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ABSTRACT
Reproducibility (a.k.a., determinism in some cases) constitutes a
fundamental aspect in various fields of computer science, such
as floating-point computations in numerical analysis and simula-
tion, concurrency models in parallelism, reproducible builds for
third parties integration and packaging, and containerization for
execution environments. These concepts, while pervasive across di-
verse concerns, often exhibit intricate inter-dependencies, making
it challenging to achieve a comprehensive understanding. In this
short and vision paper we delve into the application of software
engineering techniques, specifically variability management, to
systematically identify and explicit points of variability that may
give rise to reproducibility issues (e.g., language, libraries, compiler,
virtual machine, OS, environment variables, etc.). The primary ob-
jectives are: i) gaining insights into the variability layers and their
possible interactions, ii) capturing and documenting configurations
for the sake of reproducibility, and iii) exploring diverse configu-
rations to replicate, and hence validate and ensure the robustness
of results. By adopting these methodologies, we aim to address the
complexities associated with reproducibility and replicability in
modern software systems and environments, facilitating a more
comprehensive and nuanced perspective on these critical aspects.

1 INTRODUCTION
Many scientific domains need to process large amount of data with
more and more complex computations. For instance, studies about
climate modelling and change involve the design of mathematical
model, the mining and analysis of data, the executions of large sim-
ulations, etc. [16, 24, 29]. These computational tasks rely on various
kinds of software, from a set of scripts to automate the deployment
to a comprehensive system containing several features that help
researchers exploring various hypotheses. It is not an overstate-
ment to say that computational science depends on software and
its engineering [2, 34, 54].

One of the main promise of software is that a result obtained by
an experiment (e.g., a simulation) can be achieved again with a high
degree of agreement. But despite the availability of data and code,
several studies report that the same data analyzed with different
software can lead to different results [6, 9, 15, 19, 22, 31, 41, 42, 53].
For instance, applications of different analysis pipelines, alterations
in software versions, and even changes in operating system have
been shown to cause variation in the results of neuroimaging stud-
ies [18]. Massonnet et al.’s [41] results and experience suggest that
earth system models are not replicable under changes in the high-
performance computing environment. Similar observations have
been made in the machine learning or in the software engineering

community [22]. As a result, software can threaten the scientific
knowledge and recommendations built on top of these computa-
tions and studies.

In this paper we propose to characterize both intended and un-
intended variability of any software-intensive system in order to
support reproducibility and replicability, and eventually estimate its
robustness, uncertainty profile, and explore different hypotheses.

2 DEEP SOFTWARE VARIABILITY
Uncertainty in informatics comes from many different origins [17,
39], either ontological (i.e., inherent unpredictability, e.g., aleatory)
or epistemic (i.e., due to insufficient knowledge).

Ontological causes include noise in the input data of a program, its
memory layout, network delays, the internal state of the processor,
the ambient temperature and even the age of the processor1.

Epistemic causes include misunderstanding of the user’s needs,
variable behavior of conceptually similar resolutionmethods, choice
of threshold parameters, unexpected behavior of APIs, variable
behavior among functionally similar libraries, or subtle differences
in the semantics of programming languages (e.g., −3%2 evaluates to
−1 in Java but to 1 in Python), or even inside the same programming
language (for instance 𝑥/0 is an undefined behavior in C).

Parameters,
Input Data e.g., random seed selection
Programming
Style e.g., x+(y+z) vs. (x+y)+z

Language

Compiler & VM

Library

Platform

Processor

Micro-
architecture Inner state of

Figure 1: Deep Variability

A further dimension of the problem lies into the fact that these
causes of uncertainty might not always be orthogonal. We have

1A given processor micro-architecture evolves over time due to failing subsystems
that are compensated.
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shown in [37] that several layers can interact, e.g., between compile-
time and run-time options. In [36] we have coined the term Deep
Variability to refer to the interaction of all external layers
modifying the behavior (including both functional and non-
functional properties) of a software, as illustrated in Figure 1.
Deep software variability challenges practitioners and researchers:
the combinatorial explosion of the epistemic and ontological vari-
ability complicates the understanding, and thus the design, the
configuration, the maintenance, the debug, and the test of software
systems.

