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THE L,-DUAL SPACE OF A SEMISIMPLE LIE GROUP

BACHIR BEKKA

ABSTRACT. Let G be a semisimple Lie group. We describe the irreducible
representations of G' by linear isometries on Lp-spaces for p € (1,4o00) with
p # 2. More precisely, we show that, for every such representation m, there
exists a parabolic subgroup @ of G such that 7 is equivalent to the natural
representation of G on L,(G/Q) twisted by a unitary character of Q. When G
is of real rank one, we give a complete classification of the possible irreducible
representations of G on an Ly-space for p # 2, up to equivalence.

1. INTRODUCTION

Let G be a locally compact topological group and E a Banach space. Denote by
B(E) the algebra of bounded operators on E, equipped with the strong operator
topology, that is, the weakest topology for which the map B(E) — E, T — Twv is
continuous for every v € V. An isometric representation (for short, a representation)
of G on E is a continuous group homomorphism 7 : G — Iso(E), where Iso(E) is
the subgroup of GL(FE) consisting of the linear surjective isometries on FE.

In the context of semisimple Lie groups, there is strong evidence (see [HC53],
[God52|, [War72], [Fel65]) that the right notions of irreducibility and equivalence
of Banach representations are defined as follows. Recall that to a representation
7w : G — Iso(E) of G there is associated an algebra homomorphism C.(G) — B(E),
denoted by 7 again, defined by

w(f) = /G f@)m(@)ducle)  forall feCu(G),

where C.(G) is the convolution algebra of continuous functions on G with compact
support and g is a left Haar measure on G.

Definition 1. (i) A representation 7 : G — Iso(F) is completely irreducible if the
algebra 7(C.(G)) is dense in B(E) for the strong operator topology.

(ii) Two representations 71 : G — Iso(E7) and 7y : G — Iso(FE3) on Banach spaces
E; and FE5 are Naimark equivalent (for short, equivalent) if, for ¢ € {1,2}, there
there exists a dense subspace V; of E; which are m;(C.(G)-invariant and a closed
injective linear map 7' : V3 — V5 such that

mo(f)Tv =T (f)v forall ve E; feC.(QG).

(iii) Let € be a class of Banach spaces. The £-dual of G, denoted by ég, is the
set of equivalence classes of completely irreducible representations of G on some
Banach space E € &;

When F is a Hilbert space, a representation G — Iso(F) is traditionally called a
unitary representation; a unitary representation 7 is completely irreducible if and
only if 7 is irreducible (that is, {0} and E are the only G-invariant closed subspaces
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2 BACHIR BEKKA

of F). Moreover, unitary representations m; and me are Naimark equivalent if and
only if m and mp are unitarily equivalent (see [War72, 4.3]); in particular, if £
denotes the class of Hilbert spaces, then @g coincides with the usual unitary dual
G of G.

Let G a noncompact connected semisimple linear Lie group. For such a group,
we will be concerned with CAY'LP where L, is the class of L,-spaces for p € [1, +o0[. By
an Ly-space, we mean the usual space L,(X, B, 1) of equivalence classes (modulo
null sets) of measurable p-integrable functions f : X — C, , where p is a positive
o-finite measure defined on a standard Borel space (X, B). The unitary dual space
G = Gy, is of course a classical much studied object (see for instance [Kna01],
[War72]). We will deal here with @Lp for p # 2.

Let 6 be a Cartan involution on the Lie algebra g of G and ¢ (respectively
p) the eigenspace for the eigenvalue 1 (respectively —1) of §. Let a be a maximal
commutative subspace of p and let ¥ C a* be the corresponding root system, where
a* = Homg(a,R) is the real dual space of a. Let X% be the set of positive roots
for an ordering of ¥ and n the sum of the root spaces g, for a € 7. Let K, A,
and N be the subgroups of G with Lie algebras ¢, a and n, respectively. Then K is
a maximal compact, A an abelian and N a nilpotent subgroup; moreover, we have
an Iwasawa decomposition G = KAN.

Let M be the centralizer of A in K. The group M AN is a minimal parabolic
subgroup of G. Recall (see [KnaOl, Section V.5] or [War72, Chap. I, 1.2]) that
a parabolic subgroup of G is a closed subgroup containing a conjugate of M AN.
Every such group is conjugate to a standard parabolic subgroup Q = @Qp, which is
parametrized by a subset F of the set A of simple positive roots; more precisely,
let ag be the intersection of all ker o for & € F' and ng the sum of the root spaces
go for a € X1\ span(F). We have a Langlands decomposition

Q = MgAqgNq,

where M is reductive and contains M, Ag = exp(ap) and Ng = exp(ng). More-
over, Mg and Ag commute, and both normalize Ng. In particular, the standard
minimal parabolic parabolic subgroup is given by @y = M AN.

Fix a parabolic subgroup @ = Qp of G and a real number p € [1,+oc0[. We
are going to define the L, analog of the (unitary) principal series representations
associated to Q.

Let Kg := K N Mg and choose a Borel fundamental domain g C K for the
coset space K/Kq. Then Qg is also a fundamental domain for G/Q, since G = KQ
and K N Q = Kg. Every g € G has a unique decomposition

g = r(g9)u(g)exp(H(g))n(g)  for k(g) € Qq,u(g) € Mg, H(g) € ar,n(g) € Ng.

