 Uniform m

Impact inclination (α) -60 - +60 Uniform ◦

Impact deviation (β) -45 - +45 Gaussian ◦

study, the translation velocity results in a kinetic energy ranging from 130kJ to 800 kJ. The rotational190

velocity range is defined as per the work reported by Bourrier et al. [26] providing the rotational kinetic191

energy up to 240kJ for the projectile geometry used in this work.192

The impact location refers to the projectile’s centre of gravity at impact. The range for the impact193

locations along the wall longitudinal axis (Y axis) is defined considering that the structure consists of the194

repetition of a pattern. Thereby, the impact locations were restricted to a representative segment of the195

wall conformation. By definition, the response observed for this segment is extendable to other parts of196

the wall, except for the wall extremities. Indeed, impacts at a close distance from the wall extremities197

shall result in a different impact response, in particular depending on some design choice with influence198

on the mobility of the blocks at the wall extremity (such as retaining cables or abutments). The case199

of impacts close to the wall extremities is thus not considered in the present work. The impact location200

along the vertical axis (z) is defined considering the wall height and the block size, which is 1.1m. The201

minimum value for the impact location along the vertical axis is half the projectile dimension. The202

maximum value corresponds to the distance between the projectile centre of gravity and the wall crest203

equalling the projectile diameter.204

The inclination and deviation angles are varied over the ranges reported by Toe et al. [24]. The205

inclination angle (α) represents the relation of the z-component of projectile impact path with the normal206

to the wall face [13]. Negative α values thus correspond to upward trajectories (i.e., away from the207

ground). The β angle accounts for the deviation in the horizontal plane of the incident rock block208
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trajectory with respect to the normal to the wall longitudinal axis (and not with respect to the impacted209

block uphill face). The range considered for β implies that the wall longitudinal axis is considered210

perpendicular to the line of the maximum gradient of the uphill slope.211

In this study, the kinetic energy is considered sufficient for describing the projectile kinematics in view212

of addressing the structure response. This obviously constitutes a simplification as it is evidenced that,213

for a given projectile kinetic energy, the response of a rockfall protection structure may be significantly214

influenced by the projectile mass-to-velocity ratio [27, 28]. Besides, the upper limit of the translational215

kinetic energy is kept less than the wall nominal capacity as observed during the experiments, which is216

above 1 MJ. This is motivated by two observations: (1) The representation of the model to correctly217

model the structure displacement and damage is lower at impact kinetic close to the nominal value (e.g.,218

due to loss of mechanical continuity in connectors [16]) and (2) The damage and displacement are severe219

for translational kinetic energy at impact higher than 800 kJ, imposing visit and repair/maintenance220

works without any doubts.221

3.2.1. Statistical sample222

A statistical set of 300 model computations, based on the Latin hypercube sampling (LHS) method223

[29] is retrieved to represent the model response under multiple impact conditions. The created statistical224

sample is presented in Figure 7. Here, the filled input space assures that possible combinations of the225

input variables are well considered in the finite set of ICPs.226

It is worth highlighting that the ICPs were defined ignoring some correlations that may exist between227

the six parameters. For example, the velocity in the case of a downward projectile trajectory is higher228

on average than that for an upward trajectory. This results from the fact that a downward trajectory229

is associated with a rock block-free fall while an upward projectile trajectory immediately succeeds in a230

rebound in the ditch which induces energy dissipation. This means that some combinations of parameter231

values are not realistic (for example the lowest α value with the highest translational velocity, v).232

Moreover, a probability distribution is assigned to each parameter to account for the influence of rock-233

fall trajectory, as suggested in Lambert et al. [14]. A Gaussian distribution is chosen for the translational234

velocity (v) and deviation angle (β) indicating that the extreme limits of both these parameters are less235

probable. The parameter β distribution abides by the idea that the structure installation on site is such236

that the projectile is most likely to impact normally to its face. Similarly, the parameter v distribution237
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Figure 7: Input sample of size 300 (based on Latin hypercube sampling (LHS) sampling method) comprising six impact

condition parameters (ICPs) and their probability distribution in the respective ranges of variability.

takes into account the most likely impacting projectile energy and keeps the low and high energy cases as238

rare events. The uniform distribution is assigned for all the remaining parameters as no prior information239

is available on their probability of occurrence.240

3.2.2. Displacements under impact241

The position of the top row blocks at the end of impact (i.e., at rest) for all 300 simulations is242

presented in Figure 8. The hollow circles correspond to the location of the extremity of the vertical243

connectors position. The blocks represented in blue correspond to the impact case resulting in the least244

distance from the wall to the safety line. Impacts in the convex-wedge resulted in a lower distance to245

the safety line which is consistent with observations made based on Figure 3. The movement zone for246

all simulated cases stays within approximately 7m on either side from the centre of the wall (i.e., Y =247

0). The cloud of points, together with the mean positions and the variability (estimated as twice the248

standard deviation), reveals that the amplitude of the displacement in the X- and Y-axis directions are249

much larger at a distance from the wall centre (i.e. at the concave wedge) and that it is significantly250

dependent on the impact location along the Y-axis.251

14



−8−7−6−5−4−3−2−10123456
Y (m)

−4

−3

−2

−1

0

1

2

X
 (

m
)

Safety line

Pre-impact Rest Mean

Figure 8: Displacement of the wall’s top row blocks under 300 sampled impact conditions. The position of the blocks holes

position after impact is presented for each simulation and the impact case resulting in the least distance to the safety line

is highlighted for better visibility.