An illustration. Let’s take a simple example to illustrate the prob-
lem, concentrating on floating-point numbers even if uncertainty
problems go well beyond that. The Python program of Listing 1
first asks for a seed for its pseudo random number generator, then
generates 3 pseudo-random numbers 𝑥,𝑦, 𝑧 and checks whether
their addition is associative, i.e., 𝑥 + (𝑦 + 𝑧) = (𝑥 +𝑦) + 𝑧. When run
many times with different seeds, it turns out that this fundamental
property of the addition only holds about 82.8% of the time.

Code Listing 1: Proportion of pseudo-random numbers for
which associativity of addition holds
from random import random , seed
def associativity_test () -> bool:

x = random (); y = random (); z = random ()
return x + (y + z) == (x + y) + z

def proportion(number: int) -> int:
ok = 0
for i in range(number):

ok += associativity_test ()
return ok * 100 // number

seed(int(input('Seed: ')))
print(str(proportion (1000)) + "%")

Any programmer unaware of this kind of floating point issues
(a.k.a., floating point numbers are not real) is at risk of making
mistakes: this is an example of Epistemic Variability. One inter-
esting point is that the proportion of cases where the associativity
property holds differs greatly depending on the input seed, with
extreme cases of 76.2% with a seed=10215250 and 89.2% with a
seed=85252568: this is an example of Input Data Variability (also
related to stability in computational learning theory [7]), because
here we would have expected that the program would behave the
same whatever the input data.

Yet already severe, the problem does not stop here. If we translate
this program to Java using Math.random() as its random generator,
we get that associativity holds 83.1% of the time, which is quite
but not exactly similar to Python: this is an example of Language
Variability. But if we use java.util.Random.nextFloat() we
get 100%! Two variants of the same functionality ends up behaving
differently: this is an example of Library Variability.

If we again translate this program to C, compile it with GCC and
run it on Linux, we get similar issues depending on which random
generator is used (74.6% vs. 100%), but a new dimension appears
when we compile the same C program for Windows, now obtaining
99.8% and 100%. This effect is now due to Platform Variability.
Run on an 32-bits older processor, it yields still different results,
which is a manifestation of Processor Variability. Experiments

on different variability settings (configurations) can be found on
our Github repository [1].

Note that there is nothing particularly mysterious here: all these
different behaviors can be perfectly understood and rationalized
with a good enough understanding of double & floating point arith-
metic and an equally good grasp on pseudo-random number gener-
ation issues for each of these libraries and platforms. But this might
be a little bit too much to ask for say, a geologist or a climate expert
or even the average programmer.

3 EVIDENCE OF DEEP VARIABILITY
In this section, we review the literature and provide evidence that
variability affects many layers (as presented in Section 2) in many
settings and application domains. This deep variability is a threat
to reproducibility, but is also a mean to explore different settings
and verify the generalizability of knowledge.