Let ug be the unique quasi-invariant Borel probability measure on G/Q which is
K-invariant. We identify G/Q with Qg and transfer ug and the natural G-action
on G/Q to Qq. Let pg, € a* be defined by

1 .
pr=l T dmga
p aeXt \span(F)

Observe that ppran 2 is the familiar half-sum of positive roots.
Fix a real linear form A € a* and a unitary character

x: Mg —S'=U(1)
of the reductive group Mg. We define a representation (@, x, A, p) of G on
Ly(G/Q, 1nq) = Ly(Qq, 1e)
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by
7(Q, X, A p)(9)f (&) = x(ulg~T))e AHPan B2 f(4(g~1a))

for f € Ly(Qqg,pr),x € Qg,g € G. It is ecasily verified (see Section that
(@, X, A, p) is indeed an isometric representation of G on L,(G/Q, pg).

We denote by Méb the group of unitary characters of Mg. Here is our main
result.

Theorem A. Let G be a noncompact connected semisimple linear Lie group, and
let p € (1,400) with p # 2. Let w be a completely irreducible representation of
G on an Ly-space. Then there exists a parabolic subgroup @ of G, a real linear

form A € a*, and a unitary character x € MQAb such that w is equivalent to the
representation m(Q, x, \,p) on L,(G/Q, 1) described above.

In order to study the irreducibility of a representation m(Q, x,A,p) as in the
previous theorem, we consider its associated Harish-Chandra (g, K)-module. For a
unitary representation o of Mg and for v € af = Homg/(a, C), following [Wal88,
5.2], we denote by I ., the associated infinitesimal nonunitary principal series of
G, that is, the (g, K)-module underlying the induced representation

Indg (o @ v ® 1ng) = Indf, ag v, (0 ® v @ 1ng,).

Proposition 2. (i) Let n(Q,x, A, p) be a representation of G on L,(G/Q, 11q)
as in Theorem . Then 7(Q, x, \, p) is completely irreducible if and only if
the principal series representation Ig ., is (algebraically) irreducible, where

V=1\A+0pp0,2

2
for 6, = i 1e(-1,1).

(ii) Fori=1,2, let 7(Qi, Xi, Mi, pi) be representations of G on Ly, (G/Qi, po,)
as i Theorem. Then m(Q1, x1,A1,p1) and 7(Q2, X2, A2, p2) are equivalent
if and only if the corresponding principal series representations 1g, y, ..
and 19, o, as in (i) are (algebraically) equivalent.

Principal series representations I ., are of course central objects in the repre-
sentation theory of semisimple Lie groups; their structure has been much studied,
especially in the case where @ is minimal parabolic, and it has been shown that
“most” of them are irreducible (see [GN57], [Bru56|, [PRRV67], [Kos69], [Wal71],
[LW73)]).

Using known irreducibility and equivalence results from the literature, we can
settle the case where G is a simple Lie group with real rank one. So, G belongs
to one of the series SOg(n,1),SU(n, 1), Sp(n, 1) or Sp(n,1) for n > 2 or G is the
exceptional Lie group Fy_20). We set P := M AN.

Theorem B. Let p € (1,+00) with p # 2.
(i) Let G = SOg(n,1) forn > 2. Then MAb = 1y form # 3 and MAb = 7
for n = 3. The representation 7(P, x, \,p) is irreducible for every A € a*
and every x € MAb.
(i) Let G =SU(n,1) for n > 2. Then MAP> =2 Z.
(iil) The representation m(P,x, \,p) is irreducible for every A\ € a* \ {0}
and every x € MAb.

(ii2) After an appropriate identification of MAY with Z, the representation
w(P,m,0,p) = w(P,x,0,p) for m € Z is not irreducible if and only if
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p belongs to the finite set

2
{]j cke{l,...,2n—1},k =m (mod 2),k7ém7k:7é2n+m}.
(iii) Let G =Sp(n,1) forn > 2. Then MAD = 1.
(iiil) The representation (P, 1pr, A, p) is irreducible for every A € a* \ {0}
(iii2) The representation w(P,1p7,0,p) is not irreducible if and only if p =

2n
(1V) Let G = F4(_20). Then MAb = ].M
(ivl) The representation m(P,1p, A, p) is irreducible for every A € a*\ {0}

(iv2) The representation w(P,157,0,p) is not irreducible if and only if p

bel to the set 111111111111
elongs to the se 10°9°'8°3 2"

Corollary C. Let G be one of the groups as in Theorem |E
(i) Let p € (1,400) with p # 2. Every completely irreducible representation
of G on an Ly,-space is equivalent either to the trivial representation lg
or to one of the irreducible representations of the form w(P,x, \,p) from
Theorem [B.
(ii) Two irreducible representations w(P, x, \,p) and w(P,x', N, p’) from Theo-
rem[B with (x', X', p') # (x, A\, p) are equivalent if and only if

(X/a Alap/) = (Ya Aap) or (X/7 )\val) = (Ya 7>‘7 q)a
where q is the conjugate exponent of p..

The paper is organized as follows. The proofs of Theorem [A] Proposition [3] and
Theorem [B] are is given in Sections [2] [3] and [ respectively. As an example, the
case of the group G = SL2(R), which is a twofold cover of SOy(2,1), is treated in
Section

2. PROOF OF THEOREM [A]

Let G be a noncompact connected semisimple linear Lie group, Let (X, B, u) be
a standard Borel space equipped with a o-finite measure p on B. Let

m: G — Iso(Ly(X, 1))

be a completely irreducible representation of G by linear isometries on L, (X, ) for
p € (1,+00) with p # 2. Assume that 7 is not the trivial representation 1 of G.

