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A B S T R A C T

This paper introduces a data-enabled predictive control methodology designed for Linear Parameter Varying
(LPV) systems. By leveraging a polytopic representation of the LPV system, we formulate Willem’s lemma
to accommodate parameter variations. The system trajectory is predicted over a finite horizon using specific
trajectories generated offline. A notable advantage of this approach is its independence from a priori knowledge
of parametric variations. Simulation studies conducted on both a numerical example and a simulator of a
calendering process governed by partial differential equations substantiate the effectiveness of this approach.
1. Introduction

The effectiveness of Model Predictive Control (MPC) in industrial
system control is well-established, attributed to its favorable balance
between performance and ease of tuning. Notably, MPC adeptly handles
Multi-Input Multi-Output (MIMO) systems, addressing both equality
and inequality constraints on control signal and output. Despite its
known computational complexity, the diminishing costs of computa-
tional resources, especially on-board computers, have further bolstered
the adoption of MPC. A significant challenge in deploying MPC lies in
obtaining a representative model. This model enables MPC to predict
system outputs over a finite horizon based on control variables. Typ-
ically, this model is derived through an identification step reliant on
input/output measurements from a properly excited system (Van Over-
schee & De Moor, 1994, 1996). The execution of this identification step
demands proficiency in signal processing, statistics and optimization,
making its accurate implementation potentially complex. Consequently,
the ability to represent system dynamics without the prerequisite of the
model identification step holds substantial value in this context.

Addressing this demand, recent years have witnessed the emer-
gence of Data Driven methods. Utilizing Willem’s fundamental lemma,
these methods offer a solution to the predictive control problem by
relying solely on input/output sequences (Willems, 2007; Willems,
Rapisard, Markovsky, & De Moor, 2005), with extensions found in Din-
kla, Mulders, van Wingerden, and Oomen (2023), Markovsky and
Dörfler (2021) and Van Waarde, De Persis, Camlibel, and Tesi (2020).
The key concept revolves around the notion that a trajectory (an
input/output sequence) from a Linear Time-Invariant (LTI) system,
obtained through sufficiently rich excitation, inherently contains all

∗ Correspondence to: Bâtiment B25, 2 rue Pierre Brousse, TSA 41105, 86073 Poitiers cedex 9, France.
E-mail address: patrick.coirault@univ-poitiers.fr (P. Coirault).

relevant information on the system dynamics a priori. This trajectory
can effectively serve as a parametrization tool for any other trajectory
of the system. The extensive literature on this approach, known as Data
Driven Predictive Control or Data Enabled Predictive Control (DeePC),
has predominantly focused on discrete-time LTI systems, particularly
exploring its robustness in the presence of noise (Breschi, Chiuso, &
Formentin, 2023a; Markovsky & Dörfler, 2021). This article princi-
pal contribution lies in extending this approach to Linear Parameter
Varying (LPV) systems.

Linear Parameter Varying (LPV) systems are linear dynamic sys-
tems with a state–space representation dependent on nonstationary
exogenous parameters (Morato, Normey-Rico, & Sename, 2020; Toth,
2010). Conceptually, an LPV system can be visualized as a collection
of Linear Time-Invariant (LTI) systems interconnected by these exoge-
nous parameters, resulting in nonstationary dynamics. This framework
enables the modeling of system nonlinearities through a series of LTI
models (Gidon et al., 2021; Kapsalis, Sename, Milanes, & Molina, 2022;
Li, Nguyen, Guerra, & Kruszewski, 2023). Leveraging this approach,
control methods originally designed for linear systems can be applied
to manage nonlinear counterparts effectively. Given the close proximity
of LPV modeling to LTI modeling, it is logical to explore the conditions
under which the DeePC approach, initially developed for LTI systems,
can be extended to LPV systems. Recent studies have delved into the
application of Willem’s fundamental Lemma to LPV systems (Verhoek,
Abbas, Toth, & Haesaert, 2021). However, a notable limitation arises
in these investigations as the exogenous parameters must be known
and measurable at every moment, posing a significant drawback to LPV
modeling.
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The main contribution of this paper is the introduction of an ex-
tension of DeePC to systems represented by an LPV model, obviating
the requirement to measure exogenous parameters. We consider in
this paper the noise free case only. In achieving this objective, output
prediction over a finite horizon is conducted based on a set of specific
trajectories acquired offline. Key distinctions from the LTI case include
the number of trajectories needed to capture system dynamics and
the methodology used for generating these trajectories. Although the
optimization problem remains quadratic, its size expands due to the
increased number of decision variables corresponding to the higher
number of trajectories.

The subsequent sections of this paper are organized as follows:
Section 2 provides an overview of notations and the model structure.
Section 3 initially revisits Data Enabled Predictive Control for Linear
Time-Invariant systems and then introduces a novel methodology for
applying DeePC to Linear Parameter Varying systems without prior
knowledge of the varying parameter trajectories. Section 4 evaluates
the applicability and efficiency of the introduced methodology through
two numerical examples, including an LPV system with two varying
parameters and a calendering process. The paper concludes with a
summary of remarks in Section 5.

2. Preliminaries

This section presents the notations used in the paper, the model
structure and useful definitions.

2.1. Notations and definitions

Let N and R be the sets of positive integers and real numbers,
espectively. N∗ denotes the set of positive non-zero integers. Let 𝑘,𝑠 =
{𝑘, 𝑘 + 1,… , 𝑘 + 𝑠 − 1}. The set of real column vectors of dimension
∈ N∗ is denoted by R𝑛 and the set of real matrices of 𝑛 ∈ N∗ rows

and 𝑚 ∈ N∗ columns is denoted by R𝑛×𝑚. Given a rectangular matrix
𝑨 ∈ R𝑛×𝑚, its transpose is denoted by 𝑨⊤ ∈ R𝑚×𝑛, 𝑨(𝑖) ∈ R1×𝑚 represents
its 𝑖th row. For a vector 𝒙(𝑘) ∈ R𝑛𝑥 , 𝛥𝒙(𝑘) = 𝒙(𝑘)−𝒙(𝑘−1). For any vector
𝒙(𝑘) ∈ R𝑛𝑥 , with 𝑘 ∈ N, the finite vector over a specific window of size
𝜌 steps (𝜌 ∈ N∗) starting from a specified instant 𝑘 ∈ N is denoted as

𝑿𝑘,𝜌,1 =

⎡

⎢

⎢

⎢

⎢

⎣

𝒙(𝑘)
𝒙(𝑘 + 1)

⋮
𝒙(𝑘 + 𝜌 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛𝑥𝜌. (1)

ccordingly, the block Hankel matrix containing the available data
tarting from instant 𝑘 ∈ N distributed over 𝜌 ∈ N∗ rows and 𝑀 ∈ N∗

olumns is denoted as

𝑘,𝜌,𝑀 =
[

𝑿𝑘,𝜌,1 𝑿𝑘+1,𝜌,1 ⋯ 𝑿𝑘+𝑀−1,𝜌,1
]

∈ R𝑛𝑥𝜌×𝑀 . (2)

Definition 1. An input sequence {𝒖(𝑘)}𝑁−1
𝑘=0 , 𝒖(𝑘) ∈ R𝑛𝑢 , is persistently

exciting of order 𝜌 if the matrix 𝑼 0,𝜌,𝑁 is of rank 𝑛𝑢𝜌 ≤ 𝑁 ∈ N
(see Verhaegen and Verdult (2007, chapter 10)).

The norm of the vector ‖𝑿𝑘,𝜌,1‖
2
𝑸 denotes the quadratic form

𝑿⊤
𝑘,𝜌,1𝑸𝑿𝑘,𝜌,1 where 𝑸 ∈ R𝑛𝑥𝜌×𝑛𝑥𝜌 is a symmetric and strictly positive

matrix. The following matrices are defined by

𝑺𝓁,𝑛 =

⎡

⎢

⎢

⎢

⎢

⎣

I𝑛×𝑛 O𝑛×𝑛 … …
I𝑛×𝑛 I𝑛×𝑛 O𝑛×𝑛 …
⋮ ⋮ ⋱ ⋮
I𝑛×𝑛 I𝑛×𝑛 I𝑛×𝑛 I𝑛×𝑛

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝓁𝑛×𝓁𝑛, (3)

1𝓁,𝑛 =
⎡

⎢

⎢

I𝑛×𝑛
⋮

⎤

⎥

⎥

∈ R𝓁𝑛×𝑛. (4)
2

⎣I𝑛×𝑛⎦
.2. Model structure

This section introduces a behavioral framework for LPV systems
see Toth (2010) for more details).

efinition 2. A discrete-time parameter varying dynamical system 𝑺
is defined as a quadruple

𝑺 = (T,P,W,) (5)

with T = Z the discrete time axis, P ⊆ R𝑛𝑝 the scheduling space,
W = R𝑛𝑊 the signal space and  ⊆ (W × P)T the behavior (𝑋T is the
standard notation for the collection of all maps from T to 𝑋)

𝒑 ∈ PT is the scheduling variable, an external free signal of the
system that governs the dynamical behavior. In the sequel, we assume
that 𝒑 evolves in a polytope of dimension 𝑁𝑝 = 2𝑛𝑝 . Inside the polytope,
the admissible trajectories of 𝒑 are restricted to a subset of PT, the set of
admissible scheduling trajectories. This set, denoted by P, is described
as follows

