
HAL Id: hal-04582383
https://hal.science/hal-04582383

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

System Description: A Theorem-Prover for Subregular
Systems: The Language Toolkit and Its Interpreter,

Plebby
Dakotah Lambert

To cite this version:
Dakotah Lambert. System Description: A Theorem-Prover for Subregular Systems: The Language
Toolkit and Its Interpreter, Plebby. Functional and Logic Programming, Shin-ya Katsumata, May
2024, Kumamoto, Japan. pp.311-328, �10.1007/978-981-97-2300-3_16�. �hal-04582383�

https://hal.science/hal-04582383
https://hal.archives-ouvertes.fr

System Description:
A Theorem-Prover for Subregular Systems:

The Language Toolkit and its Interpreter, Plebby

Dakotah Lambert1[0000−0002−7056−5950]

Université Jean Monnet Saint-Étienne, CNRS, Institut d Optique Graduate School,
Laboratoire Hubert Curien, UMR 5516, F-42023, Saint-Étienne, France

dakotahlambert@acm.org

Abstract. We introduce here a domain-specific language, PLEB. The
Piecewise-Local Expression Builder interpreter (plebby) is an interac-
tive system for defining, manipulating, and classifying regular formal
languages. The interactive theorem-proving environment provides a gen-
eralization of regular expressions with which one can intuitively construct
languages via constraints. These constraints retain their semantics upon
extension to larger alphabets. The system allows one to decide implica-
tions and equalities, either at the language level (with a specified alphabet)
or at the logical level (across all possible alphabets). Additionally, one
can decide membership in a number of predefined classes, or arbitrary
algebraic varieties. With several views of a language, including multiple
algebraic structures, the system provides ample opportunity to explore
and understand properties of languages.

Keywords: Formal language theory · Subregular analysis · Semigroup classifica-
tion · Interactive theorem proving · Mathematical library

1 Introduction

The study of formal languages is fundamental to the field of theoretical computer
science. The regular languages in particular correspond to finite-state automata,
which model stateful systems such as neural networks [21], text processing [43],
robotics [33], and much more. So fundamental are these concepts that nearly any
text on the theory of computation will include chapters on the regular languages
including constructions of finite automata and operations under which they are
closed, cf. [18,25,41]. Beyond theoretical computer science, finite-state methods
form a basis for much of computational linguistics, cf. [7,15,19].

Initially developed as a study aid over the duration of an undergraduate course
in the theory of computation, the Language Toolkit (ltk) is a Haskell library
for working with constraint-based descriptions of languages. It is freely available
under the mit open-source license.1 Of the many tools it ships with, we focus here

1 At https://github.com/vvulpes0/Language-Toolkit-2/tree/develop one finds
the latest unstable version of the software, and full stable releases can be found at
https://hackage.haskell.org/package/language-toolkit.

on the domain-specific language it defines (pleb) and its associated interpreter,
plebby. This provides a practical and pedagogical system for manipulating regular
languages and finite machines, essentially a Prolog for the regular languages.
The primary features of the system are the ability to decide equivalences and
implications, at the logical level or at the language level, and the ability to decide
which subregular classes contain a given language.

The space of regular languages is rich. McNaughton and Papert [27] discuss
several of these classes, and for each class they provide a description of what
kind of information is relevant to its patterns. For instance, the languages locally
testable in the strict sense (often called “strictly local”) distinguish words by
their substrings up to some fixed length k. Rogers and Lambert [36] discuss
a broader collection of classes of formal languages, with a focus on those that
correspond to quantifier-free first-order systems. The pleb programming language
is particularly optimized for expressing these quantifier-free formulae, but it is
powerful enough to describe any regular language. The direct mapping between
these logical languages and pleb expressions allows students and researchers to
better analyze and comprehend these patterns than with basic regular expressions
alone. Because of this and other functionality, plebby has been used in teaching
graduate courses in computational linguistics at Stony Brook University, as well
as in projects such as the machine-learning benchmark, MLRegTest [31].

Like foma [20], Pyformlang [38], and OpenFST [1], the ltk provides mech-
anisms for defining regular languages via the equivalence between regular ex-
pressions and finite-state automata. The core Haskell library implements all
of the operations that one would expect. It offers constructions for products,
concatenations, complements, and reversals, among other things. It also provides
mechanisms to determinize automata or to minimize them. The pleb language
allows one to incrementally define arbitrary regular languages by describing the
interaction of constraints. The semantics of constraints are maintained through
all manipulations, so they need only mention relevant symbols. The alphabet
grows as new symbols are encountered. We offer some degree of compatibility
with foma [20] and OpenFST [1] by means of the common at&t-style textual
format for interchange. Additionally we support visualizations via the at&t
GraphViz system.

Unlike these other systems, a distinguishing feature of the ltk is the inclusion
of functions for algebraic analysis. As algebraic techniques provide a simple and
uniform way to characterize classes of formal languages, they form the foundation
for many of our classification algorithms. Caron [5] implements tests for some
of the same classes in the langage package for Maple, but the algebraic lens
provides much more power and flexibility. The Semigroups package for gap [28]
provides some tooling for this kind of classification (via semigroups), but offers no
simple mechanism for constructing regular languages. And while both foma and
OpenFST are excellent packages for constructing regular languages, they do not
offer the same level of support for classification, for exploring logical implications
between systems of constraints, nor for grammatical inference [17]. We provide

all of these things, although we will not discuss grammatical inference further in
this work.

In short, the Language Toolkit is not yet another automata library. Automata
are a core internal representation, but the primary features of the system are as
follows. First, it allows for definition of languages with an expression format built
upon logical formulae involving precedence, adjacency, and relativized adjacency.
This logic-based formalism replaces the more traditional regular-expression syntax.
One can then use the system to prove or disprove logical claims regarding those
languages. Next, languages can be classified with respect to several subregular
hierarchies, indicating which kinds of logic suffice to describe them and which
computational mechanisms suffice to recognize them or learn them. With the
algebraic techniques, classification is extended to user-defined classes with no
modification to the code. Finally, there are grammatical inference and constraint-
extraction tools. These are the features that have made the Language Toolkit
so useful during the past decade of its development. Not only does it provide
clean implementations of textbook algorithms on automata for pedagogical use,
it provides this wealth of utility for analysis of regular languages that one would
not find in any other system.

