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Fixed-Length Lossy Compression with

Distortion Risk Measure Constraints

Malcolm Egan

Abstract

Storage or communication of data often requires lossy compression. As this data may be later

utilized for decision making, compression introduces a source of uncertainty. In order to verify the

quality of decisions, it is often desirable to quantify this uncertainty. This is often achieved via families

of risk measures (such as distortion risk measures), rather than the mean. In this paper, we study fixed-

length lossy compression subject to distortion risk measure constraints. We first establish conditions for

the existence of a fixed-length lossy source code, which satisfies a distortion risk measure constraint. We

then investigate the impact of quantifying uncertainty via a distortion risk measure, rather than standard

expected distortion constraints. Finally, we quantify the impact of changing the source distribution on

performance, measured in terms of a distortion risk measure.

Index Terms

Lossy compression, risk measures

I. INTRODUCTION

When dealing with high dimensional data, it is often undesirable or impractical to store or

communicate an entire data set. To address this problem, one solution is to choose a finite number

M. Egan is with Inria, INSA Lyon, CITI, UR3720, 69621 Villeurbanne, France (Email: malcolm.egan@inria.fr).
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M of representative examples, thereby compressing or quantizing the data. As the original data

cannot be exactly reconstructed from a representative example, the compression is lossy.

Due to the importance of storing and communicating high dimensional data, the problem of

designing and analyzing of methods to construct representative examples—also known as fixed-

length lossy source codes or vector quantizers—has attracted significant attention. The basis of

any method to design such source codes is a quality or distortion criterion. Moreover, a distortion

criterion consists of two components:

(i) A distortion function D(x, x̂) which measures the error between the original data x and

the corresponding compressed data x̂. For example, when x, x̂ ∈ Rn, it is common to

choose D(x, x̂) = 1
n
∥x− x̂∥22.

(ii) Viewing the data X as a random variable drawn from the probability distribution PX , the

second component is a statistic of the distortion random variable D(X, X̂), where X̂ is

the compressed version of the data X . A ubiquitous choice is the mean distortion given

by EX [D(X, X̂)].

The choice of a distortion function D is highly application-dependent; both the structure of

the data (e.g., the support of PX) and how the compressed data will be utilized need to be

considered. For example, for speech data a range of specialized distortion functions have been

proposed [1]. More recently, task-oriented compression has popularized the choice of a wider

range of distortion function; e.g., value functions associated with optimization problems [2]. The

case of multiple expectation constraints to model semantic aspects of communication has also

been considered in [3].

While the distortion function D is often flexible, the choice of statistic for the distortion random

variable has been more restricted. The standard choice is the mean distortion EX [D(X, X̂)].

Indeed, standard vector quantization algorithms to construct the source code aim to minimize

EX [D(X, X̂)] [1]. Similarly, the analysis of the required size of the source code, M , in rate-

distortion theory typically imposes a constraint on EX [D(X, X̂)] [4]. In particular, the distortion
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in the rate-distortion tradeoff corresponds to EX [D(X, X̂)].

On the other hand, compression is often only one step in a data processing chain. In this

context, compression contributes to uncertainty in data available to users; e.g., for the purpose

of decision making. In design or decision making under uncertainty [5], a much wider range

of distortion statistics is common. These statistics may include the excess distortion probability

PX(D(X, X̂) > δ), the perception constraints in the rate-distortion-perception tradeoff [6], or

a family of risk measures which are now ubiquitous in financial decision making [7], safe

control [8], reliability engineering [9] and reinforcement learning [10]. Further applications of

risk measures outside of finance are surveyed in [11]. Developing compression schemes which

control more general statistics of the distortion is therefore desirable for design under uncertainty.

The design and analysis of compression schemes subject to constraints on general statistics of

the distortion has seen limited attention. Beyond the mean distortion, the main focus has been on

the excess distortion probability. Notably, finite blocklength analysis of fixed-length lossy source

coding considers excess distortion probability constraints [12]. Nevertheless, to the best of the

author’s knowledge, there has not been an investigation of the design or analysis of fixed-length

lossy source coding subject to constraints on a general family of distortion statistics, such as

families of risk measures.

In this paper, we address this question. Namely, we establish conditions for the existence

of fixed-length lossy source codes which satisfy general distortion statistics. In particular, we

consider the family of distortion risk measures, which includes the mean distortion and a close

relative of the excess distortion probability—the value-at-risk (VaR)—as special cases. Distortion

risk measures are parameterized by a risk distortion function (not to be confused with the

distortion function), which provides a flexible means of constructing distortion statistics.

