
HAL Id: hal-04582391
https://hal.science/hal-04582391v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Rule-based generative design of translational and
rotational interlocking assemblies

Pierre Gilibert, Romain Mesnil, Olivier Baverel

To cite this version:
Pierre Gilibert, Romain Mesnil, Olivier Baverel. Rule-based generative design of translational
and rotational interlocking assemblies. Automation in Construction, 2022, 135, pp.104142.
�10.1016/j.autcon.2022.104142�. �hal-04582391�

https://hal.science/hal-04582391v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Rule-based generative design of translational and16

rotational interlocking assemblies17

Pierre Giliberta, Romain Mesnila, Olivier Baverela,118

aLaboratoire Navier UMR 8205, Ecole des Ponts
Paristech, Marne-la-Vallée, 77455, MLV Cedex 2, France

bGSA ENS Architecture Grenoble, France

Abstract19

Despite being a notoriously difficult task, efficient design of interlocking as-20

semblies could greatly impact the construction sector and reduce its environ-21

mental footprint by helping in the design of demountable buildings and the22

reuse of structural members. While a growing research effort in this direc-23

tion is being undertaken by the computer graphics and structural engineering24

communities, most of the algorithms proposed so far imply restrictions on25

assembly directions or prior knowledge on the joint’s geometry.While rele-26

vant, such tools do not fully explore the space of possible assemblies and27

often fail to produce surprising results. Moreover, these designs are always28

assembled through translational motions, and, to the best of our knowledge,29

very little research has been conducted to address the challenges of designing30

an assembly for rotation motions.31

Building on recent advances in assembly design, this study investigates the32

automatic generation, using a Markov process and turtle graphics, of 2D33

interlocking sequential assemblies that can be assembled for any prescribed34

combination of translations and rotations. This generative approach shall35

be an aid to the engineer to explore the space of geometrical form-fitting36

connections and represents a first step towards an end-to-end workflow to37

design interlocking assemblies.38

Preprint submitted to Automation in Construction December 7, 2021

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0926580522000152
Manuscript_5a2d99fba90fca9f5895494cc0abf9c1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0926580522000152
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0926580522000152

Figure 1: Top row is our tool’s input: the disassembling motions are given by the location
of a centre of rotation, a cone of translation, and a single direction of translation. Bottom
row: the fabricated raw output and an assembly sequence.

Keywords: Design for assembly, Kinematics-aware fabrication, Shape39

partitioning, Interlocking assembly, Markov process, Turtle graphics40

1. Introduction41

Even the simplest buildings are constituted of tens of thousands of compo-42

nents which need to be assembled in-situ or in factory [1]. In civil engineering,43

an assembly may be defined as a collection of parts that are connected to44

each other through various kinds of means: nails, glue, etc. Despite their45

mechanical relevance, a major inconvenient with such standard connectors is46

that they are irreversible: at the end of the lifetime of a building, assemblies47

are often destroyed and prevent the reuse of structural components which has48

a significant impact on the environment: according to the French government49

[2] the construction sector generated almost 70% of the waste in France in50

2017. Conversely, new construction materials have a serious environmental51

impact, up to 7% of the emission of greenhouse gas in France in 2016 [3].52

This paper represents a humble step towards the necessary decarbonisation53

and waste reduction of the construction industry by studying the genera-54

tion of reversible interlocking assemblies, i.e. assemblies that are tightly55

2

held together through geometrical features. Interlocking assemblies can be56

(dis)assembled at will and could potentially be used to design reusable struc-57

tural members in buildings in close spirit to traditional Japanese architecture,58

see figure 2.59

Figure 2: Examples of 3D sequential assemblies. Left: a CNC-milled assembly (source
[4]). Right: a traditional Nejiri Arigata assembly (source Internet).

Interlocking assemblies are defined by Song et al. in [5] as an assembly of60

rigid parts such that only one of them, the key, is movable while any other61

part or subset of parts are immobilised relative to one another. The literature62

on the subject is rich with, for instance, [6] who designed furniture joinery63

and study the stability of the structure, [4] who introduces a remarkable64

software to design wood joints with a special focus on fabricability, or [7]65

who build a framework aimed at generating novel assemblies and presents66

examples of voxelised puzzles. These approaches can be categorised in two67

families: they are catalogue-based, meaning that possible joints are predefined68

in some catalogue (or similarly that the user is supposed to already have some69

knowledge on the geometry of the joint) or voxel-based which limits the space70

of accessible shapes for a given voxel resolution. In these approaches, the final71

assembly can only be assembled along directions of translation defined in a72

pre-existing discrete set: a single sliding axis in [4], a set of 26 arbitrary73

directions in 3D (8 in 2D) for [6] or the three canonical directions of space as74

a result of the voxelisation in [7]. As such, existing methods greatly reduce75

design and motion freedoms and leave completely unaddressed the challenges76

of designing assemblies that can be built using rotational motions.77

3

Contribution . The aim of this paper is to introduce a Markov process and78

combine it with an agent to automatically generate 2D interlocking sequential79

assemblies working in translation and in rotation. The focus of our work is on80

the assembly node, the joint: parts shall be carved out of a design domain81

resulting from the intersection of structural members, see figure 3. The82

main features of our approach follow:83

• Generality: our approach deals with translations, rotations, and a com-84

bination of both. All translation directions or centres of rotation can85

be selected.86

• Exhaustivity: any interlocked geometry can be generated.87

• Injectivity: any feasible geometry can be produced by one sequence88

only.89

The interested reader is referred to our video [8] which exemplifies the90

ideas and concepts developed in this paper.91

design domains

interlocking
assemblies

Figure 3: The aim of this study is to automatically generate a 2D interlocking assembly in
a possibly non-convex design domain resulting from the intersection of several structural
members. Here the algorithm presented in this paper was ran independently on each of
the four design domains.

After discussing related works in section 2 we sum up elementary re-92

sults about blocking relationships in interlocking assemblies based on graph93

analysis and introduce the concepts of Markov process and turtle graphics94

in section 3. Section 4 explains how graphs, turtle graphics and a Markov95

chain are combined to define an agent that generates interlocking assem-96

blies and presents results. Finally section 6 lists the shortcomings of our97

approach.98

4

2. Related work99

2.1. Designing interlocking assemblies100

The literature on the design of interlocking assemblies can broadly be101

divided into two categories with a porous border.102

Catalogue-based designs:103

. Significant work has been made to automatically generate assemblies made104

of parts chosen in a catalogue: [9] builds hollow 3D shape using a set of Lego105

bricks; [10] explores the partitioning of 3D shapes into a set of 6-parts burr106

puzzles; Fu and coauthors [11] developed a method aimed at creating global107

interlocking furniture assembly from a model of orthogonally intersecting 3D108

shapes and generated the joints from a lookup table. In a different spirit,109

[12] partitions a 3D shape into printable parts and assembles them through110

mortise and tenon kind of joints and [13] presents a material-aware algorithm111

to modify the overall shape of a structure but connects parts with mortise112

and tenon joints.113

Voxel-based designs:114

. Most of the other methods available to generate interlocking assemblies are115

voxel-based which restrict the assembling motions to the three canonical or-116

thogonal directions of R3: [5] focuses on recursive interlocking puzzles where117

at each step of the assembly sliding sequences of 3 parts are tightly inter-118

locked. Thus only one assembling sequence is possible. This work was later119

refined in [14] who carefully subdivides an input mesh into a set of voxelised120

