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ABSTRACT
The classical dwarf spheroidals (dSphs) provide a critical test for Modified Newtonian Dy-
namics (MOND) because they are observable satellite galactic systems with low internal
accelerations and low, but periodically varying, external acceleration. This varying external
gravitational field is not commonly found acting on systems with low internal acceleration.
Using Jeans modelling, Carina in particular has been demonstrated to require a V-band mass-
to-light ratio greater than 5, which is the nominal upper limit for an ancient stellar population.
We run MOND N-body simulations of a Carina-like dSph orbiting the Milky Way to test if
dSphs in MOND are stable to tidal forces over the Hubble time and if those same tidal forces
artificially inflate their velocity dispersions and therefore their apparent mass-to-light ratio.
We run many simulations with various initial total masses for Carina and Galactocentric orbits
(consistent with proper motions), and compare the simulation line-of-sight velocity disper-
sions (losVDs) with the observed losVDs of Walker et al. We find that the dSphs are stable,
but that the tidal forces are not conducive to artificially inflating the losVDs. Furthermore,
the range of mass-to-light ratios that best reproduces the observed losVDs of Carina is 5.3
to 5.7 and circular orbits are preferred to plunging orbits. Therefore, some tension still exists
between the required mass-to-light ratio for the Carina dSph in MOND and those expected
from stellar population synthesis models. It remains to be seen whether a careful treatment of
the binary population or triaxiality might reduce this tension.

Key words: methods: numerical – galaxies: dwarf – galaxies: kinematics and dynamics –
Local Group – dark matter.

1 IN T RO D U C T I O N

The classical dwarf spheroidal (dSph) galaxies of the Milky Way
(MW) are eight low surface brightness galaxies that are currently at
distances between 60 and 250 kpc. They have total luminosities in
the V band ranging from LV ∼ 4 × 105 to 1.7 × 107 L� (Mateo 1998)
and sizes of order a kiloparsec. For comparison, the MW luminosity
and size are LV ∼ 6 × 1010 L� (McGaugh 2008) and ∼30 kpc.
Clearly, such puny luminosities within relatively large volumes earn
the dSphs their low surface brightness moniker and also put them
in a very interesting category since low surface brightness galaxies
typically have large dark matter (DM) components.

Being spheroidal systems, information about their dynamical
mass can be obtained from Jeans modelling of their stellar velocity

� E-mail: garry.angus@vub.ac.be

dispersions (see Mamon & Boué 2010 for more information). For
this reason, Walker et al. (2007) obtained hundreds of spectra of
probable member stars for each of the dSphs, sampled over their
full projected areas. Photometrically and spectroscopically identi-
fied interloper stars (non-members, typically foreground stars) were
rejected and each dSph’s projected velocity dispersion, as a func-
tion of projected radius, was computed. They then performed Jeans
modelling of each dSph, which employs the observed stellar sur-
face brightness profile and fits for the unknown DM profile, by
comparing modelled with observed projected velocity dispersions.
This blatantly showed that the dSphs are some of the most DM
dominated (in Newtonian dynamics) galaxies in the Universe.

Although the dynamics of the dSphs can be easily explained by
the presence of DM, there are other peculiarities related to their
phase-space distribution around the MW which makes one ques-
tion this conclusion. The major open questions relating to dSphs
are comprehensively reviewed in Walker & Loeb (2014), but we
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restate them here. First of all, from comparison with cold dark
matter (CDM) only cosmological simulations (like those of Klypin
et al. 1999; Moore et al. 1999) one would naively expect a greater
number of these satellite galaxies within 250 kpc of the MW. Cer-
tain authors like Benson et al. (2002), Muñoz et al. (2009), Macciò
et al. (2010) and Li, De Lucia & Helmi (2010) have suggested that
this lack of satellites may be due to star formation inefficiencies
due to re-ionization and supernova feedback in these lower mass
CDM haloes which only enables a fraction of all haloes to form
stars. However, this fails to address the problem noted by Boylan-
Kolchin, Bullock & Kaplinghat (2012) that associating the dSphs
with the most massive MW subhaloes, as we expect in these models,
is incompatible with the relatively low masses and densities of the
measured DM haloes.

The other more pressing concern is that the dSphs are not isotrop-
ically distributed around the MW. Rather, they are distributed as a
great rotationally supported disc that is surprisingly thin, with an
rms thickness of 10–30 kpc (see Metz, Kroupa & Libeskind 2008
and the detailed review of Kroupa et al. 2010), which is substantially
smaller than typical rms thicknesses in nearby groups of galaxies.
If it were an isolated incident, this would be less troubling, but Ibata
et al. (2013) have recently shown a similar structure in the satellite
galaxy distribution surrounding the M31 galaxy with an rms thick-
ness of less than 14.1 kpc (with 99 per cent confidence) to which
half the satellites belong. Furthermore, Chiboucas et al. (2013) have
recently identified a flattened distribution of satellites around M81.

These satellite distributions have been shown to be highly un-
likely to arise from CDM cosmological simulations, although once
in place they could naturally be stable (Angus, Diaferio & Kroupa
2011; Deason, Belokurov & Evans 2011; Pawlowski et al. 2012;
Bowden, Evans & Belokurov 2013).

On the other hand, following a merger or a flyby (e.g. Zhao et al.
2013) between two galaxies, with mass ratios between 1:1 and 1:4,
the probability of forming such a polar disc of satellites could easily
reach 50 per cent (Pawlowski et al. 2012).

Separately, there are observations of dwarf galaxies forming out
of the tidal debris produced from a wet galactic merger (Bournaud
et al. 2007), which may demonstrate evidence for Modified Newto-
nian Dynamics (MOND; Gentile et al. 2007; Milgrom 2007).

Returning to the dSphs, if they are in fact tidally formed they
should not have large DM abundances. Furthermore, they have very
little neutral hydrogen (Mateo 1998) and no significant emission
from molecular gas. However, these eight classical dSphs do require
large DM abundances when interpreted with Newtonian dynamics,
and they have a peculiar orbital distribution that may be difficult to
explain within the CDM framework. Therefore, it is worth investi-
gating their dynamics in an alternative theory of gravity that can,
in principal, be consistent with the merger scenario and the large
velocity dispersions without galactic DM. One such alternative is
MOND (Milgrom 1983 and see Famaey & McGaugh 2012 for a
thorough review).

Brada & Milgrom (2000b) used a particle-mesh N-body solver
to study the influence of the MW on the dSphs. Their work pre-
ceded the high-quality velocity dispersion data, but demonstrated
that there are orbital regions where dSphs can orbit with adiabatic
(reversible) changes to their velocity dispersion and density profiles.
In addition, there are non-adiabatic regions where the rapid change
of the external gravitational field of the MW disturbs the density
profile at pericentre and this does not recover by the time the dSph
returns to apocentre. Finally, there are tidal regions where mass will
be stripped from the dSphs at pericentre.

Using the data of Walker et al. (2007): Angus (2008) and Serra,
Angus & Diaferio (2010) performed Jeans modelling in MOND.
There, the goal was to isolate the two free parameters: the mass-
to-light ratio of the stellar population and the velocity anisotropy.
Velocity anisotropy is the a priori unknown relationship between the
probability of radial and tangential stellar orbits within the dSph.
This can also be used as a free parameter in the context of DM halo
fitting, but is somewhat redundant given the freedom of possible
DM halo profiles. In MOND, it is an essential ingredient to alter
the shape of the projected velocity dispersion profile, whereas all
the mass-to-light ratio can do is raise or lower the amplitude of
the velocity dispersions. Angus (2008) found that the four dSphs
with the highest surface brightness (highest internal gravities) had
reasonable mass-to-light ratios, but the other four required mass-to-
light ratios that were larger than the expected range of 1 to 5 in the
V band found from stellar population modelling (Maraston 2005).

Much simulation work has been done in this vein in the standard
paradigm (see e.g. Kroupa 1997; Klessen, Grebel & Harbeck 2003;
Read et al. 2006; Klimentowski et al. 2009; Peñarrubia et al. 2009).
More specifically, the work of Muñoz, Majewski & Johnston (2008)
focused on a very similar thesis as ours, which was whether tidally
disturbed mass follows light models of a DM dominated Carina
dSph are consistent with the observed projected surface density and
projected velocity dispersion profile. Those authors found that there
were indeed combinations of mass and orbital parameters that could
faithfully reproduce the Carina dSph.