Observe that L,(X, p) is isometrically isomorphic to L, (X, u') for every o-finite
measure y' on X which is equivalent to u; indeed, if ¢ = % denotes the Radon-
Nikodym derivative of p’ with respect to u, then

fe fetlr
is a bijective linear isometry from L, (X, i) to L,(X, p). So, upon choosing a prob-
ability measure in the measure class of y, we can and will assume in the sequel that
1 is a probability measure.

e First step. We claim that there exists a measure-class preserving measurable
action
Gx X=X, (g,2) — gz
of G on X and a measurable map ¢ : Gx X — S! such that, for f € L,(X,p),g € G,
and x € X we have
dg; (1)

1/p
W w(9)f(2) = (g~ 2) <du<~””>) f(g~1a).
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where S! is the set of complex numbers of modulus 1 and g, (u) is the image of p
under the map x — gx; moreover c satisfies the cocycle relation

(2) c(g192,2) = c(g1, g2x)c(g2, ) for all ¢1,g2 € G, for almost all = € X.

Indeed, let g € G. By the Banach-Lamperti theorem (see [Ban93|, [Lamb8|), there
exists a measure-class preserving measurable map ¢(g) : X — X and a measurable
map c(g) : X — S! such that

m(9)f(x) = c(g)(x) <d<P(iJZ);(M)

for f € L,(X,p),9 € G, and z € X. Since 7(g192) = 7(g1)7(g2) for all g1,92 € G
and since g — w(g)f is measurable for every f € L,(X,u), it is readily checked
that (g,x) — ¢(g~1)x is a measure-class preserving G-action on X and that

1/p
<x>) F(olg)(@))

ci(g.x) = c(g™z
is a measurable map satisfying Equation .

Recall that another measurable cocycle ¢’ : G x X — S! is said to be cohomol-
ogous to c if there exists a measurable map b: X — S! such that

d(g,r) = b(gx)c(g, z)b(x) ! for all g€ G, for almost all z € X.

Let 7’ be the representation of G on L, (X, 1) defined by the same formula , with
c instead of ¢. Then 7’ is equivalent to 7; indeed, the map U : L, (X, u) — Ly(X, p),
defined by

Uf(x) =bz)f(x) forall feL,(X,p),zeX,
is a bijective isometry which intertwines 7’ and 7.

e Second step. We claim that the measure p is continuous (that is, p has no
atoms).

Indeed, let A be the (at most countable) set of atoms of p. The decomposition
of p into its atomic and continuous parts is g = g + fie, Where p, = ula and
e = b — q. We can write

LP(X7 /’L) = Lp(Xa /-Lc) ® Ep(A)

and it follows from the Banach-Lamperti theorem that L, (X, u.) are £,(A) are
7 (G)-invariant and so define subrepresentations of 7. Since 7 is irreducible, it follows
that either p is purely atomic or p is continuous.

Assume by contradiction that p is purely atomic, that is, L, (X, ) = £,(A). Let
G ~ A be the action of G on A and c¢: G x A — S! the cocycle as above. Since 7
is continuous, the map

G — (,(A), g c(g,x)0g.5

is continuous for every x € A. As (G is connected, this implies that G fixes pointwise
A. By irreducibility of r, it follows that A is a singleton {zg}. Equation (2)) shows
that then that g — ¢(g, zo) is homomorphism from G to S!. Since G is semisimple,
G has a trivial abelianization and hence ¢(g,x¢) = 1 for all g € G. So, m = 1g; this
is a contradiction and the claim is proved.

As is well-known (see [Zim84, Theorem 2.1.19]), the measurable G-system (X, u, G)
admits a continuous compact model, that is, there exists a compact metric space
Y on which G acts continuously, a probability measure v on the Borel subsets of Y
and a G-equivariant Borel isomorphism @ : Y — X with ®,(v) = p.
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Let ¢ : G x Y — S! be defined by ¢(g,y) = c(g, ®(y)). The representation 7',
defined on L, (Y, v) by the formula

-1(,, 1/p
w00 =) (P2 0) )

is equivalent to mw. So, without loss of generality, we may assume that X is a
compact metric space on which G acts continuously and that p is a quasi-invariant
probability measure on the Borel subsets of X.

Next, let K be a maximal compact subgroup of G and denote by dk the normal-
ized Haar measure on K. Then p/ = [, k.(p)dk, defined by

W (A) = /K (kA)dk

for all Borel subsets A of X, is a probability measure on X which is K-invariant;
moreover, y' is equivalent to p. So, we can and will assume in the sequel that pu is
K-invariant.

o Third step. We claim that there are countably many K-orbits O1,O3,--- , in
X such that

Joi| =1
i>1

Indeed, let Y := X/K be the space of K-orbits, equipped with the quotient
topology structure given by the quotient map r : X — Y and with the probability
measure v := 7, ().

Since K is compact, Y is a Hausdorff space. So, Y is a second countable compact
space and is therefore a standard Borel space. Let v = v, + 1, be the decomposition
of v into its atomic and continuous parts. The claim will be proved if we show that
v. = 0.

By a well-known disintegration lemma (see e.g. Lemma 11.1 [Mac52| or Theorem
5.14 in [EW11]), there exists a map

6:Y — Prob(X),y — 6,
where Prob(X) is the set of Borel probability measures on X, with the following
properties:

(a) for every y € Y, we have 0,(r~1(y)) = 1;
(b) for every f € L1 (X, p), the map y — [y f(x)df,(x) is measurable and we

" [ ta= [ ([ rws,w) vt

Moreover, if a second map ¢ : Y — Prob(X) satisfies (a) and (b), then 6, = ¢; for
v-almost every y € Y.

Since p is K-invariant, it follows from the uniqueness of 6 that 0, is the unique
K-invariant probability measure on the K-orbit y C X, for v-almost every y.