parts such that every K ≥ 3 parts are tightly interlocked.121

Yao et al. [6] implemented a tool that asks the user for the exterior122

appearance of the joints between structural components and automatically123

computes the internal solid geometry needed to connect and assemble the124

parts. Remarkably they were able to rediscover many traditional Japanese125

joints with intricate geometry. The main drawback of their approach is that126

the assembling motions are restricted to a set of 26 directions of translation127

in 3D (8 in 2D).128

A compelling study has recently been made by the authors of [4]: their129

approach is the exact complementary to ours in the sense that their work130

about the design of wood joints is both voxel-based and catalogue-based (but131

supports adaptation to non-orthogonal and non square joints by linearly de-132

forming the grid of voxels) and primarily focuses on interaction with the133

5

human user, fabrication and mechanical relevance.134

135

2.2. Disassembly planning136

Assembly planning (or its pendant disassembly planning) refers to the137

problem of finding a sequence to fully (dis)assemble the parts constituting138

an assemblage, [15]. Several methods were developed and are thoroughly re-139

viewed by [16], [17]. An interesting approach, on which we put an emphasis,140

was first proposed in [18]: given an assembly made of various parts, the au-141

thors introduced the concept of Non Directional Blocking Graph (NDBG) to142

encode blocking relations between the parts in directed graphs. By analysing143

these graphs the authors are able to find, for each step of the (dis)assembly144

process, which set of parts to move and what motion to follow to perform145

the task. While the method works theoretically both for translation and ro-146

tation, in practice they implemented an algorithm that ”considers all pure147

translations plus some suggested generalised motions” without adding more148

details. Their method, for translation only, was later improved in [19] who149

makes further use of local contact information between parts.150

151

Wang and coauthors in [7] were the first to leverage the kind of graph152

analysis introduced in [18] to automatically generate voxel-based interlocking153

assemblies. They designed an efficient puzzle generator that can be assembled154

along orthogonal translations. Even though they restrict themselves to vox-155

elised structures, the authors fully explore the accessible design space and156

successfully manage to generate globally interlocking pieces without much157

computational effort. Their work serves as the basis of ours.158

159

Generating interlocking assemblies is a difficult geometric challenge ([5])160

and the methods reviewed in the literature attempt to simplify the prob-161

lem by making strong assumptions on the shape of the assembly and the162

(dis)assembling motions which negatively impact the freedom needed to de-163

sign novel assemblies. It can be argued that these assumptions ultimately164

stem from the fact that designing interlocking assemblies is essentially a165

wicked problem. Indeed, each problem is unique, can be approached by many166

different methods, infinitely many designs are solutions to it, and because of167

competing goals (ease of fabrication, ease of assembly, mechanical relevance,168

etc.) no solution is the best, one can only say that some designs are better169

than others. More formally, as for any structural object, the quality of an170

6

interlocking assembly strongly depends on the interaction of the five axes of171

design proposed by [20], namely form, force, structure, material, and technol-172

ogy. For instance, Larsson et al. in [4], while delivering stunning results, had173

to assume an assembly (structure) made of wood (material), carrying most174

probably bending moments (force), milled with a 3-axis CNC machine (tech-175

nology), with a grid of voxel as a design space (form), as well as additional176

assumptions such as a cube as a design domain and a single axis of assembly.177

Any change in those premises, for instance switching to a 5-axis CNC ma-178

chine, greatly impacts the space of solutions and requires another algorithm179

to search it. More generally a good approach to designing assemblies, shown180

in figure 5, would be through a multi-criteria optimisation where several181

designs are proposed to the designer who makes the final choice as to orient182

her work. These criteria (choice of material, technology, etc) are problem-183

dependent and could therefore be implemented a posteriori to curate the184

space of solutions, once the user knows how to navigate and explore the field185

of possible assemblies. As an example, for timber assemblies, the milling186

technology (3 to 5 axes, size of milling tools) and mechanical performance187

(governed by the strong anisotropy of wood) are obvious practical constraints188

that will dictate the performance of the assembly and, thus, the subset of189

suitable assembly shapes. Other technologies and material, like 3d-printed190

steel nodes [21], would come with different sets of feasibility constraints which191

would be met by different geometries of assembly.192

Figure 4: Digital technology makes it possible to envisage completely different methods of
application, beyond traditional carpentry (source: [21]).

The focus of this paper is precisely on the exploration of the space of 2D193

interlocking sequential assemblies made of polygonal parts. To that end, we194

introduce a Markov process that maps surjectively to the space of polygonal195

lines, to ensure that the whole search space of such assemblies is reachable196

7

through our method, as will be proved in section 4.1.2. We insist that,197

in this paper, we focus only on the geometrical aspect of an assembly, and,198

even though they are fundamental questions, we leave to future work the199

consideration of structural properties and manufacturability that a real-life200

assembly with application in engineering or architecture must possess. In201

other words, in this preliminary work, we address the challenges of generating202

a puzzle rather than a load-bearing, structurally sound, assembly.203

?

a wicked problem,
with fuzzy and

competing goals

design problem
all geometrical interlocking
designs can be generated

design knowledge
the design space is

explored through optimisation
or user-feedback

design exploration

Figure 5: The focus of this paper is on the design knowledge step of the process to design
interlocking assemblies: we shall generate all possible geometrical interlocking design.

3. Methodology204

Using the terminology presented in [17], we restrict our study to 2D205

interlocking sequential assemblies made of polygonal parts. Since our work is206

in the spirit of [7] we will use the same notation as they did. Given a polygonal207

design domain (which throughout this paper will simply be a square) and208

an ordered list of N motions for disassembling, our goal is to partition the209

domain into N + 1 parts forming a sequential assembly A = {P0, P1, ..., PN}.210

For instance, on figure 1, the design domain is partitioned into 4 parts211

(N = 3) P0, ...P3. While the reference part P0 is fixed each Pi, i ≥ 1, can212

8

only move along its prescribed motion in an infinitesimal sense, meaning that213

a motion of arbitrarily small magnitude does not lead a part to collide with214

an other. Moreover, P1 is the key - as long as P1 has not been removed215

from the assembly, no other part can move - and as such the assembly is216

interlocked. Also, the disassembling sequence ”remove P1, then P2, ..., then217

PN” always exists, possibly among others. We will say that for i > 0 part Pi218

obeys motion d (be it a rotation or a translation) if and only if it can freely219

translate/rotate along d for an infinitesimal motion without colliding with220

another part Pj, j 6= i.221

3.1. Blocking relationships in assemblies222

For this exposition to be self-contained we recall some elementary facts223

about blocking relationships in assemblies. Additional details and proofs can224

be found in [18]. For the sake of simplicity and illustrative purposes, until225

section 4.2, we only consider assemblies obeying translation motions.226

3.1.1. Cone of translational freedom227

We first focus our attention on the design problem where we want to228

partition a design domain into a polygonal assembly A = {P0, P1} such that229

P1 obeys an infinitesimal translation along one or many vector(s) d ∈ R2. To230

that end, we are going to reverse-engineer the relationship between a given231

assembly A = {P0, P1} and the set of translational motions P1 can obey.232

The easiest assembly made of two polygonal parts we can think of is such233

that the dividing curve between P0 and P1 is simply a line segment.234

Figure 6: On the left an assembly A = {P0, P1}. On the right, the hemisphere in a darker
shade of blue represents the half-space of motion of P1.