Our main contributions are as follows:

(i) In the case the risk distortion function associated with a distortion risk measure is concave,

we establish conditions for the existence of a fixed-length lossy source code subject to
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distortion risk measure constraints. In particular, we establish achievability and converse

bounds, which are applicable for general source distributions on arbitrary spaces, and

general distortion functions. Notably, our converse argument does not rely on the hypothesis

testing method [12]. We illustrate our analysis for the equiprobable memoryless binary

source (EMBS) and show that our converse is tighter than the converse bound arising

from the hypothesis testing method.

(ii) In practice, fixed-length lossy source codes are typically designed by optimizing the

mean distortion, EX [D(X, X̂)] (e.g., in [1]). Given that a code satisfies a mean distortion

constraint, we establish a bound on the distortion risk measure associated with the code,

which holds for all distortion risk measures parameterized by concave risk distortion

functions.

(iii) We study the impact of varying the source distribution on the performance of a given fixed-

length lossy source code. In particular, we establish a bound on changes of the distortion

risk measure when the source distribution varies. Our bound depends on both the structure

of the corresponding risk distortion function and the total variation distance between the

source distributions.

II. PROBLEM FORMULATION

A. Standard Operational Definitions

A fixed-length lossy source code of size M consists of:

(i) an encoder PZ|X : X → {1, . . . ,M};

(ii) and a decoder PX̂|Z : {1, . . . ,M} → X .

In general, the encoder and decoder may be probabilistic; i.e., PZ|X and PX̂|Z are random

transformations.

The performance of a fixed-length lossy source code is defined in terms of a distortion metric

D : X ×X → R+. For example, when X = Rn, it is standard to choose D(x, x̂) = 1
n
∥x− x̂∥22.
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On the other hand, for X = {0, 1}n, the standard choice is D(x, x̂) = 1
n

∑n
i=1 1{xi ̸= x̂i}.

Other distortion metrics can arise is specific applications; e.g., in speech compression [1], or in

goal-oriented communications [2].

The performance of a lossy fixed-length source code is then defined as either:

(i) Expected Distortion: E[D(X, X̂)].

(ii) Excess Distortion Probability: P(D(X, X̂) > δ).

Definition 1. Given a source PX on X , a (M, δ) code for an expected distortion constraint is

the pair (PZ|X , PX̂|Z) such that

E[D(X, X̂)] ≤ δ. (1)

Similarly, a (M, δ, ϵ) code for an exceed distortion probability constraint is the pair (PZ|X , PX̂|Z)

such that

P(D(X, X̂) > δ) ≤ ϵ. (2)

For fixed δ, ϵ, a widely studied question is the largest M for which a (M, δ) code or (M, δ, ϵ)

code exists. When X = Sn where S is a given set, PX is memoryless and stationary, and D

is separable, Shannon rate-distortion theory yields tight bounds on M for large n [4]. General

formulae for general sources and non-separable D have been given via information spectrum

methods as n → ∞ [13]; however, these results are difficult to evaluate outside of simple

cases. For general sources and distortion metrics, and finite dimension n, a characterization

of achievable (M, δ, ϵ) codes has been investigated in [12], which are amenable to numerical

computation.

B. Distortion Risk Measures

The expected distortion and the excess distortion probability can be viewed as statistics of

the distortion random variable D(X, X̂). In applications involving design under uncertainty, it is
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often desirable to consider more general statistics. One such family is the distortion risk measures

[14].

Definition 2. Let h : [0, 1] → [0, 1] be a concave non-decreasing function. The distortion risk

measure parameterized by h is defined as

ρh(D(X, X̂)) =

∫ ∞

0

h
(
P(D(X, X̂) > u)

)
du, (3)

Example 1 (Expected Distortion). Letting h(w) = w, w ∈ [0, 1], we have

ρh(D(X, X̂)) =

∫ ∞

0

P(D(X, X̂) > u)du = E[D(X, X̂)], (4)

yielding the expected distortion as a special case.

Example 2 (Value-at-Risk). The value-at-risk (VaR) at level α [7] is a distortion risk measure

with distortion risk function defined as

h(w) =

 0, 0 ≤ w < 1− α

1, 1− α ≤ w ≤ 1.
(5)

In particular,

ρh(D(X, X̂)) =

∫ ∞

0

h(P(D(X, X̂) > u))du

=

∫
u:P(D(X,X̂)>u)≥1−α

du

= F−1(α), (6)

where1 F−1(α) = inf{u : P(D(X, X̂) ≤ u) > α}.