P =
{

𝒑 ∈ PT |

|

|

∃ 𝒘 ∈ WT s.t. (𝒘,𝒑) ∈ 
}

. (6)

Additionally, for a given trajectory 𝒑 ∈ P, the projected behavior

𝒑 =
{

𝒘 ∈ WT
|(𝒘,𝒑) ∈ 

}

(7)

defines all the signal trajectories compatible with the fixed scheduling
trajectory 𝒑, In case of a constant scheduling trajectory 𝒑 ∈ 𝑷 , 𝒑(𝑘) =
𝒑𝑓 ∀𝑘 ∈ Z, the projection behavior 𝒑𝑓 is called a frozen behavior, i.e.,

𝒑𝑓 =
{

𝒘 ∈ WT |

|

|

(𝒘,𝒑) ∈  with 𝒑(𝑘) = 𝒑𝑓 ∀𝑘 ∈ Z
}

. (8)

In this case, 𝒑𝑓 =
(

T,W,𝒑𝑓
)

defines a frozen system of 𝑺 for each
𝑓 ∈ P. 𝑺 is called Linear Parameter Varying (LPV) if the following
onditions are satisfied:

• W is a vector space and 𝒑 is linear subspace of WT ∀ 𝒑 ∈ P,
• T is closed under addition,
• for any (𝒘,𝒑) ∈  and any 𝑘 ∈ Z, it holds that (𝒘(. + 𝑘),𝒑(. + 𝑘)) ∈
.

A discrete time state–space representation of an LPV system, de-
oted as 𝑺 = (𝒑,𝑨,𝑩,𝑪 ,𝑫), is given by

𝒙(𝑘 + 1) = 𝑨(𝒑(𝑘))𝒙(𝑘) + 𝑩(𝒑(𝑘))𝒖(𝑘), (9a)

𝒚(𝑘) = 𝑪(𝒑(𝑘))𝒙(𝑘) +𝑫(𝒑(𝑘))𝒖(𝑘), (9b)

where 𝒙(𝑘) ∈ R𝑛𝑥 is the state vector of the system at each instant
𝑘 ∈ {0,… , 𝑛𝑡} (𝑛𝑡 is the concerned time domain and 𝑘 stands for the
discrete time step), 𝒖(𝑘) ∈ R𝑛𝑢 and 𝒚(𝑘) ∈ R𝑛𝑦 are the input and output
vectors of the system, respectively. 𝑨 ∈ R𝑛𝑥×𝑛𝑥 , 𝑩 ∈ R𝑛𝑥×𝑛𝑢 , 𝑪 ∈ R𝑛𝑦×𝑛𝑥

and 𝑫 ∈ R𝑛𝑦×𝑛𝑢 are the system, input, output and feedthrough matrices,
respectively. (𝑨,𝑩,𝑪 ,𝑫) are matrix functions with static dependence
on 𝒑 ∈ R𝑛𝑝 .

As 𝒑 lies in a polytope, each component 𝑝ℎ of 𝒑 is bounded, i.e.,

𝑝
ℎ
≤ 𝑝ℎ ≤ 𝑝ℎ ∀ℎ ∈

{

1, 𝑛𝑝
}

.

For LPV systems, unlike Linear Time Varying (LTV) systems, the varia-
tion of the system dynamics is not directly linked to time but is instead
associated with the variation of the parameter vector 𝒑.

The class of LTI systems can be derived from the LPV ones through
the following approach.

Definition 3. Let 𝑺 = (T,P,W,) be an LPV system. The set of LTI
systems

𝑓 =
{

 =
(

T,W,′) |
|

|

∃ 𝒑𝑓 ∈ P s.t. ′ = 𝑷 𝑓
}

is called the frozen set of 𝑺.
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It follows that the structure of an element of 𝑠 is given by

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘), (10a)

𝒚(𝑘) = 𝑪𝒙(𝑘) +𝑫𝒖(𝑘). (10b)

his LTI system is denoted by 𝑺(𝑨,𝑩,𝑪,𝑫). The following assumptions
re considered for each element of 𝑠, i.e. an LTI system 𝑺(𝑨,𝑩,𝑪 ,𝑫).

Assumption 1. The pair (𝑨,𝑩) is controllable.

Assumption 2. The pair (𝑨,𝑪) is observable.

3. Data enabled predictive control

This section first recalls the DeePC problem for deterministic LTI
systems. It begins with a review of Willem’s fundamental lemma and
its application to predictive control. Subsequently, an extension to
deterministic LPV systems is introduced. Finally, a systematic approach
to embed an integral action into data driven predictive control is
presented. These two last aspects are the primary contributions of this
paper.

3.1. Trajectory based representation for LTI systems

To implement Predictive Control, it is necessary to be able to
calculate the derivatives of a constraint cost function with respect to
the optimization variables over a predictive horizon. This involves
expressing the output and/or input as a function of these optimiza-
tion variables (Toth, 2010). The classic approach is to use a model.
This model can be deduced from a transfer function, a state–space
realization or from a subspace approach (Favoreel, Moor, & Gevers,
1999). Obtaining this model requires an identification step which can
be complex to implement. In contrast, data driven approaches do away
with the model and the identification step, starting from the idea that
all the information on the dynamics of the system is contained in
the input–output data. This is the main idea of Willem’s fundamental
lemma which is reviewed in Lemma 1.

The notion of system trajectory plays a key role in this framework.
An output–input sequence {𝒚(𝑘), 𝒖(𝑘)}𝑁−1

𝑘=0 for 𝑁 ∈ N∗ is a trajectory of
the LTI system 𝑺 if it satisfies Definition 4.

Definition 4. An output–input sequence {𝒚(𝑘), 𝒖(𝑘)}𝑁−1
𝑘=0 for 𝑁 ∈

N∗ (represented by {𝒀 0,𝑁,1,𝑼 0,𝑁,1}) is a trajectory of the LTI system
𝑺(𝑨,𝑩,𝑪 ,𝑫) if an initial condition 𝒙(0) ∈ R𝑛𝑥 and a state sequence
{𝒙(𝑘)}𝑁𝑘=0 exist such that the sequence {𝒙(𝑘)}𝑁𝑘=0 satisfies the state space
equations of the system given in Eq. (10).

Starting with the LTI system (10) and from Definition 4, Lemma 1
gives a trajectory based representation which is known as Willem’s
Lemma (Willems, 2007), or the Fundamental lemma as established
in Berberich and Allgöwer (2020).

Lemma 1. Consider an LTI system 𝑺(𝑨,𝑩,𝑪 ,𝑫). Assume that the input
signal used to build the Hankel matrix 𝑼 0,𝑠,𝑁 is persistently exciting of order
𝑠 with 𝑠 ∈ N∗. Then, for 𝑁 ∈ N∗, the system output–input trajectory at each
instant 𝑘 ∈ N over 𝑠 steps

[

𝒀 ⊤𝑘,𝑠,1 𝑼⊤
𝑘,𝑠,1

]⊤
belongs to the column space of

the matrix
[

𝒀 ⊤0,𝑠,𝑁 𝑼⊤
0,𝑠,𝑁

]⊤
.

In other words, there exists a vector 𝜶(𝑘) ∈ R𝑁 such that
[

𝒀 𝑘,𝑠,1
𝑼𝑘,𝑠,1

]

=

[

𝒀 0,𝑠,𝑁

𝑼 0,𝑠,𝑁

]

𝜶(𝑘). (11)

The key result of Lemma 1 is that any output–input trajectory of the
LTI system 𝑺 can be embedded into a linear combination of sufficiently
3

excited past output–input trajectory. f
3.2. Data driven predictive control for LTI systems

The main objective behind the predictive control approach is to

find, at each time 𝑘, the optimal trajectory
[

𝒀 𝑘,𝐿,1
𝑼𝑘,𝐿,1

]

over the prediction

horizon 𝐿 ∈ N∗ which minimizes the quadratic cost function

𝐽 (𝒀 𝑘,𝐿,1,𝑼𝑘,𝐿,1) = ‖

‖

𝒀 𝑘,𝐿,1 − 𝒀 𝑟‖‖
2
𝑸 + ‖

‖

𝑼𝑘,𝐿,1
‖

‖

2
𝑹 , (12a)

s.t. 𝒖(𝑖) ∈  , (12b)

𝒚(𝑖) ∈  , (12c)

∀𝑖 ∈ 𝑘,𝐿, where 𝑸 ∈ R𝑛𝑦𝐿×𝑛𝑦𝐿 and 𝑹 ∈ R𝑛𝑢𝐿×𝑛𝑢𝐿 are user-defined
output and input error penalizing positive definite matrices. They are
tuned based on a trade-off between the degree of importance of each of
the outputs and inputs terms (Rawlings, Mayne, & Diehl, 2017).  and
 are polytopes defining the applicable lower and upper boundaries
of the system output and input respectively. 𝒀 𝑟 ∈ R𝑛𝑦𝐿 stands for the
reference trajectory over the prediction horizon such that

𝒀 𝑟 =
⎡

⎢

⎢

⎢

⎣

𝒚𝑟(𝑘)

⋮

𝒚𝑟(𝑘 + 𝐿 − 1).