On figure 6 the design domain is the blue square on the left, the dividing235

curve is the yellow line segment and the green arrows represent several valid236

directions of translation such that P1 can move along them without colliding237

9

with P0. The red dashed ones depict invalid directions of translation as238

moving P1 along them will lead the two parts to intersect. The set of all239

valid translations constitutes a so-called half-space of motion. On figure240

6, let n be the unit normal vector of the yellow line segment separating the241

two parts oriented from P0 to P1 (the purple arrow). Then we can state that242

P1 may obey a direction d ∈ R2 if and only if n · d ≥ 0. A somewhat more243

complex result can be obtained by analysing a dividing polyline made of two244

line segments:245

Figure 7: On the left an assembly A = {P0, P1}. On the right, the cone of transla-
tional freedom results from the intersection of the half-space of motion of each yellow line
segment.

On figure 7 each line segment defines a half-space of motion. P1 can246

obey any d that is in both half-spaces of motion i.e. any d such that nA·d ≥ 0247

and nB ·d ≥ 0. We call cone of translational freedom the cone resulting from248

the intersection of the half-spaces of motion defined by the normal of each249

line segment of the yellow polyline.250

Figure 8: By intersecting half-spaces of motion, we can define the cone of translational
freedom of P1. Note that this cone may be reduced to a single direction as highlighted in
the example on the right.

More generally for any polyline made of k line segments, any vector d in

10

the cone of translational freedom is a solution to the system
n1 · d ≥ 0
...

nk · d ≥ 0

(1)

Figure 8 illustrates two more complex examples where on the right the251

cone of translational freedom is reduced to a single direction. This event is252

characterised by the fact that at least two unit normals np and nq are such253

that nq ·d = 0 and np = −nq. In both case any d in the cone can be obeyed254

to by P1.255

This small study gives us one important insight regarding the generation of256

assemblies obeying translations. Assume the user wants to design a part P1257

that must obey a cone of translational freedom bounded by two prescribed258

vectors dA and dB (possibly with dA = dB). Given this cone we want to259

generate a polyline such that the normal vectors of the line segments are260

solutions to system (1). In other words, we want the Gauss map of the261

polyline to lie in the arc of circle resulting from the intersection of the two262

semi-circles oriented by dA and dB. Figure 9 illustrates this process, where263

the Gauss map is figured by the collection of normal vectors depicted with264

purple arrows.265

cone of translational freedom cone of compatible normals
output design

Gauss map

Figure 9: The desired cone of translational freedom is bounded by two vectors which define
two semi-circles whose intersection becomes the cone of compatible normals. The Gauss
map of the dividing curve, represented here using purple arrows, must lie in the latter.

We have now understood which criterion should be met for a part with266

a prescribed cone of translational freedom. Yet this section tells us nothing267

11

on how to make sure that an assembly made of several parts is interlocked,268

which is the focus of the next two sections.269

3.1.2. Directional Blocking Graph - DBG270

Wilson and coauthors introduced in [18] the concept of Directional Block-271

ing Graph (DBG) for a given assembly A and a motion d that conveniently272

sums up the blocking relationships between the parts Pi of A for an infinites-273

imal motion along d. Such DBG is a directed graph denoted G(d, A) whose274

vertices Pi correspond to each of the N + 1 parts in the assembly A and an275

arc ei→j from vertex Pi to vertex Pj means that part Pi is blocked by part Pj276

for an infinitesimal motion of part Pi along direction d while holding part Pj277

in place. For instance, on figure 10, edge e0→1 in G(dh, A) encodes that P0278

is blocked by P1 for an infinitesimal translation along the horizontal direction279

dh and (since there is no e1→0) that P1 is free to translate along dh: P1 obeys280

dh. On the other hand, since both edges e0→1 and e1→0 exist in G(d, A) then281

both parts P0 and P1 block each other for a translation along d: none can282

obey d.283

Figure 10: An assembly A made of two parts P0 and P1 and two DBGs.

A useful property of a DBG G(d, A) is that we can easily deduce whether284

the assembly A is interlocked for d by checking the strong-connectedness1 of285

1Informally speaking, a directed graph is strongly connected if one can walk along
a path respecting the orientation of the edges between any couple of vertices (Pi, Pj).

12

the graph: if the graph is strongly connected then every part is blocked by286

another. If not, then it can be decomposed into strongly connected compo-287

nents (possibly reduced to a single vertex) where at least one component can288

obey d.289

For instance, in figure 11, top row, the DBG associated with the horizontal290

direction of motion has two strongly connected components that are colour-291

coded: {P1} in purple and {P0, P2} in blue. Indeed, starting from P1 one292

cannot reach any other node but P1 while following the edges’ orientation293

and, similarly, if one starts from any node in {P0, P2}, one can only reach294

these two nodes. Moreover, no edge starts from P1: it is not blocked by any295

other node and hence it obeys d. Still on the top row, the DBG to the right296

associated with the upwards direction of motion is strongly connected: its297

strongly connected component is {P0, P1, P2} as one can convince oneself by298

walking from any node to any other. Thus since every part is blocked by an-299

other and the assembly is deadlocked for an upwards motion of translation.300

On the bottom row of figure 11 part P1 has been removed and the as-301

sembly is now made of two parts {P0, P2}. The DBG associated to the302

horizontal direction of motion is strongly connected and the one associated303

to the upwards translation has two strongly connected components, namely304

{P0} (blue) and {P2} (purple). Moreover, since no edge starts from P2 the305

latter is not blocked by P0 for that upwards direction d: it can obey such d.306

13

Figure 11: The strongly connected components of each DBG are colour-coded (blue and
purple). Top row: an assembly made of 3 parts and the DBGs associated to the horizontal
to the right and vertical upwards directions of translation. Bottom row: assembly obtained
after removing P1 and the corresponding DBGs.

14

3.1.3. Non Directional Blocking Graph - NDBG307

Figure 12: On the left, an assembly A made of 4 parts and a representation of its NDBG
(restricted to translation). For i ∈ {1, 2, 3} part Pi obeys cone Ci (C2 being reduced to a
single direction). The DBGs associated with several directions dj (seen as points on the
unit circle) are also depicted.

A Non Directional Blocking Graph (NDBG) is simply the concatenation308

of all DBGs G(d, A) for all possible motions d. The NDBG of A can be309

represented on the 2D unit circle, seen as the locus of all directions of trans-310

lation in 2D.311

As illustrated on figure 12, a useful property of an NDBG is that if a part Pi312

15

obeys the two directions dp and dq bounding a cone of translational freedom313

Ci then [18] showed that for any d in the interior of Ci G(d, A) is obtained314

by performing a union operation of the two DBGs G(dp, A) and G(dq, A).315

In other words one only needs to compute the DBGs of the boundaries of a316

cone to know every possible DBG in that cone.317

For instance, on figure 12 cone C3 is bounded by directions dA
3 and dB

3318

and the DBG of the purple point d in the open arc]dA
3 ,d

B
3 [is the union of319

the DBGs associated to the bounding directions dA
3 and dB

3 . To see this one320

can notice that edge e1→2 (resp. e3→2) is present (resp. absent) in G(dB
3 , A)321

and absent (resp. present) in G(dA
3 , A) but both are present in G(d, A) (the322

corresponding arrows are highlighted in purple).323

Moreover, as stated by [7], half of the circle is redundant as G(−d, A) can324

be obtained by reversing the direction of the edges in G(d, A). In that sense325

we can fully assess the NDBG, i.e., the blocking relations of a sequential326

assembly, by studying the strong connectedness of a finite number of DBGs327

G(d, A) obtained for the endpoints d of the different user-prescribed cones328

of translational freedom Ci. Following [7] we call such DBGs the base DBGs329

of A.330

3.2. Turtle graphics and Markov process331

Turtle graphics is a popular way to introduce children to the basics332

of coding: a virtual Turtle is displayed on the screen of the computer and333

moves in the 2D plane according to instructions given by the user while leav-334

ing a trace on its path. These instructions are of the form ”Walk by l unit”;335

”Rotate by θ radians”. The children are then tasked to find and code a se-336

quence of instructions that lead the Turtle to draw some objective design:337

a square, a star of David, or any more complex shape. Similarly to [22] we338

will use such Turtle as an agent that draws the polylines partitioning the339

design domain into parts constituting our assembly.340

341

In probability theory, a Markov process, or Markov chain, ([23]) is a342

stochastic model describing a sequence of possible events in which the prob-343

ability of each event depends only on the state attained in the previous event344