1Given a random variable Z, often the VaR is defined as − inf{u : P(Z ≤ u) > α} [7], which is due to the fact that negative

values of Z are losses. In our case, D(X, X̂) ≥ 0 and hence large values can be viewed as large losses. As such, we use the

definition in (6).
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There is a strong link between the VaR and excess distortion probability constraints. Suppose

ρh(D(X, X̂)) ≤ δ. Then,

α ≤ P(D(X, X̂) ≤ δ), (7)

which implies

P(D(X, X̂) > δ) ≤ 1− α. (8)

Hence, the VaR constraint implies an excess distortion probability constraint. Similarly, if P(D(X, X̂) >

δ) ≤ 1− α, then 1− P(D(X, X̂) ≤ δ) ≤ 1− α, and hence

ρh(D(X, X̂)) = F−1(α) ≤ δ. (9)

As such, when the excess distortion probability constraint is satisfied, the VaR constraint in (9)

is also satisfied.

Example 3 (Conditional Value-at-Risk). The conditional value at risk (CVaR) at level α ∈ [0, 1]

[5] is a distortion risk measure with distortion risk function defined as

h(w) =


w

1−α
, 0 ≤ w < 1− α

1, 1− α ≤ w ≤ 1.
(10)

Note that h in (10) is concave, but non-differentiable.
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In the case D(X, X̂) is a continuous random variable with distribution function F , then

ρh(D(X, X̂)) =

∫ ∞

0

h(P(D(X, X̂) > u))du

=

∫
u:P(D(X,X̂)>u)≥1−α

du+
1

1− α

∫
u:P(D(X,X̂)>u)≤1−α

P(D(X, X̂) > u)du

=

∫ F−1(α)

0

du+
1

1− α

∫ ∞

F−1(α)

P(D(X, X̂) > u)du

=

∫ F−1(α)

0

du+

∫ ∞

F−1(α)

P(D(X, X̂) > u)

P(D(X, X̂) > F−1(α))
du

=

∫ F−1(α)

0

du+

∫ ∞

0

P(D(X, X̂) > u,D(X, X̂) > F−1(α))

P(D(X, X̂) > F−1(α))
du

−
∫ F−1(α)

0

P(D(X, X̂) > u,D(X, X̂) > F−1(α))

P(D(X, X̂) > F−1(α))
du

=

∫ ∞

0

P(D(X, X̂) > u,D(X, X̂) > F−1(α))

P(D(X, X̂) > F−1(α))
du

= E[D(X, X̂)|D(X, X̂) > F−1(α)]. (11)

Example 4 (Quadration Distortion Risk Measure). The quadratic risk distortion function [14] is

defined by

h(w) = w + k(w − w2), k ∈ [0, 1], (12)

which is concave and differentiable. Observe that in the case k = 0, the corresponding risk

measure is ρh(D(X, X̂)) = E[D(X, X̂)].

Example 5 (Power Distortion Risk Measure). The power risk distortion function [14] is defined

by

h(w) = wk, k ∈ (0, 1], (13)

which is concave and differentiable. Observe in that in the case k = 1, the corresponding risk

measure is ρh(D(X, X̂)) = E[D(X, X̂)].
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Fig. 1: Illustration of different distortion risk measures.

The risk measures in the previous examples (illustrated in Fig. 1), with the exception of the

VaR, admit concave risk distortion functions. This family of distortion risk measures admits the

following property.

Lemma 1. Let h : [0, 1] → [0, 1] be a concave non-decreasing function with h(0) = 0 and

h(1) = 1. Then,

ρh(D(X, X̂)) ≥ E[D(X, X̂)]. (14)

Proof: Let w ∈ [0, 1]. Then, by concavity of h and the fact that h(0) = 0, h(1) = 1,

h(w) = h(w · 1 + (1− w) · 0) ≥ wh(1) + (1− w)h(0) = w. (15)
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As a consequence,

ρh(D(X, X̂)) =

∫ ∞

0

h
(
P(D(X, X̂) > u)

)
du

≥
∫ ∞

0

P(D(X, X̂) > u)du

= E[D(X, X̂)]. (16)

C. Risk-Constrained Compression

Replacing the expected distortion or the excess distortion probability with a risk distortion

measure, we obtain a new family of codes containing (M, δ) codes as a special case.

Definition 3. Let h : [0, 1] → [0, 1] be a concave non-decreasing function. Given a source PX

on X , a (M,h, δ) code for a distortion risk measure constraint is the pair (PZ|X , PX̂|Z) such that

ρh(D(X, X̂)) =

∫ ∞

0

h
(
P(D(X, X̂) > u)

)
du ≤ δ. (17)

In the following section, we provide conditions for the existence of (M,h, δ) codes. These

conditions are analogous to achievability and converse bounds in rate-distortion theory established

in [4], [12].