For f € C(X) and y € Y, let f|, € C(y) denote the restriction of f to y. The
map f +— (y — f,) extends to an isometric isomorphism

D
S Ly(X,p) — /Y Ly(y,0y)dv(y),

where f;‘? L,(y,0,)dv(y) is the L,-direct integral of the family (L, (y,0y))yey in the
sense of [dJR17|. Let 7, denote the representation of K on L,(y,6,) given by

my (k) f(z) = (k™" ) f(k~ ) forall fe Ly(y,0y), ke K,xey.
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The direct integral ff mydv(y) of the m,’s is a representation of K defined on

f}e,a L,(y,0,)dv(y) and the map S intertwines 7|x with f;'? mydv(y); for this, see
|[dJR17, Theorem 4.9] (the proof given there extends to representations twisted by
a cocycle as in our situation).

For § € K (recall that K is the unitary dual of K), set

X5 = d(6)chs,

where chs = Tr o § is the usual character of §, and define

P, (6) = m(x5) = /K (k) (k).

Then P, (9) is a continuous projection of L, (X, u) onto the isotypical K-submodule
of L, (X, p) of type 4. Similarly, for every y € Y,

Pr,(6) := Wy(%)z/Kﬁ(k)wy(k)dk

is a continuous projection of L, (y, 8,) onto the isotypical K-submodule of L,(y, §,)
of type 4.
The field y — Py, () defines a decomposable operator ff,B P, (8)dv(y) on

Y

L ,0,)dv(y) and, since S intertwines 7|x and ¢ r,dv , we have
y tp\Y,Vy ) y Tyav(y

D
(3) SP,(5)S " = /Y P, (5)du(y)

Let 2 be a Borel subset of Y. Denote by Vi the range of the multiplication
operator on f)? L,(y,0,)dv(y) by 1q, that is,

Vo = {f = (fy)yey € /j Lp(y,0y)dv(y) : 1af = f}

53
= {f = (fy)yey € / L,(y,0,)dv(y): f, =0 for wv-almost every y ¢ Q}
y
Observe that
®
(4) / Py, (0)dv(y) leaves invariant Vo.
Y

Assume, by contradiction, that the continuous part v. of v is non-zero; so, de-
noting by Y. the complement in Y of set of atoms of v, we have v(Y,) > 0 and the
measure vy, is continuous.

For § € IA(, the subset

D5 :={yeY: P, (6) =0}

of Y is measurable. Indeed, let (f,), be a dense sequence in C'(X) for the uni-
form convergence; then, by Urysohn lemma, (fy|y)n is dense in C(y) and hence in
Ly(y,8,) for every y € Y, and so

Ds = m {lyeY : P (6)(fnly) =0}

neN

Since y — Py, (0)(fnl|y) belongs to fﬁa L,(y,0,)dv(y) and is therefore a measurable
field, Dy is measurable.
Observe that K is countable, since K is a separable compact group. So, the set

D::ﬂm

sek
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is measurable. We claim that
(5) v(D) = 0.

Indeed, assume, by contradiction that v(D) > 0. Then Vp # {0}. However, for
every (fy)yey € Vp, we have

P, (0)(f,)=0 forall dekK

and hence f, = 0 for every y € D. This contradiction shows that (5] holds.
It follows from (5)) that there exists ¢ € K such that v (Y, N Ns) < v(Y.). So, for

Q:=Y,\ Ns

we have v(€2) > 0. Since v|y, is continuous, we can therefore find a partition

Q:HQn

neN
of Q in countably many Borel subsets §2,, with v(£2,,) > 0 for all n € N. We have

(/@ Pr, (5)du(y)> Vo, # {0} for all n € N.

v
since Py, () # 0 for every y € Q. Hence, for every n € N, we can find

fn € < / : P, (5)du(y)) Vo,  with  fo #0.

Y

Since Q,, N, = 0 for n # m, it follows from (4) that the family (£, )nen is linearly
independent. Therefore, on the one hand, the family (S~!f,),en of elements in
L,(X, p) is linearly independent. On the other hand, it follows from (3] that

ST, € Pr(0)(S™H(Vq,)) C Pr(6)(S™(Vq))  forall n e N.
This implies that the subspace P, (8)(S™(Vq)) of L,(X, p) is infinite dimensional.
So, the projection Py (d) does not have finite-dimensional range. This is not possible

since 7 is completely irreducible (see |[God52, Theorem 2] or [HC53, Lemma 33]).
This is a contradiction shows that v is an atomic measure.

e Fourth step. We claim that there exists a point xg € X such that u(Gzo) = 1.
Indeed, it follows from the third step that there exists a point zg € X such that
u(Kxo) > 0 and therefore p(Gxo) > 0. If we show that the G-action of (X, u) is
ergodic, then it will follow that u(Gzg) = 1.

Assume, by contradiction, that there exists a partition X = X; [] X2 into two
G-invariant Borel subsets X; with x(X;) > 0 for ¢ = 1,2. Then

LP(X7 H) = VXl S5 VX27
where
VXi = {f € L;D(Xau) : 1X7,f = f} = Lp(Xia/J/ Xi);

moreover, Formula shows that Vx, is w(G)-invariant. Since Vx, # {0} for
1 = 1,2, this contradicts the fact that 7 is irreducible and the claim is proved.

The stabilizer of g € X as above is a closed subgroup H. Hence, upon disre-
garding a set of measure zero, we may and will identify X, as Borel G-space, with
the space G/H, equipped with its quotient Borel structure.

Next, we draw some consequences for the cocycle ¢ : G x X — S! over the
transitive G-space X. First, upon passing to a cohomologous cocycle, we can
assume that c is a strict cocycle, that is, Equation holds for all g1,90 € G
and z € X. Moreover, choose a Borel section s : G/H — G for the projection
G — G/H with s(H) = e. Observe that gs(x)s(gr)~! belongs to H, for every
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g € G and = € X. Then there exists a continuous homomorphism y : H — S* such
that ¢ is cohomologous to the cocycle ¢, : G x X — S* given by

cx(g,7) = x(gs(x)s(gz) ™) forall ge€ G,z € X;

for all this, see Theorem 5.27 in [Var85|.