Sánchez-Salcedo & Hernandez (2007) investigated the likelihood
of survival for the dSphs in MOND after successive orbits over a
Hubble time. They found that only Sextans was likely to dissolve in
less than a few Gyr, but that the deduced dynamical mass-to-light
ratios of Ursa Minor and Draco (out of the eight classical dSphs)
were too large to be consistent with only the stellar populations.
They also showed, based on their current positions, that tidal stirring
might be an important consideration for Sextans, Sculptor and Ursa
Minor, but not Carina. Other relevant work was carried out by
Sánchez-Salcedo & Lora (2010) and Lora et al. (2013) who looked
at the importance of cold kinematic substructures that are found in
the Sextans and Ursa Minor dSphs. It was shown that their longevity
can be used to discriminate between modified gravity and CDM.

Given the separation in surface brightness between dSphs that
satisfied MOND and those that did not, it was suggested in Angus
(2008) that the latter four dSphs may be subject to tidal forces that
produce tidally unbound interloper stars and inflate the velocities
of the bound stars.

Our aim here is to test this hypothesis by running high-resolution
MOND N-body simulations of satellite galaxies orbiting the MW
and comparing the simulated projected velocity dispersions with
the observed ones. Insodoing we also hope to elucidate the zones of
possible orbits open to the satellites without being torn to shreds by
the MW. This is an essential sanity check for when high accuracy
proper motions become available.

We focus on the Carina dSph because out of the four least
luminous classical dSphs it has a well-measured surface bright-
ness profile, large numbers of stellar line-of-sight velocities
for Jeans modelling and relatively accurately measured proper
motions.

In Section 2 we present the Jeans analysis, in Section 3 we discuss
how to incorporate the external field and the setup of our simula-
tions. In Section 4 we compare simulated with observed projected
velocity dispersions, in Section 5 we give our results and finally in
Section 6 we draw our conclusions.
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2 J E A N S A NA LY S I S

2.1 Likelihood analysis of the Carina dSph’s observed
projected velocity dispersion profile

Dynamical interloper stars, i.e. those not identified photometrically
or spectroscopically, can be dealt with using various algorithms
(none of which is fully accurate). At least two such methods have
been applied to the dSphs (Klimentowski et al. 2007; Serra et al.
2010) and removed significant numbers of presumed interlopers.
These interlopers are typically tidally stripped stars that are mostly
removed during pericentre. In Section 4, we will be comparing
our simulation velocity dispersions with the observed ones. This
observational data is expected to contain dynamical interlopers, and
our simulations – if valid representations of the real dSphs – should
therefore produce comparable numbers of interlopers (assuming
they originate from the dSph and not the MW).

For the above reason, we re-bin data from Walker et al. (2007)
without any removal of dynamical interlopers beyond that per-
formed by those authors. We separated the data into projected radius
bins of 50 pc with unequal numbers of stars per bin. The projected
velocity dispersion and its associated uncertainty, in each bin, is cal-
culated by making a Markov chain Monte Carlo (MCMC) analysis
using equation B1 of Hargreaves et al. (1994)

P (vi) = 1√
2π(σ 2

i + σ 2
v )

exp

[ −v2
i

2(σ 2
i + σ 2

v )

]
. (1)

This equation uses the different measurement errors of each indi-
vidual star to weight their contribution to the line-of-sight velocity
dispersion in each radius bin. It gives the probability of a sample
of stars with zero systemic velocity, with projected velocity, vi,
and velocity uncertainty, σ i, being chosen from a distribution with
velocity dispersion, σ v .

The likelihood is formed by the product of these probabilities
for the number of stars in that bin. The MCMC analysis fits for
the velocity dispersion and uncertainty in each bin by sampling the
likelihood and producing a cumulative likelihood distribution. This
allows us to ascertain the maximum likelihood velocity dispersion
and 1σ error for each radius bin.

2.2 Approximate Jeans equation for MOND

The Jeans equation for a spherical galaxy solves for the radial veloc-
ity dispersion, σ r, requiring knowledge of the logarithmic density
slope α(r) = d ln ρ∗

d ln r
of the tracers (stars in the dSph’s case), velocity

anisotropy β = 1 − σ 2
t

2σ 2
r

– where σt is the tangential velocity disper-
sion. It also assumes knowledge of the gravity profile, g(r), which
is usually based on fitting for the unknown parameters of the DM
halo, or the mass-to-light ratio in non-DM models. This gives

d

dr
σ 2

r (r) + α(r) + 2β

r
σ 2

r (r) = −g(r). (2)

Using geometrical arguments, it is possible to convert the radial
velocity dispersion into a line-of-sight (or projected) velocity dis-
persion, which is used to compare with the observed velocity
dispersion.

2.3 Likelihood analysis of the Carina dSph’s mass-to-light
ratio and velocity anisotropy in MOND

In order to re-emphasize the likelihood of the two free parameters
in the MOND Jeans analysis of the Carina dSph galaxy, we per-

Figure 1. Here we plot the projected number density of stars in Carina taken
from Muñoz et al. (2006). The solid line is the re-normalized projection
of our best-fitting 3D stellar density model with ρ∗(r) = M/LV × 3.8 ×
10−3[1 + (r/410 pc)2]−3.5 M� pc−3.

formed another MCMC analysis. The modelled, projected velocity
dispersion is a function of the surface brightness profile, stellar
mass-to-light ratio, stellar velocity anisotropy, Galactocentric dis-
tance and MW mass (see Section 2.2 and equations 2 and 6 for the
Jeans equation relating these parameters). We consider all parame-
ters fixed except the constant (with radius) velocity anisotropy and
mass-to-light ratio. These two we allow to vary, and we produce
likelihood plots after comparing the modelled projected velocity
dispersion with the observed one.

We have fixed the baryonic mass of the MW to be MMW =
6 × 1010 M� (McGaugh 2008) and use a MW–Carina distance of
rMW = 101 kpc (Mateo 1998). We use a 3D light distribution of the
form ρ∗(r) = M/LV × ρ∗, 0(1 + (r/rc)2)−α which we fitted to the ob-
served surface brightness profile of Carina from Muñoz et al. (2006)
in Fig. 1. We use ρ∗,0 = 3.8 × 10−3 M� pc−3, rc = 410 pc and
α = 3.5 to give an M/LV = 1 total luminosity of LV = 4.4 × 105 L�
(Mateo 1998, for which the uncertainty is ∼27 per cent). We also
use equation (6) to include the external field effect of MOND, the
appropriateness of which we discuss in Section 3.

In the left-hand panel of Fig. 2 we plot the probability distribution
functions for Carina’s mass-to-light ratio and velocity anisotropy
using MCMC Jeans modelling of the projected velocity dispersion
profile. One can see there is a strong preference for a mass-to-light
ratio larger than 3 and the maximum likelihood with 1σ uncertainty
is 5.2 ± 1.2. The most probable velocity anisotropy is β = −0.8 (see
right-hand panel of Fig. 2) and isotropic (as well as radial) orbits
are disfavoured. If we add Carina’s distance as a free parameter,
with a prior set by its observational error, we find no significant
change in the maximum likelihood solution for the mass-to-light
ratio. However, the 1σ confidence limits increase by 15 per cent.
According to Maraston (2005), the upper limit for a mass-to-light
ratio in the V band for an old population of stars is 5. Therefore,
the modelled mass-to-light ratio is at the high end of the expected
range. Furthermore, a mass-to-light ratio of 5 requires a particular
initial mass function and Carina is not formed purely by an ancient
stellar population. In fact, Mateo (1998) shows there are several
star-forming epochs, with one strong burst around 6 ± 1 Gyr ago.
Additionally, Ursa Minor, Draco and Sextans appear to require
higher than expected mass-to-light ratios.
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Figure 2. Here we plot the normalized probability distributions of the MOND stellar mass-to-light ratio (left-hand panel) and velocity anisotropy, β (right-hand
panel) from a Jeans modelling MCMC analysis of the projected velocity dispersions measured by Walker et al. (2007).