III. EXISTENCE OF CODES WITH DISTORTION RISK MEASURE CONSTRAINTS

A. Achievability

As noted in Example 2, there is a close relationship between the VaR and excess distortion

probability constraints. As a consequence, it is straightforward to utilize [12, Theorem 10] in

order to obtain a characterization of achievability for VaR (see Example 2) constraints.
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Theorem 1. Let ρh(D(X, X̂)) correspond to the VaR at level α (detailed in Example 2), and

PX be a source on X . Then, there exists a (M,h, δ) code such that

ρh(D(X, X̂)) ≤ δ, (18)

where

α = 1− inf
PY

EX

[
(P(D(X, Y ) > δ|X))M

]
, (19)

corresponding to

h(w) =

 0, 0 ≤ w < infPY
EX

[
(P(D(X, Y ) > δ))M

]
1, infPY

EX

[
(P(D(X, Y ) > δ|X))M

]
≤ w ≤ 1.

(20)

Proof: By [12, Theorem 10], a (M, δ, ϵ) code exists satisfying

P(D(X, X̂) > δ) = ϵ ≤ inf
PY

EX

[
(P(D(X, Y ) > δ|X))M

]
. (21)

As discussed in Example 2, this implies that

F−1

(
1− inf

PY

EX

[
(P(D(X, Y ) > δ|X))M

])
= ρh(D(X, X̂)) ≤ δ, (22)

with h defined as in (20).

We now consider a general family of risk measures, obtained via concave risk distortion

functions (including Examples 1, 3, 4, 5). Note that the case h(w) = w, corresponding to

ρh(D(X, X̂)) = E[D(X, X̂)], lies in this family.

Theorem 2. Let h : [0, 1] → [0, 1] be a concave non-decreasing function satisfying h(0) = 0

and h(1) = 1, and PX be a source on X . Then, there exists a (M,h, δ) code such that

δ ≤ inf
PY

∫ ∞

0

h
(
EX

[
(P (D(X, Y ) > u|X))M

])
du, (23)

where Y is any random variable on X , independent of X .

Proof: Consider the codewords {Y1, . . . , YM} drawn i.i.d. from PY , and the encoding rule

j∗ ∈ arg min
j=1,...,M

D(X, Yj), (24)
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where ties are broken arbitrarily. Then,

EY1,...,YM

[∫ ∞

0

h
(
PX

(
D(X, X̂) > u

))
du

]
(a)

≤
∫ ∞

0

h

(
EX

[
E

[
M∏
j=1

1{D(X, Yi) > u}|X

]])
du

(b)
=

∫ ∞

0

h
(
EX

[
(P(D(X, Y ) > u|X))M

])
du, (25)

where (a) follows from the concavity of h and Jensen’s inequality, and (b) follows from the fact

that Y1, . . . , YM are i.i.d. and independent of X .

By Shannon’s random coding argument, it follows there exists a (M,h, δ) code satisfying

δ ≤ inf
PY

∫ ∞

0

h
(
EX

[(
PY |X(D(X, Y ) > u|X)

)M])
du, (26)

as required.

B. Converse

We now turn to establishing converse bounds. As for the achievability bounds, we first exploit

the connection between the VaR and excess distortion probability constraints to apply the results

in [12] for the case of VaR constraints. This converse bound is a counterpart to the achievability

bound in Theorem 1. The basis for this bound is the following hypothesis test, introduced in

[12].

Let PX be a source and QX be a comparison distribution on X . Define the hypothesis test

H0 : X ∼ QX

H1 : X ∼ PX . (27)

Let W ∈ {0, 1} be the decision variable. By the Neyman-Pearson lemma, the minimum type-II

error probability subject to a type-I error constraint is given by

βα(PX , QX) = min
PW |X :

PX(W=1)≥α

QX(W = 1). (28)
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Theorem 3. Let ρh(D(X, X̂)) correspond the VaR at level α (detailed in Example 2), and PX

be a source on X . Let (PZ|X , PX̂|Z) be a (M,h, δ) code satisfying

ρh(D(X, X̂)) ≤ δ. (29)

Then,

M ≥ sup
QX

inf
y

βα(PX , QX)

QX(D(X, y) ≤ δ)
, (30)

where QX is any distribution on X and βα(PX , QX) is defined in (28).