(it is memoryless). A state is said absorbing if once entered the probability345

to leave it is 0. More specifically a discrete-time Markov process is a Markov346

chain with a countable number of states and the chain iteratively transitions347

between states at discrete time steps according to some probabilistic rules.348

16

In the present study, we introduce a discrete-time Markov chain with a fi-349

nite number of states and one absorbing state, herein referred to simply as350

Markov chain, to play the role of children in Turtle graphics as the one mak-351

ing up the sequence of orders to move the Turtle with. Formally speaking,352

such a Markov process M is defined as a tuple (V ,P) where353

• V is the set of possible states that the chain will transition between. In354

our case V = {start, rotate, walk, snap, end}.355

• State end is absorbing: once M reaches this state it cannot leave it.356

• P is the set of probabilistic rules specifying which transitions are avail-357

able as well as their weights. It defines mappings p : V → V . We358

provide here a succinct description of the rules emitted by the chain359

M and how they are interpreted by the Turtle. More details are given360

section 4.361

Seven rules are defined in P :362

0. start 7→ rotate363

Figure 13: The Turtle is randomly initialised on the boundary of the design domain and
this order simply tells it to choose a random orientation parameterised by angle θ.

1. rotate 7→ walk364

Figure 14: The Turtle has already chosen an orientation and must now walk forwards by
a random amount.

2. rotate 7→ end365

17

Figure 15: The Turtle has already chosen an orientation and walks forward until meeting
an edge of the design domain.

3. walk 7→ rotate366

Figure 16: The Turtle has walked to a new position and must now choose a new random
orientation.

4. walk 7→ snap367

The snap order ensures that the assembly is compatible with368

the prescribed disassembling motions by orienting the Turtle369

collinearly with the bounds dA and dB. Details are provided sec-370

tion 4.371

prescribed CTF

or

Figure 17: Context: the leftmost blue cone represents the cone of translational freedom
(CTF) prescribed by the user: the final design must obey any direction in the cone bounded
by dA and dB . The Turtle has walked to a new position and must now choose to orient
along either ±dA or ∓dB .

5. snap 7→ walk372

Figure 18: Similar to rotate 7→ walk: the Turtle has snapped to an orientation and
walks forward by a random amount.

18

6. snap 7→ end373

Figure 19: Similar to rotate 7→ end: the Turtle has snapped to an orientation and walks
forward until meeting an edge of the design domain.

When two rules apply to the same left-hand side (for instance rotate 7→374

walk and rotate 7→ end) then the Markov chainM randomly chooses375

one of the two with some predefined probability as depicted on figure376

20377

Figure 20: M transitions between states with some predefined probabilities pi.

These strings are iteratively composed into a random sentence, for in-378

stance on figure 21 the full sequence emitted byM is start 7→ rotate 7→379

walk 7→ snap 7→ walk 7→ rotate 7→ walk 7→ rotate 7→ walk 7→ rotate380

7→ walk 7→ snap 7→ walk 7→ rotate 7→ walk 7→ rotate 7→ end. At each381

iteration of the algorithm the Turtle receives one of these 5 strings, inter-382

prets it as an order and acts accordingly.383

384

Since a sequence of the form [rotate or snap] 7→ walk defines a segment385

and a polyline is simply constituted of line segments jointly concatenated,386

this Markov processM is sufficient to draw a polygonal assembly. We do not387

need to add rules of the kind rotate 7→ rotate as the final orientation could388

very well be obtained after a single rotate order. Similarly a walk 7→ walk389

can be obtained with the sequence walk 7→ rotate 7→ walk where the Turtle390

19

happens to keep the same orientation before and after the rotate order. We391

will prove in section 4.1 that the Markov chain M aided by the Turtle392

can reach the full search space of polygonal assembly.393

4. Algorithm and results394

We propose to define a Markov processM that will instruct a Turtle so395

that the latter draws a polyline dividing the design domain into two parts,396

one of which obeying a user-prescribed motion d. By repeatedly running397

this algorithm we can partition the domain into several polygonal parts Pi398

defining an assembly A. By checking the strong-connectedness of the G(d, A)399

for the different user-prescribed d we can assess whether A is globally inter-400

locked. Let us dive into the details of the generation of, first, parts obeying401

a translation and, then, of parts obeying a rotation.402

4.1. Parts obeying a translation403

4.1.1. On the creation of a single part404

The user decides on two vectors of translation dA
1 and dB

1 bounding the405

cone of translational freedom of the would-be part P1. Enforcing dA
1 = dB

1406

leads to the special case where the cone is reduced to a single vector that407

is to say where P1 must translate along one direction only. Then a Markov408

chain M emits the start order which initialises a Turtle randomly on the409

boundary of the design domain. In subsequent iterationsM tells the Turtle410

whether to orient itself or to move. To comply with a walk order, the length411

l by which the Turtle moves is randomly picked in a user-defined interval412

[lmin, lmax] (to have consistent step size, or edge length). To obey a rotate413

order, the rotation angle θ is randomly chosen in an interval such that the414

normal vector n of the line segment is such that n · dA
1 ≥ 0 and n · dB

1 ≥ 0.415

The reader’s attention is drawn to the fact that this constraint on θ is enough416

to prevent the Turtle from crossing its own path.417

input

Figure 21: A step-by-step decomposition of the Turtle’s trajectory. Highlighted in purple
on the far right are the line segments corresponding to a snap order.

20

If the sequence of orders and random values leads the Turtle to wander418

outside of the design domain, a backtracking procedure is executed to replace419

it inside. At the end of an iteration, M randomly applies a production rule420

on the latest order it gave to get the one for the next iteration. Finally, when421

M emits the end order, the Turtle walks until meeting an edge of the design422

domain.423

Obviously, letting the Turtle move like this is likely to yield very poor results424

as the random separating polyline obtained at the end will be such that the425

actual cone of translational freedom of P1 strictly includes the user-prescribed426

cone bounded by dA
1 and dB

1 . As an extreme example imagine that the user427

specified a vector dA
1 = dB

1 ≡ d1 = (1, 0)T aligned with the x axis (meaning428

that the user wants P1 to translate along the horizontal axis only) and the429

Turtle drew a single line segment, as illustrated on the top row of figure430

22. Even though P1 does obey d1 it also obeys a full half-space of motion431

which is an undesirable behaviour.432

input

output prescribed CTF

actual CTF

without snap

with snap

output

prescribed and actual CTF

desired CCN

actual Gauss map

desired CCN

actual Gauss map

Figure 22: CTF and CCN respectively stand for Cone of translational freedom and Cone
of compatible normals. The Gauss map of the dividing polyline is depicted using purple
arrows on the rightmost circles.