We may and will in the sequel assume that the cocycle ¢ coincides with c,.. Also,
as is well-known (see e.g. |Macb2, Theorem 1.1}), all G-quasi-invariant o-finite
Borel measures on G/H are mutually equivalent; so, we may assume that the G-

quasi-invariant g on G/H is one of the standard G-invariant Borel measures on
G/H constructed in [Macb2, §.1].

e Fifth step. We claim that K acts transitively on the space G/H.

Indeed, on the one hand, since G is a connected Lie group, X = G/H is a C*°-
smooth connected manifold; moreover, the measure p on X is locally Lebesgue
measure, that is, p is given by a smooth density times Lebesgue measure in any
local coordinates on X; indeed, this follows from the fact that the maps = — gx
are diffeomorphisms of X for every g € G.

On the other hand, it follows from the third step that there exists a K-orbit O
in X with p(O) > 0. As is well-known, O is a submanifold of X, diffeomorphic to
K/L where L is the stabilizer in K of a point in K (see e.g. |Bou72, III, §1, 7.]).
In view of what we said about g, this is possible only if dim O = dim X, that is, if
O is open in X. Since X is connected, it follows that O = X.

o Sizth step. We claim that H is contained as a finite index subgroup in a
parabolic subgroup of G, as defined in the Introduction. Indeed, it follows from
the fifth step and Lemma [3] below, that there exists a parabolic subgroup @ which
contains H and which has the following properties; let Q@ = MgAgNg be the
Langlands decomposition of Q. Write Q° = CSAgNq for the connected identity
component QY of @, where C is the maximal compact factor of Mc% and S is the
product of all the non-compact simple factors of MC%. Then

H® = C'SAgNg,

where C’ is a connected closed subgroup of C.

We claim H has finite index in ). Assume, by contradiction, that H has infinite
index in Q. Observe that Q is a direct product Q@ = ZQ" for a finite subgroup Z of
its center (see [Kna96, Theorem 7.53]). So, H is of the form H = T'SAgNq for a
subgroup T of infinite index in the compact group L := ZC.

Let x be the unitary character of H associated to c¢. Observe that y is trivial on
the semisimple Lie group S. Moreover, we have [ap,nr| = ng for the Lie algebras
ar and ng of Ag and Ng, where F' is the set of simple roots associated to @) as
in the Introduction; it follows that the commutator subgroup of AgN¢g coincides
with Ng and hence that x is also trivial on Ng.

Choose a Borel fundamental domain Qo C G for G/Q and a fundamental domain
Qy C L for L/T. Then Qp$2; is a fundamental domain for G/H and every g € G
has unique decompositions

g =wo(9)q(g) = wo(g)wi(g)h(g)  for wi(g) € R, q(g) € Q,h(g) € H.

Let v1 be the L-invariant probability measure on Qq = L/T. Identify L,(G/H, u)
with L,(Qo x Q1,19 ® v1) for a G-quasi-invariant probability measure vy on y =
G/Q. For g€ G and F € L,(Qp x 1,19 @ v1), we have

7(g)F(z) = x(h(g7 ) F(wo (g 2)wi (¢ 2)) for all z € Qp x Q.
Define a representation mg of @ on L,(Q1,1v41) by
mQ(a)f(z1) = x(h(g 21)) f(wi(g z1))
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for f € L,(1,11), 21 € 1,9 € Q.

Since € = Q/H is infinite, L,(€,r1) is infinite dimensional; therefore, the
restriction mg|r of mg to the compact group L is not irreducible (see [War72,
4.2.2.4]). Hence, there exists a closed mg(L)-invariant subspace V' of L,(4,11)
with V' # {0} and V' # L,(£1,v1). Observe that mg(q) is a multiple of x(q) for
q € Ag and mg(q) is the identity for ¢ € SNg. Since Q = LSAgNg, it follows that
V is Q-invariant.

For F € LP(QQ X Ql, Vg & 1/1) and xg € Qo, let Fxo S Lp(Ql, 1/1) be defined by

Fwo (.’171) = F(xoiﬂl).

Let V be subspace of L,( x Q1,19 @v1) of all F € Ly(Qo x Q1,19 @ v1) such
that Fy, € V for vp-almost every xg € . Then Visa proper non trivial closed
subspace of L,(Qg x Q1,10 Q 11).

We claim that V is 7(G)-invariant. Indeed, let F € V,g € G and F' = (g)F;
for g € Qp,z1 € Qq, set x = zgz; and let ¢ = q(xalg) be the Q-component of
x5 'g. We have wo(g~ ') = wo(g~'20) and

Fy (21) = F'(zox1) = x(h(g™ ) F(wo(g ™ zo)wi (9™ ')
= X(h(((x5 " 9) ™" @1)) Fuog(g-1a0) (@i (x5 ' 9) " 1))
= X(h(g™ 1)) Fop(g-1a0) (w1 (g 21)))
= (7Q(0) Flog(g-120)) (1)

Since F, (g~
F' € V and the claim is proved.

Now, 7 is irreducible. So, we have obtained a contradiction which shows that H
has finite index in Q.

e Seventh step. We claim that H = Q. Indeed, H contains Q°, since H has finite
index in (. As mentioned in the sixth step, Q is a direct product Q = ZQ° for a
finite abelian subgroup Z. Hence, we have Q = Z'H for a subgroup Z’' of Z. We
have to show that Z’ is trivial.