3.2.3. Sensitivity analysis252

The variability in structure response is further addressed by investigating the influence of each pa-253

rameter on the different quantities of interest (QoI). In accordance with Section 3.1, the considered QoIs254

are the minimum distance to the safety line (usafety), the maximum displacement of the wall (umax), the255

maximum concrete block velocity recorded (vmax) during impact and plastic damage (Dp).256

The influence of each parameter on the QoIs is investigated through the Sobol sensitivity method also257

known as analysis of variance [30]. This method decomposes the variance of the output parameters as258

the sum of the contributions of the different input parameters including the possible interaction between259

input parameters. Each contribution is characterised by the ratios of the partial variance to the total260

variance, called Sobol sensitivity indices.261

The accurate computation of Sobol indices demands a large number of model computations (of order262

106). This is highly impractical in the present study if the NSCD model is used directly. This limitation263

is circumvented with the help of the meta-modelling technique which enables to create a surrogate of the264

NSCD model, allowing direct computation of Sobol indices at a highly reduced cost [31, 32]. In this case,265

a meta-model (or surrogate) can be defined as a mathematical operator describing the response envelope266

of the wall in the 6D space corresponding to the six variables defining the impact conditions related to267

the rock projectile.268

Here, a database of 300 model simulations is processed for each QoI to acquire the model output set and269
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its corresponding ICPs. Then, the polynomial chaos expansion (PCE) based meta-modelling technique270

(as per UQlab PCE module [33], see Appendix A for details) is used to formulate a generalised link271

between the input ICPs and the output QoI. For each meta-model creation, a mathematical relation272

(as presented in Equation A.2), is established between the 300 distinct sets of input parameters and the273

corresponding displacement output set. The mathematical relation here can be analogically referred to274

as obtaining a regression for a 2D database. The accuracy of the PCE-based meta-model is presented by275

the leave-one-out (LOO) error (Equation A.5), reported of order 10−2 for usafety, umax and Dp and of276

order 10−1 for vmax.277

The UQlab sensitivity analysis module [34] is used for such computations. The first and total order278

Sobol indices for the QoI are presented in Figure 9. The Sobol indices are computed to evaluate the279

influence of each of the six ICPs on the four aforementioned QoI.280

Figure 9: Sobol sensitivity analysis of the ICPs on different QoI towards the representation of the generalised impact

assessment.

The first-order Sobol indices reflect the main effect of each ICP and the total order indices reflect281

the main effect inclusive of the contribution from the interaction between different ICPs. When there282

is no interaction between variables, the first and total index magnitudes shall be the same. However,283

the contrary is observed here which reflects the significant interaction between ICPs in terms of their284

influence on the QoIs.285

Moreover, the main effect of the rotational velocity (except for Dp), the vertical position of impact286

(z) and deviation (β) are observed to have the lowest sensitivity to all QoIs. On the contrary, all QoIs287

are reported to be highly sensitive to the other three input ICPs. The y position of projectile impact is288

observed to be highly influential confirming the structural response variability from convex to angled to289
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concave wedges, as reported in Figures 3 and 8.290

The v and α parameters collectively account for the projectile velocity component parallel to the291

ground (xy plane) and the component parallel to the wall face (z-axis) as presented in Equation 3.292

vz = v sinα

vxy = v cosα

vx = vxy cosβ, vy = vxy sinβ

(3)

It is thus evident that these three input ICPs control all resulting QoI directly. Notably, the parameter293

β determines the further division of projectile velocity (v) in x-y plane (i.e., vx and vy). Since β is observed294

to have a low influence on the QoI, the collective effect of projectile velocity in xy-plane is sufficient for295

further consideration.296

3.3. Towards inverse analysis297

The investigation of the structure response under close-to-reality conditions is of paramount impor-298

tance, first, for evaluating its on-site efficiency and, second, for defining the best strategy for developing299

the inverse analysis method.300

The wall response to impact is revealed extremely complex, with a significant dependence on pa-301

rameters describing the impact conditions (ICPs). Differences in response were revealed by the concrete302

blocks’ kinematics, in terms of displacement and velocity. The sensitivity to the impact point location303

along the wall’s longitudinal axis results from the wall’s zig-zag conformation and its discrete and artic-304

ulated nature. In the case of an impact with a zero deviation and at a 520 kJ impact energy, the length305

of the wall experiencing significant displacement is up to 12m. This is confirmed by the distinct patterns306

of the peak concrete block velocity along the wall (e.g., see Figure 4). In addition, the wall response307

depends on the projectile orientation with respect to the wall face (α and β) which is attributed to the308

amount of energy that is transferred to the wall during impact (which will be further addressed in see309

section 5.2).310

The complexity of this response justified considering a specific approach for developing a relevant311

inverse analysis method. In addition, it is concluded that the inclination of the wall is not relevant for312

conducting an inverse analysis. On the contrary, the distribution of the concrete block’s peak velocity313

seemed to be impact-conditions-specific and is thus considered a good input data candidate for conducting314
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inverse analysis based on real-time measurements made on-site. These conclusions suggest that the315

priority in terms of on-site structure instrumentation should be placed on accelerometers, from which316

the concrete block velocity can be derived. By contrast, it is less relevant to install inclinometers for the317

purpose of conducting inverse analysis.318

In this work, it is proposed to conduct inverse analysis based on real-time measurements, during319

impact, for the purpose of warning and decision-making upon impact. This requires installing sensors320

in different locations on the structure, connected to data aquisition and transfer equipment. Then, it is321