We begin in §2 by detailing our generalized regular expression format, pleb
expressions. These include containment of factors, all of the operations which
define regular expressions, the other Boolean operations, infiltration and shuffle
products, upward and downward closures with respect to subsequences, neutral
letters, and Brzozowski derivatives. Only Unicode (utf-8) input is supported, but
every operation can be expressed in pure ascii if this is desired. The complete
set of operations is listed in both forms in Table 2 on page 8.

Next in §3, we detail how one might use the system to explore relationships be-
tween languages or between systems of constraints. We describe how the :cequal
and :cimplies commands query logical equivalence and implication, respectively,
between systems of constraints. The :equal and :implies commands operate
instead at the language level, restricted to the current universe of symbols. This
separation is possible due to our use of what we call automata with constraint
semantics. In §4, we give a brief overview of the algebraic theory of formal lan-
guages and demonstrate how one might classify languages. This allows for some
exploration of the relationships between language classes, as one may construct a
separating language and verify that it does, indeed, separate the classes. Finally,
we conclude with directions for future extension. Throughout this work, lines
prefixed by > are code that can be run in plebby. We also include an appendix,
demonstrating how one might use plebby to help answer some questions from
various textbooks.

2 Generalized Regular Expressions

In this section, we note some useful operations under which the regular languages
are closed. Using these, we introduce a generalized regular expression format that
adds no computational power yet vastly simplifies language definition.

Kleene [21] introduced the regular expressions to describe the patterns rep-
resented by the artificial neural networks of McCulloch and Pitts [26]. Let JRK
denote the meaning of the expression R, and suppose A and B are regular
expressions. A regular expression over a finite alphabet Σ is defined inductively:

– ∅ is a regular expression where J∅K = ∅
– For each σ ∈ Σ, there is an expression σ where JσK = {σ}.
– J(A|B)K = JAK ∪ JBK is a union.
– J(AB)K = {ab : a ∈ JAK, b ∈ JBK} is a concatenation.
– JA∗K = ε ∪ JAK ∪ JAAK ∪ JAAAK ∪ · · · is the iteration closure of A, where

ε denotes the empty string. It is the fixed point of A∗ = ε ∪AA∗.

As union and concatenation are associative, bracketing is often omitted. As a
matter of convention, iteration binds more tightly than concatenation, which
in turn binds more tightly than union. Given a finite set S = {s1, s2 . . . , sn},
we denote by S the regular expression (s1|s2| · · · |sn). Thus Σ∗ is the set of all,
possibly empty, finite words over letters in Σ.

2.1 Factors and Symbol Sets

Following Rogers and Lambert [37], we take factors to be the fundamental unit
of expressions. If w = σ1σ2 . . . σn for σi ∈ Σ, then the expression ⟨σ1 σ2 . . . σn⟩,
with whitespace between each symbol, represents the set of words which contain
w as a substring. That is, it represents words of the form uwv where u and v are
elements of Σ∗. At any point between two symbols, a comma may be used to
signify an arbitrary gap. Then ⟨σ1, σ2, . . . , σn⟩ is the set of words which contain w
as a subsequence, words of the form u0σ1u1σ2u2 . . . σnun. Two modifiers anchor
the factor to word boundaries: ⋊ fixes the first component to the left edge while
⋉ fixes the last to the right edge. These may be used together: ⋊⋉⟨σ1 σ2 . . . σn⟩
represents the singleton set {w}. Empty sequences are allowed: ⟨⟩ denotes the
set of all words containing the empty string as a substring. In other words, ⟨⟩
denotes Σ∗.2

The individual components of a factor are not actually mere symbols, but sets
of symbols. Suppose a and b are symbol sets; a symbol set is defined inductively:

– For any valid name sym it holds that J/symK = {sym}.
– Named variables are permitted. JsK is the set that had been assigned to the

variable s, if such a set exists.
– J{a, b}K = JaK ∪ JbK.
– J[a, b]K = JaK ∩ JbK.

Assignment is expressed by = name value. In order to save on typing slashes, it
is good practice to begin a file or session with a header that declares the symbols
to be used, such as:

2 In ascii, the word boundaries are %| (left) and |% (right), while angle-brackets are
represented by less-than and greater-than signs. Other equivalences are given in
Table 2 on page 8.

Table 1. Base cases and operations for regular expressions.

Empty Symbol Union Concatenate Iterate

Reg ∅ σ (e1|e2) (e1e2) e∗
Gen ¬⟨⟩ ⋊⋉⟨σ⟩

∨
{e1, e2} •{e1, e2} ∗e

> =a{/a}=b{/b}=c{/ c}

This is three assignments collapsed onto a single line, binding the symbols a, b,
and c to the variables a, b, and c, respectively. Except in close proximity to such
definitions, we shall continue to use the slash notation throughout, so that all
examples behave properly in a fresh environment.

2.2 Booleans, Concatenation, and Iteration

Any introductory text on finite automata, such as that of Hopcroft and Ullman
[18], will contain a proof that regular languages are all and only those expressible
by such machines. Using this equivalence, one easily finds that the class of regular
languages is closed not only under (finitary) union but also under (finitary)
intersection and under complement. If e1, e2, . . . , en are pleb-expressions,
then

∨
{e1, e2, . . . , en} denotes their union,

∧
{e1, e2, . . . , en} their intersection,

and ¬e1 the complement of e1. For empty sequences, the neutral element of
the operation is chosen. An empty union is the empty set, equivalent to ¬⟨⟩,
while an empty intersection is the universal language that accepts every word,
equivalent to ⟨⟩. Union and intersection are variadic operations, taking a sequence
of arguments. Complement is a monadic operator, taking just one.