Assume, by contradiction, that Z’ # {e}. Then there exists a non trivial char-
acter ¢ of Z’. We proceed as in the sixth step. Let Q9 C G a fundamental domain
for G/Q. We identify L,(G/H, ) with L,(Q x Z', vy @ v1) for a convenient G-
quasi-invariant probability measure vy on y = G/Q and a probability measure v
on Z'.

For F € L,(Q x Z',vp ® 1) and xg € Qo, let Fy, € L,(Q1,v1) be defined by
F,(x1) = F(zoz1). Let Vs be subspace of L,(Q x Q1,19 @ v1) of all F such that
Fyy(211) = 6(2)Fy, (21) for all z € Z' and vp-almost every xo € Qo. Then Vj is a
proper non trivial closed subspace of L,(£y % 1,19 ® v1). Moreover, one checks

120) € V for almost every x¢ and since V' is Q-invariant, it follows that

that Vj is 7 (G)-invariant; this contradicts the irreducibility of .

e Fighth step. There exists a a real linear form A € a* and a unitary character x
of Mg such that 7 is equivalent to the representation 7(Q, x, A, p) on L,(G/Q, 110)
described in Theorem [AL

Indeed, by the seventh step, we have H = Q) = Mg AgNg. The unitary character
of @ associated to the cocycle c is trivial on Ng and Mg centralizes Ag; hence,
this character is of the form x ® x’ for unitary characters x of Mg and x’ of Ag.
Let F' C X be the set of simple positive roots associated to @@ There exists A € a*
such that

—iA(X)

X (expX)=e forall X € ap =log(Ag).
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Let p be the unique quasi-invariant Borel probability measure on G/@Q which is
K-invariant. For g € G, decompose ¢ according to G = KMgAgNg as

g = r(g)p(g) exp(H(g))n(g) for r(g) € Qq,ulg) € Mg, H(g) € ar,n(g) € Nq.

The Radon-Nikodym derivative of g, with respect to p is given by (see e.g. [Kna96,
Proposition 8.44])

dg*(ﬂ) (.’E) _ e—pF(H(g))
dp
for
PF = Z dim(ga)a'
aeXt\span(F)
This finishes the proof of Theorem [A]

The following lemma, which was used in the proof above, is a consequence of
the description of cocompact subgroups of semisimple Lie groups from [Wit90| (see
also [GWT72]).

Lemma 3. Let G be a noncompact connected semisimple linear Lie group with
mazimal compact subgroup K. Let H be a closed subgroup of G with the property
that the natural action of K on G/H is transitive. Upon replacing H by one of its
conjugate, there exists a standard parabolic subgroup @ which contains H and which
has the following properties; denote by Q@ = MgAqgNg the Langlands decomposition
of Q; write Q° = CSAgNq for the identity component Q° of Q, where C is the
maximal compact factor of Mg and S is the product of all the non-compact simple
factors of Mg, Then there exists a connected closed subgroup C' of C' such that

H® = C'SAqNo.

Proof. Since K acts transitively on G/H, we have G = K H. In particular, H is
a cocompact subgroup of G. By |[Wit90, Theorem 1.2] and upon conjugating H,
there exists a standard parabolic subgroup @ of G with the following properties:
o () = MgAgNg contains H;
e there exist a connected, normal subgroup X of S and a connected closed
subgroup Y of C'Ag such that H° = Y X Ng, where S and C are as in the
statement of the Lemma.

Since H/H? is at most countable, we have
G = |J K Hogn
n>1

for some sequence (gn)n,>1 of elements in G. As K is compact and Hy is closed,
K Hyg, is a closed subset of G for every n. Hence, by Baire’s category theorem,
K Hj has a non empty interior. By homogeneity, it follows that K Hy is open in G.
Since G is connected, we have therefore G = K Hy, that is,

(6) G =KYXNg.

Recall that the multiplication map K x A x N — G from the Iwasawa decom-
position G = K AN is a diffeomorphism. The reductive Lie group Mg has also an
Iwasawa decomposition

Mg = K1A1 Ny,
for K; := K N Mg; we have A = A;Ag as a direct product and N = N1 Ng as
semi-direct product (see [Kna96, Proposition7.82]). In particular, we have C' C K.
Let Q C K be a fundamental domain for K/K;. So,

(7) the product map O x Ky xA; xAg x N1 x Ng —» G is a bijection.
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The Iwasawa decomposition of the semisimple Lie group X C S is X = Ky AsNo,
where Ky := K7 N X and where As and Ny are subgroups of A; and N». By @,
we have therefore
G=KYXNg=KKyYAyNoNg.
Since Y C C'Ag, it follows from (7)) that
dim Ay =dimA4;, dimN;=dimN;, and Ag CY.

So, we have S = X and Y = C"Ag for a connected closed subgroup C’ of C.
g

3. PROOF OF PROPOSITION

Let Q = MgAgNg be a parabolic subgroup of Gj for a real linear form \ € a*
and a unitary character x : Mg — S?, consider the representation 7(Q, \, x,p) of
G on L,(G/Q, 1) as in the Introduction.