Proof: By assumption, ρh(D(X, X̂)) ≤ δ. By the definition of the VaR (see Example 2),

we have

P(D(X, X̂) > δ) ≤ 1− α. (31)

It then follows from [12, Theorem 8] that

M ≥ sup
QX

inf
y

βα(PX , QX)

QX(D(X, y) ≤ δ)
, (32)

as required.

We now establish a converse in the case of concave risk distortion functions. This converse

bound corresponds to a counterpart of the achievability bound in Theorem 2, and applies the

hypothesis testing method in [12, Theorem 8].

Theorem 4. Let h : [0, 1] → [0, 1] be a concave non-decreasing function with h(0) = 0 and

h(1) = 1, PX be a source on X , and (PZ|X , PX̂|Z) be a (M,h, δ) code. Then,

M ≥ sup
w∈R+

sup
QX

inf
y

β1− δ
w
(PX , QX)

QX(D(X, y) ≤ w)
, (33)

where QX is any distribution on X and β1− δ
w
(PX , QX) is defined in (35).

Proof: Let QX be a comparison distribution on X and w ∈ R+. Define the hypothesis test

H0 : X ∼ QX

H1 : X ∼ PX . (34)
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Let W ∈ {0, 1} be the decision variable. By the Neyman-Pearson lemma, the minimum type-II

error probability subject to a type-I error constraint is given by

β1− δ
w
(PX , QX) = min

PW |X :

PX(W=1)≥1− δ
w

QX(W = 1). (35)

Consider the sub-optimal decision rule

W = 1

{∫ ∞

0

h
(
1{D(X, X̂) > u}

)
du ≤ w

}
. (36)

Then,

PX(W = 1) = PX

(∫ ∞

0

h
(
1{D(X, X̂) > u}

)
du ≤ w

)
(a)

≥ 1− 1

w
E
[∫ ∞

0

h
(
1{D(X, X̂) > u}

)
du

]
(b)

≥ 1− 1

w

∫ ∞

0

h(PX(D(X, X̂) > u))du

(c)

≥ 1− δ

w
, (37)

where (a) follows from the Markov inequality, (b) exploits concavity of h, and (c) utilizes

the assumption that (PZ|X , PX̂|Z) is a (M,h, δ) code. As such, this decision rule satisfies the

feasibility constraint.
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We then have 2

β1− δ
w
(PX , QX) ≤ QX(W = 1)

=
∑
x

M∑
z=1

∑
y

QX(x)PZ|X(z|x)PX̂|Z(y|z)1
{∫ ∞

0

h
(
1{D(X, X̂) > u}

)
du ≤ w

}

≤ M sup
y

QX

(∫ ∞

0

h (1{D(X, y) > u}) du ≤ w

)
= M sup

y
QX

(∫ ∞

0

1{D(X, y) ≤ u}du ≤ w

)
= M sup

y
QX(D(X, y) ≤ w). (38)

As the choice of QX and w is arbitrary, it follows that

M ≥ sup
w∈R+

sup
QX

inf
y

β1− δ
w
(PX , QX)

QX(D(X, y) ≤ w)
. (39)

Remark 1. An alternative method to prove Theorem 4 is to directly utilize the converse bound

in [12, Theorem 8] for the case of excess distortion probability constraints. For all w ∈ R+, we

have by Lemma 1

ρh(D(X, X̂)) ≥ E[D(X, X̂)] ≥ wP(D(X, X̂) > w). (40)

In particular, this implies that if ρh(D(X, X̂)) ≤ δ, then P(D(X, X̂) > w) ≤ δ
w

. The converse

bound in Theorem 4 then follows immediately from [12, Theorem 8].

We note that the bound in Theorem 4 does not depend on h, which is due to the fact the proof

implicitly utilizes the fact ρh(D(X, X̂)) ≥ wP(D(X, X̂) > w), as noted in Remark 1. We may

expect that a tighter bound can be obtained by incorporating information about the function h

2Note that the same analysis applies for continuous sources, where the sums are replaced by integrals and densities replace

the probability mass functions.
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parametrizing the distortion risk measure. We provide such a bound in Theorem 5, which does

not rely on the hypothesis testing method.