3 IN C O R P O R ATI N G TH E E X T E R NA L FI E L D

MOND is an alternative theory of gravity which removes the need
for galactic DM by appealing to stronger than Newtonian gravity
in regions of weak acceleration. Its phenomenological basis lies in
the constancy of the outer parts of rotation curves of spiral galax-
ies, the baryonic Tully–Fisher relation and the apparent one-to-one
correspondence between baryonic density and the observed dynam-
ics of the large majority of galactic systems. This last point means
that knowledge of the baryonic matter distribution gives full knowl-
edge of the DM distribution when Newtonian dynamics are used. In
MOND, an isolated spherical galaxy with Newtonian internal grav-
ity gn, i = GM(r)r−2 will actually produce a gravitational field ac-
cording to gi = ν(|gn,i |/ao)gni

, where ν is an interpolating function
that allows the gravitational field to transition from the Newtonian
dynamics we experience in the Solar system, or the bright nuclei of
galaxies, to the necessarily amplified gravity at the edges of spiral
galaxies.

In this work, we have chosen the interpolating function

ν(y) = 0.5 + 0.5
√

1 + 4/y (3)

(see Famaey & Binney 2005; Famaey & McGaugh 2012 for a
discussion). This factor ν is therefore greater than or equal to unity
and it will become larger the weaker the internal gravity of the
system is. This means that the central regions of dense elliptical
galaxies will have ν ≈ 1, MW like spiral galaxies will have ν of
around 1.5–2 near the Sun’s position and rising thereafter. Finally,
galaxies with very low stellar densities will have large ν, where
ν → √

ao/|gn,i | which leads directly to flat rotation curves and the
baryonic Tully–Fisher relation.

There is of course one final complication, which is the result of
MOND breaking the strong equivalence principle (Milgrom 1986).
In MOND, the internal gravity of a satellite galaxy of the MW
is determined not only by the satellite’s stellar distribution (and
therefore mass distribution), but also by the local strength of the
MW’s gravitational field. This effect should not be confused with
tidal forces, which also exist.

The tidal force imposes a force gradient across the satellite from
the far to near side (relative to the MW). But in MOND, if the mag-
nitude of the MW’s gravitational field is constant across the satellite,
the satellite’s internal gravity will still be altered by that constant
field. This phenomenon does not exist in Newtonian dynamics. In-
creasing the magnitude of the MW’s gravitational field, by locating

the satellite closer to it, will reduce the internal gravitational field
of the satellite towards the Newtonian limit, i.e. ν → constant. De-
creasing the magnitude of the MW’s gravitational field, by moving
the satellite further from it, will increase the internal gravitational
field of the satellite towards the MONDian limit. The crucial qual-
itative corollaries are explored next and can be gleaned from a
comparison with a satellite galaxy in Newtonian dynamics.

In Newtonian dynamics a satellite galaxy must have a DM halo
that outweighs the stars by a factor between 10 and 100. It is this
DM halo that provides the supplementary force to bind the stars,
without which the satellite would dissolve in a few dynamical times.
Furthermore, the MW has a DM halo which provides the enhanced
gravity, over the stars, to bind the satellite galaxy to it.

In MOND, the satellite galaxy has no DM halo, but the boosted
gravity of MOND provides the supplementary force to bind the
stars. The MW also has no DM halo, but again MOND – sourced
by the MW’s baryons – provides the supplementary gravity to bind
the satellite to the MW.

To illustrate the difference between the dSphs in MOND and
Newtonian dynamics, let us say the satellite makes an orbit from
apocentre to pericentre. In Newtonian dynamics, the satellite starts
the orbit at apocentre with a particular internal gravitational field
that drives the large velocity dispersions and at pericentre this grav-
itational field is virtually unchanged since the DM halo distribution
has barely changed. The only difference at pericentre is that tidal
forces from the MW start to influence it.

In MOND, the satellite starts the orbit at apocentre with strong
internal gravity, but as it approaches pericentre the internal gravity
becomes progressively weaker because of the increasing external
gravity of the MW, which diminishes the internal gravity of the
satellite. In addition, the tides get stronger the closer the dSph gets
to pericentre. Therefore, precisely at the moment when the satellite
requires additional gravity to protect it from the tidal forces, it loses
it, making observations of tidal harassment of the Carina dSph by
Battaglia et al. (2012) a natural expectation. This makes satellite
galaxies in MOND far more susceptible to tidal destruction than
those in Newtonian dynamics with DM. As such, the dearth of
satellite galaxies near to the MW might be no surprise in MOND,
but many more satellites are expected in CDM.

In the remainder of this section we discuss various methods for
including the external field of a host galaxy acting upon a satellite
galaxy in MOND. There are three main ideas we introduce, the
first two being only approximations. The first one is the simple case
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where the external field only enters the ν function (equation 3). This
approximation of the external field can be defined by equation (6)
and we only use this in the Jeans analysis of Section 2.3 and to
compare the gravitational field of a test satellite with the other
methods – it is not used in any simulations.

The second method is to include the external field through the
boundary conditions of the particle-mesh Poisson solver. This is
described in Section 3.2 but, as per the first case, this method is
only used to make comparisons of the gravitational field of a test
satellite with the other two methods.

The final method is the one we use in all the simulations. We call
this two-component simulations because we not only simulate par-
ticles representing the satellite (dSph–Carina), but also we simulate
a coarse representation of the host (MW). These two-component
simulations can account for both the external field and tidal forces
and we describe it in more detail in Section 3.3.

We compare the gravitational fields produced by these three meth-
ods in Section 3.4.

3.1 Approximated MOND external field prescriptions
for satellite galaxies

In this section we present the well-known equations that govern the
incorporation of the external field in MOND. The field equation to
solve for the MOND potential (Milgrom 2010), � is

�∇ · ( �∇�) = �∇ ·
[
ν(| �∇�n|/ao) �∇�n

]
, (4)

ao is the MOND acceleration constant chosen here to be
3.6(km s−1)2pc−1. �n is the Newtonian potential which is solved
from the matter density, ρ, using the Poisson equation �∇2�n =
4πGρ.

If we are considering a satellite in orbit of a host galaxy, we
can separate �∇� into an internal, �∇�i , and an external, �∇�e,
gravitational field. This gives, after removing the divergences and
ignoring the curl field

�∇�i = ν

(
| �∇�n,i + �∇�n,e|

ao

)
�∇�n,i

+
(

ν

(
| �∇�n,i + �∇�n,e|

ao

)
− ν

(
| �∇�n,e|

ao

))
�∇�n,e. (5)

If we now crudely consider only directions in the plane perpendicu-
lar to the external field we can ignore the second term in equation (5)
because the external gravitational field’s magnitude in that direction
is zero. However, in the argument of the ν function for the first term
of equation (5) we must include the modulus of all gravitational
fields regardless of direction. In the direction perpendicular to the
external field we can add the external field and the internal field in
quadrature in the argument of the ν function, which gives

�∇�i = ν

⎛
⎝

√
|( �∇�n,i)2 + ( �∇�n,e)2|

ao

⎞
⎠ �∇�n,i . (6)

Thus, in the limit �∇�n,i 
 �∇�n,e, we can ignore the external
gravitational field, �∇�n,e and we reduce equation (5) (or equa-
tion 6) to the standard MOND formula in spherical symmetry,
�∇�i = ν( | �∇�n,i |

ao
) �∇�n,i . If on the other hand �∇�n,e 
 �∇�n,i ev-

erywhere, then the gravitational field of the satellite is simply a
scaled up version of the Newtonian internal gravitational field, i.e.
it is as if Newton’s gravitational constant has been revised to a value

G × ν( | �∇�n,e |
ao

). As with most things, the interesting cases lie in the
middle ground, so we typically use equation (6) if we perform a
curl-free analysis including the external field effect.