We may realize m(Q, A, x,p) in the so-called compact picture as follows. Let
C(K, x) be the vector space of continuous functions F' : K — C such that

F(xk) = x(k)F(x) forall ke KNMg, € K;

equip C (K, x) with the norm

1/p
IF|l, = ( /K e IF(x)Ipdu(x))> ,

where y is the unique K-invariant probability measure on K/(KNMg). Let L, (K, x)
be the completion of (C'(K,x), | - ||p)- Let pg,p € a* be defined as in the Introduc-
tion. Then 7(Q, A, x,p) acts on L, (K, x) through

T(Q, x: A ) (9)F () = x(u(g~Ta))e~ A+ B0 o (g~ 1))
for FF € L,(K,x),z € K and g € G with decomposition

g = x(g)u(g) exp(H(g))n(g), r(g) € K, u(g) € Mg, H(g) € log(Aq),n(g) € Ng

Observe that, for g € K, the operator 7(Q, x, A, p)(g) is simply left translation on
Ly(K,p) by g~

Set E := L,(K, x). Recall that the subspace Ex of K-finite vectors in E is the
space of functions F' € E such that

m(Q, X, M, p)(K)F = {m(Q,x, \,p)(9)F' : g € K}

spans a finite-dimensional subspace of E. The space E°° of C*°-vectors in F consists
of smooth functions F' € C(K, x). As a K-module, E* is the representation of K
differentiably induced by x|xna, (in the sense of [War72, 5.3.1]). Therefore, by

Frobenius reciprocity (which remains valid in this context), the multiplicity of § € K
in £ is equal to the multiplicity of x in 0|xnns, and is therefore finite, since 4 is
finite dimensional. Hence, the multiplicity of § in Ex NE is finite. Since ExNE>
is dense in F (see e.g. [War72, Theorem 4.4.5.16)), it follows that the multiplicity
of 0 in E is finite. In other words, m(Q, x, A, p) is an admissible representation of
G (as defined [Kna01, p.207] and [Wal71] 3.3.5]) or is a K -finite representation (as
defined in [War72) 4.5.1]).

As is well-known, Ef is a module over the universal enveloping algebra U (gc)
of the complexification of the Lie algebra g of G. Set

. . 2
(8) vi=1iA+pQp— PQ2 =1IiA+ (p - 1) £0.2;
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then Ex coincides with the (g, K)-module associated to the (nonunitary) induced
representation Indg(X ® v ® 1n,). This (g, K)-module consists of the functions
f G — C which are C'"*° and have the following properties:

e f(gman) = x(m)e~(AtvHra:2)loga) f(g) for all g € G and man € Q;
e the linear span of K - f is finite dimensional space, where K - f is the space
of translates g — f(k~lg) for k € K.

(for this, see |Wal7l, 5.2.1]). So, the (g, K) module associated to 7(Q, x, A, p) is
the principal series representation denoted Ig ., in [Wal71] for v as in .

Now, since m(Q, x, A, p) is admissible, 7(Q, x, A,p) is completely irreducible if
and only if its associated (g, K)-module Ig , . is algebraically irreducible. More-
over, two such representations 7(Q1,x1,\1,p1) and 7(Q1, x1, A1, p1) are Naimark
equivalent if and only if the (g, K)-modules I, y, ., and Ig, y, ., are algebraically
equivalent (for all this, see Theorems 4.5.5.4 and 4.5.5.2 in [War72)).

4. PROOF OF THEOREM [Bl

We assume from now on that G is a simple Lie group with real rank one. In this
case, we have dima = 1.

Choose o € ¥ and H € a such that o ¢ ¥ and a(H) = 1. We identify ag,
with C by means of the map A — A(H).

There is, up to conjugation, only one parabolic subgroup, namely P := M AN.
For p € (14 00), we will write p, instead of pp,. In view of Proposition [2| we

have to study, given A € R and xy € MAP, the irreducibility of the (non unitary)
principal series representation Ip ., , for

2
VUrp = 1A+ ( — 1) 02
p

and to decide when two such representations are equivalent. We will apply several
times the following result of Kostant about the case where v = 1. Set

(dimgy)/2 if 2a¢ X
(dimgs)/2+1 if 2a€X,

o T

where g, C g is the usual root space corresponding to «; set also

1 if 20¢%
Mg 1=
2 if 2c€e .
Recall that
p2 = (dim g,)/2 + dim gaq.
For v € C, we have (see Theorem 2 in [Kos69] and Theorem 2.9.8 in [Kos75]):
(9) Ipi,,v is not irreducible <= v ¢ (—tqo,to) and v + pa € noZ.

We will treat separately the different simple groups G which may occur; for the
data we will use concerning these groups, we refer to [Hel78| Chap. X].

e Let G = SOg(n, 1) for n > 2. Here, K = SO(n) and M = SO(n—1). Moreover,
we have dimg, =n — 1 and 2a ¢ X. So,

-1 -1
ta:n ) ng = 1, and P2:n2 ;

2
. 2 n—1
V,\’p:Z)\—‘y-(p—l) 5

hence, for A € R, we have
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2
Since 2; — 1) < 1, it follows from (H} that

Ip1,,v,, isirreducible for all A € R and p € (1,+00) with p # 2.

The case where n # 3 is settled since the abelianization of M is then trivial and
so MAP =1,,.
Assume now that n = 3. Observe that in this case G = SLy(C) and M = U(1).

We use hire\the results from [Thi73| §. 13, B]: identifying MAb with %Z, we have,
for m € MAP and v € C,

Ip ., is irreducible <= (v +1+1)(r —1—-1)#0
foralll e {Im|+k:k=0,1,2,---}. Since (n — 1)/2 = 1, this condition is clearly

satisfied for v, ; and so we obtain that Ip y ., , isirreducible for all A € R, x € m,
and p € (1,+00) with p # 2.

e Let G = SU(n, 1) for n > 2. Here, K = SU(n) and M = U(n — 1). Moreover,
we have dim g, = 2(n — 1) and dim g2, = 1. So,

ta = n, Neg = 2, and p2 = n;

2
Unp =tA+ ( - 1) n.
p

2_ 1' < 1, it follows from (H} that
p

hence, for A € R, we have

Since

Ipi, vy, isirreducible for all A € R and p € (1,+00) with p # 2.