also proposed to conduct inverse analysis based on data collected on the structure after impact, such as322

a cloud of points revealing the structure envelope obtained from scanning tools. These data sets may be323

used for conducting post-impact inverse analysis in view, for example, of quantifying the consequence of324

the impact on the structure or retrieving information related to the event.325

In both cases, the inverse analysis basically consists of exploiting the data collected on-site to statis-326

tically establish a link with the various impact conditions. The inverse analysis relies on meta-models327

created based on a large set of NSCD model simulations of the structure response under close-to-reality328

conditions. The Bayesian interface statistical learning method is used where the data collected on-site329

shall be fed as evidence into the meta-models based forward model to find out the likelihood of obtaining330

the same result (a single value or a pattern) from a particular set of input parameters. A brief descrip-331

tion of the Bayesian interface is presented in Appendix B and its implementation in the present work is332

detailed in section 4.2.333

4. Inverse analysis based on real-time measurements334

4.1. General considerations335

The instrumented protective structures e.g., installed sensors, most often aim at warning the structure336

owner or the protected infrastructure manager of any event. Real-time measurements could also be used337

to improve decision-making over the next few moments after impact. Such a process could be based on338

images from cameras, but sensors have the advantage of providing reliable information independently of339

the light and scene conditions.340

Two decisions could be taken remotely immediately after an impact on a structure protecting a traffic341

line: traffic interruption and the need for a structure inspection. Both are related to the consequences of342
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the impact on the structure, in terms of displacement and damage. An excess in one of these latter may343

be critical to the safety of the traffic line or imply rapid repair or maintenance work. In this objective,344

the inverse analysis is intended to rapidly and remotely provide an indication on the magnitude of the345

consequences of the impact, for example using consequence classes, rather than to provide a precise value346

of the displacement or damage.347

The inverse analysis is based on measurements retrieved from the on-site structure. The devices used348

for these measurements should consider cost constraints to be of interest in an operational context. In349

particular, the number and type of sensors should be optimised. The previous section suggested that a350

reliable inverse analysis could be conducted from the block velocity, which can be derived from the on-site351

acceleration measurements recorded during the impact. Based on this, the proposed inverse analysis is352

developed considering acceleration measurements from uniaxial sensors, because of their much lower cost353

compared to triaxial ones. Also, it is developed to constrain the number of required data, meaning the354

number of measuring points on the structure (i.e., sensors). The number of measuring points is kept at355

a minimum while allowing a sufficiently good prediction accuracy of the inverse analysis.356

In this perspective, the sensor deployment scheme is defined for a representative wall length, in such a357

manner it can be replicated along the full wall length. Considering the minimum length of the movement358

zone observed in Figure 4, the choice is made to have at least 3 sensors per wall segment. More precisely,359

sensors shall be located in the centre of the vertical face of concrete blocks experiencing significant360

displacements whatever the ICPs. This number of sensors per representative length is presumed to be the361

minimum number for allowing a reliable inverse analysis. It corresponds to 6 concrete blocks equipped362

with sensors over the maximum movement zone length, as shown in Figure 10. Here, the illustrative363

process of acceleration data acquisition followed by its integration to obtain velocity evolution with time364

for each sensor is also presented. The maximum velocity magnitude is identified and consequently, the365

pattern of maximum velocity for each sensor processed data is retrieved which is deemed unique for each366

impact condition.367

The inverse analyses presented in the following make use of the maximum concrete block velocity368

along the direction normal to the block face at these 6 locations. The set of maximum block velocities369

recorded along the wall at these locations is in the following referred to as the maximum velocity pattern370

(MVP).371
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Figure 10: The schematics of the wall model where some blocks are equipped with sensors for data acquisition

4.2. Inverse analysis method372

The inverse analysis relied on the confrontation between the MVP obtained from on-site measurements373

to that obtained from a large number of simulation-based results. The developed method for conducting374

the inverse analysis comprised a combination of meta-models and Bayesian interface statistical analysis375

numerical methods. The flow diagram is presented in Figure 11 and detailed as follows.376

Start
Max velocity normal 
to the block face for 

all sensors 

PCE-based 
Meta-model

NSCD model simulations 
for 300 different ICPs 

Forward model

Bayesian inverse 
analysis

Predicted ICPs

QoI 
Evaluation 
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Figure 11: Computational workflow of the inverse analysis using a combination of meta-models, event data and Bayesian

inversion methods

The rich database of NSCD model simulations for 300 different ICPs (Figure 7) is processed (as per377

Equation 1) to obtain the maximum velocity normal to the block face for all blocks where a sensor is378

planned to be installed. This provides a database of MVP for 300 model computations. This database is379
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processed to create a PCE-based meta-model associating each ICP value set to a distinct MVP.380

The accuracy of these meta-models is estimated via leave-one-out-error which is estimated of order381

10−2 to 10−1. The accuracy of the meta-model representing the MVP, is validated by using the same382

simulation set complemented with an independent set of 300 simulations, for a total of 600 simulations,383

and comparing the predicted vs true value from the NSCD model at all six sensor locations, collectively384

presented in Figure 12.385

Figure 12: Validation of the PCE-based meta-model of the maximum velocity by comparison of the reported magnitude

from 600 NSCD model simulations and the corresponding estimation by the meta-model.