⎤

⎥

⎥

⎥

⎦

(13)

Splitting up the trajectories between past and future trajectories as
well as the Hankel matrices as shown in Fig. 1 and assuming that
rank

(

𝑼 0,𝜌+𝐿,𝑁
)

= 𝜌 + 𝐿, a vector 𝜶(𝑘) ∈ R𝑁 exists such that

⎡

⎢

⎢

⎢

⎢

⎣

𝒀 𝑘−𝜌,𝜌,1
𝒀 𝑘,𝐿,1
𝑼𝑘−𝜌,𝜌,1
𝑼𝑘,𝐿,1

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝒀 0,𝜌,𝑁
𝒀 𝜌,𝐿,𝑁
𝑼 0,𝜌,𝑁
𝑼 𝜌,𝐿,𝑁

⎤

⎥

⎥

⎥

⎥

⎦

𝜶(𝑘). (14)

Referring to Eq. (12), the decision variables are the future output and
input vectors that can be written in terms of 𝜶(𝑘) based on Eq. (14)
such that

𝒀 𝑘,𝐿,1 = 𝒀 𝜌,𝐿,𝑁𝜶(𝑘), (15a)

𝑼𝑘,𝐿,1 = 𝑼 𝜌,𝐿,𝑁𝜶(𝑘). (15b)

Using the result of Eq. (15), the cost function (12) can be reformulated
with 𝜶(𝑘) as the sole decision variable. The DeePC problem boils down
to finding 𝜶(𝑘) such that

argmin
𝜶(𝑘)

(

‖𝜶(𝑘)‖2𝑾 + 2𝑪⊤𝒑𝜶(𝑘)
)

, (16)

subject to
[

𝒀 𝑘−𝜌,𝜌,1
𝑼𝑘−𝜌,𝜌,1

]

=

[

𝒀 0,𝜌,𝑁

𝑼 0,𝜌,𝑁

]

𝜶(𝑘), (17a)

𝐿,𝜌,𝑁𝜶(𝑘) =
⎡

⎢

⎢

⎢

⎣

𝒚𝑟(𝑘 + 𝐿 − 𝜌)

⋮

𝒚𝑟(𝑘 + 𝐿 − 1)

⎤

⎥

⎥

⎥

⎦

, (17b)

(𝑖)
𝜌,𝐿,𝑁𝜶(𝑘) ∈  , (17c)
(𝑖)
𝜌,𝐿,𝑁𝜶(𝑘) ∈  , (17d)

here 𝑖 ∈ 1,𝐿. The terminal equality constraint is added to guarantee
losed loop stability (Berberich, Köhler, Müller, & Allgöwer, 2021). 𝑾
nd 𝑪𝒑 are given as

= 𝒀 ⊤𝜌,𝐿,𝑁𝑸𝒀 𝜌,𝐿,𝑁 + 𝑼⊤
𝜌,𝐿,𝑁𝑹𝑼 𝜌,𝐿,𝑁 , (18a)

𝒑 = −𝒀 ⊤𝜌,𝐿,𝑁𝑸𝒀 𝑟. (18b)

he resulting predictive control algorithm is summed up in Algorithm
.

emark 1. The former results as well as Algorithm 1 are valid for noise

ree data only. If the available data are noisy, a regularization term
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Fig. 1. Timeline showing the collected data for the Hankel matrices 𝒀 0,𝜌,𝑁 and 𝒀 𝜌,𝐿,𝑁
(top) and the past and future vectors at each instant 𝑘, 𝒀 𝑘−𝜌,𝜌,1 and 𝒀 𝑘,𝐿,1, respectively
(bottom).

should be added to the optimization problem (16) in order to mitigate
the noise effect. For instance, inspired by Verheijen, Breschi, and Lazar
(2023), the following problem can be suggested

argmin
𝜶(𝑘)

(

‖𝜶(𝑘)‖2𝑾 + 2𝑪⊤𝒑𝜶(𝑘) + 𝜆𝒉(𝜶)
)

, (19)

where 𝜆 ∈ R+ and 𝒉(.) a nonnegative function. The regularization
term is often chosen as a squared two-norm ‖𝜶(𝑘)‖22 but this choice
modifies the initial problem and does not leads to the exact solution.
To overcome this problem, the following alternative is introduced
in Dörfler, Coulson, and Markovsky (2023)

𝒉(𝜶) = ‖(I −𝛱)𝜶(𝑘)‖22 , where 𝛱 =
⎡

⎢

⎢

⎣

𝑼 0,𝜌,𝑁
𝒀 0,𝜌,𝑁
𝑼 𝜌,𝐿,𝑁

⎤

⎥

⎥

⎦

†
⎡

⎢

⎢

⎣

𝑼 0,𝜌,𝑁
𝒀 0,𝜌,𝑁
𝑼 𝜌,𝐿,𝑁

⎤

⎥

⎥

⎦

, (20)

but this specific choice of 𝒉(.) increases the time load of the correspond-
ing DeePC.

Algorithm 1 Data Enabled Predictive Control

Phase 1 – Before closing the control loop:

1: Choose 𝑸, 𝑹, 𝜌, 𝐿,  ,  , and 𝒀 𝑟 suitably
2: Collect the open loop data sets 𝒀 0,𝜌+𝐿,𝑁 , 𝑼 0,𝜌+𝐿,𝑁
3: Compute 𝑾 and 𝑪𝒑 from (18)

Phase 2 – During the control loop

4: for 𝑘 = 1, 2,⋯ do
5: Measure 𝒚(𝑘)
6: Minimize the optimization function in Eq. (16) for 𝜶(𝑘)
7: Compute 𝑼𝑘,𝐿,1 = 𝑼 𝜌,𝐿,𝑁𝜶(𝑘)
8: Apply the input 𝒖(𝑘) = 𝑼𝑘,1,1 to the system
9: Update 𝑪𝒑 if 𝒀 𝑟 changes

10: Update the past vectors 𝑼𝑘−𝜌,𝜌,1 and 𝒀 𝑘−𝜌,𝜌,1
11: end for

3.3. Extension of data enabled predictive control for LPV systems

LPV systems are highly beneficial for modeling parametric uncer-
tainties, nonlinearities, or variations in operating points (Toth, 2010).
In state representation, the matrices (𝑨,𝑩,𝑪 ,𝑫) are contingent upon
varying parameters. For the analysis, and more particularly for robust-
ness concerning parametric uncertainties, it is essential to be aware
of the variation intervals of these parameters. This requirement holds
even when defining a robust control law that encompasses the entire
parameter variation domain. Nevertheless, this approach tends to ex-
hibit a conservative nature when applied to the real-time adaptation
of control in response to parametric variations. In analysis, particu-
larly in the study of robustness concerning parametric uncertainties,
it is imperative to have knowledge of the variation intervals of the
parameters. This requirement holds true even when a robust control
law is established to span the entire domain of parameter variation.
4

This section aims at addressing the challenge of real-time awareness of
parameter variations while maintaining an adaptive control law aligned
with the system dynamics at each moment. To achieve this, we present
an extension of the Fundamental Lemma 1 tailored for LPV systems.

The considered model structure is noted as 𝑺 = (𝒑,𝑨,𝑩,𝑪 ,𝑫) and
defined by Eq. (9). Let matrix 𝑬 be defined by

𝑬 =
[

𝑨 𝑩
𝑪 𝑫

]

.

Without loss of generality, it is assumed that 𝑬 has affine depen-
ence, i.e.,

= 𝑬0 +
𝑛𝑝
∑

ℎ=1
𝑝ℎ𝑬ℎ, (21)

here 𝑬0 is the nominal term. Let us define

ℎ =
𝑝
ℎ
+𝑝ℎ
2 , 𝑤ℎ =

𝑝ℎ−𝑝ℎ
2 , ∀ℎ ∈

{

1,… , 𝑛𝑝
}

.

hen Eq. (21) can be written as

= 𝑬0 +
𝑛𝑝
∑

ℎ=1

(

𝑝ℎ − 𝑚ℎ
𝑤ℎ

𝑤ℎ𝑬ℎ
)

+
𝑛𝑝
∑

ℎ=1
𝑚ℎ𝑬ℎ,

= 𝒁0 +𝒁,

ith

=
𝑛𝑝
∑

ℎ=1
𝜃ℎ𝒁ℎ, 𝜃ℎ =

𝑝ℎ − 𝑚ℎ
𝑤ℎ

,

ℎ = 𝑤ℎ𝑬ℎ, 𝒁0 = 𝑬0 +
𝑛𝑝
∑

ℎ=1
𝑚ℎ𝑬ℎ.

ote that 𝜃ℎ are normalized parameter variation such that

1 ≤ 𝜃ℎ ≤ 1, ∀ℎ ∈
{

1,… , 𝑛𝑝
}

.

onsider the R𝑛𝑝 -vectors 𝝓𝑘, 𝑘 ∈ N∗, with components equaling either
or 1, associated with the binary numbers, and then define

𝑘 = 1𝑛𝑝 ,1 − 2𝝓𝑘, ∀𝑘 ∈ N∗.