Concatenation, denoted •(e1, e2, . . . , en), is another variadic operator. There
is also gapped concatenation, denoted ••(e1, e2, . . . , en) and equivalent to concate-
nation interspersed with arbitrary content: •(e1, ⟨⟩, e2, ⟨⟩, . . . , ⟨⟩, en). The Kleene
star operator signifying the iteration closure is yet another monadic operator,
denoted ∗e1. We provide +e1 as syntactic sugar for •(e1, ∗e1). All operators are
prefixes; the monadic operators attach directly to the expression upon which
they act, while variadic operators attach to braces (or, equivalently, parenthe-
ses) embracing a comma-separated sequence of operands. At this point, we can
represent any regular expression. A summary of equivalences is provided in Ta-
ble 1. The union and iteration operators would work identically if concatenation
were right-to-left rather than left-to right. So regular languages are closed under
reversal as well. We offer a monadic operator, ⇄, for this task.

2.3 Subsequences and Shuffle Ideals

In section 2.1 we noted that if w = σ1σ2 . . . σn then ⟨σ1, σ2, . . . , σn⟩ is the set of
all words that contain w as a subsequence. This is a shuffle ideal. In general,
given an arbitrary expression e, we can define ↑e as the set of all words which
contain any word in JeK as a subsequence. That this upward closure is regular

is a consequence of Higman’s Lemma and the resulting language is in the one-half
level of the Straubing hierarchy, cf. [30]. One constructs ↑e by adding self-loops
on each symbol to each state of the automaton represented by e. This operation
is idempotent.

We will see more on the :cequal command in the next section. Essentially, it
indicates whether two constraints are logically equivalent. With it, we can verify
the equivalence between an upward closure and a subsequence-factor:

> :cequal ↑⋊⋉⟨ /a /b /b /a ⟩ ⟨ /a , / b , / b , / a ⟩
True

We may also close in the other direction: the downward closure of e,
denoted ↓e, is the set of all words which are contained as a subsequence by
some word in e. That is, ↓e is the set of words obtained by beginning from some
word in e and deleting zero or more instances of zero or more symbols. One
constructs ↓e by adding edges consuming no input in parallel with all edges of
the automaton represented by e. This operation is idempotent. Languages closed
under subsequence, that is, languages L such that ↓L ≡ L, have been studied by
Haines [14] for their interesting mathematical properties as well as by Rogers et
al. [35] for their linguistic relevance.

Upward closure is a specific case of the shuffle product. The shuffle product
of two words is defined inductively as follows, where a and b are symbols in Σ
and u and v are words in Σ∗ [24].

u� ε = u = ε� u

au� bv = a(u� bv) ∪ b(au� v)

Given two languages A and B, their shuffle product is the set A�B = {a�b : a ∈
A, b ∈ B}. For a given expression e, it is the case that ↑ e is logically equivalent
to �{e, ⟨⟩}. The infiltration product, denoted ⇑, is defined similarly [8].

u ⇑ ε = u = ε ⇑ u

au ⇑ bv =

{
a(u ⇑ bv) ∪ b(au ⇑ v) ∪ a(u ⇑ v) if a = b

a(u ⇑ bv) ∪ b(au ⇑ v) otherwise.

We provide monadic ↑ and ↓ operators as well as variadic ⇑ and � operators.
The variadic operators require some caution. As discussed in §3, subexpressions
have their alphabets semantically extended when used in larger expressions.
When computing shuffle products, it may be wise to fix the alphabet of each
subexpression to a desired set T by intersecting with ∗⋊⋉⟨{T}⟩.

2.4 Tiers and Neutral Letters

Subsequences provide a simple mechanism to describe long-distance dependencies,
but they are not the only available mechanism. Another possibility, which has
been useful in computational linguistics [16] and in robotic control [33] hinges
on the notion of a tier of salient symbols. If symbols are not salient to the

constraint, then they are ignored entirely. Neither inserting them nor deleting
them can influence whether a word is accepted [23]. In other words, symbols not
salient are neutral. Using this notion of salience and neutrality, one can describe
long-distance constraints as if they were local.

Given a symbol set T , we provide two monadic operators. The first, [T]e,
restricts the alphabet of e to the symbols in T , then adds self-loops on each
other symbol to each state. This yields the inverse tier-projection from T of e,
the words which satisfy e on the T -tier. The other operator, |T |e, makes each
element of T neutral in e. Edges which consume no input are added in parallel to
each edge labeled by an element of T , and then self-loops labeled by each such
element are added to each state. |T |e is equivalent to �{

∧
{e, ∗⋊⋉⟨T ⟩},¬⟨T ⟩}.

For convenience, if T is a union of multiple symbol sets then the outermost braces
may be omitted.

For example, the constraint [/a, /b]¬⟨/a /b⟩ over projected substrings is
logically equivalent to the constraint ¬⟨/a, /b⟩ over subsequences. As we will see
in the next section, one can verify this:

> :cequal [/ a , / b]¬⟨ /a /b ⟩ ¬⟨ /a , / b ⟩
True

Both [T] and |T | are idempotent operations. Further, ¬[T]e is equivalent to [T]¬e
and ¬|T |e is equivalent to |T |¬e [23].

2.5 Brzozowski Derivatives and Quotients

Given a language L and a prefix s, one might wish to know which strings
t act as valid completions where st ∈ L. This Brzozowski derivative is
sometimes denoted s−1L, so named as Brzozowski used the operation in finding
the derivatives of regular expressions [3]. A generalization of this is the left-
quotient A\B, the set of strings t that can be appended to a string in A to
yield a string in B.

Similarly, the right-quotientB/A is the set of strings s that can be prepended
to a string in A to yield a string in B. The expression B/A is clearly equivalent
to (AR\BR)R, where xR denotes the reversal of x.

Hopcroft and Ullman [18] provide a nonconstructive proof that if B is regular
then B/A (and, of course, A\B) is regular for any language A. For regular A,
we may use a simple construction on automata. In order to compute A\B, first
compute the concatenation C = AΣ∗. Then, compute the product (A× C)×B.
The accepting states are those whose B- and C-components are both accepting,
and the initial states are those whose A-components are accepting. This then
begins computation at any state where A could end, and accepts only strings
that would be valid continuations in B.

We provide variadic functions for both quotients. They are not associative
operations, and so they are best used only dyadically: J\\(A,B)K = JAK\JBK and
J//(B,A)K = JBK/JAK.

An an example, suppose that B is the set of words that do not contain an
ab substring and that A is a set of words such that every word in A ends on a.

Table 2. Monadic (left, ⊕e), and variadic (right, ⊕{e1, e2, . . . , en}) operators.