The prediction accuracy of the created meta-model is quantified via the predictability coefficient (Q2),386

estimated considering the results from the 600 simulations and 6 points, for a total of 3600 observations,387

as:388

Q2 = 1−

N∑
i=1

(
ypredi − ytruei

)2
N∑
i=1

(
ytruei − ymean

)2 (4)

where ypredi is the meta-model predicted value and ytruei is the value processed from the NSCD model389

for block (i) and ymean is the arithmetic mean of all ‘true’ predictions. The interest of using the meta-390

models is to generalise the maximum concrete block velocity data obtained from 300 (i.e., limited number391

of) simulations, to any possible ICP combination (i.e., a large number), which is a prerequisite for the392

next step.393

The Bayesian inversion process is deployed where the processed PCE-based meta-model is used as394
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the forward model (or ‘prior ’, see Equation B.2). This approach is extensively used by many researchers395

(e.g., [35, 36, 16]) to accelerate Bayesian computations. The Bayesian interface is inspired by Bayes’396

theorem [37] - a representation of the changing beliefs - simply demonstrating that the probability of a397

‘hypothesis’ being correct becomes more reliable with supporting ‘evidence’. In our work, the ‘hypothesis’398

states that the 300 distinct sets of input parameters present a set of 300 distinct MVPs. The idea of399

reliability increase in our hypothesis is that, if we have the on-site recorded MVP as ‘evidence’, then400

there exists at least one set of ICPs (i.e., ‘posterior’, see Equation B.3) such that the recorded evidence401

is reproduced. The data obtained from on-site measurements shall provide the MVP which serves as402

evidence for inverse analysis. The Bayesian process estimates the likelihood of this MVP amongst all403

possible MVPs recorded from the meta-models and predicts the corresponding set of ICPs.404

In the UQlab Bayesian interface framework [38], the uncertainty in the model prediction is assigned405

via added Gaussian discrepancy (see Equation B.5) when correlated with the recorded on-site data. In406

the present work, as the inverse analysis shall rely on a single MVP recorded on-site, deemed less precise,407

the discrepancy with a known residual variance of order 10−3 is manually assigned.408

The output from the Bayesian interface-based inverse analysis is a set of ICP values retrieved as point409

estimates ‘maximum a posteriori ’ and ‘mean’ (see Equation B.13). This predicted set of ICP values is410

then used to estimate the QoI (in this case damage to the wall or distance to the safety line). As a411

conventional approach, running a new NSCD model simulation with the predicted ICPs shall provide412

detailed information on the wall response from which the QoI can be extracted as a subset. However,413

this operation shall require about 30 minutes of computation time and added time for post-processing.414

This added delay time between on-site observation and warning system activation is unfavourable.415

A procedure by which the QoI is instantly computed is developed to reduce the reaction time. The416

computational workflow components for this process is highlighted in the dashed box of Figure 11. The417

database of NSCD model simulations results is processed to evaluate the QoI as outputs. The resulting418

database of QoI is then used to create the PCE-based meta-model. It serves as a surrogate of the NSCD419

model where the input ICPs are processed to compute the corresponding QoI output. The leave-one-420

out (LOO) error of order 10−2 is reported for the two PCE-based meta-models created for the two QoI421

(i.e., distance to safety and wall damage) mentioned above. The predicted ICPs are then fed into this422

surrogate of NSCD model as input which is then evaluated to eventually predict the QoI and the whole423
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computational process terminates.424

Notably, in the absence of an exhaustive database concerning real structures, the essential ‘evidence’425

database (i.e., recorded MVP) to test the inverse analysis process is not available. Therefore, the concrete426

block velocity patterns from the same set of 300 model simulations and a new independent set of 300427

simulations with different impact conditions are used as pseudo-evidences to test the process.428

Each of these 600 known block velocity patterns is individually fed as input into the inverse analysis429

using the multiple model output feature of Bayesian analysis in UQlab (demonstrated in Equation B.8),430

providing the predicted ICP values. The evaluation of the reliability of the inverse analysis is based431

on the comparison between the QoI reported via the ICP used for running the simulation, and the one432

estimated from evaluating the ICP predicted by the inverse analysis onto the meta-model created for the433

same QoI.434

4.3. Inverse analysis for warning purpose435

First, the inverse analysis addresses the traffic interruption issue for which the post-impact minimum436

distance of the wall to the safety line constitutes the QoI. The higher the distance, the higher the safety.437

The predictive capability of the inverse analysis workflow presented in Figure 11 is tested for the maximum438

concrete block velocity database obtained from the 600 NSCD model simulations. The MVPs from the439

three impact cases mentioned in Section 3.1 are also used to predict the minimum distance to the safety440

line.441

The comparison between the predictions from the inverse analysis + meta-model and the simulation442

results is presented in Figure 13. The relative proximity of the predictions to the ideal diagonal reflects443

the potential of the presented methodology. Points above the diagonal concern cases for which the inverse444

analysis overestimates the distance to the safety line. On the contrary, the inverse analysis underestimates445

the distance to the safety lines for points below the diagonal, which is on the safe side.446

The root mean square (RMS) error of the deviation from the expected response for the 600 simulations447

is 16 cm. About 58% of this RMS error is due to the surrogate of the NSCD model (i.e., dashed box448

component of the workflow). In fact, in some sectors of the 6D space of the six ICPs, this surrogate449

locally fails in precisely capturing the wall response, in particular due to the presence of non-linearities.450

As an alternative, the reliability of the inverse analysis could be improved by running an NSCD model451

simulation with the predicted ICPs in place of using the surrogate of the NSCD model, at the expense452

23



of a longer reaction time upon event.453

Figure 13: Comparison of the minimum distance from the safety line, estimated from the NSCD model and the corresponding

prediction from the inverse analysis tool. Here, the predictions are divided into three zones reflecting high (H), medium

(M) and Low (L) levels of severity inclusive of the corresponding zonal false positive (+) and false negative (×) predictions.