efine 𝑁𝑝 = 2𝑛𝑝 and note 𝜳 =
[

𝝍1 … 𝝍𝑁𝑝

]

. Let 𝑮 be defined

y 𝑮 =
[

𝒁𝑇
1 … 𝒁𝑇

𝑛𝑝

]𝑇
. When every 𝑝ℎ varies in its range, 𝜽 =

𝜃1 … 𝜃𝑛𝑝
]𝑇

describes an hypercube. As a consequence, 𝑮 describes
n orthotope of matrices whose vertices, denoted by 𝑴 𝑖, 𝑖 = 1,… , 𝑁𝑝,
orrespond to extreme values of various 𝑝ℎ and are given by

𝑖 = 𝝍𝑇
𝑖 𝑮, ∀𝑖 ∈

{

1, 𝑁𝑝
}

.

n other words, 𝒁 can be written as a convex combination of vertices
𝑖, i.e.,

=
𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑴 𝑖,

ith

𝑖 ≥ 0 ∀𝑖 ∈
{

0,… , 𝑁𝑝
}

,
𝑁𝑝
∑

𝑖=1
𝛽𝑖 = 1,

r equivalently,

=
𝑁𝑝
∑

𝑖=1
𝛽𝑖

(

𝑬0 +
𝑛𝑝
∑

ℎ=1
𝑚ℎ𝑬ℎ +𝑴 𝑖

)

(22a)

=
𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑬[𝑖], (22b)

here 𝑬 describes an orthotope of matrices with its 𝑁𝑝 vertices

[𝑖] =
[

𝑨[𝑖] 𝑩[𝑖]

[𝑖] [𝑖]

]

.

𝑪 𝑫



Control Engineering Practice 149 (2024) 105969T.B. Hamdan et al.

𝑁
t
T
a

𝛽

d

i
t

𝑺

R

w
r

𝑪

w
m
L

P
w
[
L
s

Let us denote 𝒑[𝑖] ∈ R𝑛𝑝 as the fixed value representing the scheduling
parameter 𝒑 at the 𝑖th vertex. Each component of 𝒑[𝑖] corresponds to
one of the 𝑁𝑝 combinations of 𝑝ℎ and 𝑝

ℎ
, where ℎ ranges from 1 to

𝑝. 𝑬[𝑖] is derived by evaluating 𝑬 at the 𝑖th vertex with 𝒑 = 𝒑[𝑖]. Note
hat 𝑬 is entirely described by a convex combination of its vertices.
he coefficients 𝛽𝑖 are the parameters of the convex combination and
re function of 𝒑(𝑘). Indeed, it can be shown that

𝑖 =
1
𝑁𝑝

( 𝑛𝑝
∏

ℎ=1

(

𝜓𝑖ℎ𝜃ℎ + 1
)

)

∀𝑖 ∈
{

1,… , 𝑁𝑝
}

, (23)

where 𝜓𝑖ℎ is the ℎ𝑖𝑡ℎ component of 𝝍 𝑖. To simplify the notation, this
ependence is omitted. In the paper, it is denoted 𝛽𝑖 instead of 𝛽𝑖(𝒑(𝑘)).

In prior LPV control methods documented in the literature (refer, for
nstance, to Verhoek et al. (2021)), the trajectory of 𝒑 was presumed
o be known, or equivalently, the coefficients 𝛽𝑖 were assumed to be

known at each time. In contrast, this work considers the trajectory of
the parameter vector 𝒑 as unknown. The achievement of data driven
predictive control for LPV systems with unknown parameter variations
involves extending the fundamental lemma to encompass LPV systems,
as shown by Proposition 1.

Proposition 1. Consider the LPV system (9) where the parameter 𝒑 ∈ R𝑛𝑝 .
Then, any output–input trajectory

[

𝒀 ⊤𝑘,𝑠,1 𝑼⊤
𝑘,𝑠,1

]⊤
of (9), for 𝑘 ∈ N,

belongs to the column space of the matrix

𝑯𝑦𝑢 =
⎡

⎢

⎢

⎣

𝒀 [1]
0,𝑠,𝑁 ⋯ 𝒀 [𝑁𝑝]

0,𝑠,𝑁

𝑼 [1]
0,𝑠,𝑁 ⋯ 𝑼 [𝑁𝑝]

0,𝑠,𝑁

⎤

⎥

⎥

⎦

∈ R𝑠(𝑛𝑢+𝑛𝑦)×𝑁∗𝑁𝑝 , (24)

where 𝒀 [𝑖]
0,𝑠,𝑁 and 𝑼 [𝑖]

0,𝑠,𝑁 are the Hankel matrices of the frozen system
[𝑖] =

(

𝒑[𝑖],𝑬[𝑖]), assuming that rank(𝑼 [𝑖]
0,𝑠,𝑁 ) = 𝑠𝑛𝑢 for 𝑖 = 1,… , 𝑁𝑝.

Proof. Using Eqs. (22), (9) can be equivalently rewritten in the
polytopic form

𝒙(𝑘 + 1) =
𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑨[𝑖]𝒙(𝑘) +

𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑩[𝑖]𝒖(𝑘), (25a)

𝒚(𝑘) =
𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑪 [𝑖]𝒙(𝑘) +

𝑁𝑝
∑

𝑖=1
𝛽𝑖𝑫[𝑖]𝒖(𝑘). (25b)

Let us define

𝒙[𝑖](𝑘) = 𝛽𝑖𝒙(𝑘), 𝒖[𝑖](𝑘) = 𝛽𝑖𝒖(𝑘), 𝒚[𝑖](𝑘) = 𝛽𝑖𝒚(𝑘). (26)

As ∑𝑁𝑝
𝑖=1 𝛽𝑖 = 1, it is straightforward to write

𝒙(𝑘) =
𝑁𝑝
∑

𝑖=1
𝒙[𝑖](𝑘), 𝒖(𝑘) =

𝑁𝑝
∑

𝑖=1
𝒖[𝑖](𝑘), 𝒚(𝑘) =

𝑁𝑝
∑

𝑖=1
𝒚[𝑖](𝑘). (27)

The vectors 𝒙[𝑖](𝑘), 𝒖[𝑖](𝑘) and 𝒚[𝑖](𝑘) correspond to the state, input and
output vectors of a frozen model at instant 𝑘 ∈ N and corresponds to a
vertex 𝑺[𝑖] =

(

𝑨[𝑖],𝑩[𝑖],𝑪 [𝑖],𝑫[𝑖]) of the orthotope 𝑺. This frozen model
can be written in the state space form

𝒙[𝑖](𝑘 + 1) = 𝑨[𝑖]𝒙[𝑖](𝑘) + 𝑩[𝑖]𝒖[𝑖](𝑘), (28a)

𝒚[𝑖](𝑘) = 𝑪 [𝑖]𝒙[𝑖](𝑘) +𝑫[𝑖]𝒖[𝑖](𝑘). (28b)

Consider now an excitation signal persistently exciting of order 𝑠 ∈
N∗. Then, based on Definition 4, the output–input sequence {𝒚[𝑖](𝑘),
𝒖[𝑖](𝑘)}𝑁−1

𝑘=0 is a trajectory of the frozen model 𝑺[𝑖].
From Lemma 1, the system output–input sequence over 𝑠

steps
[

𝒀 [𝑖]⊤
𝑘,𝑠,1 𝑼 [𝑖]⊤

𝑘,𝑠,1

]⊤
belongs to the column space of the matrix

[

𝒀 [𝑖]⊤
0,𝑠,𝑁 𝑼 [𝑖]⊤

0,𝑠,𝑁

]⊤
. In other words, each trajectory of the frozen model

𝑺[𝑖] is a linear combination of the column space of the Hankel matrices
[𝑖] [𝑖]
5

𝒀 0,𝑠,𝑁 and 𝑼 0,𝑠,𝑁 . i
As a result of Lemma 1, for each trajectory and each instant 𝑘, over
𝑠 ∈ N∗ steps of 𝑺[𝑖] for 𝑖 = 1,… , 2𝑛𝑝 , there exists a vector 𝜶[𝑖](𝑘) ∈ R𝑁

such that
[

𝒀 [𝑖]
𝑘,𝑠,1

𝑼 [𝑖]
𝑘,𝑠,1

]

=

[

𝒀 [𝑖]
0,𝑠,𝑁

𝑼 [𝑖]
0,𝑠,𝑁

]

𝜶[𝑖](𝑘). (29)

Substituting Eq. (29) into Eq. (27) leads to write the trajectory of the
LPV system at instant 𝑘 ∈ N over 𝑠 ∈ N∗ steps as
[

𝒀 𝑘,𝑠,1
𝑼𝑘,𝑠,1

]

=
𝑁𝑝
∑

𝑖=1

[

𝒀 [𝑖]
𝑘,𝑠,1

𝑼 [𝑖]
𝑘,𝑠,1

]

(30a)

=
𝑁𝑝
∑

𝑖=1

[

𝒀 [𝑖]
0,𝑠,𝑁

𝑼 [𝑖]
0,𝑠,𝑁

]

𝜶[𝑖](𝑘). (30b)

Eq. (30) can be summed up in a general form as
[

𝒀 𝑘,𝑠,1
𝑼𝑘,𝑠,1

]

= 𝑯𝑦𝑢𝜶(𝑘), (31)

where 𝜶(𝑘) ∈ R𝑁𝑝𝑁 . This proves that any trajectory of the LPV system
𝑺 belongs to the column space of 𝑯𝑦𝑢. □

emark 2. The coefficients 𝛽𝑖 do not appear explicitly in Eq. (31).
However, they are implicitly present in the vectors 𝜶[𝑖](𝑘). As in the
DeePC algorithm, 𝜶(𝑘) is recalculated at each time 𝑘. This means that at
each time a new convex combination is calculated to position matrices
(𝑨,𝑩,𝑪 ,𝑫) in the orthotope 𝑺 without an explicit measurement of 𝒑(𝑘).