3.2 Constant external field

On the topic of handling the external field numerically, we modified
our openMP parallelized QUMOND galactic Poisson solver code,
that was introduced in Angus et al. (2012) to fit the rotation curves
of a sample of spiral galaxies, to account for the external field. The
code uses a refinement strategy to go from the coarsest grid to the
finest grid, each time halving the size of the box and thus doubling
the spatial resolution. This strategy was able to handle the difficult
boundary conditions of galactic MOND Poisson solvers (see also
Brada & Milgrom 2000a,b; Nipoti, Londrillo & Ciotti 2007; Wu
et al. 2007; Llinares, Knebe & Zhao 2008). We also introduced the
ability to handle multiple populations with different particle masses
as used in Angus et al. (2012) and also to update the positions and
velocities, giving it the capability to handle evolving simulations.
In the code there is a section that computes the QUMOND source
density, right-hand side of equation (4), which we have repeated in
the appendix.

In that section, the gradients of the Newtonian potential are taken
in the x, y and z Cartesian directions to find the Newtonian gravita-
tional field at one-half cell from the node (i, j, k) in all six directions.
On top of this, the magnitude of the ν function must be evaluated
at each of these six locations. All we do is change gz1 → gz1 + gz,e

and gz2 → gz2 + gz,e meaning the external field is exclusively in
the z-direction. Here gz, e is the Newtonian external field. This has
a knock-on effect for equations (A2)–(A6). One can see in Fig. 3 a
comparison of the y-direction (perpendicular to the external field)
internal gravitational field of a satellite galaxy when the strength
of the external gravitational field increases, up to the limiting point
which is the Newtonian field. Clearly, the external field has a huge
potential impact on the internal satellite dynamics.

Figure 3. Here we plot the internal gravity profile of Carina using various
strengths for the external field. We use the parameters presented in Sec-
tion 2.3. The external field is handled using the boundary conditions method
described in Section 3.2 (not the two-component simulations). Starting with
the top curve and going to the lowest, the strengths of the external field in
units of ao are 10−4, 10−3, 2.5 × 10−3, 5 × 10−3, 7.367 × 10−3 (red), 0.01,
0.02, 0.03, 0.1, 1, 10 and 100. The upper curve is the MOND limit and the
bottom curve is the Newtonian limit. The red curve is the gravity profile for
the external field Carina is currently experiencing.
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N-body simulations of the Carina dSph in MOND 751

3.3 Two-component simulations setup

3.3.1 The code

Recall that our simulations are performed using a particle-mesh
grid that is centrally refining. The number of particles is fixed at
1283, which is sensible since there are roughly that many stars
in the Carina dSph galaxy, given that the luminosity is merely
4.4 × 105 L� (Mateo 1998). Our coarsest grid has a box length of
4 Mpc in one dimension, with 65 cells per dimension. Our finest grid
is 650 pc in length with still 65 cells. Thus, the spatial resolution
improves greatly on the smaller grids.

In our case, we used a finest box of length 650 pc and a coarsest
box of 4 Mpc. The smallest scale involved is roughly 10 pc – which
is the size of the smallest cell on the finest grid, and of the order of
the central mean particle/star separation. The largest scale involved
is roughly 100 kpc, which is the current distance of Carina from
the MW. This means several of the coarsest grids are only used to
accurately find the boundary conditions for the finer grids. Particles
are advanced in their orbits depending on where they are in real
space. If they are within 250 pc of the centre they are advanced
using the gravity calculated on the finest grid. Between 250 and
500 pc they are advanced using the second finest grid and between
500 pc and 1 kpc we use the third finest grid, etc.

The particles are separated into 64 equal batches for input/output
reasons. This made it convenient to assign 63–64ths of the particles
to represent the mass distribution of the Carina dSph and the final
1/64th to represent the MW. For the MW, the spatial information is
not carefully set, but rather is just spherically symmetric. The MW’s
internal velocity information is not used because we use the dSph’s
frame of reference and so each time step, every particle representing
the MW has its velocity and position updated by the same amount
to mimic the true orbit the dSph would be executing around the
MW. We use the dSph’s frame of reference since we need the dSph
to be centred on the most accurate part of the code.

3.3.2 The initial conditions

Since the gravity profile of a dSph embedded in an external field
is non-axisymmetric, and its velocity distribution is anisotropic,
it is not trivial to produce initial conditions that are stable. As
an example, the procedure of Brada & Milgrom (2000b) was to
generate a spherical King profile from the distribution function for
an isolated, isotropic dSph in deep MOND. They then increased the
magnitude of the external field gradually until it attained the value
the field should have at apocentre. This includes the external field
in a shrewd way, but unfortunately the observations of Walker et al.
(2007) and Fig. 2 have subsequently shown that the dSphs require
anisotropic velocity distributions. Also, King models produce poor
fits to the surface brightness of Muñoz et al. (2006). We opted
against following the procedure of Brada & Milgrom (2000b) for
an anisotropic distribution function because we have no guarantee
that the anisotropy will be unaffected by the increasing external
field.

We found that we could evolve to a relaxed dSph satisfying the
surface brightness distribution of Fig. 1 starting from a spherical
distribution with α = 5.5, rc = 550 pc and β = −4; the internal
gravity was found using equation (6) and the radial velocity dis-
persion as a function of radius was found from solving the Jeans
equation (see Section 2.2). As well as the spatial distribution quickly
changing as the simulation evolves, the velocity distribution changes
too: from β = −4 to ∼−0.8 in a time-scale of 300 Myr. We used

the standard rejection-sampling technique to define the positions of
the particles within the dSph and assumed a Gaussian distribution
for the velocities. We always initially offset the MW from the dSph
along the z-axis, typically by +100 kpc, and give the velocity of the
MW relative to the dSph along the +y-axis. The x-axis points out
of the orbital plane.

We ran the simulations for up to ∼6 Gyr. We felt that simulating
the dSphs for two full Galactocentric orbits would be sufficient to
demonstrate the impact of the tides. We were also constrained by
available computing resources.

3.4 Comparison of external field parametrizations

There are clearly many parametrizations of the external field effect,
as we noted at the beginning of this section. In order to demon-
strate the differences in gravity profiles between them, we plot a
series of curves together in Fig. 4 using the parameters presented
in Section 2.3. The left-hand panel is in the z-direction (parallel
to the external field) and the right-hand panel is in the y-direction
(perpendicular to the external field). In the left-hand panel, the blue
line shows the gravity profile for an isolated Carina with no exter-
nal field. The positive distance from the centre is towards the MW.
The thick red curve is the z-direction gravity (towards or away from
the MW) using the two-component simulations with dSph and MW.
The black line, which lies on top of the thick red line, is for the dSph
only simulation with the external field included via the boundary
conditions. The dashed green line does not include the curl field,
i.e. only solves equation (5). This clearly is a very poor estimation
of the gravity profile and should be avoided at all costs.

In the right-hand panel, the overlapping thick red and black lines
are y-direction curves (perpendicular to the external field) using
the two-component simulation and one component with boundary
conditions, respectively. The blue line is the gravity profile for an
isolated Carina with no external field, which is larger in amplitude
at all radii than the other curves. The dashed green line does not
solve for the curl field (i.e. only solves equation 6). Inspecting the
left-hand panel’s thick red (two components) and black (boundary
conditions) lines, the centre of gravity in the z-direction is not at
Carina’s mass weighted centre.

In summary, using the constant external field, boundary condi-
tions gravitational field will be quite accurate as a probe of the
instantaneous dynamics of a dSph, but using the curl-free solution
will introduce large errors, especially in the direction of the external
field. Regardless, the two-component simulations must be used to
account for tidal fields which become more important the closer the
dSph approaches the MW.

4 C O M PA R I S O N O F SI M U L AT E D W I T H
OBSERV ED VELOCI TY DI SPERSI ONS

4.1 dSph stability

To check the stability of a dSph in isolation, we performed a simu-
lation with no second component (no MW nor external field) which
lasted just over 1 Gyr with M/LV = 5. 1 Gyr is ∼50 dynamical times,
and so any severe changes should already be prominent. In Fig. 5
we plot the spherically averaged density profile of the dSph at reg-
ular intervals of time, up to just over 1 Gyr. Our first density curve
(black line) is made after 300 Myr to ensure the dSph has had time
to relax. The density changes only very slightly during this 1 Gyr
period, suggesting the dSph is stable. The outer density fluctuates
somewhat due to the slow ongoing leakage of particles. We found
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752 G. W. Angus et al.