Theorem 5. Let h : [0, 1] → [0, 1] be a concave non-decreasing function with h(0) = 0 and

h(1) = 1, PX be a source on X , and (PZ|X , PX̂|Z) be a (M,h, δ) code. Then,

δ ≥ sup
umax≥0

∫ umax

0

h

(
1−M sup

y
PX(D(X, y) ≤ u)

)
du. (41)

Proof: By assumption,

δ ≥
∫ ∞

0

h
(
P(D(X, X̂) > u)

)
du. (42)

Let umax ≥ 0. Then,

δ
(a)

≥
∫ umax

0

h

(
M∑
z=1

1

M
−
∑
x

M∑
z=1

∑
y

PX(x)PZ|X(z|x)PX̂|Z(y|z)1{D(x, y) ≤ u}

)
du

(b)

≥ 1

M

M∑
z=1

∫ umax

0

h

(
1−M

∑
x

∑
y

PX(x)PZ|X(z|x)PX̂|Z(y|z)1{D(x, y) ≤ u}

)
du

(c)

≥ 1

M

M∑
z=1

∫ umax

0

h

(
1−M

∑
y

PX̂|Z(y|z)
∑
x

PX(x)1{D(x, y) ≤ u}

)
du

≥ 1

M

M∑
z=1

∫ umax

0

h

(
1−M sup

y
PX(D(X, y) ≤ u)

)
du

=

∫ umax

0

h

(
1−M sup

y
PX(D(X, y) ≤ u)

)
du, (43)

where (a) follows from the definition of P(D(X, X̂) > u), (b) follows from the concavity of h

and Jensen’s inequality, and (c) follows from the fact PZ|X(z|x) ≤ 1.

As the choice of umax is arbitrary, it follows that

δ ≥ sup
umax≥0

∫ umax

0

h

(
1−M sup

y
PX(D(X, y) ≤ u)

)
du, (44)

as required.
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C. Example

Consider the stationary equiprobable binary source PXn on {0, 1}n with P(Xn = xn) = 2−n

and distortion metric

D(xn, yn) =
1

n

n∑
i=1

1{xi ̸= yi}. (45)

Let 〈
n

k

〉
=

k∑
j=0

(
n

j

)
(46)

where
〈
n
k

〉
= 0 if k < 0 and

〈
n
k

〉
=
〈
n
n

〉
if k > n.

Theorem 6. Let PX = PXn be the stationary equiprobable binary source, h : [0, 1] → [0, 1] be a

concave non-decreasing function with h(0) = 0 and h(1) = 1, (PZ|X , PX̂|Z) be a (M,h, δ) code

and w ∈ R+. Then,

δ ≥ w

(
1− 2−nM

〈
n

⌊nu⌋

〉)
. (47)

Proof: Applying Theorem 4, we have

M ≥ sup
QX

inf
yn∈{0,1}n

β1− δ
w
(PX , QX)

QX(D(Xn, yn) ≤ w)

≥ inf
y∈{0,1}n

β1− δ
w
(PX , PX)

PX(D(Xn, yn) ≤ w)

=
1− δ

w

P(D(Xn, 0) ≤ w)

=
1− δ

w

2−n
〈

n
⌊nu⌋

〉 . (48)

Re-arranging this bound then yields the desired result.

Theorem 7. Let PX = PXn be the stationary equiprobable binary source, h : [0, 1] → [0, 1] be a

concave non-decreasing function with h(0) = 0 and h(1) = 1, and (PZ|X , PX̂|Z) be a (M,h, δ)

code. Then,

δ ≥ sup
umax≥0

∫ umax

0

h

(
1− 2−nM

〈
n

⌊nu⌋

〉)
du. (49)
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Proof: Observe that

sup
y∈{0,1}n

P(D(Xn, yn) ≤ u) = P(D(Xn, 0) ≤ u) = 2−n

〈
n

⌊nu⌋

〉
. (50)

Applying Theorem 5 then yield the desired result.

Lemma 2. Let PX = PXn be the stationary equiprobable binary source and h : [0, 1] → [0, 1]

be a concave non-decreasing function with h(0) = 0 and h(1) = 1. Then,

min
PY

∫ ∞

0

h
(
EX

[
(PY (D(Xn, Y n) > u))M

])
du =

∫ ∞

0

h
((

1− 2−n
)M)

du. (51)

Proof: By concavity of (1− x)M for x ∈ [0, 1], it follows that for any PY on {0, 1}n,∫ ∞

0

h
(
EX

[
(1− PY (D(Xn, Y n) ≤ u))M

])
du ≥

∫ ∞

0

h
(
(1− EX [PY (D(Xn, Y n) ≤ u)])M

)
du.

(52)

Observing that equality is achieved when Y n is equiprobable yields the desired result.

Theorem 8. Let PX = PXn be the stationary equiprobable binary source and h : [0, 1] → [0, 1]

be a concave non-decreasing function with h(0) = 0 and h(1) = 1. Then, there exists a (M,h, δ)

code such that

δ ≤
∫ ∞

0

h

((
1− 2−n

〈
n

⌊nu⌋

〉)M
)
du. (53)

Proof: The desired result follows immediately by combining Lemma 2 and Theorem 2.