Using this result, Proposition 2 can be established to implement
an Data Enabled Predictive Control to the LPV systems with no prior
knowledge of the parameter trajectory.

Proposition 2. The Data Enabled Predictive Control problem for the LPV
system (9) where the parameter vector 𝒑 is unknown is given by

argmin
𝜶(𝑘)

‖𝜶(𝑘)‖2𝑾 + 2𝑪⊤𝒑𝜶(𝑘), (32)

subject to
[

𝒀 𝑘−𝜌,𝜌,1
𝑼𝑘−𝜌,𝜌,1

]

=
⎡

⎢

⎢

⎣

𝒀 [1]
0,𝜌,𝑁 ⋯ 𝒀 [𝑁𝑝]

0,𝜌,𝑁

𝑼 [1]
0,𝜌,𝑁 ⋯ 𝑼 [𝑁𝑝]

0,𝜌,𝑁

⎤

⎥

⎥

⎦

𝜶(𝑘), (33a)

[

𝒀 [1]
𝐿,𝜌,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝐿,𝜌,𝑁

]

𝜶(𝑘) =
⎡

⎢

⎢

⎢

⎣

𝒚𝑟(𝑘 + 𝐿 − 𝜌)

⋮

𝒚𝑟(𝑘 + 𝐿 − 1)

⎤

⎥

⎥

⎥

⎦

, (33b)

[

𝑼 [1]
𝜌,𝐿,𝑁 ⋯ 𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

](𝑖)
𝜶(𝑘) ∈  , (33c)

[

𝒀 [1]
𝜌,𝐿,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

](𝑖)
𝜶(𝑘) ∈  , (33d)

here  and  are the polytopes governing the input and output trajectories
espectively and 𝑖 ∈ 1,𝐿. 𝑾 and 𝑪𝒑 are now given as

𝑾 =
‖

‖

‖

‖

[

𝒀 [1]
𝜌,𝐿,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]

‖

‖

‖

‖

2

𝑸
+
‖

‖

‖

‖

[

𝑼 [1]
𝜌,𝐿,𝑁 ⋯ 𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

]

‖

‖

‖

‖

2

𝑹
, (34a)

𝒑 = −
[

𝒀 [1]
𝜌,𝐿,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]⊤
𝑸𝒀 𝑟, (34b)

here 𝑸 ∈ R𝑛𝑦𝐿 and 𝑹 ∈ R𝑛𝑢𝐿 are the positive definite diagonal penalizing
atrices depending on the trade off between the input and the output of the
PV system.

roof. The predictive control problem is given by minimizing Eq. (12)
here the relation between the system output and input trajectory,
𝒀 ⊤𝑘,𝐿,1,𝑼

⊤
𝑘,𝐿,1]

⊤ is dependent on the system to be controlled. For an
PV system 𝑺 = (𝒑,𝑨,𝑩,𝑪,𝑫), any output–input trajectory of the
ystem can be written as a linear combination of the columns of 𝑯𝑦𝑢 as

llustrated in Proposition 1. As a result, Eq. (31) can be reformulated
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a

1
1
1
1

with 𝑠 = 𝜌 +𝐿 corresponding to 𝜌 ∈ N∗ steps before the instant 𝑘 ∈ N∗

nd 𝐿 ∈ N∗ steps ahead of the instant 𝑘 such that

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒀 𝑘−𝜌,𝜌,1
𝒀 𝑘,𝐿,1
𝑼𝑘−𝜌,𝜌,1

𝑼𝑘,𝐿,1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒀 [1]
0,𝜌,𝑁 ⋯ 𝒀 [𝑁𝑝]

0,𝜌,𝑁

𝒀 [1]
𝜌,𝐿,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

𝑼 [1]
0,𝜌,𝑁 ⋯ 𝑼 [𝑁𝑝]

0,𝜌,𝑁

𝑼 [1]
𝜌,𝐿,𝑁 ⋯ 𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝜶(𝑘), (35)

where 𝜶(𝑘) ∈ R𝑁𝑁𝑝 . This shows that the future output and input
trajectories can be written as a function of 𝜶(𝑘) such that

𝒀 𝑘,𝐿,1 =
[

𝒀 [1]
𝜌,𝐿,𝑁 ⋯ 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]

𝜶(𝑘), (36a)

𝑼𝑘,𝐿,1 =
[

𝑼 [1]
𝜌,𝐿,𝑁 ⋯ 𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

]

𝜶(𝑘). (36b)

Based on Eq. (36), the minimization problem in Eq. (12) is reformulated
as (32) subject to (33a). □

3.4. Integral action for DeePC

In practical applications, addressing deterministic disturbances ne-
cessitates the incorporation of an integrator for offset-free tracking. The
optimal strategy for rejecting a deterministic disturbance involves inte-
grating its model into the design model. Consequently, to eliminate a
static error, an integral action must be integrated into the design model.
Unfortunately, in DeePC, there is no predefined design model available
a priori. To bypass this challenge, let us consider the innovation form
of a state space representation of an LTI system

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝒖(𝑘) +𝑲𝒂(𝑘), (37a)

𝒚(𝑘) = 𝑪𝒙(𝑘) +𝑫𝒖(𝑘) + 𝒂(𝑘), (37b)

where 𝑲 is the Kalman gain and 𝒂 is a random walk, i.e., 𝒂(𝑘 + 1) =
𝒂(𝑘) + 𝒆(𝑘) with 𝒆 a zero mean white noise. It follows that

𝜟𝒙(𝑘 + 1) = 𝑨𝜟𝒙(𝑘) + 𝑩𝜟𝒖(𝑘) +𝑲𝒆(𝑘), (38a)

𝜟𝒚(𝑘) = 𝑪𝜟𝒙(𝑘) +𝑫𝜟𝒖(𝑘) + 𝒆(𝑘), (38b)

where 𝜟 is the differentiation operator, i.e., 𝜟𝒛(𝑘 + 1) = 𝒛(𝑘 + 1) − 𝒛(𝑘).
Let us consider an augmented state

𝒙𝒂(𝑘) =

[

𝛥𝒙(𝒌)
𝒚(𝑘)

]

. (39)

The corresponding augmented model is given by

𝒙𝒂(𝑘 + 1) = 𝑨𝒂𝒙𝒂(𝑘) + 𝑩𝒂𝛥𝒖(𝑘) +𝑲𝒂𝒆(𝑘), (40a)

𝒚(𝑘) = 𝑪𝒂𝒙𝒂(𝑘), (40b)

with

𝑨𝒂 =

[

𝑨 0𝑛𝑥 ,𝑛𝑦
𝑪𝑨 I𝑛𝑦 ,𝑛𝑦

]

, 𝑩𝒂 =

[

𝑩

𝑪𝑩

]

, (41a)

𝑪𝒂 =
[

0𝑛𝑦 ,𝑛𝑥 I𝑛𝑦 ,𝑛𝑦

]

, 𝑲𝒂 =

[

𝑲

𝑪𝑲

]

. (41b)

The eigenvalues of the augmented model (40) comprise both the eigen-
values of the plant model (10) and an additional 𝑛𝑦 eigenvalues located
on the unit circle. This implies the presence of 𝑛𝑦 integrators incor-
porated into the augmented design model. Although the augmented
system and the initial system share the same outputs, their inputs differ.
To introduce an integral action in DeePC, it suffices to consider Hankel
matrices using incremental inputs, as detailed in Lazar and Verheijen
(2022). In the LPV case, this involves defining matrices at each vertex
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as follows:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒀 [𝑖]
0,𝜌,𝑁

𝒀 [𝑖]
𝜌,𝐿,𝑁

𝜟𝑼 [𝑖]
0,𝜌,𝑁

𝜟𝑼 [𝑖]
𝜌,𝐿,𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (42)

The DeePC problem with embedded integrator is recasted as

argmin
𝜶(𝑘)

(

‖𝜶(𝑘)‖2𝑾 𝑰
+ 2𝑪⊤𝒑𝑰𝜶(𝑘)

)

, (43)

subject to

𝒀 𝑘−𝜌,𝜌,1 =
[

𝒀 [1]
0,𝜌,𝑁 … 𝒀 [𝑁𝑝]

0,𝜌,𝑁

]

𝜶(𝑘),

𝜟𝑼𝑘−𝜌,𝜌,1 =
[

𝜟𝑼 [1]
0,𝜌,𝑁 … 𝜟𝑼 [𝑁𝑝]

0,𝜌,𝑁

]