Figure 4. Here we plot various computations of the internal gravity profile of Carina, using the parameters presented in Section 2.3. The left-hand panel is in
the z-direction (parallel to the external field) and the right-hand panel is in the y-direction (perpendicular to the external field). In the left-hand panel, the blue
line shows the gravity profile for an isolated Carina with no external field. The positive distance from the centre is towards the MW. The thick red curve is the
z-direction gravity (towards or away from the MW) using the two-component simulations with dSph and MW. The black line, which lies on top of the thick
red line, is for the dSph only simulation with the external field included via the boundary conditions. The dashed green line does not include the curl field, i.e.
only solves equation (5). In the right-hand panel, the overlapping thick red and black lines are y-direction curves using the two-component simulation and one
component with boundary conditions, respectively. The blue line is the gravity profile for an isolated Carina with no external field, which is larger in amplitude
at all radii than the other curves. The dashed green line does not solve for the curl field (i.e. only solves equation 6).

Figure 5. Here we plot the evolution in the 3D density profile of an isolated
Carina with no external field or simulated MW over the period of 1 Gyr.
The initial conditions are described in Section 3.3.2. The black line is the
density after 300 Myr and the red lines show evenly spaced evaluations of
the density over a 1 Gyr period. The blue line is the final density after 1 Gyr.

that time steps of 0.01 Myr were required to reach convergence.
Time steps longer than this caused the dSph to dissolve on a 1 Gyr
time-scale. Later we show many plots of the surface density as a
function of time for the dSph on orbits around the MW.

4.2 Sampling the mock catalogue

Our comparison with the data of Walker et al. (2007) using our
simulations is novel. In our re-binned projected velocity dispersion
profile there are different numbers of stars per 50 pc bin. The number
of stars per the central radius of the bin from 25 to 525 pc are 17,
43, 75, 79, 100, 83, 77, 67, 45, 33 and 29.

We create a mock catalogue of the line-of-sight velocities of a
sample of stars in Carina by projecting the 3D velocities of the
particles within the simulated dSph along a direction between the
simulated dSph and the solar position in the simulated MW.

Note that if this was for external dSphs, like one of the An-
dromeda dSphs (McConnachie 2012), then this approach would
not work since the satellite orbits are not MW centric. It is essen-
tial to translate the positions and velocities because the velocity
dispersion in the z-direction of the external field is lower than in
the orthogonal directions. However, if we just use the untranslated
z-direction velocity dispersions the velocity dispersions will not just
change with Galactocentric radius, but also angle.

These above procedures were applied to all particles correspond-
ing to the dSph. In the following, we sample a small number of the
particles corresponding to the numbers of stars observed by Walker
et al. (2007).

Our next step is to randomly sample particles from the ensemble.
With each sampled particle we calculate which projected radius bin
it belongs to according to its newly translated projected radius, R =√

x2 + y2. Using this radius bin we add the square of the line-of-
sight velocity, v2

z , to the accumulated squared velocity dispersions
in that bin. Our final condition is that the velocity of the particle with
respect to the systemic velocity is less than 30 km s−1 since there
is no star in the observed data with a relative velocity larger than
this. We continue to sample a random sequence of particles until we
have the same number of particles in each bin as we have stars noted
at the start of this section. We then divide the summed z-direction
squared velocities by the number of stars in each particular bin and
then take the square root. Next, we compare this simulated projected
velocity dispersion in each bin with the observed projected velocity
dispersion in each bin and calculate the χ2

red. We repeat this process
10k times and each time we use a different random sequence of
particles.

4.3 Fraction of good fits

In the left-hand panel of Fig. 6 we plot 25 (from the full 10k)
random realizations of the simulated velocity dispersion profile
of the static model (from Section 2.3, see also Fig. 1), without
allowing for any evolution. This is simply to show the variation in
the simulated projected velocity dispersions even before tidal forces
have influenced the dSph. One can see that at each radius bin there is
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N-body simulations of the Carina dSph in MOND 753

Figure 6. In the left-hand panel, we plot our re-binning of the projected velocity dispersion data from Walker et al. (2007) with blue filled circles. Overplotted
with green lines are 25 random realizations of our best-fitting static model of Carina as explained in Section 4. In the right-hand panel, we plot the χ2

red
distribution of 10k random realizations of the same model. χ2

red levels are highlighted with different colours in order to clearly see the number of fits within the
ranges χ2

red < 1 (large black dots), 1 < χ2
red < 1.5 (red dots), 1.5 < χ2

red < 2 (blue dots) and χ2
red > 2 (small black dots).

a spread of velocity dispersions around the mean profile. Therefore,
the possibility exists to have significantly larger or smaller velocity
dispersions than the average in each bin. However, the presence of
11 radius bins precludes a velocity dispersion profile with a low
amplitude from randomly producing a good fit.

In the right-hand panel we plot χ2
red for 10k random realizations

of the same static model. χ2
red = 0.9 is the best-fitting smooth curve

to the re-binned data of Walker et al. (2007) (either with MOND or
Newtonian gravity and a DM halo). There are, however, a number
of realizations for which χ2

red < 0.5, demonstrating the potential to
have a significantly better match to the data than the smooth fit
allows.

The fraction of realizations with χ2
red < 1 is 0.06. For the rest

of the paper we use this as our figure of merit because it gives a
robust likelihood of Carina at its given orbital position having a
good match to the data. χ2

red < 1 was simply a suitable number that
would yield a statistically useful return after 10k realizations. Using
a lower χ2

red threshold would lead to low number statistics and a
much higher one, say χ2

red < 1.5 or 2 (the dashed red and blue lines,
respectively, in Fig. 6), would contain information about poorer fits
that we are less interested in. It remains that a realization which
generally produces a higher number of χ2

red < 0.5 than another one,
will produce a higher fraction of χ2

red < 1 than that other realization.
We are aware that the correlation of the errors in each radius bin
means we have overestimated those errors, however, since we only
use the χ2

red to compare fits in a relative sense, we do not see this as
a problem.

5 R ESULTS

Our goal is to determine whether tidal effects from the MW have a
meaningful influence on the Carina dSph and if they are conducive
to lowering the inferred mass-to-light ratio relative to that garnered
from Jeans modelling. It is also crucial to confirm that dSphs like
Carina are stable for several orbits with realistic orbital parameters.
To accomplish this, we ran a series of simulations of a Carina-
like dSph orbiting the MW with initial conditions as described in
Section 3.3. We use a variety of total stellar masses for the dSph
and orbital parameters with respect to the MW.

The mass-to-light ratio that this stellar mass corresponds to
changes with time since the dSph begins to lose a small fraction
of particle mass due to tidal stripping as soon as the simulations

start. This is because the initial conditions quickly transform to an
equilibrium distribution to which not all particles are bound. The
mass of our particles of course do not change, but we renormalize
their corresponding luminosity while the dSph loses mass in order
to fit its observed total luminosity.

The orbital parameters that we discuss refer to the initial radial
distance from the MW and the initial velocity: both radially from
and tangentially to the MW. Obviously, the closer the pericentric
distance from the MW, the more mass will be stripped and the higher
the mass the dSph has, the more resilient it will be to tides.

Since Carina currently appears to be approaching its apocentre,
with current distance of ∼100 kpc (see Piatek et al. 2003; Metz
et al. 2008), this is where we must always make our comparison
with the other simulations – even if in the simulation the apocentre is
larger than 100 kpc. The reason for this is that increasing the radial
distance from the MW decreases the external gravitational field
acting on Carina and thus increases the boost to the internal gravity
due to MOND. This would allow smaller mass-to-light ratios to be
consistent with the observed dynamics than possible at 100 kpc.