Syntax ASCII Meaning

¬ ! complement
∗ * iteration closure
+ + iteration (nonempty)
⇄ - reversal
↑ ^ upward closure
↓ $ downward closure
[T] [T] salience restriction
|T | |T| neutralizing

Syntax ASCII Empty Meaning∨
\/ ¬⟨⟩ union∧
/\ ⟨⟩ intersection

• @ ⋊⋉⟨⟩ concatenation
•• @@ ⋊⋉⟨⟩ gapped concatenation
⇑ .^. ⋊⋉⟨⟩ infiltration product
� | | | ⋊⋉⟨⟩ shuffle product
\\ \\ ⋊⋉⟨⟩ left-quotient
// // ⋊⋉⟨⟩ right-quotient

Note that A\B is the set of all words that neither begin with b nor contain the
ab substring. We shall see more on the :cimplies command in the next section,
but for now we notice that in this quotient no word begins with b.

> :cimplies \\(⋉⟨ /a ⟩ ,¬⟨ /a /b ⟩) ¬⋊⟨ /b ⟩
True

We can also use these quotients to construct the prefix closure //(e, ⟨⟩) or suffix
closure \\(⟨⟩, e) of an expression e. Then the substring closure is \\(⟨⟩, //(e, ⟨⟩)).

2.6 Summary

Table 2 lists the available operators, both in Unicode syntax and in ascii syntax.
They are listed in the order introduced in the text. Monadic operators are written
directly before their operand. Variadic operators take zero or more comma-
separated operands surrounded by either curly braces or parentheses and are
written before the opening delimiter. Factors also have ascii syntax: use less-than
and greater-than signs in place of the angle-brackets, and replace the anchor
symbols with %| (left) and |% (right).

Like with symbol sets, expressions may be assigned to variables using the
syntax = name value. A bare expression acts as an assignment to the special
variable it . And finally, all assignments of both symbol sets and expressions
update a special variable universe, a symbol set containing all symbols used so
far in bound variables.

With the tools discussed so far, one can easily define regular languages using
generalized regular expressions known as pleb expressions. In the next section we
discuss how to check for equalities or implications and how one might minimize
constraint-based descriptions.

We close this section with a final example. Krebs et al. [22] describe a language
U2 that has been instrumental to their work on characterizing classes of languages
definable with fragments of first-order logic restricted to two variables. In their
work, U2 is defined over the alphabet Σ = {a, b, c} as follows.

U2 = (Σ∗ − (Σ∗ac∗aΣ∗)) ∪ (Σ∗ − (Σ∗bc∗bΣ∗))ac∗aΣ∗

Already this expression is extended to include (relative) complements. In this
language, c is a neutral letter. After ignoring c, U2 is a language in which either
no aa substring occurs, or there is an aa substring not preceded at any distance
by a bb substring. An equivalent pleb expression is as follows.

> =a{/a}=b{/b}=c{/ c}
> = U2 [a , b]

∨
{¬⟨ a a ⟩ , • (¬⟨b b ⟩ ,⋊⟨ a a ⟩)}

3 Constraint Analysis

In the previous section, we briefly mentioned the :cequal and :cimplies com-
mands. This section introduces the mechanism behind them and describes a few
of the other commands available. We begin by distinguishing constraints from
the languages they yield.

A (formal) language is merely a set of words. A constraint is a logical formula
that might be satisfied by one or more words, or which might be unsatisfiable. For
example ⟨/a /b⟩ expresses a constraint that the ab substring appears somewhere,
and ⟨/a, /b⟩ expresses a constraint that the ab subsequence appears somewhere.
These are not logically equivalent, but the first does logically imply the second.
And if the alphabet is merely {a, b}, then the language they express is the same.

> = subs t r ⟨ /a /b ⟩
> = subseq ⟨ /a , / b ⟩
> :cequal subs t r subseq
False
> :cimplies subs t r subseq
True
> :cimplies subseq subs t r
False
> :equal subs t r subseq
True
> =c{/ c}
> :equal subs t r subseq
False

This example demonstrates the above observations. The presence of an ab sub-
string logically implies the presence of an ab subsequence, but the reverse does
not hold. The :cequal and :cimplies commands operate at the constraint level,
comparing logical semantics. However, the :equal and :implies commands
operate at the language level, restricting the domain to the current universe of
symbols. If the alphabet is exactly the set {a, b}, then the two expressions yield
the same language, but if instead it were {a, b, c} then they would not.

This works because factors are constructed in such a way that their semantics
are preserved. Expressions are compiled to finite-state automata using not only the
symbols they mention, but also a special symbol, ?○, which represents all others.
This acts as the @ of [19]. When combining expressions, their alphabets must be

⟨/a /b⟩

b, ?○
a

a

?○ b a, b, ?○

⟨/a, /b⟩

b, ?○

a

a, ?○

b a, b, ?○

Fig. 1. Automata with constraint semantics.

semantically extended by inserting edges on any new symbols in parallel with
these ?○-edges. We designate these as automata with constraint semantics.
Figure 1 depicts our example substring and subsequence constraints. When
displaying automata with the :display command, they are first desemantified
by stripping the wildcard symbols and normalizing the result.

One might use these tools to construct expressions that recreate a given
pattern. Given a language, be that one constructed from a pleb expression,
one read from an OpenFST-compatible automaton file using :readATT, or one
imported using the grammatical inference commands (not described in this
work), one can hypothesize constraints and ask if the language :implies those
constraints. Keeping any that are successfully implied, eventually one reaches a
point where the cooccurrence (intersection) of the proposed constraints is :equal
to the language. The set may be large. Removing one constraint at a time, one
may ask if the cooccurrence of the remaining constraints :implies the removed
constraint. If this implication holds, then the constraint is redundant and need
not be included. At times, it may be useful to :display the difference between
systems of constraints, in order to see what is accepted that should not be or
vice versa. Finally one is left with a minimal set of constraints that describes the
language. There may well be other such sets.

This has been a sampling of ways in which plebby can help explore formal
languages through verifying accurate factorization and minimizing systems of
constraints. The next section describes classification techniques. Different classes
of languages correspond to different kinds of constraints, so the techniques
presented ahead may also be useful for such analysis.