𝜶(𝑘),

⎡

⎢

⎢

⎢

⎣

𝒚𝑟(𝑘 + 𝐿 − 𝜌)

⋮

𝒚𝑟(𝑘 + 𝐿 − 1)

⎤

⎥

⎥

⎥

⎦

=
[

𝒀 [1]
𝐿,𝜌,𝑁 … 𝒀 [𝑁𝑝]

𝐿,𝜌,𝑁

]

𝜶(𝑘),

(

𝑺𝐿,𝑛𝑢
[

𝜟𝑼 [1]
0,𝜌,𝑁 … 𝜟𝑼 [𝑁𝑝]

0,𝜌,𝑁

]

𝜶(𝑘) + 1𝐿,𝑛𝑢𝒖(𝑘 − 1)
)(𝑖)

∈  ,

([

𝒀 [1]
0,𝜌,𝑁 … 𝒀 [𝑁𝑝]

0,𝜌,𝑁

]

𝜶(𝑘)
)(𝑖)

∈  ,

where 𝑖 ∈ 1,𝐿. 𝑾 𝑰 and 𝑪𝒑𝑰 are given by

𝑾 𝐼 =
[

𝒀 [1]
𝜌,𝐿,𝑁 … 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]⊤
𝑸
[

𝒀 [1]
𝜌,𝐿,𝑁 … 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]

,

+
[

𝜟𝑼 [1]
𝜌,𝐿,𝑁 … 𝜟𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

]⊤
𝑹
[

𝜟𝑼 [1]
𝜌,𝐿,𝑁 … 𝜟𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

]

,

𝑪𝒑𝑰 = −𝒀 ⊤𝑟 𝑸
[

𝒀 [1]
𝜌,𝐿,𝑁 … 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]

.

The resulting algorithm is summed up in Algorithm 3.

Algorithm 2 LPV-Data Enabled Predictive Control

Phase 1 – Before closing the control loop:

1: Choose 𝑸, 𝑹, 𝜌, 𝐿,  ,  , and 𝒀 𝑟 suitably
2: for 𝑖 = 1,… , 𝑁𝑝 do
3: Collect the open loop data sets 𝒀 [𝑖]

0,𝜌+𝐿,𝑁 , 𝑼 [𝑖]
0,𝜌+𝐿,𝑁

4: end for
5: Build 𝑯𝑦𝑢 as in Eq. (24)
6: Compute 𝑾 𝐼 and 𝑪𝒑𝑰 from Eq. (18)

Phase 2 – During the control loop

7: for 𝑘 = 1, 2,⋯ do
8: Measure 𝒚(𝑘)
9: Minimize the optimization function in Eq. (43) for 𝜶(𝑘)

10: Compute 𝛥𝑼𝑘,𝐿,1 = 𝛥𝑼 𝜌,𝐿,𝑁𝜶(𝑘)
1: Apply the input 𝒖(𝑘) = 𝛥𝑼𝑘,1,1 + 𝒖(𝑘 − 1) to the system
2: Update 𝑪𝒑𝑰 if 𝒀 𝑟 changes
3: Update the past vectors 𝛥𝑼𝑘−𝜌,𝜌,1 and 𝒀 𝑘−𝜌,𝜌,1
4: end for

3.5. Computational complexity

The formulation of the LPV system in the polytopic form (25)
needs 𝑁𝑝 = 2𝑛𝑝 vertices. This implies that for trajectory definition,
we require 𝜶(𝑘) ∈ R𝑁∗𝑁𝑝 . The exponential increase in the number
of vertices 𝑁𝑝 as the number of scheduling variables 𝒑 increase can

lead to large optimization problem and computational challenges. To
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a

𝛥

C

B

⎡

⎢

⎢

⎢

⎣

1
1
1
1
1
1

overcome this issue, one way is to consider the 𝛾-DDPC algorithm first
introduced in Breschi, Chiuso, and Formentin (2023b) and Breschi,
Fabris, Formentin and Chiuso (2023) to parametrize the solution in
terms of a lower dimensional parameter vector 𝜶(𝑘). Let us define

𝒁 𝑖𝑛𝑖(𝑘) =

[

𝒀 𝑘−𝜌,𝜌,1
𝛥𝑼𝑘−𝜌,𝜌,1

]

, 𝒁[𝑖]
𝑝 =

⎡

⎢

⎢

⎣

𝒀 [𝑖]
0,𝜌,𝑁

𝛥𝑼 [𝑖]
0,𝜌,𝑁

⎤

⎥

⎥

⎦

,

nd

𝒁𝑝 =
[

𝒁[1] … 𝒁[𝑁𝑝]
]

,

𝒀 𝑓 =
[

𝒀 [1]
𝜌,𝐿,𝑁 … 𝒀 [𝑁𝑝]

𝜌,𝐿,𝑁

]

,

𝑼𝑓 =
[

𝛥𝑼 [1]
𝜌,𝐿,𝑁 … 𝛥𝑼 [𝑁𝑝]

𝜌,𝐿,𝑁

]

.

onsider the LQ decomposition

⎡

⎢

⎢

⎢

⎣

𝒁𝑝

𝒀 𝑓

𝛥𝑼𝑓

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑳11 𝟎 𝟎
𝑳21 𝑳22 𝟎
𝑳31 𝑳32 𝑳33

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝑸1

𝑸2

𝑸3

⎤

⎥

⎥

⎥

⎦

. (44)

y multiplying both sides of Eq. (44) by 𝜶(𝑘), we have

𝒁 𝑖𝑛𝑖(𝑘)

𝒀 𝑘,𝐿,1
𝛥𝑼𝑘,𝐿,1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑳11 𝟎 𝟎
𝑳21 𝑳22 𝟎
𝑳31 𝑳32 𝑳33

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜸1(𝑘)

𝜸2(𝑘)

𝜸3(𝑘)

⎤

⎥

⎥

⎥

⎦

, (45)

where 𝜸𝑖(𝑘) = 𝑸𝑖𝜶(𝑘) for 𝑖 = 1, 2, 3. The dimensions of 𝜸𝑖(𝑘) are
independent of 𝑁 and 𝑁𝑝. The optimization problem becomes compu-
tationally tractable by using 𝜸𝑖(𝑘) as optimization variables instead of
𝜶(𝑘), whatever the number of vertices of the polytope. Moreover, since
𝒁 𝑖𝑛𝑖(𝑘) is known at time 𝑘, 𝜸1(𝑘) can be obtained from

𝜸1(𝑘) = 𝑳
†
11𝒁 𝑖𝑛𝑖(𝑘). (46)

By denoting

𝜸(𝑘) =

[

𝜸2(𝑘)

𝜸3(𝑘)

]

,

problem (43) thus reduces to

argmin
𝜸(𝑘)

(

‖𝜸(𝑘)‖2𝑾 𝜸
+ 2𝑪⊤𝒑𝜸 𝜸(𝑘)

)

, (47)

subject to

⎡

⎢

⎢

⎢

⎣

𝒚𝑟(𝑘 + 𝐿 − 𝜌)

⋮

𝒚𝑟(𝑘 + 𝐿 − 1)

⎤

⎥

⎥

⎥

⎦

=
[

𝑨1𝜸(𝑘) +𝑳21𝜸1(𝑘)
]

(𝐿−𝜌+1∶𝐿) ,

(

𝑺𝐿,𝑛𝑢
(

𝑨2𝜸(𝑘) +𝑳31𝜸1(𝑘)
)

+ 1𝐿,𝑛𝑢𝒖(𝑘 − 1)
)(𝑖)

∈  ,

(

𝑨1𝜸(𝑘) +𝑳21𝜸1(𝑘)
)(𝑖) ∈  ,

where 𝑖 ∈ 1,𝐿, [.](𝑛∶𝑚) represents the rows 𝑛 to 𝑚 of [.], whereas

𝑨1 =
[

𝑳22 𝟎
]

, (48)

𝑨2 =
[

𝑳32 𝑳33
]

, (49)

𝑾 𝜸 = 𝑨⊤1𝑸𝑨1 +𝑨⊤2𝑹𝑨2, (50)

𝑪𝒑𝜸 = 𝑨⊤1𝑸
(

𝑳21𝜸1(𝑘) − 𝒀 𝑟
)

+𝑨⊤2𝑹𝑳31𝜸1(𝑘). (51)

The resulting algorithm is given in Algorithm 3.