5.1 Measured proper motions

The Carina dSph has measured proper motions from the observa-
tions and analysis of Piatek et al. (2003). They use the proper mo-
tions, estimated from two separate stellar fields within Carina, along
with the well-measured line-of-sight velocity to estimate the radial
(Vr) and tangential (Vt), with respect to the MW centre, orbital veloc-
ities. The first field gives Vr = 18 ± 32 km s−1 and the second field
gives Vr = 22 ± 36 km s−1 and are therefore consistent with each
other and produce a weighted mean Vr = 20 ± 24 km s−1. The tan-
gential velocity for the first field is Vt = 40 ± 53 km s−1 and for the
second field is Vt = 140 ± 59 km s−1, which is a considerable dif-
ference that barely allows an overlap within the errors. The weighted
mean tangential velocity is therefore Vt = 85 ± 39 km s−1, but not
much credence should be given to the formal error since only two,
vastly differing, fields have been measured.

Following up on this measurement, Metz et al. (2008) corrected
for the advanced charge transfer inefficiencies of the Space Tele-
scope Imaging Spectrograph (Bristow, Piatek & Pryor 2005) and
found the updated weighted means to be Vr = 22 ± 3 km s−1 and
Vt = 120 ± 50 km s−1.
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754 G. W. Angus et al.

We do not consider the radial velocity as being important in our
simulations. Our reasoning is that it is small relative to the tangen-
tial velocity and the radial velocity only influences the apocentre,
whereas the tangential velocity sets the pericentre. Given that only
the pericentre sets the impact from tides, we can safely ignore the
small radial velocity.

5.2 Fraction of good fits as function of orbit

To investigate the suitability of a given Carina stellar mass and
orbital path to matching the projected velocity dispersion data of
Walker et al. (2007), we ran three simulations with different orbital
parameters for each of the total Carina stellar masses m = 2.2, 2.64
and 3.08 × 106 M�, which correspond to 5, 6 and 7 times the lumi-
nosity with mass-to-light ratio of unity. The three different orbital
parameters are simply the initial tangential velocity relative to the
initial offset along the z-axis of 100 kpc. These were Vy = 125, 150
and 175 km s−1. Vy = 175 km s−1 leads to an almost circular orbit
with pericentre of ∼95 kpc and orbital period of ≈2.4 Gyr. Vy = 125
and 150 km s−1 give pericentres of 51 and 71 kpc, respectively, and
orbital periods of ≈1.9 and 2.1 Gyr. In Fig. 7 one can see six rows
of plots for the m = 2.2 × 106 M� simulations, where the left-
hand, middle and right-hand columns refer to the initial tangential
velocities Vy = 125, 150 and 175 km s−1, respectively. The Figs 8
and 9 show the same plots but for the m = 2.64 and 3.08 × 106 M�
simulations.

For Figs 7–10, the top row (panels a–c) shows, as a function of
time, the fraction of random realizations of the projected velocity
dispersion which, when compared with the observed one, yield
χ2

red < 1. This is the most important plot, which shows whether this
particular combination of total stellar mass and tangential velocity
will well reproduce the observed projected velocity dispersions (this
procedure is discussed in more detail in Section 4 and Fig. 6). The
second row (panels d–f) in Fig. 7 gives Galactocentric distance as a
function of time for the simulations.

Looking specifically at Fig. 8 (m = 2.64 × 106 M�) for the
Vy = 175 km s−1 (right-hand column) simulations, one can see
from panel (c) that there are not dramatic changes in the fraction of
good fits with time because the orbital distance from the MW does
not change significantly during the orbit and we know how cru-
cial the Galactocentric radius is to the internal dynamics in MOND
(e.g. Fig. 3). On the other hand, the simulations with Vy = 125
and 150 km s−1 (left-hand and middle columns of Fig. 8, respec-
tively) reach significantly smaller pericentres and this means they
are exposed to stronger external gravities which cause the inter-
nal gravities to be reduced. In panel (c) of Figs 7 and 9 (i.e. for
Vy = 175 km s−1), the fraction of good fits appears to vary more
with the orbit than for Fig. 8 panel (c). Actually, the magnitude
of the change is similar for all three, it is simply that for Fig. 8
(m = 2.64 × 106 M�) the variation is relative to a larger number.

Another important thing is that on the smaller pericentre orbits,
more mass is stripped and this is shown in the third row of plots
(Figs 7–10 panels g–i) where the projected enclosed mass in sev-
eral shells is given. The outermost shell is the projected mass within
R = 1.8 kpc and should contain most of the bound mass. For the
Vy = 125 km s−1 simulation of Fig. 8 (panel g; m = 2.64 × 106 M�),
the mass in the outer shell (R < 1.8 kpc) drops from more than
95 per cent to less than 80 per cent after three orbits, but the
Vy = 175 km s−1 (panel i) simulation only loses about 2 per cent of
the mass in that shell.

The reduction of the internal gravity, due to the varying external
field strength, can be clearly seen in the fourth and fifth rows of plots

of Fig. 8 (panels j–o) which show the 1D rms sizes in the three or-
thogonal directions and the 1D rms velocities. For Vy = 175 km s−1,
the rms velocity (panel o) in each of the three directions is very
constant as are the rms sizes (panel l). However, for Vy = 125 and
150 km s−1, the sizes (panels j and k) and rms velocities (panels m
and n) change according to the orbit. This is why the fraction of
good fits is also a function of time.

The final row of plots for Figs 7–10 (panels p–r) show the surface
density profiles for evenly spaced snapshots in time. The normal-
ization is the same for every snapshot. The blue line in panel (r) is
the initial surface density at the start of the simulation. There is very
little change in shape for any of the orbits, but the Vy = 175 km s−1

(panel r) simulation is particularly constant and this demonstrates
the stability of the dSphs in MOND and our simulations. We show
for comparison the surface density of stars found by Muñoz et al.
(2006). One final point to take from these bottom three rows of
plots in Figs 7–10 is how the z-direction size (panels j–l) and rms
velocity (panels m–o) are different to the similar x and y direction
rms velocities and sizes. This is obviously due to the direction of
the external field which points along the z-direction at every time
step because in the post-simulation analysis we rotate our frame of
reference such that the z-direction always points towards the MW.
This stretching along the external field direction is a well-known
effect investigated by Milgrom (1986), Zhao & Tian (2006) and Wu
et al. (2008), and will be the topic of future study.

The top rows of Figs 7–10 (panels a–c) show the suitability of
the combination of mass and tangential velocity Vy. Here it is im-
portant that we only compare the fractions of good fits at apocentre
(100 kpc) and clearly the highest fraction of good fits is found using
a mass of m = 2.64 × 106 M� and Vy = 175 km s−1, which easily
gives 0.07 – slightly larger than found from the sampling of the iso-
lated model (0.06). Using m = 3.08 × 106 M� and Vy = 175 km s−1

gives roughly 0.03 and m = 2.2 × 106 M� and Vy = 175 km s−1

is roughly 0.02 after one orbit and much lower at 0.012 after two
orbits. The reason m = 3.08 × 106 M� does not work as well as
m = 2.64 × 106 M� is because it is too massive and leads to ex-
cessively high velocity dispersions ∼6.6 km s−1 in the z-direction
(Fig. 9, panel o). This can clearly be seen because the agreement
improves at 94 kpc over 100 kpc where the larger external field
reduces the velocity dispersion. For m = 2.2 × 106 M�, the dSph
is not massive enough and generates too small velocity dispersions
∼5.8 km s−1 in the z-direction (Fig. 7, panel o). Furthermore, even
on the nearly circular orbit with Vy = 175 km s−1, it is stripped
gradually by tidal forces and this means that the number of good
fits (with χ2

red < 1) to the observed velocity dispersions decreases
during each orbit.