Results are based on a set of 600 impact conditions complemented with the impact cases presented in section 3.1 (IC-1 to

IC-3).

For practical purposes, it is proposed to classify the impact response into three classes depending on454

the distance to the safety line: [0-0.75 m], [0.75-1.25 m] and [1.25-1.5m]. These classes correspond to455

decreasing criticality concerning transport corridor safety, respectively high (H), medium (M) and low456

(L) criticality. NSCD model simulation results indicate that 15%, 59% and 26% of the impact cases are457

classified in class H, M and L respectively. Predictions based on the inverse analysis + metamodel give458

values of 12%, 63% and 25% for classes H, M and L respectively. Besides, the false negative predictions459

are estimated to be about 24% and 10% among all in the H and M classes respectively. The remaining460

predictions i.e., good and false positives are in favour of the decision-making by the user, and hence are461

deemed acceptable.462

In the end, the predictions are considered sufficiently good to be used in an operational context for463

estimating the consequences of the rockfall event in terms of structure displacement. The undeniable464

interest in this approach is that it automatically and remotely provides stakeholders with information of465

great value for decision-making upon impact. No quantitative evaluation would be derived rapidly from466

data measured on-site in the absence of such an approach.467
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4.4. Inverse analysis for structure damage quantification purpose468

Second, the inverse analysis is used to remotely estimate damage to the wall. It is defined as the469

cumulative energy dissipated by the plasticization of all the wall concrete blocks, Dp, after the wall is470

at rest. Damage to all concrete blocks of the wall is computed from NSCD model simulations results as471

per section 3.1.4. The approach considered for this inverse analysis is the same as that for the previous472

warning criterion. Figure 14 provides a comparison between Dp values obtained from NSCD model473

simulations and the predicted ones. The RMS error of the deviation from the expected response is 82 kJ,474

which may be considered acceptable when considering all uncertainties associated with the quantification475

of energy dissipation by plasticization due to real rockfall impacts. Similar to the previous prediction of476

distance, about 35% of the contribution to the RMS error is attributed to the surrogate of the NSCD477

model. Besides, a similar prediction for the three illustrative cases is also presented which reflects a good478

prediction except for the impact at the angled-wedge (i.e., IC-2).479

Figure 14: Comparison of the predicted damage to the wall, Dp, estimated from the NSCD model and the corresponding

prediction from the inverse analysis tool. Here, the predictions are divided into three zones reflecting Low (L), medium (M)

and high (H) levels of damage inclusive of the corresponding zonal false positive (+) and false negative (×) predictions.

Results are based on a set of 600 impact conditions and impact cases presented in section 3.1 (IC-1 to IC-3).

The cases in the right upper corner constitute the most critical impact cases. Points above the diagonal480

concern cases for which the inverse analysis overestimates the damage, which is on the safe side. For481

practical purposes, it is proposed to classify the damage into three classes depending on the value of Dp:482

[0-100 kJ], [100-300 kJ] and [300-800 kJ] for low (L), medium (M) or high (H) damage. These limits were483
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arbitrarily defined from the distribution of Dp over all cases.484

The class limits refer to the level of damage to the wall corresponding to the fracture energy of one485

concrete block when a fracture propagates along a vertical plane in the middle of the concrete block.486

A classification based on the energy dissipation associated with the fracture of the considered concrete487

blocks would be more appropriate. Nevertheless, this would require specific and complex tests which are488

beyond the scope of the present study. In the absence of specific dynamic test results for these large and489

highly reinforced concrete blocks, results obtained by Guo et al. [39] for a reinforced beam exposed to490

impact were extrapolated accounting for the difference in block section and resulted in a value of 100 kJ491

approx. This value is a rough estimate of the first limit for the considered concrete blocks.492

According to NSCD model simulations results presented in Figure 14, 8%, 72% and 20% of the impact493

cases result in damage classified as H, M and L respectively. Values of 6%, 76% and 18% for classes H, M494

and L are obtained from the predictions respectively. Besides, the false negative predictions are estimated495

to be about 38% and 5% among all in the H and M classes respectively. The remaining predictions i.e.,496

good and false positives are in favour of the decision-making by the user, and hence are acceptable.497

The differences between simulation results and predictions are associated with points at a large dis-498

tance from the diagonal (Fig. 14). Further method developments could improve the accuracy of these499

predictions. Nevertheless, the predictions following the described inverse analysis are considered suffi-500

ciently good to be used in an operational context to aid in remote decision-making, the RMS error is 82501

kJ.502

4.5. Comments concerning the use of inverse analysis based on real-time measurements503

The results presented in section 4.3 and 4.4 demonstrate the feasibility of conducting an inverse504

analysis of data collected on-site during impact, focusing on two specific purposes.505

The proposed method, making use of numerical modelling, meta-modelling and statistical approaches,506

revealed rather efficient in providing useful information which could not be derived from the direct507

observation of the data received from the site. The duration of the whole process for treating the input508

data typically lasts about five minutes with the developed script making it compatible with rapid reaction509

upon event. The analysis scripts are written in Matlab as per UQLab framework [40] allowing running510

this complex process in two operations (one for inverse analysis and the other for output of interest511

prediction). The accuracy of the predictions is considered sufficiently good for remotely classifying the512
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events and aiding in decision-making. If required for another purpose, this accuracy could be improved513

further, for example by also accounting for other measure types, such as inclination, or by improving the514

used methodologies for creating the meta-models.515

In real situations, the probability of occurrence of an impact in given conditions is extremely variable.516