4 Algebra and Complexity Analysis

Chomsky’s [9] hierarchy includes no classes more restrictive than the regular
languages. However, there are several well-motivated subclasses of this class.
Every language is associated with a semigroup called its syntactic semigroup,
and the regular languages are all and only those whose syntactic semigroups are
finite [32]. We offer commands to display the algebraic structure of a language
in various ways. One can view a Cayley graph using :synmon, or an egg-box
diagram in the sense of [10] using :eggbox. Additionally, a Hasse diagram of the
syntactic order in the sense of Pin [29] can be displayed with :synord.

Eilenberg’s theorem established a formal correspondence between classes of
regular languages and classes defined by collections of equations, called pseudova-
rieties, of finite semigroups [12,13]. A pseudovariety, henceforth simply called

a variety, is a class of semigroups closed under division and finitary products,
where a semigroup S is said to divide another semigroup T if S is a quotient
of a subsemigroup of T . Varieties of (finite) semigroups are called +-varieties,
while varieties of (finite) monoids are ∗-varieties. We provide three commands:
:isVarietyM for ∗-varieties, :isVarietyS for +-varieties, and :isVarietyT for
what would be +-varieties after removing any neutral letters.

These commands take two arguments. The first is a description of the variety,
and the second is the expression to test. A variety is a semicolon-separated
collection of universally-quantified weak inequalities, all wrapped in square
brackets. Inequalities are over the syntactic order of Pin [29]. All variables in these
relations are a single letter, and concatenation (multiplication in the semigroup)
is denoted by adjacency. Reiterman describes another operator, denoted π(x),
which maps x to the unique idempotent element in the subsemigroup generated
by x [34]. Since then, this has more typically been denoted xω, cf. [29], although
in plebby we denote it x∗ for ease of entry. This operator allows varieties to be
defined by a single conjunction of equations rather than being ultimately defined
by a series of such conjunctions [34].

For example we might ask whether a language has a syntactic semigroup
which is both commutative (ab = ba) and idempotent (xx = x). For concreteness,
we will perform this test against two languages: the language which contains an
ab substring, and the language which contains both a and b. In both cases, the
alphabet shall be Σ = {a, b, c}.

> =a{/a}=b{/b}=c{/ c}
> :isVarietyS [ab=ba ; xx=x] ⟨ a b ⟩
False
> :isVarietyS [ab=ba ; xx=x]

∧
{ ⟨ a ⟩ , ⟨b ⟩ }

True

This particular class is well-studied and so there is a shortcut, :isCB (for “com-
mutative band”), which performs the same operation. In many cases, the shortcut
commands employ faster algorithms than the general variety check.

Because a language and its complement share the same syntactic semigroup,
a class not closed under complement cannot be a variety. Pin uses the concept of
a syntactic order to capture some such classes as varieties of ordered semigroups
[29]. It is for this reason that our variety-testing commands also allow the use
of the weak inequalities, ≤ and ≥, under the syntactic order. As all variables
are universally-quantified, strict inequalities are meaningless. Thus < and > are
synonyms for ≤ and ≥, respectively.

4.1 Some Varieties with Shortcuts

As one might imagine, there are boundless varieties of interest. We provide
shortcut commands for many of them. In this section we list a few of them
by name alongside their equivalent commands and their language-theoretic
characterizations. There are several others; for a full list, see the :help in the
interpreter.

Locally Testable See [27] or [4]. A language is locally testable iff there is some
integer k such that the set of substrings of length k of a word is sufficient informa-
tion to determine whether the word is accepted. The commands for deciding this
class are :isLT and :isVarietyS [a*xa*ya*=a*ya*xa*;(a*xa*)*=a*xa*].

Tier-Based Locally Testable See [23]. A language is tier-based locally testable
iff after removing its neutral letters it is locally testable. This class is decided
by :isTLT and :isVarietyT [a*xa*ya*=a*ya*xa*;(a*xa*)*=a*xa*]. In either
case, the set, T , of nonneutral letters is reported.

Piecewise Testable See [40]. The subsequence analogue of locally testable,
a language is piecewise testable iff there is some integer k such that the set
of subsequences of length k of a word is sufficient information to determine
whether the word is accepted. The commands for deciding this class are :isPT

and :isVarietyM [y(xy)*=(xy)*=(xy)*x].

Strictly Piecewise See [14] or [35]. A restriction of the piecewise testable
languages, the strictly piecewise languages are those definable by a finite set
of forbidden subsequences. This class is decided by the :isSP or :isVarietyM
[1≤x] commands. The size, k, of forbidden subsequences is reported when using
:isSP. Equivalently, given an expression e, one can decide whether e is strictly
piecewise using :equal e ↓e. The complements of strictly piecewise languages
correspond precisely to the one-half level of the Straubing hierarchy [30].

Locally Threshold Testable See [27] or [2]. A language is locally threshold
testable iff it is definable by Boolean combinations of constraints that a partic-
ular substring occurs at least some fixed finite number n of times. These are
the languages first-order definable with successor but without general prece-
dence [42]. The commands for deciding this class are :isLTT and :isVarietyS

[e*af*be*cf*=e*cf*be*af*;xx*=x*].

Tier-Based Locally Threshold Testable See [23]. A language is tier-based
locally testable iff after removing its neutral letters it is locally threshold
testable. The commands for deciding this class are :isTLTT or :isVarietyT

[e*af*be*cf*=e*cf*be*af*;xx*=x*]. In either case, the set, T , of nonneutral
letters is reported.

Star-Free See [39]. A language is star-free if and only if it is definable by a
regular expression generalized to allow intersection and complement but restricted
by disallowing the use of the iteration operator. These are the languages first-
order definable with general precedence [27]. The commands for deciding this
class are :isSF and :isVarietyM [xx*=x*]. Notice that this equation is one of
the equations for locally threshold testable. This is in general an easy way to

construct sub- and supervarieties of a variety: simply add or remove equations,
add or remove constraints.

4.2 Some Other Well-Studied Classes

While a number of language classes correspond precisely to varieties of semi-
groups or monoids, this is not always the case. As noted in the previous section,
inequalities allow for the capture of classes that are not closed under complement.
However, even these ordered varieties cannot capture classes not closed under
both union and intersection. This section discusses two such classes which see
wide application.