In order to reduce the actual cone of translational freedom of P1 to the433

user-prescribed one, the Markov chainM is enriched by a special state that434

we call snap: it forces the parameter θ to be chosen such that the Turtle is435

oriented either along ±dA
1 or ∓dB

1 . The signs ±1 and ∓1 are randomly cho-436

sen at the initialisation of the Turtle. This ensures that when the Turtle437

snaps it draws a line segment whose unit normal vector n is such that either438

21

n · dA
1 = 0 and n · dB

1 ≥ 0 or vice-versa by switching the superscripts A and439

B. As such, the Turtle draws a valid polyline (i.e., such that the cone of440

translational freedom of P1 exactly matches the user-prescribed cone) if and441

only if it snapped at least twice, once along ±dA
1 and once along ∓dB

1 , which442

gives a computationally light manner to check whether a polyline is valid.443

On figure 22, bottom row, one snap order ensures that the Gauss map of444

the polyline includes a normal vector bounding the cone of compatible nor-445

mals. Snapping at least twice in opposite directions ensures that two normal446

vectors will match the bounds of the cone of compatible normals (vertical447

upwards and downwards purple arrows on the right).448

449

4.1.2. Surjectivity of the Markov processM450

We justify here that the Markov process M associated with the Turtle451

are sufficient to reach any polygonal assembly, i.e the mapping from the set452

made ofM and the space of the Turtle’s parameters (l and θ) to the space453

of polygonal assembly is surjective.454

Any polyline separating two parts must fit in the design domain. This ob-455

servation gives an obvious upper bound on the value of lmax, which could be456

the length of the diagonal of the bounding square of the design domain. In457

addition, setting lmin = 0 ensures that the Turtle can draw infinitely small458

line segments and as such the full space of polygonal parts can be reached.459

But the mapping is not injective: for instance it is possible, although un-460

likely, that the magnitudes to walk or rotate by chosen by the Turtle for461

the sequence rotate 7→ walk 7→ rotate 7→ walk on the one hand and462

rotate 7→ walk on the other lead the same line segment see figure 23. As463

such two identical polylines can be obtained through two different sequences464

of orders and the mapping is not injective. Moreover from a practical point465

of view letting the Turtle draw infinitely small segments might not be de-466

sirable and the user may want to reduce the search space to the subset of467

polylines having a minimal segment length lmin > 0. The upper bound lmax468

can also be reduced to some smaller value as any polyline with a segment469

length greater than lmax can still be reached by walking several times in the470

same direction. Thus the mapping to this subset is still surjective.471

22

Figure 23: The same line segment can be reached by walking twice in the same direction
by a magnitude l

2 or once by a magnitude l, for some l ∈ [lmin, lmax], and thus the map is
not injective.

Note that this mapping can be made injective by reducing a sequence472

emitted byM to the smallest possible word by tracking the times where the473

Turtle rotated by 0 rad (or snapped consecutively) and replacing instruc-474

tions “rotate(θi) 7→ walk(li) 7→ rotate(0) 7→ walk(li+1)” with “rotate(θi) 7→475

walk(li + li+1)”.476

4.1.3. On the creation of an interlocked assembly477

To proceed with creating an assembly A = {P0, ..., PN} we simply repeat-478

edly run the above algorithm in order to subdivide the remaining part P0479

into two parts at each step (see figure 24). At the end of every iteration480

the base DBGs are computed and if they are all strongly connected (but the481

one associated with the first cone of motion that must say that P1 is free to482

translate in this cone) the latest polyline drawn by the Turtle is accepted483

and the next iteration starts. If not, this latest polyline is discarded and the484

Turtle must start drawing it again. Figure 24 illustrates the creation of a485

translational assembly made of 3+1 parts.486

23

input
iteration 1

iteration 2

iteration 3

NDBG ok ?

output

NDBG

yes

no

NDBG ok ? yes

no

Figure 24: Workflow of the generation of a translational assembly made of 3+1 parts

A necessary condition for a part Pi to be blocked by an other part Pj,487

0 < j < i, is for the two of them to share a boundary. To ensure contact488

and thus increase the odds of the DBGs being strongly connected we bias489

the Turtle to always choose its starting point on a boundary shared by an490

other Pj, 0 < j < i.491

The reader’s attention is drawn to the fact that the user cannot prescribe492

two cones of translational freedom related to two successive parts, say Pi493

and Pi+1, to intersect: indeed it would mean that there exists a direction in494

the intersection of the cones such that Pi and Pi+1 can simultaneously obey495

it and in practice, one part could push the other out of the way. However496

the user can specify intersecting cones related to non-successive parts, say Pi497

and Pj with |i − j| > 1, and leave it to the Turtle to create an interlocked498

assembly.499

500

Figure 25 presents four assemblies obeying translations generated by our501

method where the leftmost column depicts the user-prescribed cone of trans-502

lational freedom.503

24

Figure 25: Assemblies working purely in translation. N = 4 on the top row and N = 3 on
the bottom row.

A demonstration of the assembling and disassembling motions on a real504

laser-cut assembly obeying translations is proposed at 0:31 in our video [8].505

4.2. Parts obeying a rotation506

The workflow to generate an assembly obeying rotations is essentially the507

same as the one for translational assemblies except that the angular interval508

in which parameter θ, the Turtle’s orientation, is chosen must be dynami-509

cally updated as it depends on both the Turtle’s current position and the510

step size l.511

512

In a general setting the point x̂ = (x̂, ŷ) obtained by rotating a point
x = (x, y) by an angle ψ around a centre point d = (xd, yd) is given by:(

x̂
ŷ

)
=

(
cosψ − sinψ
sinψ cosψ

)(
x− xd
y − yd

)
+

(
xd
yd

)
Because we restrict this study to infinitesimal motions, we assume |ψ| � 1

25

and a first-order Taylor expansion yields(
x̂
ŷ

)
=

(
x
y

)
+ ψ

(
yd − y
x− xd

)
(2)

Equation (2) states that an infinitesimal rotation of x around d is the same513

as an infinitesimal translation of x along the vector mx =

(
yd − y
x− xd

)
. We514

call mx the instantaneous direction of motion of point x. Note that this515

vector is orthogonal to the line going through x and d.516

A necessary and sufficient condition for the part P1 of an assembly A =517

{P0, P1} to obey a rotation around d is to have the instantaneous directions518

of motion of all points x on the boundary of P1 not pointing towards the519

interior of P0. Indeed if there is one point x on the boundary of P1 such that520

mx points towards the interior of P0 then an infinitesimal rotation around d521

will send that point to collide with P0 which exactly means that P1 does not522

obey d. Moreover, since we focus on infinitesimal motions, we only need to523

study the points on the boundary of both P0 and P1. In other words the fact524

that P1 obeys d depends only on the geometry of the polyline separating P0525

from P1.526

527

While the Turtle is walking we do not know on which side of its path
P1 will be. What we do know is that P1 will always be on the same side of
this path: from the Turtle’s point of view, P1 will either always be to the
left or always be to the right. That is to say the instantaneous direction of
motion mx, of each point x on the Turtle’s path, shall always be pointing
either ”to the left” or ”to the right” of the path. Mathematically speaking,
for any point x on the Turtle’s path we denote by θ the orientation of the
line segment of the polyline on which x is and the condition becomes:

s

(
cos θ
sin θ

)
×mx ≥ 0 (3)

where × denotes the 2D cross-product and s = ±1 is a constant sign, ran-
domly decided at the initialisation of the Turtle, that stipulates on which
side of the path mx shall be pointing to. After a few calculations, developed
in appendix A, one derives the formula:

Equation(3)⇔ ∀i

{
sli ×mxi

≥ 0

sli ×mxi+1
≥ 0

(4)

26

where mxi+1
= mxi

+ li

(
− sin θi
cos θi

)
and xi+1 = xi + li, with vector li =528

li

(
cos θi
sin θi

)
. Generally speaking system (4) admits an angular interval as a529

solution.530

Figure 26: The purple arrows represents the instantaneous directions of motions of each

yellow point. A zoom on the right shows that the cross product between

(
cos θi
sin θi

)
and

vectors mxi
, mxi+1

and mx are all of the same sign meaning that, at least for the line
segment under scrutiny, a rotation around centre d is possible.