4. Numerical simulations

To demonstrate the effectiveness of this novel method, two exam-
ples are presented in this section. Firstly, the proposed control method
undergoes testing on a numerical LPV system, as detailed in Section 4.1.
Subsequently, the effectiveness of the proposed control strategy is
evaluated using simulated data generated from a high-fidelity simulator
replicating a calendering process.
7

Algorithm 3 𝛾-LPV-Data Enabled Predictive Control

Phase 1 – Before closing the control loop:

1: Choose 𝑸, 𝑹, 𝜌, 𝐿,  ,  , and 𝒀 𝑟 suitably
2: for 𝑖 = 1,… , 𝑁𝑝 do
3: Collect the open loop data sets 𝒀 [𝑖]

0,𝜌+𝐿,𝑁 , 𝑼 [𝑖]
0,𝜌+𝐿,𝑁

4: end for
5: Build 𝑯𝑦𝑢 as in Eq. (24)
6: Compute the LQ decomposition as in Eq. (44)
7: Compute 𝑾 𝛾 and 𝑪𝒑𝜸 from Eq. (18)

Phase 2 – During the control loop

8: for 𝑘 = 1, 2,⋯ do
9: Measure 𝒚(𝑘)
0: Compute 𝛾1(𝑘) from Eq. (46)
1: Minimize the optimization function in Eq. (43) for 𝜸(𝑘)
2: Compute 𝛥𝑼𝑘,𝐿,1 = 𝑳31𝛾1(𝑘) +𝑨2𝜸(𝑘)
3: Apply the input 𝒖(𝑘) = 𝛥𝑼𝑘,1,1 + 𝒖(𝑘 − 1) to the system
4: Update 𝑪𝒑𝜸 and the past vectors 𝒁 𝑖𝑛𝑖(𝑘)
5: end for

4.1. Numerical example

Consider the LPV system 𝑺 = (𝒑,𝑨,𝑩,𝑪 ,𝑫) where

𝑨 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 − 0.001𝑝1(𝑘) 0.01 0.02𝑝2(𝑘) 0

0 1 − 0.01025𝑝1(𝑘) 0 0.033

0.01𝑝2(𝑘) 0 1 − 0.0095𝑝1(𝑘) 0

0 0.05𝑝2(𝑘) 0.0375𝑝1(𝑘) −0.053

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑩 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0.017

0.001

0.5

0.072

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑪 =
[

1 0 0 0
]

, 𝑫 = 𝟎.

All the possible trajectories of the scheduling parameter 𝒑(𝑘) =
[

𝑝1(𝑘)

𝑝2(𝑘)

]

evolve inside a convex polytope such that
[

8

0.1

]

≤ 𝒑(𝑘) ≤

[

16

2

]

.

From Eq. (22), an orthotope 𝑬 can be constructed with four vertices.
Each vertex 𝑬[𝑖], 𝑖 = 1,… , 4 defines an LTI system which is excited
with an input signal 𝒖[𝑖]𝑑 chosen as a Pseudo Random Binary Signal
(PRBS) of length 𝑁 + 𝜌+𝐿. The data length is 𝑁 = 300 time steps and
the prediction horizon 𝐿 is set as 40 time steps. This choice ensures
the persistency of excitation of the input signal. The resulting Hankel
matrices of the 𝑁𝑝 LTI systems are horizontally stacked as per Eq. (30).
The output and input penalty weights are chosen as 𝑄 = 10 and 𝑅 = 1.
The control objective is to track a reference trajectory 𝒚𝒓(𝑘) while the
scheduling parameter 𝒑(𝑘) follows a trajectory demonstrated in Fig. 2.
The input 𝑢 is bounded between [−20, 20].

The control input and output results from the closed-loop imple-
mentation of the control algorithm with the LPV system over 6000 time
steps are presented in Figs. 3 and 4 respectively. As evident in Fig. 4, the
DeePC algorithm (43)–(41) adeptly guides the system output (depicted
by the blue line) toward the reference trajectory (indicated by the red
line), effectively handling variations in the scheduling parameters. For
comparison, the LPV system is also controlled using a DeePC controller
tuned for an LTI system, considering the nominal LTI model of the
studied system. The nominal model, representing the barycenter of 𝑬,
corresponds to the frozen model defined for 𝒑 = [12, 1.05]. The resulting

output is depicted by the black line in Fig. 4. Notably, incorporating the
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Fig. 2. Trajectory of the scheduling parameter 𝒑(𝑘). The nominal value 𝒑 = [12, 1.05]
corresponds to the starting point (𝑘 = 1).

Fig. 3. Control inputs with DeePC for LPV system (blue line) and DeePC for nominal
LTI system (black line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

LTI models on the vertices of the orthotope 𝑬 surpasses the standard
solution with the nominal LTI model. In the latter case, the controller
fails to guide the system output to the required trajectory. It is im-
portant to note that the algorithm does not always find a solution to
the optimization problem and may yield a saturated control signal,
as shown in Fig. 3 (black line). In contrast, the DeePC algorithm for
LPV systems yields an unsaturated control signal, facilitating the system
output to precisely track its reference trajectory, as illustrated by the
blue line in Fig. 3.

4.2. Calendering process control

4.2.1. Problem formulation
Through the tire manufacturing process, a pivotal calendering stage

is employed to create thin rubber layers for subsequent processing. This
crucial step entails compressing the rubber material through a series of
rotating cylinders. Its importance is underscored by its role in preparing
8

Fig. 4. Controlled outputs with DeePC for LPV system (blue line) and DeePC for
nominal LTI system (black line). Red line corresponds to reference trajectory. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 5. A two dimensional scheme showing the calendering process with the spatial
variation of the temperature at a given calendering velocity. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

thin and seamless layers, ultimately shaping the overall quality of the
manufactured tires. A two-dimensional scheme of the calendering rolls
is illustrated in Fig. 5 depicting the spatial variation of the temperature
within the rubber at a specific calendering velocity. Lower temperatures
are visually represented in blue and higher temperatures are depicted
in red. Within the calendering process, the viscoelastic properties of
rubber can give rise to the phenomenon known as viscous heating. This
heat generation is a function of the production rate, namely the rota-
tional speed of the calendering rolls. Notably, substantial temperature
fluctuations occur, particularly at the inlet, where the rubber mixture
accumulates to form a rubber bed, and at the outlet, where the rubber
exits the gap between the two cylindrical wheels. These specific regions
experience the most significant temperature changes throughout the
calendering process.

Maintaining the rubber temperature within a specific setpoint is
crucial to preserve the quality of the rubber, underscoring the critical
role of efficient control temperature dynamics in optimizing the tire
manufacturing process. Despite the significant impact of this mechan-
ical process on overall production, achieving full automation proves
challenging due to the high nonlinearities inherent in the system. In this
particular scenario, the objective is to regulate the rubber temperature
at the process outlet while adhering to the constraints imposed by
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Fig. 6. Scheme of studied domain and the boundary conditions used for calculations.

Fig. 7. Diagram showing the controller implementation in closed loop with the process
simulator.

the maximum temperature the mixture can endure before breaking
down. This control is implemented using a high-fidelity simulator of the
calendering process. It is important to note that temperature variations
at the inlet, influenced by the rubber feeding system, are not addressed
in this example as they fall beyond its scope.

4.2.2. Solution framework
Within the scope of this example, the governing equations that

model the dynamics of the rubber flow through the calendering process
are formulated based on the following assumptions: (𝒊) two dimensional
flow, (𝒊𝒊) unsteady flow, (𝒊𝒊𝒊) the elastic property of the rubber is
neglected thus eventually, the rubber is treated as an incompress-
ible non Newtonian viscous fluid flow. Consequently, the equations
characterizing the rubber behavior encompass the generalized Stokes
equation for momentum conservation, a divergence-free velocity equa-
tion for mass conservation, and a convection–diffusion equation that
incorporates a term for viscous heating for energy conservation. The
constitutive law applied across all scenarios presented is a power-law
coupled with an Arrhenius law, effectively accounting for temperature-
dependent viscosity. (For the comprehensive set of physical equations,
please refer to Appendix). To achieve precise High-Fidelity (HF) so-
lutions for temperature profiles, we utilize an in-house finite element
solver called MEF++ (developed collaboratively by Michelin and GIREF
Laboratory Laval & GIREF, 2021). This simulator effectively solves the
discretized physical equations that govern the calendering process with
a sampling time of 1 s. The discretized domain and the associated
boundary conditions utilized for the finite elements simulations are
detailed in Fig. 6. As previously mentioned, the rotational velocities of
the cylinders, denoted by 𝑉𝑐𝑦𝑙1 for the upper cylinder and 𝑉𝑐𝑦𝑙2 for the
lower cylinder in Fig. 6, serve as the inputs of the system and they are
to be adjusted to control the temperature of the rubber. Both of these
cylinders in reality rotate together with a constant ratio, expressed as
𝑉𝑐𝑦𝑙1
𝑉𝑐𝑦𝑙2

= 𝑓𝑟 (52)

where 0 < 𝑓𝑟 ≤ 1 represents the frictional constant between the
two calendering wheels. In the scope of this example, the frictional
constant is chosen unitary. As a result, the rotational speeds are the
same, leading to 𝑉𝑐𝑦𝑙1 = 𝑉𝑐𝑦𝑙2. This leads to a unified input for the
system, denoted as 𝑉𝑐𝑦𝑙. Based on this, the LPV data driven controller
can be implemented as shown in Fig. 7.
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Fig. 8. Random cylinder rolls velocity signal used to excite the system dynamics.