By contrast, and as mentioned in section 3.2, the ICP sets considered in this work were defined by not517

considering any possible correlation between the various parameters and, more generally, considering that518

the ICP sets were equiprobable. The statistical assessment of the inverse analysis predictive capacities is519

related to the considered ranges and distributions of the six ICPs. It should thus be considered indicative520

at this stage. It should be improved by accounting for the probability of each scenario considered in this521

evaluation, for example considering site-specific data describing the rock projectile trajectory.522

It is worth noting that, as the second step of the inverse analysis provides the set of ICP values523

resulting in an MVP similar to the observed one, then a preliminary estimate of the projectile velocity524

at impact and consequently the impact energy can also be retrieved complementarily.525

5. Inverse analysis based on post-impact measurements526

5.1. General considerations527

In addition to real-time measurements, the wall conformation after impact may be easily obtained by528

employing techniques such as photogrammetry or Lidar. Impact-induced displacements with very good529

predictions may be obtained if the same type of data is collected before the impact. In such a situation,530

the number of data from the site would be much larger than that for real-time response. Typically, the531

position of the centre of gravity of all blocks can be derived from these data sets and will be considered532

in the following.533

In this context, the aim of an inverse analysis could be to retrieve information related to the rock534

projectile kinematics at impact, such as its kinetic energy. This information could thus contribute to535

better quantifying the rockfall hazard at the wall location.536

The development of the inverse analysis method is based on the following considerations. In case there537

is damage to concrete blocks, notably in the impact location vicinity, the determination of the blocks’538

gravity centre will not be possible. This eventuality should be accounted for in the development of the539

inverse analysis method. In addition, it is considered that the rock projectile volume and the impact540
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location can be determined during the on-site visit. In this process, we assume that the NSCD model541

which is calibrated for a unique projectile mass is also able to predict the structure response for another542

rock projectile mass. In other words, this implies that for a given projectile kinetic energy, the wall543

response is the same whatever the mass and velocity. Under this assumption, the kinetic energy provided544

by the inverse analysis combined with the observed rock projectile mass gives an estimate of its velocity545

at impact.546

The ICP comprise six physical parameters which describe the projectile kinematics and the point of547

impact on the wall. An accurate prediction of all individual parameters is of limited interest as the user548

is more focused on the estimation of the incident rock projectile kinetic energy. Therefore, it is proposed549

to reduce the dimension of the space of parameters to improve the predictions’ reliability. The set of six550

ICPs is reduced to three by combining v, Ω, α and β to calculate the total kinetic energy of the projectile551

(KEproj) as per the Equation below and keeping position parameters y and z intact.552

KEproj =
1

2
m
[
vxy

]2
+

1

2
m
[
vz
]2

+
1

2
I
[
2πΩ

]2
(5)

Further, the total kinetic energy of the projectile can be divided into two components: one accounting553

for the energy on the plane parallel to the ground (KEp) and the other accounting for the rest of the554

energy (KEnp). This is done by using only the planer component of the translational velocity (vxy)555

component to compute KEp and the remaining two components (i.e., vz and Ω) to compute KEnp.556

This division is motivated by the observation that KEp mainly governs the wall displacement, as it557

is integrally transferred to the wall (except if the projectile rebound velocity is significant, which is not558

the case here). On the contrary, the rest of the energy (which is associated with projectile rotation and559

velocity along the vertical direction) is marginally transferred to the wall and thus has very little influence560

on the wall response.561

This proposition is qualitatively explored by the Sobol indices evaluated on reduced ICPs for the562

maximum 3D displacement, presented in Figure 15. Here, KEp is observed highly influential for the563

resulting maximum displacement of the wall and as suspected, KEnp provides negligible influence. The564

y-position of the projectile impact is observed as influential and supports the conclusion presented in the565

previous section. The position-z is observed to have a negligible influence which supports the conclusions566

in the previous section as well. Thereby, observing from the Sobol indices, the inverse analysis is conducted567
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Figure 15: Sobol sensitivity analysis of the impact condition parameters (ICPs) of derived and reduced dimensions (i.e.,

from 6 to 4) for the maximum 3D displacement

taking into account the variability in the KEp and y parameters only hereby referred to as reduced568

dimension ICPs.569

5.2. Inverse analysis method570

The process of inverse analysis for displacement-based prediction of the impact conditions follows571

nearly the same workflow as presented in the previous section and illustrated in Figure 11. Here, the set572

of 300 simulations is processed to generate the meta-model of the pattern of the displacement at rest of573

the gravity centre of all blocks (similar to the MVP).574

The accuracy of the created meta-model was estimated of order 10−1 via leave-one-out-error. Be-575

sides, the created meta-model for 3D displacement is validated by using the same simulation set and an576

independent set of 300 simulations (thus a total of 600 simulations) and comparing the predicted vs true577

value (from NSCD model) at all 26 blocks in the movement zone, collectively presented in Figure 16.578

Here, the predictability coefficient (Q2) presents the prediction accuracy, estimated for N = 600 × 26 =579

15600 observations as per Equation 4.580

This created meta-model is used as a forward model for the Bayesian interface-based inverse analysis.581