In |[Kra76l Proposition 1] precise necessary and sufficient conditions are given on
o€ M and v € C for Ip, ., to be irreducible. In the special case of o € MAb this

criterion reads as follows. Identify MAD with %HZ as in |Kra76] and for o € MAD
and v € C, define (s1,...,8,41) € C""! by

1
§(V—(n—1)0) if i=1
S; = 0+gfi+1 if 2<i<n
1
—§(V+(n—1)a) if i=n+1.

Then Ip,,, is not irreducible if and only if either s1 —s; € Z\ {0} for all2 <i<mn
Or Spy1 — 8; € Z\ {0} for all 2 < i <n.

It follows immediately that Ip, ., , is irreducible if A # 0. So, we may assume
that A = 0.

m

Writi =
riting o = — 1

irreducible if and only if either

1

m m n
- —(n—1 - 4l €Z
5 (o= (-0 ) - T ez )

for m € Z, the criterion above implies that [ P.o,vo, 18 1Ot

or

1 m m n
3 (Vp’0+(n_1)n+1>_n+1+2EZ\{O}

that is, if and only if
either v,0— (m+n) €2Z\{0} or v,o— (m+n)e2Z\ {0}



THE L,-DUAL SPACE OF A SEMISIMPLE LIE GROUP 15

2
As vy = <p — 1> n, we see that Ip, ,,  is not irreducible if only if

(10) either 2(;—1>n—mE2Z\{O} or 2?n—mE2Z\{O}.

It is clear that is equivalent to

pG{ZI::ke{l,...,Qn—l},kZm(mod2),k7ém,k7$2n—|—m}.

e Let G = Sp(n,1) forn > 2. Here, K = Sp(n)xSp(1) and M = Sp(n—1)xSp(1).
Moreover, we have dim g, = 4(n — 1) and dim go,, = 3. So,

to =2n — 1, Neg = 2, and p2 =2n+1;

hence, for A € R, we have
. 2
Vap = 1A+ 5—1 (2n +1).

Observe that the abelianization of M is trivial and so MAP = {1,,}. Moreover, we
have

2 2n+1
‘1‘(2n+1) >om—1 e=spe (L, 2 URn+ 1, +00).
p
and
2 2n+1
<p—1> 2n+1)+2n—-1 €2Z<:>p6{ n; :kzeN*}.
It follows from @ that
® Ipi, ., is irreducible for every A € a* \ {0}
1
® Ipi, .1, is not irreducible if and only if p = orp=2n+1.

o Let G = Fy(_a0). Here, K = Spin(9) and M = Spin(7). Moreover, we have
dimg, = 8 and dim go,, = 7. So,

to =9, Ng = 2, and p2 = 11;

2
uA,p=¢A+11<—1>.
p

The abelianization of M is trivial and so M4 = {1,,}. Moreover, we have

hence, for A € R, we have

11

U
[37

2 11
11‘—1‘25 —pe(l +00).

p 5]
and
2 11 .
11(—1)+5 e2Z<:>pe{k:keN }
p
It follows from @ that

® Ipi, .., is irreducible for every A € a* \ {0}

11 11 11 11 11
® Ip1, .1, is not irreducible if and only if p € {10, 98 3 11} .
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In all the cases above, if two representations Ip,,, and Ip,s , are irreducible,
then they are equivalent if and only if
(le V) = (yv V) or (le V/) = (Y? _V)'

Now

—Unp = —(IA+ (12) - 1) p2 = (—iA+ (2 - 1) P2 = Uxg-
Therefore, Ipy: v, , and Ipy ., , are equivalent if and only if
OGP = (6 Ap) o (XN p) = (X =\ 9)-

5. AN EXAMPLE: SLs(R)

Let G = SLo(R), with maximal compact subgroup K = SO(2). The standard
minimal parabolic subgroup is

a b
P{<O a_1> .aGR,a#O,bER}.

We have P = M AN for

A—{(S a91>:aeR,a>o},
V6 9)
N:{(é l{):beR}.

Identifying ag with C as above, we have

and

1
prp = —
Poop

for every p € (1 4+ o0). We identify G/P as G-space with the real projective line
P(R), with G acting by M&bius transformations on this latter space. The Lebesgue
measure 4 is the unique K-invariant probability Borel measure on P(R). The mea-
surable space G/P can further be identified with R = P(R) \ {o0}.

The Radon-Nikodym derivative for g = 3 acting on R is given by
dg. (1) 1
(z) = 5
du (cx +d)

Let € denote the non trivial character of M and let A € R. The representation
(P, x, A, p) of G by isometries on L,(R, ) is defined by

"(PL ) (o) = s+ d = E (S0 = (1)

cx +d c
and
_ —ia-zpfartbN o fa b
(P2 A ) f0) =sanleo + dles + a3 (HE0) it g = (4

The Harish-Chandra (g, K')-module underlying (P, e, A, p) is Ip,,, for
2
v =1\+0ppp2 zi)\—i-];—l

Assume that p # 2. It is well-known that Ip, , is irreducible (see e.g. Proposition
1.3.3 in [Vog81|; observe that the irreducibility of Ip., depends on the fact that



THE L,-DUAL SPACE OF A SEMISIMPLE LIE GROUP 17

2 . . . .
— — 1 is not an integer). Moreover, the modules Ip, , are pairwise non equivalent

b
for fixed p.
In summary, the L,-dual space of G = SLy(R) for p € (1, +00) with p # 2 is

Gr, = {m(P,1a,\,p) : A€ R} U {n(P,e,\,p) : A e R} U {15}
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