4.2.3. Control implementation and results
The dynamic viscosity of the rubber, denoted as 𝜂, is a function of

both the rubber temperature and the calendering velocity in the phys-
ical domain, as explained in Appendix. In order to find the bounds of
this varying parameter, a multi step signal is used to excite the system
dynamics. Specifically, for the considered application, the rotational
speeds of the calendering wheels range between 0.01 m/s and 0.7 m/s.
Accordingly, the viscosity of the rubber (expressed in Pa.s) is found to
fall within the interval of [30, 600]. The established viscosity bounds
result in a Reynolds number, denoted as Re, that is less than 1 aligning
with the physical assumptions inherent in the equations presented in
Appendix. Based on this, the calendering system can be modeled as an
LPV system where the scheduling parameter is the dynamic viscosity 𝜂.
All the feasible trajectories of 𝜂 evolve in the convex polytopic set, 𝜂𝑣
defined by 𝑁𝑝 = 2 vertices such that

𝜂𝑣 = {30, 600}. (53)

At each bound of the dynamic viscosity range, a constant dynamic
viscosity is assumed. From a physical standpoint, this can be achieved
by employing two different materials, each characterized by a constant
viscosity. Subsequently, the resulting LTI systems are simulated using
the signal presented in Fig. 8.

On the one hand, a prediction horizon of 15 time steps is adopted,
𝐿 = 15. On the other hand, the number of past time steps required must
be at least equal to the number of states corresponding to the system.
The number of actual states is equal to the number of nodes based on
the spatial discretization of the physical domain. In this example, the
discretized domain in Fig. 6 contains 8387 space nodes. In order to
determine the number of states of this system, the simulator is excited
over 200 time steps and a snapshot of the complete system states (i.e,
temperature field) is collected. A singular value decomposition of the
temperature snapshot matrix shows that only 9 singular values are suf-
ficient to capture 99.99% of the temperature variance. Consequently,
the system order can be reduced to 𝑛𝑥 = 9 states, (for further details
about model order reduction, the reader is referred to Schilders, van der
Vorst, and Rommes (2008)). Based on this, the past data length is set
as 10 time steps.

In addressing the minimization problem for the controller, the
weighting matrices 𝑄 and 𝑅 are selected as 10 and 0.1 respectively.
The upper and lower limits for the calendering velocity are established
at 0.01 m/s and 0.7 m/s, aligning with the physical constraints of the
calendering process. Our new solution performance is benchmarked
against DeePC for LTI systems, considering the system behavior as
linear time-invariant (LTI), and DeePC for LTI systems based on a
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Fig. 9. Temporal variation of the output temperature (K) (top) and the calendering
speed as input (m/s) (bottom) after the implementation of three different controllers
for a given mixture of rubber.

nominal system. The latter assumes a fixed viscosity value at 𝜂 = 450
Pa.s, selected to ensure that the temperature variation aligns with
that of the considered rubber mixture. The outcomes of applying the
three controllers are illustrated in Fig. 9 for a given rubber mix.
Fig. 9 illustrates the effective application of the proposed method,
showcasing its ability to adjust the system input and drive the output
to converge accurately toward various reference values with minimal
error. Notably, the DeePC based on the nominal system successfully
controls the system for the first two reference values but encounters
difficulty with the third. Conversely, the controller assuming the system
as a Linear Time Invariant (LTI) model fails to regulate the system when
the reference is set at 𝑇𝑟 = 410 K. These outcomes, stemming from the
assumption of the system as an LTI model, are expected due to the
inherent limitations of LTI models in capturing system nonlinearities,
contrasting with the high efficiency of modeling the system using an
LPV model.

In real-world applications, the viscosity of rubber material varies
across different mixtures. To assess the efficacy of our proposed
method, the controller undergoes testing with two distinct rubber
mixtures. The viscosity variations of the two considered mixtures is
shown in Fig. 10 due to the excitation of the calendering system using
the calendering velocity signal depicted in Fig. 8.
10
Fig. 10. Temporal variation of the viscosity of two different rubber mixtures due to
the excitation of the calendering process using the calendering speed in Fig. 8.

It is crucial to emphasize that the temporal variation of viscosity for
both materials around the output occurs within the polytope 𝜂𝑣, staying
within the prescribed excitation limits. The outcomes of implementing
the introduced control method on the two materials are illustrated in
Figs. 11 and 12 accordingly. Figs. 11 and 12 depict the system output
converging to the setpoint with slight oscillations around it for the
two types of rubber mixtures undergoing calendering. Notably, when
the required calendering rolls velocity reaches 0.275 m/s, exceeding
the maximum velocity used during excitation (0.25 m/s, as shown in
Fig. 8), the controller adeptly manages system dynamics variations,
showcasing its robustness. This underscores the effectiveness of the pro-
posed approach across different rubber types without prior knowledge
of the corresponding viscosity temporal variation. Additionally, the
controller exhibits inherent versatility, enabling its direct application
to various materials without requiring an initialization procedure. As
anticipated, controllers utilizing Hankel matrices from system excita-
tion with a base material or assuming the system is an LTI system fail
to regulate the system effectively, struggling to steer the output toward
the predefined setpoint.

5. Conclusion

This paper confronts two core challenges in predictive control for
LPV systems: the identification of a system model and the real-time
measurement of time-varying parameters. Through a polytopic formu-
lation of the model, a novel derivation of Willem’s lemma is introduced.
The proposed approach involves measuring a system trajectory at each
vertex of the polytope, necessitating the freezing of parameters at all
combinations of their extreme values. However, the notable advantage
lies in eliminating the need to know the scheduling parameter’s value at
each moment for effective system control. This methodology preserves
the advantages of Data Driven Predictive Control approaches, such as
the absence of an identification stage, inherent consideration of multi-
variable systems, an output feedback control law without the need
for designing an observer, and the incorporation of equality and/or
inequality constraints on inputs/outputs.

The primary drawback of this method is its dependency on the
ability to generate a trajectory on each vertex with persistent excitation.
This requires accessibility and tuning of the components of 𝒑, which
may not always be feasible or practical. Another limitation lies in the
requirement for 𝒑 to evolve within a polytope, stemming from the
necessity of modeling the LPV system in polytopic form. However, the
challenge of exponential computational complexity growth with the
increasing number of parameters can be solved by the way of an LQ
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Fig. 11. Figure showing the variation of the output temperature and the adjusted input
after the implementation of the LPV controller using the first mixture.

transformation conducted offline, i.e. prior to closing the control loop.
The resulting computational complexity akin to the initial DeePC for
LTI systems, irrespective of the scheduling parameter dimension.

The effectiveness of this approach is substantiated by results ob-
tained from a high-fidelity, realistic process simulator modeling a rub-
ber calendering process employed in tire manufacturing. The subse-
quent phase of this study involves implementing this novel method in
an actual operational process and to evaluate its robustness in presence
of noisy data.
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Fig. 12. Figure showing the variation of the output temperature and the adjusted input
after the implementation of the LPV controller using the second mixture.

Appendix. Physical equations

Based on the assumptions presented in Section 4.2.2, the con-
servation equations can be formulated in a simplified manner. The
conservation of momentum (Batchelor, 1967) can be written in the
form

− ∇.(2𝜂(𝐮)�̇�(𝐮)) − ∇.𝑝 = 0, (A.1)

where ∇. stands for the divergence operator, 𝐮 is the two dimensional
velocity vector, 𝑝 is the pressure applied on the rubber, �̇� is the general
deformation rate related to the shear rate, and 𝜂 is the dynamic vis-
cosity of the rubber. This equation is applicable for very low Reynolds
number, denoted as Re (Lee, Lee, & Yeo, 2014). The Reynolds number
is a dimensionless quantity used in fluid mechanics to characterize the
flow of a fluid (liquid or gas). It provides information about the relative
importance of inertial forces to viscous forces in the fluid flow. The
definition of the Reynolds number is:

Re =
𝜌𝑉 𝐿
𝜂

(A.2)

where 𝐿 is a characteristic length. 𝑉 is a reference velocity. 𝜌 is the
density of the fluid and 𝜂 is the fluid dynamic viscosity. The dynamic
viscosity of the rubber follows a power law (George & Qureshi, 2013)
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𝜂(𝐮) = 𝜂(�̇� , 𝑇 ) = 𝐾(𝜏�̇�)𝑛−1 exp(𝛼( 1
𝑇

− 1
𝑇𝑟𝑒𝑓

)), (A.3)

where 𝜏 is a time characteristic constant, 𝐾 is the fluid consistency,
𝑛 is the exponent of the power law such that 𝑛 < 1, 𝛼 is the ratio
of the material activation energy over the perfect gas constant, 𝛼 =
𝐸𝑎∕𝑅, 𝑇 is the temperature of the rubber and 𝑇𝑟𝑒𝑓 is the reference
temperature of the Arrhenius law. The mass conservation equation for
an incompressible flow is given by

∇.𝐮 = 0. (A.4)

The energy conservation equation is given by (Fletcher, 1991):

𝜕𝑇
𝜕𝑡

+ 𝐮.∇𝑇 = 𝜆
𝜌𝐶𝑝

∇2𝑇 +
𝜂(𝐮)�̇�2(𝐮)
𝜌𝐶𝑝

(A.5)

where 𝜆 is the rubber thermal conductivity, 𝐶𝑝 is the specific heat ca-
pacity of the rubber. The additional term 𝜂(𝐮)�̇�2(𝐮)

𝜌𝐶𝑝
is the viscous heating

source term. The dynamic viscosity 𝜂(𝐮) is calculated using the power
law in Eq. (A.3). This induces the coupling between the conserva-
tion equations, i.e. Eq. (A.1), Eqs. (A.4) and (A.5) (thermo-mechanical
coupling).
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