Strictly Local See [27]. A restriction of the locally testable languages, analogous
to that which derives strictly piecewise from piecewise testable, a language is
strictly local if and only if it is definable by a finite set of forbidden substrings.
These are decided by :isSL using an algorithm implied by the work of Caron [5]
and by Edlefsen et al. [11]. The size, k, of forbidden substrings is reported.

Tier-Based Strictly Local See [16] or [23]. A language is tier-based strictly
local if and only if after removing its neutral letters it is strictly local. This class
is decided by :isTSL. The size, k, of forbidden substrings is reported, as is the
set T of nonneutral letters.

4.3 Summary

This section has discussed a sampler of the classification algorithms offered by
plebby and, in general, by the Language Toolkit. A full list is available in the
interpreter’s help system (see :help classification), or arbitrary varieties
may be tested. (Note that all of these decision problems operate at the language
level, not at the constraint level.) Knowing which set of classes contain a given
language can offer insight regarding the properties of the language. This can
assist in factoring the language, as one knows what types of constraints to try to
find.

This system is also useful in exploring relationships between classes. While it
cannot at this moment automatically determine whether a subclass relationship
exists, one can manually construct a separating example language and verify that
the separation holds. If a language is in class C but not in class C ′, then C is
not a subclass of C ′.

5 Conclusion

We have introduced plebby, the interactive theorem-prover built atop and pack-
aged with the Language Toolkit, and demonstrated its use in defining, manipu-
lating, and classifying regular languages. The project is freely available under the

mit open-source license. Functionality goes well beyond what has been discussed
here; all available commands are documented in the included manual pages or
the interpreter’s :help system. We only briefly touched on the visualization
capabilities, and did not even mention the file i/o or grammatical inference
capabilities. There are additionally stand-alone programs to classify, display,
or automatically factorize regular languages.

As these tools were created for the purposes of education and research in
mathematical and computational linguistics, performance was never the greatest
concern. However, in order to be more widely useful, one key area of future
work will be to improve performance to scale to industrial operations, where the
automata under consideration might have large alphabets and several thousand
states. Part of this work will involve changing the underlying representation of
some of the core data structures; this work has already begun through splitting
off some of the algebraic procedures into a separate finite-semigroups pack-
age.3 The tradeoff is that the representation in this package strips much of the
information that is pedagogically useful, such as which elements correspond to
which strings. Thus care must be taken to avoid diminishing pedagogical utility
when constructing representations for speed. For the classification task alone, we
have also created amalgam4 in the C programming language, which similarly
discards information for better performance.

Other directions for future work are numerous. Some of our classification
procedures return a description of the class parameters in addition to the Boolean
response. We would like to provide such parameterizations for more classes in
the future. For nonmembership, in some cases it might be nice to generate
parameterized words as evidence. For some classes, this would be easy and
would add to the utility as a theorem-prover. We would also like to be able to
automatically generate semigroups satisfying given conditions, which may help
in disproving a subset relationship between two varieties. Extending our current
system, or perhaps creating a companion system, for similar analysis of finite-state
transducers is a more involved goal. Using symbolic predicate-based symbols like
the Microsoft Automata toolkit would increase utility in computational linguistics,
especially with Carpenter-style feature systems [6]. Finally, we would like to add
the capacity to translate foma scripts into pleb expressions, or otherwise import
automata with constraint semantics from such files.

We hope that this system will continue to enlighten all who study formal
languages and their connections to algebra and logic.

Acknowledgments The system described in this work owes its creation to the
wonderful Theory of Computation course taught by Jim Rogers at Earlham College.
Further enhancements arose from work with Jeffrey Heinz at Stony Brook University.
And much gratitude is extended to the anonymous reviewers for their helpful suggestions.

Disclosure of Interests The authors have no competing interests to declare that are

relevant to the content of this article.

3 Available at https://hackage.haskell.org/package/finite-semigroups.
4 Available at https://github.com/vvulpes0/amalgam.

Appendix

This appendix contains selected worked exercises from various textbooks.

Exercise 2.1 from McNaughton and Papert [27]

“Decide whether each of the Figures 2.2–2.8 represents a locally testable event.
Decide further whether it is locally testable in the strict sense.” We cover only
figures 2.4, 2.7 and 2.8. These figures are represented by the following at&t files,
named mp-2-1-4.att, mp-2-1-7.att and mp-2-1-8.att, respectively.

mp-2-1-4.att

1 4 a
1 2 b
1
2 6 a
2 3 b
3 1 a
3 6 b
4 5 a
4 6 b
5 6 a
5 1 b
6 6 a
6 6 b

mp-2-1-7.att

1 2 a
1 1 b
1
2 3 a
2 1 b
2
3 3 a
3 4 b
4 3 a
4 5 b
5 6 a
5 7 b
6 3 a
6 7 b
7 6 a
7 1 b

mp-2-1-8.att

1 2 a
1 5 b
2 2 a
2 3 b
3 2 a
3 4 b
4 2 a
4 4 b
4
5 6 a
5 5 b
6 7 a
6 5 b
7 7 a
7 5 b
7

> :readATT mp−2−1−4. a t t
> :isLT i t
True
> : isSL i t
True: k=5
> :readATT mp−2−1−7. a t t
> :isLT i t
False
> : isSL i t
False
> :readATT mp−2−1−8. a t t
> :isLT i t
True
> : isSL i t
False

Here, the tool directly answers the exercises, even providing additional information
regarding the factor size k for the language locally testable in the strict sense.

5.1 Exerices from Sipser [41]

In the third edition of “Introduction to the Theory of Computation”, Sipser
[41] asks students to construct state diagrams for various regular languages.
Exercise 1.4 focuses on intersections, 1.5 on complements, and 1.6 has assorted
other languages. We select a small sample to cover here, all over the alphabet
Σ = {a, b}:

1.4e {w|w starts with an a and has at most one b}

1.5c {w|w contains neither the substrings ab nor ba}

1.6n All strings except the empty string

As an aside, exercise 1.6 uses Σ = {0, 1} in the original.