Concretely when the Turtle is at position xi it chooses a step size li and531

System (4) is solved for to get an angular interval in which to randomly532

choose the Turtle’s orientation θi. This ensures that all the points x on533

segment [xi,xi+1] obey a rotation around centre d, see figure 26. Observe534

that we can still define a snap order in this case: when M tells the Turtle535

to snap, the latter’s orientation θi is chosen as one of the two bounds of the536

angular interval defined by system (4). This ensures that one of the two537

inequalities of system (4) becomes an equality and geometrically speaking538

the Turtle moves radially with respect to centre d.539

540

Now that we have understood how to compute the angular interval in541

which to choose the orientation θ, we can simply plug this calculation in542

the algorithm described in section 4.1 and generate an assembly obeying543

rotations:544

27

Figure 27: An assembly made of 3+1 parts, each obeying a rotation.

As the Turtle walks it is possible to define the on-going cone of transla-545

tional freedom of the polyline under construction. As the current part shall546

rotate but not translate the algorithm keeps computing what angle θ would547

close such cone of freedom (meaning it would find θ such that the normal vec-548

tor n of the current line segment would not be compatible with system (1)549

for any direction of translation). If such θ happens to be solution to system550

(4), then it is greedily chosen to orient the Turtle, which ensures that the551

newly created part will obey its rotation but will not obey any translation.552

The parts depicted on figure 27 are obtained through this procedure. A553

demonstration of the (dis)assembling motions as well as the interlocking as-554

pect of the design presented on figure 27 is available at 0:06 in our video [8].555

556

A note on the NDBG: section 3.1 shows that for an assembly working557

in translation the directions d of the DBGs G(d, A) are vectors and can be558

seen as points on the unit circle (and the NDBG can be fully represented559

on the unit circle). For an assembly working in rotation the motions d are560

centres of rotation, i.e., points anywhere in the plane. As such the NDBG561

of such an assembly is represented on the tuple made of twice the R2 plane,562

where each point is a centre of rotation and is taken twice to account for563

both clockwise and counterclockwise rotations.564

Figure 25 presents four assemblies obeying rotations generated by our565

method. The leftmost column depicts the user-prescribed positions of the566

centres of rotation with respect to the square design domain. The assemblies567

were generated for N ∈ {3, 4}.568

28

Figure 28: Assemblies working purely in rotation.

4.3. Parts obeying both a translation and a rotation569

Building on top of the two previous sections it is quite easy to adapt our570

algorithm to design parts obeying both translations and rotations.571

Say the user wants Pi to obey simultaneously a translation along any vectors572

in the cone bounded by the vectors dA
i and dB

i and a rotation around the573

centre dC
i . To succeed, one simply needs to intersect the angular interval574

defined for the translation cone and the angular interval defined by system575

(4) and choose the orientation θ in the resulting interval.576

Figure 29: An assembly made of 3+1 parts: P1 obeys a rotation around dr
1; P2 obeys both

a translation along dt
2 and a rotation around dr

2; P3 obeys a translation along dt
3

29

In such case the Markov chain M distinguishes between a snapT (trans-577

lation) and a snapR (rotation) and the rest of the algorithm stays the same.578

Note that special care must be taken by the user to define dA
i , dB

i and dC
i579

to be compatible with each other: one cannot ask for a rotation around dC
i580

that would lift Pi up and at the same time define dA
i , dB

i to be pointing581

downwards. Figures 1 and 29 present laser-cut puzzles generated by our582

Turtle where each part obeys a rotation and/or a translation. On figure583

30 part P1 obeys both a rotation (dr
1) and translation (dt

1) while parts P2584

and P3 must rotate (dr
2 and dr

3).585

Figure 30: Assemblies working both in rotation and in rotation.

5. Computation time586

By letting the algorithm run the way it has been described so far, the587

greater the number of parts N the less likely is it that a solution assembly588

will be found. In fact, the algorithm may fail to draw a polyline (as soon as589

N ≥ 2). Indeed, referring to figure 24, the design domain accessible to the590

Turtle when it is tasked to draw the next part Pi+1 is what was the remaining591

part, P0, at the previous iteration. Thus the bigger are the previous parts Pj,592

0 < j < i, the smaller is the design domain at iteration i+ 1, and if it is too593

small there is simply not enough space to successfully create the next part594

given the step resolution interval [lmin, lmax]. Consequently, the greater N the595

more the more difficult it is to generate successive parts and the completion596

time may become infinite.597

As a consequence, two measures have been implemented:598

30

• To ensure a design domain large enough at all iterations, a part is599

discarded if its area is greater than A
N+1

(A being the area of the initial600

design domain, the square in our examples) regardless of the NDBG,601

and has to be drawn again. This constraint ensures that all parts are602

of similar areas and that the remaining part P0 is relatively big at all603

iterations.604

• If the creation of a part Pi+1 fails M ∈ N∗ successive times (i.e. the re-605

lated DBGs are not strongly-connected and/or its area is above the606

threshold) then it is assumed that part Pi, even though valid, has607

strange geometrical features making it burdensome for the Turtle to608

succeed. Consequently, the algorithm backtracks: Pi is deleted and609

must be generated again.610

These two measures ensure that a valid interlocked assembly will eventu-611

ally be found but give no certainty on the completion time (empirically, in612

translation, it seems to be in O(N4)). To understand it we need to quickly613

prove some results: for 0 < k ≤ N , at iteration k, let Ak be the area of614

the design domain in which part Pk shall be drawn (for instance A1 = A,615

the area of the initial design domain). At this kth step k − 1 parts Pj,616

0 < j < k, already exist, each with an area smaller than A
N+1

. As such617

Ak ≥ A−
∑k−1

j=1
A

N+1
= A(N+2−k)

N+1
. Thus the probability Pk to draw a part Pk618

with an area less than A
N+1

is Pk =
A

N+1

Ak
≤ 1

N+2−k . Moreover, for k > 1, for619

a part Pk to be valid all the relevant DBGs in the NDBG must be strongly-620

connected, which is not a given, i.e. the probability that Pk meet this con-621

straint is strictly less than 1 (it is not the case for P1 as there is no NDBG622

to compute). Thus for k > 1 the probability that a part Pk meets both con-623

straints (area below the threshold and strongly-connected DBGs) is strictly624

less than 1
N+2−k (and is exactly 1

N+1
when k = 1).625

In practice, since P1 only needs to meet the area constraint (probability 1
N+1

),626

it happens to be quite fast to generate. The crux of the issue lies with part627

P2: it has to meet both constraints and the probability to get a valid part628

is strictly less than 1
N

(and empirically, it seems to be much lower). Once629

such P2 is obtained, it becomes easier and easier to draw the subsequent630

parts and in particular PN is also quite fast to generate. However, see the631

second bullet point, if the algorithm fails M times to draw a part Pi+1 then632

Pi is deleted: when that happens for part P3 and P2 (which is quite likely633

for a sufficiently large N , see figure 31), P2 has to be redrawn from scratch634