Fig. 2 and Fig. 3 plot the bounds on the risk constraint δ for varying dimension of the source n.

In Fig. 2, we consider M = 10 and a quadratic risk distortion constraint (defined in Example 4)

with k = 1. In Fig. 3, we consider M = 10 and a quadratic risk distortion constraint (defined

in Example 4) with k = 0.5. In the bounds, the quantities w and umax are optimized via a grid

search.

Observe that as the dimension of the source increases, the achievable distortion risk constraint

δ also increases. This is due to the fact that compressing higher dimensional data at the same
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level of risk requires larger values of M . This is true even for the standard rate-distortion model

with an expectation constraint. Indeed, the rate is defined as logM
n

, which implies to achieve a

given expected distortion criterion as n increases requires a corresponding increase in M .

We also observe that our converse bound in Theorem 5 is tighter than the converse in

Theorem 4 based on the hypothesis testing method. As noted in Remark 1, this is in part

due to the fact that the risk distortion function is not taken into account.

Finally, comparing Fig. 2 and Fig. 3 shows that increasing the parameter k in the quadratic

risk distortion function (see Example 4) leads to an increase in all the bounds on the achievable

constraint δ. This shows that the choice of risk measure has a significant impact on the achievable

values of the constraint δ. Moreover, increasing the weight on P(D(X, X̂) > u) (i.e., reducing

the tolerance for risk), leads to an increase in the achievable values of the constraint δ.

IV. IMPACT OF THE RISK DISTORTION FUNCTION h

Popular algorithms for the design of fixed-length lossy source codes are designed to minimize

the expected distortion E[D(X, X̂)]. These algorithms include the Lloyd algorithms and their

generalizations (e.g., the fixed point vector quantization algorithm [1] and [2]). As a consequence,

it is useful to characterize the performance of codes designed to minimize E[D(X, X̂)] in terms

of the risk measure ρh(D(X, X̂)). We provide a bound of this form in the following theorem.

Theorem 9. Suppose D : X × X → R+ satisfies D(x, x̂) ≤ B, ∀x, x̂ ∈ X , h : [0, 1] → [0, 1]

is a concave non-decreasing function with h(0) = 0 and h(1) = 1. Let (PZ|X , PX̂|Z) be a code

satisfying

E[D(X, X̂)] ≤ δ ≤ B. (54)

Then,

ρh(D(X, X̂)) ≤ Bh

(
δ

B

)
≤ B. (55)

May 21, 2024 DRAFT



20

10 15 20 25 30 35 40 45 50

n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Achievability (Theorem 8)

Converse (Theorem 7)

HT Converse (Theorem 6)

Fig. 2: Plot of bounds for the EMBS source with M = 10 and quadratic risk distortion function

with k = 1.

Proof: As the distortion metric is bounded, it follows that E[D(X, X̂)] ≤ B. Moreover,

ρh(D(X, X̂)) = B · 1

B

∫ B

0

h
(
P(D(X, X̂) > u)

)
du

(a)

≤ Bh

(
1

B

∫ B

0

P(D(X, X̂) > u)du

)
(b)

≤ Bh

(
E[D(X, X̂)]

B

)
(c)

≤ Bh

(
δ

B

)
, (56)

where (a) follows from concavity of h and Jensen’s inequality, (b) follows from the fact E[D(X, X̂)] =∫∞
0

P(D(X, X̂) > u)du, and (c) follows by the assumption in (54).
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10 15 20 25 30 35 40 45 50

n

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Achievability (Theorem 8)

Converse (Theorem 7)

Converse HT (Theorem 6)

Fig. 3: Plot of bounds for the EMBS source with M = 10 and quadratic risk distortion function

with k = 0.5.

Remark 2. The bound in Theorem 9 is tight in the sense that when h(w) = w,

δ = E[D(X, X̂)] = ρh(D(X, X̂)) ≤ δ. (57)

Example 6. Let the assumptions in Theorem 9 hold and h be the quadratic risk distortion

function (see Example 4) defined by

h(w) = w + k(w − w2), k ∈ (0, 1]. (58)

Then,

ρh(D(X, X̂)) ≤ B

(
δ

B
+ k

(
δ

B
− δ2

B2

))
= δ

(
1 + k − kδ

B

)
. (59)
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Example 7. Let the assumptions in Theorem 9 hold and h be the power risk distortion function

(see Example 5) defined by

h(w) = wk, k ∈ (0, 1). (60)

Then,

ρh(D(X, X̂)) ≤ B1−kδk. (61)

V. IMPACT OF VARYING THE SOURCE DISTRIBUTION

In many applications, the true source distribution is not perfectly known. In this case, it is

desirable to characterize the impact of uncertainty in the source distribution on X . For a bounded

distortion metric D(x, y) ≤ B, x, y ∈ X , a useful fact is that

|EP1 [D(X, X̂)]− EP2 [D(X, X̂)]| ≤ B∥P1 − P2∥TV, (62)

where ∥ ·∥TV denotes the total variation norm. The following theorem gives an analogous bound

for the case where the expectation is replaced with a risk measure.