> =a{/a}=b{/b}
> :display

∧
{⋊⟨ a ⟩ ,¬⟨b , b ⟩ } # 1.4 e

> :display ¬
∨

{ ⟨ a b ⟩ , ⟨b a ⟩ } # 1.5 c
> :display ¬⋊⋉⟨ ⟩ # 1.6n

1.4e

a
a

b

a

1.5c

a

b

a

b 1.6n

a,b

a,b

Fig. 2. State diagrams for Sipser, with node labels omitted.

Figure 2 depicts the results. Rejecting sink states are omitted from the display
and must be filled in by hand.

References

1. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFST: A gen-
eral and efficient weighted finite-state transducer library. In: Implementation and
Application of Automata: 12th International Conference, CIAA 2007, Prague,
Czech Republic, July 16–18, 2007, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 4783, pp. 11–23. Springer Berlin, Heidelberg (July 2007).
https://doi.org/10.1007/978-3-540-76336-9_3

2. Beauquier, D., Pin, J.E.: Factors of words. In: Ausiello, G., Dezani-Ciancaglini,
M., Ronchi Della Rocca, S. (eds.) Automata, Languages and Programming: 16th
International Colloquium, Lecture Notes in Computer Science, vol. 372, pp. 63–79.
Springer Berlin / Heidelberg (1989). https://doi.org/10.1007/BFb0035752

3. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM 11(4),
481–494 (October 1964). https://doi.org/10.1145/321239.321249

https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1007/978-3-540-76336-9_3
https://doi.org/10.1007/BFb0035752
https://doi.org/10.1007/BFb0035752
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249

4. Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Dis-
crete Mathematics 4(3), 243–271 (March 1973). https://doi.org/10.1016/

S0012-365X(73)80005-6

5. Caron, P.: LANGAGE: A Maple package for automaton characterization of regular
languages. In: Wood, D., Yu, S. (eds.) Automata Implementation, Lecture Notes
in Computer Science, vol. 1436, pp. 46–55. Springer Berlin / Heidelberg (1998).
https://doi.org/10.1007/BFb0031380

6. Carpenter, B.: The Logic of Typed Feature Structures, Cambridge Tracts in
Theoretical Computer Science, vol. 32. Cambridge University Press (June 1992).
https://doi.org/10.1017/CBO9780511530098

7. Chandlee, J.: Strictly Local Phonological Processes. Ph.D. thesis, Univer-
sity of Delaware (2014), https://chandlee.sites.haverford.edu/wp-content/
uploads/2015/05/Chandlee_dissertation_2014.pdf

8. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus IV. The quotient
groups of the lower central series. Annals of Mathematics 68(1), 81–95 (July 1958).
https://doi.org/10.2307/1970044

9. Chomsky, N.: On certain formal properties of grammars. Information and Control
2(2), 137–167 (June 1959). https://doi.org/10.1016/S0019-9958(59)90362-6

10. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, Mathematical
Surveys and Monographs, vol. 7. American Mathematical Society, Providence,
Rhode Island (1961)

11. Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M., Wellcome, D.:
Deciding strictly local (SL) languages. In: Breitenbucher, J. (ed.) Proceedings of
the 2008 Midstates Conference for Undergraduate Research in Computer Science
and Mathematics. pp. 66–73 (2008)

12. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New
York, New York (1976)

13. Eilenberg, S., Schützenberger, M.P.: On pseudovarieties. Advances in Mathematics
19(3), 413–418 (March 1976). https://doi.org/10.1016/0001-8708(76)90029-3

14. Haines, L.H.: On free monoids partially ordered by embedding. Journal of Com-
binatorial Theory 6(1), 94–98 (1969). https://doi.org/10.1016/s0021-9800(69)
80111-0

15. Heinz, J.: Inductive Learning of Phonotactic Patterns. Ph.D. thesis, University of
California, Los Angeles (2007)

16. Heinz, J., Rawal, C., Tanner, H.G.: Tier-based strictly local constraints for phonol-
ogy. In: Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers. vol. 2, pp. 58–64. Association for Computational
Linguistics, Portland, Oregon (2011), https://aclanthology.org/P11-2011

17. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press (2010). https://doi.org/10.1017/CBO9781139194655

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

19. Hulden, M.: Finite-State Machine Construction Methods and Algorithms for
Phonology and Morphology. Ph.D. thesis, The University of Arizona (2009),
https://hdl.handle.net/10150/196112

20. Hulden, M.: Foma: A finite-state compiler and library. In: Proceedings of the
Demonstrations Session at EACL 2009. pp. 29–32. Association for Computational
Linguistics, Athens, Greece (April 2009), https://aclanthology.org/E09-2008

21. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Shannon, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics

https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1016/S0012-365X(73)80005-6
https://doi.org/10.1007/BFb0031380
https://doi.org/10.1007/BFb0031380
https://doi.org/10.1017/CBO9780511530098
https://doi.org/10.1017/CBO9780511530098
https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf
https://chandlee.sites.haverford.edu/wp-content/uploads/2015/05/Chandlee_dissertation_2014.pdf
https://doi.org/10.2307/1970044
https://doi.org/10.2307/1970044
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1016/0001-8708(76)90029-3
https://doi.org/10.1016/0001-8708(76)90029-3
https://doi.org/10.1016/s0021-9800(69)80111-0
https://doi.org/10.1016/s0021-9800(69)80111-0
https://doi.org/10.1016/s0021-9800(69)80111-0
https://doi.org/10.1016/s0021-9800(69)80111-0
https://aclanthology.org/P11-2011
https://doi.org/10.1017/CBO9781139194655
https://doi.org/10.1017/CBO9781139194655
https://hdl.handle.net/10150/196112
https://aclanthology.org/E09-2008

Studies, vol. 34, pp. 3–42. Princeton University Press (1956). https://doi.org/
10.1515/9781400882618-002

22. Krebs, A., Lodaya, K., Pandya, P.K., Straubing, H.: Two-variable logics with
some betweenness relations: Expressiveness, satisfiability, and membership. Logical
Methods in Computer Science 16(3), 1–41 (September 2020). https://doi.org/
10.23638/LMCS-16(3:16)2020