31

which again takes a lot of computational time. Thus the value of M has to635

be carefully picked: if M is too small then a part Pi might be deleted whereas636

a solution would have been found had the algorithm ran longer; conversely if637

M is too big the algorithm keeps trying to generate Pi+1 whereas the shape638

of Pi makes it challenging to succeed and simply deleting Pi and redrawing639

it anew would have lead to a faster generation of Pi+1, see table 2 where640

the optimal value of M seems to be around 15.641

Translation Rotation
parts Min (ms) Average (ms) Max (ms) Min (ms) Average (ms) Max (ms)

1 1 4 12 2 29 97
2 6 57 192 131 2048 8197
3 37 237 726 523 5288 14780
4 228 697 1469 7127 35416 89994
5 540 2039 5031 - - -
6 1607 8070 19302 - - -

Table 1: Completion time for assemblies made of {1,2,3,4,5,6} + 1 parts working either in
translation or in rotation.

Table 1 shows the minimum, mean, and maximum times needed by the642

algorithm to generate an assembly made of N + 1 parts (for N ∈ J1, 6K)643

working either purely in translation or purely in rotation in a square design644

domain with [lmin, lmax] = [0.05L, 0.1L], where L is the length of the diagonal645

of the square. The motions to obey, d, were sampled randomly, and the646

completion times were averaged on 1050 designs.647

M 5 10 15 20 50 100 200
Min (s) - 5.1 2.4 2.1 5.7 9.0 6.4

Average (s) - 15.9 13.1 13.8 15.8 20.8 30.7
Max (s) - 26.1 23.6 29.7 26.4 35.4 69.7

Table 2: Completion time for assemblies made of 5 + 1 parts working purely in rotation
for various values of M .

The parameters used to obtain table 2 are the same as those used for648

table 1. This table confirms that the value of M strongly influences the649

completion time. In particular, not a single complete assembly was found for650

M = 5.651

32

reading direction

Figure 31: Regarding an assembly made of 6+1 parts, this tree illustrates the search
carried out by the Turtle before finding a correct assembly. Here M = 20.

On Figure 31 the goal was to generate an assembly made of 6+1 parts.652

Each of the designs was recorded and arranged in a tree. For clarity, paths653

related to the generation of P1 were omitted. Red paths represent fruitless654

paths: the Turtle drew a part Pi that does not meet one of the two afore-655

mentioned constraints. After failing M = 20 times the Turtle backtracks656

to the previous part. The orange paths depict paths such that a valid part657

Pi was successfully drawn but a subsequent part Pj, j > i; had we wanted658

N = i parts the algorithm would have stopped at the latest at that path (it659

may have stopped earlier as the area threshold would have been less stringent660

and parts that have been discarded for N = 6 would have been accepted for661

N < 6). The green path is the valid path at the end of which the Turtle662

partitioned the design domain into a valid assembly. This figure clearly il-663

lustrates that most of the computation time was lost on generating fruitless664

33

P2 and that the greater i the fewer trials the algorithm needs before drawing665

a valid Pi.666

6. Conclusion667

We introduce a novel method to generate 2D sequential interlocking as-668

semblies obeying translation, rotation, or a combination of both motions us-669

ing an agent, called the Turtle, that partitions a design domain into polyg-670

onal parts. One of the main hypotheses of our work is the fact that the671

parts are polygonal, i.e. the separating curve between two parts is a poly-672

line. Yet, as we derive the mathematical formula governing a valid assembly,673

one notices that these equations could readily be used to explore a broader674

solution space and design non-polygonal assemblies, for instance using nurbs675

instead of polylines to create the separating curves. A key feature of our work676

is the surjectivity of the mapping to the solution space. This ensures that,677

given enough trials and computation time, any polyline can be generated and678

thus that we explore homogeneously the full space of polygonal assemblies.679

Our approach yields surprising and novel assemblies but its main drawback680

is computational time: for some problems, especially the ones involving a681

combination of translation and rotation, the time needed to draw a valid682

assembly may become quite long. Future work shall be oriented towards a683

speeding up of the algorithm, possibly by running multiples Turtles in par-684

allel, or by building a database and learning the statistical distribution of685

what makes an assembly valid and then sampling that distribution. Also, as686

highlighted by figure 31, most of the computation time is lost on generat-687

ing parts P2 not meeting the area threshold or the NDBG constraint. The688

current, naive, approach to deal with such unfeasible designs is to backtrack,689