Using m = 2.64 × 106 M� and Vy = 150 km s−1 (Fig. 8 panel b)
has a high fraction of good fits after one orbit (∼0.06), but this drops
after each orbit because mass is stripped (panel h) reducing the grav-
itational field and velocity dispersions. With m = 2.64 × 106 M�
and Vy = 125 km s−1 (Fig. 8 panel g), too much mass is stripped
after one orbit and a very low number of good fits is left (panel
a). The lower Vys are also ruled out for m = 2.2 × 106 M�. For
m = 3.08 × 106 M� and Vy = 125 km s−1 (Fig. 9), the correct
amount of mass is stripped (panel g) by the end of the second orbit,
but the fraction of good fits (panel a) is still quite mediocre (∼0.02).
This appears to be a result of the tidal forces changing the velocity
anisotropy. To clarify this, in Fig. 11 we plot the projected velocity
dispersion using all particles (not just the number of observed stars)
for three simulations after roughly 5 Gyr each. The first curve (red)
is for the simulations with m = 3.08 × 106 M� and Vy = 125 km s−1

and is taken after three full orbits. The other two curves both use
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N-body simulations of the Carina dSph in MOND 755

Figure 7. Here we plot six different quantities (each row) for a different orbit (each column) using the same initial conditions and the same initial dSph mass
(here m = 2.2 × 106 M�). The three different orbits are defined by their initial tangential velocity (Vy) which is in the direction perpendicular to the initial
separation between the dSph and the MW of 100 kpc: from left to right Vy = 125, 150 and 175 km s−1. (ii) The Galactocentric distance as a function of time
is the second row of plots and (i) the top row shows the fraction of random realizations of the projected velocity dispersion which, when compared with the
observed one, yield χ2

red < 1 as a function of time. (iii) The third row gives the fraction of projected mass within radial shells of 0.6, 0.8, 1.0, 1.2, 1.5 and
1.8 kpc as a function of time. (iv) The fourth row give the 1D rms size in each of the three directions (x, y and z; where z is the line of sight) and (v) gives
the 1D rms velocity. (vi) The final row shows surface density profiles (red lines) for evenly spaced snapshots in time. The normalization is the same for every
snapshot. The blue line in panel (r) is the initial surface density at the start of the simulation. Also overplotted (filled circles with error bars) is the observed
surface density of stars from Muñoz et al. (2006).
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Figure 8. As Fig. 7, but for m = 2.64 × 106 M�.

Vy = 175 km s−1 after two full orbits, but have different masses:
m = 2.2 and 2.64 × 106 M� (black and blue curves, respectively).
Clearly, the m = 2.2 and 2.64 × 106 M� curves have the same shape,
but the m = 2.64 × 106 M� curve has a larger amplitude and sig-

nificantly better χ2
red; however, the m = 3.08 × 106 M� curve has a

different shape because it has a more isotropic velocity anisotropy.
Therefore, the plunging orbit exposes the m = 3.08 × 106 M�
dSph to tides that distort the velocity distribution towards less
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N-body simulations of the Carina dSph in MOND 757

Figure 9. As Fig. 7, but for m = 3.08 × 106 M�.

tangentially biased orbits which makes it slightly less consistent
with the observed projected velocity distributions, according to the
fraction of good fits and half as likely to produce the observed
velocity dispersions.

Finally, we have three extra simulations for which we plot
(in Fig. 10) the relevant quantities, as per Figs 7–9. The
m = 1.32 × 106 M� plot (Fig. 10 panel a) shows that if
m = 1.32 × 106 M� there is no likelihood of being consistent
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758 G. W. Angus et al.

Figure 10. As Fig. 7, but for three odd models. From left to right m = 1.32 × 106 M�, Vy = 175 km s−1; m = 3.08 × 106 M�, Vy = 90 km s−1, rmw =
160 kpc; m = 3.96 × 106 M�, Vy = 125 km s−1.

with the observed projected velocity dispersions. The right-hand
column is for m = 3.96 × 106 M� with Vy = 125 km s−1 and also
shows (panel a) that at apocentre (100 kpc), there is no likelihood
of it being consistent. The central column is for a simulation with

m = 3.08 × 106 M� that does not start at the fiducial 100 kpc, but
rather at 160 kpc and plunges to ∼50 kpc. Both on the inbound and
outbound sections of the orbit at 100 kpc, the fraction of good fits
(panel b) is mediocre at ∼0.015. This is simply because the mass
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N-body simulations of the Carina dSph in MOND 759

Figure 11. Here we plot the projected velocity dispersions using all parti-
cles of three simulations (m = 2.2 × 106 M� and Vy = 175 km s−1; black),
(m = 2.64 × 106 M� and Vy = 175 km s−1; blue) and (m = 3.08 × 106 M�
and Vy = 125 km s−1; red) after two, two and three full orbits, respectively.
The data points are our re-binned projected velocity dispersions using the
data of Walker et al. (2007).

is too high. We do not have a similar simulation for this orbit and
m = 2.64 × 106 M�.

Therefore, the most appropriate model appears to be
m = 2.64 × 106 M� and the closer the orbit is to circular the
better the match. Conversely, the more plunging the orbit, the more
the velocity anisotropy is transformed towards less tangentially bi-
ased orbits creating a poorer match. An important point to bear in
mind is that this initial mass m = 2.64 × 106 M� actually means a
final mass which is slightly lower due to the stripped stars/particles.
The fraction of stars left bound to the dSph depends on the size of
the shell we consider, but is somewhere between 90 and 95 per cent.
This means a final M/L of between 5.4 and 5.7, which is close to the
best-fitting value found using Jeans analysis (Fig. 2). On top of this
is the uncertainty in the observed luminosity of Carina. The reason
the preferred M/L is slightly larger than the maximum likelihood
of 5.2 from Jeans modelling is that the external field causes elonga-
tion in the z-direction and likewise causes the velocity dispersion to
be smaller than in the two orthogonal directions. This effect is not
taken into account in the Jeans modelling.

Battaglia et al. (2012) have demonstrated that the projected stellar
distribution of Carina has tidal tails which suggest ongoing harass-
ment of the dSph from the MW. In Fig. 12 we show contours of
the projected particle distribution for Carina on a near circular orbit
after 5 Gyr. The tidal tails outside the circular isodensity contours of
the bound particles lie in the plane of the orbit and occur naturally
in MOND even on a near circular orbit at 100 kpc. Whether the
same is true for such a distant orbit in CDM simulations remains to
be seen.

6 C O N C L U S I O N

Here we have run a suite of MOND N-body simulations of a dSph
like Carina with various total masses (m = 1.32, 2.2, 2.64, 3.08 and
3.96 × 106 M�) and orbital paths around the MW. We have shown
that they are stable and long lived on nearly circular orbits at 100 kpc
regardless of mass (≥m = 1.32 × 106 M�) and even on orbits that
plunge to 50 kpc. However, the model most likely to give a good fit
to the observed projected velocity dispersions is one with an initial
m = 2.64 × 106 M�, which means an M/L in the range of 5.4 and
5.7 after two orbits (∼5 Gyr). The more circular the orbit, the less

Figure 12. Here we plot projected density contours for a simulation with
m = 2.64 × 106 M� and Vy = 175 km s−1 after 5 Gyr. Up and down is the
x-axis (out of the orbital plane), left and right is the y-axis and the z-axis is
along the line of sight, respectively.

disturbed the internal velocity distribution is. This is important be-
cause the observations require substantially negative (tangentially
biased) velocity anisotropies. After plunging orbits, the velocity
anisotropy becomes slightly more radially biased, reducing agree-
ment with the observations. Considering that an M/L in the range of
5.4 and 5.7 is potentially at odds with stellar populations synthesis
models, we considered a model with m = 2.2 × 106 M�, which
after a single orbit corresponds to an M/L between 4.5 and 4.7. This
model has a likelihood of matching the observations that is roughly
3.5 times smaller than the model with M/L between 5.4 and 5.7.
This range of mass-to-light ratio is slightly above that found from
basic Jeans analysis because the isopotential contours are stretched
(see e.g. Milgrom 1986; Zhao & Tian 2006; Wu et al. 2008) in the
direction away from the MW (which coincides here with our line
of sight) due to the external field effect. This leads to a stretching of
the dSph along the line of sight, relative to the plane perpendicular,
and a reduction of the velocity dispersions.