23. Lambert, D.: Relativized adjacency. Journal of Logic, Language and Information
32(4), 707–731 (October 2023). https://doi.org/10.1007/s10849-023-09398-x

24. Lothaire, M.: Combinatorics on Words. Cambridge University Press, New York
(1983)

25. MacCormick, J.: What Can Be Computed? A Practical Guide to the Theory of
Computation. Princeton University Press (May 2018)

26. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biology 5, 115–133 (1943). https://doi.org/
10.1007/bf02478259

27. McNaughton, R., Papert, S.A.: Counter-Free Automata. MIT Press (1971)
28. Mitchell, J., Anagnostopoulou-Merkouri, M., Breuer, T., Burrell, S., Cirpons, R.,

Conti-Leslie, T., Edwards, J., Egri-Nagy, A., Elliott, L., Flores Brito, F., Ham,
N., Hancock, R., Horn, M., Jefferson, C., Jonusas, J., Nagpal, C., Konovalov, O.,
Konstantindi, A., Pasechnik, D.V., Pfeiffer, M., Russell, C., Schmidt, J., Siccha, S.,
Smith, F., Spiers, B., Thiéry, N., Tsalakou, M., Whyte, M., Wilson, W.A., Young,
M.: Semigroups – GAP Package, 5.1.0 edn. (October 2022). https://doi.org/10.
5281/zenodo.592893

29. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages: Volume 1 Word, Language, Grammar, pp. 679–746. Springer-
Verlag, Berlin (1997). https://doi.org/10.1007/978-3-642-59136-5_10

30. Pin, J.E., Weil, P.: Polynomial closure and unambiguous product. Theory of
Computing Systems 30(4), 383–422 (August 1997). https://doi.org/10.1007/
bf02679467

31. van der Poel, S., Lambert, D., Kostyszyn, K., Gao, T., Verma, R., Andersen, D.,
Chau, J., Peterson, E., St. Clair, C., Fodor, P., Shibata, C., Heinz, J.: MLRegTest:
A benchmark for the machine learning of regular languages (April 2023). https:
//doi.org/10.48550/arXiv.2304.07687

32. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3(2), 114–125 (April 1959). https://doi.org/10.
1147/rd.32.0114

33. Rawal, C., Tanner, H.G., Heinz, J.: (Sub)regular robotic languages. In: 2011 19th
Mediterranean Conference on Control & Automation (MED). pp. 321–326 (June
2011). https://doi.org/10.1109/MED.2011.5983140

34. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Universalis 14,
1–10 (December 1982). https://doi.org/10.1007/BF02483902

35. Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D.,
Wibel, S.: On languages piecewise testable in the strict sense. In: Ebert, C.,
Jäger, G., Michaelis, J. (eds.) The Mathematics of Language: Revised Selected
Papers from the 10th and 11th Biennial Conference on the Mathematics of
Language, LNCS/LNAI, vol. 6149, pp. 255–265. FoLLI/Springer (2010). https:
//doi.org/10.1007/978-3-642-14322-9_19

36. Rogers, J., Lambert, D.: Extracting Subregular constraints from Regular stringsets.
Journal of Language Modelling 7(2), 143–176 (September 2019). https://doi.org/
10.15398/jlm.v7i2.209

https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.23638/LMCS-16(3:16)2020
https://doi.org/10.1007/s10849-023-09398-x
https://doi.org/10.1007/s10849-023-09398-x
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.1007/bf02478259
https://doi.org/10.5281/zenodo.592893
https://doi.org/10.5281/zenodo.592893
https://doi.org/10.5281/zenodo.592893
https://doi.org/10.5281/zenodo.592893
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/978-3-642-59136-5_10
https://doi.org/10.1007/bf02679467
https://doi.org/10.1007/bf02679467
https://doi.org/10.1007/bf02679467
https://doi.org/10.1007/bf02679467
https://doi.org/10.48550/arXiv.2304.07687
https://doi.org/10.48550/arXiv.2304.07687
https://doi.org/10.48550/arXiv.2304.07687
https://doi.org/10.48550/arXiv.2304.07687
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1109/MED.2011.5983140
https://doi.org/10.1109/MED.2011.5983140
https://doi.org/10.1007/BF02483902
https://doi.org/10.1007/BF02483902
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.1007/978-3-642-14322-9_19
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.15398/jlm.v7i2.209
https://doi.org/10.15398/jlm.v7i2.209

37. Rogers, J., Lambert, D.: Some classes of sets of structures definable without
quantifiers. In: Proceedings of the 16th Meeting on the Mathematics of Language.
pp. 63–77. Association for Computational Linguistics, Toronto, Canada (July 2019).
https://doi.org/10.18653/v1/W19-5706

38. Romero, J.: Pyformlang: An educational library for formal language manipulation.
In: Proceedings of the 52nd ACM Technical Symposium on Computer Science
Education. pp. 576–582. Association for Computing Machinery, New York, New
York (March 2021). https://doi.org/10.1145/3408877.3432464

39. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Infor-
mation and Control 8(2), 190–194 (April 1965). https://doi.org/10.1016/

s0019-9958(65)90108-7

40. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) Automata Theory
and Formal Languages, Lecture Notes in Computer Science, vol. 33, pp. 214–222.
Springer-Verlag, Berlin (1975). https://doi.org/10.1007/3-540-07407-4_23

41. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston,
Massachusetts, 3 edn. (2013)

42. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
Systems Sciences 25, 360–376 (1982). https://doi.org/10.1016/0022-0000(82)
90016-2

43. Thompson, K.: Programming techniques: Regular expression search algorithm.
Communications of the ACM 11(6), 419–422 (June 1968). https://doi.org/10.
1145/363347.363387

https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.18653/v1/W19-5706
https://doi.org/10.1145/3408877.3432464
https://doi.org/10.1145/3408877.3432464
https://doi.org/10.1016/s0019-9958(65)90108-7
https://doi.org/10.1016/s0019-9958(65)90108-7
https://doi.org/10.1016/s0019-9958(65)90108-7
https://doi.org/10.1016/s0019-9958(65)90108-7
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1016/0022-0000(82)90016-2
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387

	System Description: A Theorem-Prover for Subregular Systems: The Language Toolkit and its Interpreter, Plebby