The displacement data retrieved from real events shall serve as evidence for the inverse analysis, similar to582

the ‘on-site MVP’ mentioned in the previous section. Notably, here, two threshold levels of displacement583

magnitude are set at 0.2m and 0.05m for the recorded data from all 26 blocks. The first threshold of584

0.2m is assigned to limit the number of blocks in the displacement pattern to avoid overfitting. The585
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Figure 16: Validation of PCE-based meta-model of the 3D displacement of 26 blocks by comparison of the reported

magnitude from 600 NSCD model simulations and the corresponding estimation by the meta-model

second threshold of 0.05m is assigned to take into account a sufficient number of blocks for a small wall586

displacement situation where the first threshold limits the total number of moving blocks to maximum587

three.588

The corresponding reduced dimension ICPs are predicted and the inverse analysis process terminates.589

Notably, the workflow corresponding to the evaluation of the QoI and the associated process to create a590

meta-model serving as a surrogate of the NSCD model is therefore not required.591

5.3. Evaluation of the method592

Following the guidelines of the previous section, the predictions of the energy transferred to the wall593

and the position of impact are compared with the corresponding NSCD model simulation results. These594

comparisons are presented in Figure 17 for the simulated 600 distinct impact conditions and the three595

illustrative impact conditions.596

The energy transferred to the wall is predicted with an overall RMS error of 71 kJ (which is below the597

fracture energy of the concrete block) based on 600 simulations. The overall prediction is satisfactory for598

a wide range of energy magnitudes supporting the potential of the presented methodology. Nevertheless,599

two out of three illustrative cases are badly predicted with up to 120 kJ difference from the expected600

520kJ for all cases (IC-1 and IC-3).601

Further, the position of impact along the wall length is rather well predicted for impacts at convex602

and concave-wedges, including the illustrative impact tests in these two locations (IC-1 and IC-3). By603

30



(a) (b)

Figure 17: Comparison of displacement-scan inverse analysis-based predictions of (a) energy transferred to the wall and (b)

position along the wall length with the corresponding magnitude deduced from 600 different sets of the impact condition

parameters.

contrast, the predictions for the angled wedge zone (between 1.2 to 2.2 m approx.) are significantly604

less accurate thereby contributing to the overall RMS error of 37 cm. This significant difference in605

predictions accuracy is attributed to the zig-zag conformation of the wall, which amplifies the influence606

of the deviation angle (β) on the structure response depending on the impact location, as illustrated607

by the Sobol indices. In fact, considering a reduced ICPs input space dimension suppresses the distinct608

contribution of β which in turn suppresses the variability of the impact at the angled wedge.609

6. Conclusions610

This work explored the potential of inverse analysis to obtain the information of interest in the611

operational context of a rockfall protection structure. The inverse analysis relies on simulation-based612

predictions of the structure response and makes use of the Bayesian interface and meta-modelling tech-613

niques. This work in particular focuses on rockfall protection walls made of piled-up and articulated614

concrete blocks for which an NSCD model was previously developed and calibrated against real-scale615

impact experiments.616

The main conclusions drawn from this research are :617

• Provided a well-calibrated model is available, it is possible to carry out reliable inverse analysis of618
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the response of complex structures subjected to localised dynamic loading.619

• Investigating the structure response considering a wide range of impact conditions, representative620

of those encountered in situ is a prerequisite in view of defining the strategy for developing the621

inverse analysis method.622

• The inverse analysis may be based on real-time or post-impact measurements and may serve various623

purposes, in particular for remote warning upon impact or rockfall activity survey.624

• The presented inverse analysis framework is transferable to other types of such structures (such as625

flexible barriers) via the usage of the relevant recorded database.626

As a perspective, the accuracy of the predictions by the inverse analysis will be improved, focusing627

on the meta-models which are key components in the proposed method. As a supplementary outcome,628

the recorded concrete block velocity database for different impact conditions can be further exploited629

towards the optimisation of the sensor location.630
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Appendix A. PCE based meta-model735

Consider the articulated structure model represented by a M(X) as an equivalent mathematical736

model. Here, X ∈ RM is a random vector with independent components described by the joint probability737

density function (PDF) fX. Consider also a finite variance computational model as a map Y = M(X),738

with Y ∈ R such that:739

E
[
Y 2

]
=

∫
DX

M(x)2fX(x)dx < ∞ (A.1)

Then, under the assumption of Equation A.1, the PCE of M(X) is defined as:740

Y = M(X) =
∑

α∈NM

yαΨα(X) (A.2)

where, the Ψα(X) are multivariate polynomials orthonormal with respect to fX, α ∈ NM is a multi-741

index that identifies the components of the multivariate polynomials Ψα and the yα ∈ R are the corre-742

sponding coefficients. In practical applications, the sum in Equation A.2 needs to be truncated to a finite743

sum by introducing the truncated polynomial chaos expansion:744

M(X) ≈ MPC(X) =
∑
α∈A

yαΨα(X) (A.3)
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where, A ⊂ NM is the set of selected multi-indices of multivariate polynomials.745

In this work, the least-angle regression (LARS) method is used to create the PCE meta-model trun-746

cated to the maximum polynomial degree (p) ranging from 1 to 20, and using hyperbolic truncation747

scheme (q) ranging from 0.5 to 1.748

AM,p,q = {α ∈ AM,p : ∥α∥q ⩽ p}, where ,∥α∥q =

( M∑
i=1

αq
i

)1/q

(A.4)