Theorem 10. Let PX1 , PX2 be probability distributions on X . Let h h : [0, 1] → [0, 1] be a

differentiable non-decreasing function with h(0) = 0 and h(1) = 1 satisfying

sup
ξ∈(0,1)

dh(ξ)

dw
< ∞. (63)

Let (PZ|X , PX̂|Z) be a fixed-length lossy source code, D(X1, X̂1), D(X2, X̂2) be the distortion

random variables induced by the code and source distribution PX1 , PX2 , respectively. If D(x, x̂) ≤

B, ∀x, x̂ ∈ X , then

|ρh(D(X1, X̂1))− ρh(D(X2, X̂2))| ≤ sup
ξ∈(0,1)

dh(ξ)

dw
· 2B∥PX1 − PX2∥TV , (64)

where ∥ · ∥TV denotes the total variation norm.
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Proof: Let ν be a probability measure ν such that PX1 and PX2 are absolutely continuous

with respect to ν. We then have

|ρh(D(X1, X̂1))− ρh(D(X2, X̂2))|

=

∣∣∣∣∫ ∞

0

h(P(D(X1, X̂1) > u))du−
∫ ∞

0

h(P(D(X2, X̂2) > u))du

∣∣∣∣
(a)
=

∣∣∣∣∫ ∞

0

dh(ξ(u))

dw

(
P(D(X1, X̂1))− P(D(X2, X̂2))

)
du

∣∣∣∣
=

∣∣∣∣∫ ∞

0

dh(ξ(u))

dw

(
EX1 [E[1{D(X1, X̂1) > u}|X1]]− EX2 [E[1{D(X2, X̂2) > u}|X2]]

)
du

∣∣∣∣
(b)

≤
∫ ∞

0

dh(ξ(u))

dw

∫ ∞

0

∣∣∣∣E[1{D(X, X̂) > u}|X]

(
dPX1

dν
− dPX2

dν

)∣∣∣∣ dν
≤
∫ ∞

0

dh(ξ(u))

dw

∫ ∞

0

∣∣∣∣dPX1

dν
− dPX2

dν

∣∣∣∣ dν
(c)

≤ 2B sup
ξ

dh(ξ)

dw
∥PX1 − PX2∥TV. (65)

Here, (a) follows from the mean-value theorem. (b) follows from the Radon-Nikodym theorem.

(c) follows from the definition of the total variation norm.

Remark 3. Observe that in the case h(w) = w, ρh(D(X, X̂)) = E[D(X, X̂)] and Theorem 10

reduces to (64).

A. Example

Theorem 9 can be applied when h is differentiable on (0, 1), and supξ
dh(ξ)
dw

< ∞. These

conditions hold for the quadratic risk distortion function (see also Example 4)

h(w) = w + k(w − w2), k ∈ [0, 1], (66)

where

dh(ξ)

dw
= 1 + k − 2kξ ≤ 1 + k, ξ ∈ [0, 1]. (67)
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Suppose D(x, x̂) ≤ B, ∀x, x̂ ∈ X . In this case, Theorem 10 yields

|ρh(D(X1, X̂1))− ρh(D(X2, X̂2))|

≤ 2(1 + k)B∥PX1 − PX2∥TV, k ∈ [0, 1], (68)

where X1 ∼ PX1 and X2 ∼ PX2 with common marginals. This suggests that as k is increased,

there is a larger impact of variations in the probability distribution in terms of the total variation

norm.

VI. CONCLUSIONS

In design under uncertainty, it is often desirable to taken into account tolerance for risk.

In particular, the impact of uncertainty is quantified via risk measures (e.g., distortion risk

measures) rather than expectations. A common source of uncertainty in the presence of storage

or communication constraints is lossy compression.

In this paper, we have studied fixed-length lossy compression subject to distortion risk measure

constraints. We have established conditions for a code satisfying a risk measure constraint to exist,

which hold for general source distributions supported on general spaces, and general distortion

functions. We also investigated the impact of design based on expected distortion constraints in

terms of distortion risk measures, as well as the impact of variations in the source distribution.
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