As for the compatibility of different orbits, it would appear
that after two orbits with initial Vy = 125 km s−1, the lower
masses m = 2.2 and 2.64 × 106 M� are not capable of gener-
ating a sizable fraction of good fits. m = 2.2 × 106 M� would
give less than 0.001, m = 2.64 × 106 M� less than 0.01, but
m = 3.08 × 106 M� would produce roughly 0.03. This is because
mass has been stripped leaving the true M/L after two orbits to
be somewhere between 5.9 and 6.2. Using m = 2.64 × 106 M�
after only one orbit with Vy = 125 km s−1 gives a fraction of
good fits of only 0.015 with a true M/L between 5.1 and 5.4.
So the best-fitting M/L for Vy = 125 km s−1 is likely somewhere
between these two limits. However, it will probably still be some-
what less likely than the more circular orbits since the tides
adversely affect the velocity anisotropy. For the intermediate orbit
with Vy = 150 km s−1, m = 2.64 × 106 M� leads to a fraction of
0.04 good fits after three full orbits with a true M/L of ∼5.3–5.4.
Therefore, for Vy ≥ 125 km s−1 the preferred M/L remains fairly
constant (5.3–5.7), but obviously on the more plunging orbits mass
is more rapidly stripped and thus it is required that the current M/L
is in this range, not the initial one. A parallel observation is that the
fraction of stripped mass during a period of almost half the age of
the Universe is not more than half on any of the simulated orbits.
Therefore, it must be the case that the dSph was formed with a mass
very close to its current one and this is likely also true in the CDM
paradigm.
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Although the preferred M/L is between 5.3 and 5.7, there is
still a reasonable probability that the M/L is lower than 5. From
the various orbits it would seem that even on a near circular orbit,
panel (c) of Fig. 7 shows (after one orbit) that M/L ∼ 4.8 is more
than three times less likely than the best model. Panel (a) of Fig. 7
suggests that on an orbit with a 50 kpc pericentre, an M/L ∼ 4.5
has an insignificant probability of producing a good fit.

A larger sample of stellar line-of-sight velocities might subdue
the errors here to distinguish between different mass-to-light ratios.
Therefore, higher precision proper motions, larger samples of stars,
ultraprecise photometry for the total luminosity, and more sophisti-
cated and reliable stellar population synthesis models, as well as a
full-fledged treatment of binaries for dSphs would be enormously
useful for future studies. Another factor that should be built into
future studies of Carina is the possibility for triaxiality in the 3D
stellar distribution. This must be an important factor because all
dSph surface brightnesses are observed to be moderately elliptical
(Irwin & Hatzidimitriou 1995).

AC K N OW L E D G E M E N T S

The authors are indebted to the referee for considerably improv-
ing the content and readability of the paper. GWA is a post-
doctoral fellow of the FWO Vlaanderen (Belgium). Part of the
research was carried out while GWA was a post-doctoral fel-
low supported by the Claude Leon Foundation. AD acknowledges
partial support from the INFN grant Indark (PD51) and from
the grant Progetti di Ateneo/CSP TO_Call2_2012_0011

‘Marco Polo’ of the Universita’ di Torino.

R E F E R E N C E S

Angus G. W., 2008, MNRAS, 387, 1481
Angus G. W., Diaferio A., Kroupa P., 2011, MNRAS, 416, 1401
Angus G. W., van der Heyden K. J., Famaey B., Gentile G., McGaugh S. S.,

de Blok W. J. G., 2012, MNRAS, 421, 2598
Battaglia G., Irwin M., Tolstoy E., de Boer T., Mateo M., 2012, ApJ, 761,

L31
Benson A. J., Frenk C. S., Lacey C. G., Baugh C. M., Cole S., 2002, MNRAS,

333, 177
Bournaud F. et al., 2007, Science, 316, 1166
Bowden A., Evans N. W., Belokurov V., 2013, MNRAS, 435, 928
Boylan-Kolchin M., Bullock J. S., Kaplinghat M., 2012, MNRAS, 422,

1203
Brada R., Milgrom M., 2000a, ApJ, 531, L21
Brada R., Milgrom M., 2000b, ApJ, 541, 556
Bristow P., Piatek S., Pryor C., 2005, Space Telesc. Eur. Coord. Facil. Newsl.,

38, 12
Chiboucas K., Jacobs B. A., Tully R. B., Karachentsev I. D., 2013, ApJ,

146, 126
Deason A. J., Belokurov V., Evans N. W., 2011, MNRAS, 411, 1480
Famaey B., Binney J., 2005, MNRAS, 363, 603
Famaey B., McGaugh S. S., 2012, Living Rev. Relativ., 15, 10
Gentile G., Famaey B., Combes F., Kroupa P., Zhao H. S., Tiret O., 2007,

A&A, 472, L25
Hargreaves J. C., Gilmore G., Irwin M. J., Carter D., 1994, MNRAS, 269,

957
Ibata R. A. et al., 2013, Nature, 493, 62
Irwin M., Hatzidimitriou D., 1995, MNRAS, 277, 1354
Klessen R. S., Grebel E. K., Harbeck D., 2003, ApJ, 589, 798
Klimentowski J., Łokas E. L., Kazantzidis S., Prada F., Mayer L., Mamon

G. A., 2007, MNRAS, 378, 353
Klimentowski J., Łokas E. L., Kazantzidis S., Mayer L., Mamon G. A.,

2009, MNRAS, 397, 2015
Klypin A., Kravtsov A. V., Valenzuela O., Prada F., 1999, ApJ, 522, 82

Kroupa P., 1997, New Astron., 2, 139
Kroupa P. et al., 2010, A&A, 523, A32
Li Y.-S., De Lucia G., Helmi A., 2010, MNRAS, 401, 2036
Llinares C., Knebe A., Zhao H., 2008, MNRAS, 391, 1778
Lora V., Grebel E. K., Sánchez-Salcedo F. J., Just A., 2013, ApJ, 777, 65
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APPENDI X A : PARTI CLE-MESH EXTERNA L
FI ELD I NCLUSI ON

Assume we want the QUMOND source (right-hand side of equa-
tion 4) at cell (i, j, k) of a Cartesian grid (x, y, z), then we need to
define the gravity at various points surrounding it. If we use unit
length grid cells then

gx2 = φi+1,j ,k − φi,j,k

gx1 = φi,j,k − φi−1,j ,k

gy2 = φi,j+1,k − φi,j,k

gy1 = φi,j,k − φi,j−1,k

gz2 = φi,j,k+1 − φi,j,k

gz1 = φi,j,k − φi,j,k−1. (A1)
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These are the values of the Newtonian gravitational field at half
a cell from (i, j, k) in the three orthogonal directions and φ is the
Newtonian gravitational potential. Similarly, for these six points we
must find the value of the ν function. Surrounding the point x2 we
use the dummy variable ω which is just the gravitational field in
each of the orthogonal directions at a half cell from (i, j, k)

ωx2 = φi+1,j ,k − φi,j,k

4ωy2 = φi+1,j+1,k + φi,j+1,k − (
φi+1,j−1,k + φi,j−1,k

)
4ωz2 = φi+1,j ,k+1 + φi,j,k+1 − (

φi+1,j ,k−1 + φi,j,k−1

)
(A2)

and surrounding x1

ωx1 = φi,j,k − φi−1,j ,k

4ωy1 = φi,j+1,k + φi−1,j+1,k − (
φi,j−1,k + φi−1,j−1,k

)
4ωz1 = φi,j,k+1 + φi−1,j ,k+1 − (

φi,j,k−1 + φi−1,j ,k−1

)
, (A3)

which gives

κx2 = (ao)−1
√

ω2
x2

+ ω2
y2

+ ω2
z2

κx1 = (ao)−1
√

ω2
x1

+ ω2
y1

+ ω2
z1

, (A4)

which are the arguments for the ν function at each half cell from
(i, j, k) in the three orthogonal directions. These are accompanied

by κy2 , κy1 , κz2 and κz1 found in a similar way. From this we must
find

νx2 = ν(κx2 )

νx1 = ν(κx1 ) (A5)

and νy2 , νy1 , νz2 , νz1 . This finally leaves us with the QUMOND
source density in cell (i, j, k) given by

�∇ ·
[
ν(y) �∇�N

]
= νx2gx2 − νx1gx1 + νy2gy2 − νy1gy1

+ νz2gz2 − νz1gz1 . (A6)

A good visualization of the geometry can be found in Tiret &
Combes (2007), Llinares et al. (2008) or Lüghausen et al. (2013).

To include the external field in the z-direction, we substitute
gz1 + gze for gz1 and gz2 + gze for gz2 , and this affects equations
(A1)–(A6). gze is the Newtonian value for the external gravitation
field.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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