The accuracy of the constructed PCE is estimated by computing the leave-one-out (LOO) cross-749

validation error (ϵLOO). It consists in building N meta-models MPC\i, each one created on a reduced750

experimental design X\x(i) = {x(j), j = 1, ..., N, j ̸= i} and comparing its prediction on the excluded751

point x(i) with the real value y(i) = M
(
x(i)

)
[33]. The leave-one-cross-validation error can be written as:752

ϵLOO =

N∑
i=1

(
M

(
x(i) −MPC\i(x(i))

)2

N∑
i=1

(
M

(
x(i) − µ̂Y

)2
(A.5)

where, µ̂Y is the mean of the experimental design sample.753

Appendix B. Bayesian interface for inverse analysis754

Consider the computational model M that allows the analyst to predict certain quantities of interest755

gathered in a vector y ∈ RNout as a function of input parameters x:756

M : x ∈ DX ⊂ RM 7→ y = M(x) ∈ RNout (B.1)

The Bayesian interface for inverse analysis focuses on identifying the input parameters of a computa-757

tional model to recover the observations in the collected output data set. It comprises of a computational758

forward model M, a set of input parameters x ∈ DX that need to be inferred, and a set of experimental759

data Y. Here, Y def
= {y1, ...,yN} is a global data set of N independent measured quantities of interest760

(yi).761

The forward model x 7→ M(x) is a mathematical representation of the system under consideration.762

The lack of knowledge on the input parameters is modelled by considering them as a random vector,763

denoted by X which is assumed to follow a so-called prior distribution (with support DX), as presented764

in Figure 7 in the present work.765
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X ∼ π(x) (B.2)

The Bayesian statistics combine this prior knowledge of the parameters with the few observed data766

points to obtain a statistical model called posterior distribution (π(x | y)) of the input parameters, using767

Bayes’ theorem [37], expressed as:768

π(x | y) = π(y | x)π(x)
π(y)

(B.3)

Now, considering the available data set (Y) as independent realizations of Y | x ∼ π(y | x), the769

collected measurements result in the definition of the likelihood function L(x;Y), which is a function of770

input parameters x:771

L : x 7→ L(x;Y)
def
=

N∏
i=1

π(yi | x) (B.4)

This implicitly assumes in/dependence between individual measurements in Y. Intuitively the like-772

lihood function for a given x returns the relative likelihood of observing the data at hand, under the773

assumption that it follows the prescribed parametric distribution π(y | x).774

As all models are simplifications of the real world, a discrepancy term (ϵ) is introduced to connect775

real-world observations (Y) to the predictions by the model. In practice, the discrepancy term represents776

the effects of the measurement error and model inaccuracy. The discrepancy term introduced here reads:777

y = M(x) + ϵ (B.5)

Here, the ϵ is assumed as an additive Gaussian discrepancy [38] with a zero mean and given covariance778

matrix (Σ):779

ϵ ∼ N (ϵ | 0,Σ) (B.6)

Taking insights from the discrepancy term definition, a particular measurement point (yi ∈ Y, is a780

realization of the Gaussian distribution with mean valueM(x) and covariance matrixΣ. This distribution781

is named as discrepancy model and is expressed as:782

π(y | x) = N (y | M(x),Σ) (B.7)
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In application, the discrepancy model defines the connection between the supplied data (Y) and783

the forward model. In the present work, as the inverse analysis is conducted on the pseudo on-site784

measurement (as evidence), the discrepancy model with known residual variance is assigned.785

Afterwards, the N independent available measurements (in our case, maximum velocity pattern and786

3D displacement databases) gathered in the data-set (i.e., Y = {y1, ...,yN}) are used to define the787

likelihood function as:788

L(x;Y) =

N∏
i=1

N (yi | M(x),Σ)

=

N∏
i=1

1√
(2π)Nout det (Σ)

exp

(
− 1

2

(
yi −M(x)

)⊺
Σ−1

(
yi −M(x)

)) (B.8)

Thereby, following Bayes’ theorem, the posterior distribution π(x | Y) of the parameters (x) given789

the observations in Y can be written as:790

π(x | Y) =
L(x;Y)π(x)

Z
(B.9)

Here, Z is a normalizing factor, known as the marginal likelihood or evidence, is added to ensure that791

this distribution integrates to 1:792

Z
def
=

∫
DX

L(x;Y)π(x)dx (B.10)

The closed-form solutions do not exist in practice, and therefore the posterior distribution is obtained793

through Markov chain Monte Carlo (MCMC) simulations. In the present work, among many proposed794

algorithms in [38], the Adaptive Metropolis (AM) algorithm is used and 100 parallel chains with 1000795

steps are assigned to the MCMC solver. The start of the covariance adaptation in AM algorithm is796

assigned at the 100th step (see Wagner et al. [38] for more details).797

The output (y) predictive capabilities of the Bayesian interface is assessed through the comparison of798

prior (π(y)) and posterior (π(y | Y)) output distributions as:799

π(y) =

∫
DX

π(y | x)π(x)dx (B.11)

π(y | Y) =

∫
DX

π(y | x)π(x | Y)dx (B.12)
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Lastly, in the present studies, the purpose of the Bayesian interface is to obtain the ‘best set of impact800

condition parameters (ICPs)’. Given the posterior distribution (π(x | Y)), we are interested in finding a801

suitable set among the posterior computed set i.e., X | Y. This is done through a point estimator (x̂)802

computed from:803

π(y | Y)
def
= π(y | x̂) (B.13)

This point estimator can be a mean or mode (maximum a posteriori ‘MAP’) [38] of the posterior804

distribution as per the user’s choice.805
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