delete, and start drawing them anew. Yet, Wang et al., in [24], suggests690

an interesting road to explore: for a given interlocked assembly, the authors691

optimise the geometry of the components to increase a stability score, and692

gradually make the assembly more structurally stable. In future work, their693

study shall be adapted so that for each design drawn by the Turtle, the694

polyline is optimised to increase the likeliness of the NDBG being strongly695

connected. Moreover, it would be interesting to enrich the set of states ac-696

cessible to the Markov process M, using a more interesting syntax, so that697

the Turtle can automatically draw predefined features that are of interest698

in the construction sector.699

This study focuses on infinitesimal motions only. Whilst it concerns only700

34

a small minority of the assemblies generated so far, it is quite possible for701

some designs that a finite motion to disassemble a part is impossible as it702

will collide with another part that cannot be removed before. Our video [8]703

illustrates such issue at 1:05. Furthermore, in this paper, we did not prove704

that if a part obeys a rotation about a centre d then d is the only centre of705

rotation of that part. The fact that a part may rotate around any point in706

the vicinity of centre d may prove useful in the context of toleranced assem-707

bly. Also, this work focuses only on the geometrical aspect of an assembly:708

as shown on figure 5 the scope of this paper is on the design knowledge709

step. Yet for any real problem, the exploration step is crucial and one may710

want to assess and optimise some user-defined metrics such as the mechan-711

ical relevance or fabricability of the generated parts. Such optimisation is712

entirely possible given the parametrisation of the separating polylines drawn713

by the Turtle (simply a list of segment lengths and orientations) but has714

not been investigated so far. Yet, we may share some thoughts on the mat-715

ter: referring to translational assemblies only, a Combescure transformation716

preserves the normals and, thus, the cinematics of (dis)assembly. It only717

involves the finding of a basis of the kernel of a matrix, which is a cheap718

calculation to perform. The linear space spanned by this basis encodes all719

geometrically valid designs in the vicinity of the solution found by our al-720

gorithm. A gradient descent on some predefined objective by the user, or a721

more open multi-criteria optimisation, can then be performed locally to find722

better designs. Performing this operation in parallel over multiple different723

designs found by our algorithm could generate many solutions that could be724

ranked according to the objectives defined by the user. Finally, an obvious725

research path shall be explored: the generation of 3D polyhedral assemblies.726

727

Acknowledgements728

. We are grateful to the anonymous reviewers for their thoroughness and729

helpful comments.730

This work has been supported by the project DiXite. Initiated in 2018,731

DiXite (Digital Construction Site) is a project of the I-SITE FUTURE, a732

French initiative to answer the challenges of sustainable city.733

References734

[1] T. Bock, T. Linner, Advanced Construction and Building Technology,735

Cambridge University Press, 2015, ISBN: 978-1-107-07638-9, pp. 1–17.736

35

doi:10.1017/CBO9781139924146.002.737

[2] Déchets chiffres-clés, accessed: 2021-04-09 (2017).738

URL https : / / www . ademe . fr / sites / default / files / assets /739

documents/dechets-chiffrescles-edition2020-3-010692.pdf740

[3] Neutralité & bâtiment, accessed: 2021-04-09 (2016).741

URL https://ile-de-france.ademe.fr/sites/default/files/742

neutralite-carbone-batiment.pdf743

[4] M. Larsson, H. Yoshida, N. Umetani, T. Igarashi, Tsugite: Interactive744

design and fabrication of wood joints, in: Proceedings of the 33rd Annual745

ACM Symposium on User Interface Software and Technology, UIST ’20,746

Association for Computing Machinery, New York, NY, USA, 2020, pp.747

317–327. doi:10.1145/3379337.3415899.748

[5] P. Song, C.-W. Fu, D. Cohen-Or, Recursive interlocking puz-749

zles, ACM Transactions on Graphics 31 (6) (November 2012).750

doi:10.1145/2366145.2366147.751

[6] J. Yao, D. M. Kaufman, Y. Gingold, M. Agrawala, Interactive design and752

stability analysis of decorative joinery for furniture, ACM Transactions753

on Graphics 36 (4) (March 2017). doi:10.1145/3072959.3054740.754

[7] Z. Wang, P. Song, M. Pauly, Desia: A general framework for designing755

interlocking assemblies, ACM Transactions on Graphics 37 (6) (Decem-756

ber 2018). doi:10.1145/3272127.3275034.757

[8] P. Gilibert, R. Mesnil, O. Baverel, Rule-based generative de-758

sign of translational and rotational interlocking assemblies (2021).759

doi:10.5281/zenodo.5158465.760

URL https://doi.org/10.5281/zenodo.5158465761

[9] R. Testuz, Y. Schwartzburg, M. Pauly, Automatic Generation of Con-762

structable Brick Sculptures, in: M.-A. Otaduy, O. Sorkine (Eds.), Eu-763

rographics 2013 - Short Papers, The Eurographics Association, 2013.764

doi:10.2312/conf/EG2013/short/081-084.765

[10] S. Xin, C.-F. Lai, C.-W. Fu, T.-T. Wong, Y. He, D. Cohen-Or, Making766

burr puzzles from 3d models, ACM Transactions on Graphics 30 (4)767

(July 2011). doi:10.1145/2010324.1964992.768

36

[11] C.-W. Fu, P. Song, X. Yan, L. W. Yang, P. K. Jayaraman, D. Cohen-769

Or, Computational interlocking furniture assembly, ACM Transactions770

on Graphics 34 (4) (July 2015). doi:10.1145/2766892.771

[12] L. Luo, I. Baran, S. Rusinkiewicz, W. Matusik, Chopper: Partitioning772

models into 3d-printable parts, ACM Transactions on Graphics 31 (6)773

(November 2012). doi:10.1145/2366145.2366148.774

[13] Y.-L. Yang, J. Wang, N. J. Mitra, Reforming shapes for material-aware775

fabrication, in: Proceedings of the Eurographics Symposium on Geome-776

try Processing, SGP ’15, Eurographics Association, Goslar, DEU, 2015,777

pp. 53–64. doi:10.1111/cgf.12696.778

[14] P. Song, Z. Fu, L. Liu, C.-W. Fu, Printing 3d objects with interlocking779

parts, Computer Aided Geometric Design 35-36 (2015) pp. 137–148.780

doi:10.1016/j.cagd.2015.03.020.781

[15] P. Jimenez, Survey on assembly sequencing: A combinatorial and geo-782

metrical perspective, Journal of Intelligent Manufacturing 24 (2011) pp.783

1–16. doi:10.1007/s10845-011-0578-5.784

[16] A. Lambert, Disassembly sequencing: A survey, International785

Journal of Production Research 41 (2003) pp. 3721–3759.786

doi:10.1080/0020754031000120078.787

[17] Z. Wang, P. Song, M. Pauly, State of the art on computational design788

of assemblies with rigid parts, Computer Graphics Forum 40 (2021) pp.789

633–657. doi:10.1111/cgf.142660.790

[18] R. H. Wilson, J.-C. Latombe, Geometric reasoning about mechan-791

ical assembly, Artificial Intelligence 71 (2) (1994) pp. 371–396.792

doi:10.1016/0004-3702(94)90048-5.793

[19] B. Romney, C. Godard, M. Goldwasser, G. Ramkumar, An efficient794

system for geometric assembly sequence generation and evaluation, 1995,795

pp. 699–712. doi:10.1115/CIE1995-0800.796

[20] M. Bagneris, R. Motro, B. Maurin, N. Pauli, Structural mor-797

phology issues in conceptual design of double curved systems,798

International Journal of Space Structures 23 (2008) pp. 79–87.799

doi:10.1260/026635108785260560.800

37

[21] Optimizing structural building elements in metal by using additive man-801

ufacturing, accessed: 2021-12-07 (2015).802

URL https://www.ingentaconnect.com/content/iass/piass/803

2015/00002015/00000002/art00016804

[22] R. Oval, M. Rippmann, R. Mesnil, T. Mele, O. Baverel, P. Block,805

Feature-based topology finding of patterns for shell structures, Automa-806

tion in Construction (February 2019). doi:10.1016/j.autcon.2019.02.008.807

[23] P. A. Gagniuc, Markov Chains: From Theory to Implementation and808

Experimentation, John Wiley & Sons, Inc., ISBN: 978-1-119-38759-6809

978-1-119-38755-8. doi:10.1002/9781119387596.810

[24] Z. Wang, P. Song, F. Isvoranu, M. Pauly, Design and structural opti-811

mization of topological interlocking assemblies, ACM Transactions on812

Graphics 38 (6) (November 2019). doi:10.1145/3355089.3356489.813

Appendices814

A. Parts obeying a rotation815

Let {x0,x1, ...,xk} be the vertices of the polyline drawn by the Turtle.
Let (li, θi) be the tuple defining segment [xi,xi+1]: xi+1 = xi + li with

vector li = li

(
cos θi
sin θi

)
. By linearity of equation (2), equation (3) can be

rewritten as follows:

equation (3)⇔

s

(
cos θi

sin θi

)
×mxi

≥ 0

s

(
cos θi

sin θi

)
×mxi+1

≥ 0

where we assume the index i to be such that x ∈ [xi,xi+1]. Thus:816

38

P1 obeys d ⇔ ∀ 0 ≤ i < k

{
s(xi+1 − xi)×mxi

≥ 0

s(xi+1 − xi)×mxi+1
≥ 0

⇔ ∀ 0 ≤ i < k

{
sli ×mxi

≥ 0

sli ×mxi+1
≥ 0

where mxi+1
= mxi

+ li

(
− sin θi
cos θi

)
.817

39

Graphical Abstract1

Rule-based generative design of translational and rotational inter-2

locking assemblies3

Pierre Gilibert, Romain Mesnil, Olivier Baverel4

5

Highlights6

Rule-based generative design of translational and rotational inter-7

locking assemblies8

Pierre Gilibert, Romain Mesnil, Olivier Baverel9

• Generality: our approach deals with the generation of 2D interlocking10

assemblies working in translations, rotations, and a combination of11

both. All translation directions or centres of rotation can be selected.12

• Exhaustivity: any interlocked geometry can be generated.13

• Injectivity: any feasible geometry can be produced by one sequence14

only.15