Climate model. In the field of climatology, different climate
models (e.g., Earth system models a.k.a., ESMs) are being developed
based on data and simulations. Owing to the complexity and their
importance, some papers explore the reproducibility and replica-
bility of the underlying models. A paper from 2007 [29] varies on
purpose both the parameters of the climate models, the hardware,
and the underlying software. The authors reported that the hard-
ware has little effects, but the parameters were more problematic
with certain values that could potentially question the models de-
veloped so far. It is an early example of the use of deep variability to
test the generality of a climate model. More recently, Massonnet et
al. [41] suggest that "the default assumption should be that ESMs
are not replicable under changes in the HPC environment, until
proven otherwise." Specifically, they report that various variabil-
ity factors may hamper reproducibility: the way the software is
compiled with different compiler flags (e.g., O2 -g -traceback
-fp model strict -xHost) having an influence on the accuracy
of the floating point computations, some specific configuration
options for the execution or simply the hardware used as part of
a high-performance computing (HPC) since the study requires a
lot of computations. The conclusion of their inquiry is that there
are scientific studies that are simply not reproducible due to deep
variability. That is, you get so many different results because of the
sources of variation, that you can only have limited confidence, and
therefore the experience is not replicable. As a follow-up, Döscher et
al. [15] introduced a protocol to explore the variability space. They
recommend fixing some variation points to avoid bugs in mod-
els that can cause significant changes in the simulated climates.
They further warn about hardware and software variability that
can potentially affect the ESM climate – these changes may appear
unimportant, like the reordering of the call to physical routines,
but could profoundly affect the model results. For climate model
users, a better understanding of the variability that guarantees the
replicability of ESMs is a necessary step to bring more trust.

Machine learning. Wang et al. [53] showed that in the field of
machine learning, and on Kaggle competitions, altering the versions
of Keras and Tensorflow used as part of pipeline can give absolutely
different results to the users. There are quite worrying results. Con-
sidering the Area Under the Curve (AUC) that goes from 0 to 1,
the score can well drop to 0.55, while it is rather at 0.99 on other
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versions. That is to say there is a source of variation – here on the
versions of libraries – that significantly impact the reliability of your
machine learning system. If by bad luck, as an experimenter, as a
researcher, as an engineer, you had selected this version, maybe you
would have been extremely disappointed with the results, or you
would have claimed that Keras and TensorFlow were not suitable
for your problem, while in fact it is rather an accidental variability
that caused this drop in performance. There are also combinations
of versions that lead to crashes and not working systems. Overall,
the deep variability here about the version and the configuration
of the machine learning pipeline is a threat about effectiveness of
some design choices and can question the generality of the proposal
and results. Joelle Pineau, in her ICSE 2019 keynote [47], called the
community to build reproducible, reusable, and robust machine
learning software. Henderson et al. [22] precisely listed different
questions and variability factors that may affect the generality of
results in the field of reinforcement learning. As an experimenter
and scientist, here is a list of questions: What is the magnitude
of the effect hyperparameter settings can have on baseline perfor-
mance? How does the choice of network architecture for the policy
and value function approximation affect performance? How can
the reward scale affect results? Can random seeds drastically alter
performance? How do the environment properties affect variability
in reported algorithm performance? Are commonly used baseline,
implemented in different languages and libraries, comparable? All
these factors are part of the deep variability and resemble to the
issues of Section 2 in our simplified example.

Neuroimaging. Glatard et al. [18] show the lack of reproducibil-
ity of neuroimaging analyses across operating systems, in particular
due to floating point arithmetic issues similar to those of Listing 1.
Early studies reported on similar issues related to different versions,
hardware, and operating systems [9, 19, 31]. The goal of brain imag-
ing is to provide in-vivo measures of the human brain to better
understand its functions, structure and connections. Neuroimag-
ing studies are characterized by a very large analysis space. To
build their analyses, practitioners must choose between different
software, software versions, algorithms, parameters, etc. For many
years, those choices have been considered as “implementation de-
tails" but evidence is growing that they can lead to different and
sometimes contradictory results. For instance, the same dataset of
functional Magnetic Resonance Imaging (fMRI) results was inde-
pendently analyzed by 70 teams, testing 9 ex-ante hypotheses [49].
Significant variations appeared in reported results, with substantial
effects on scientific conclusions, thus jeopardizing the confidence
one could have in these studies. That might ultimately lead to
compromising people health, which is a growing concern in this
domain [30].

Bluff-body aerodynamics.Mesnard and Barba reported that
"completing a full replication study of our previously published
findings on bluff-body aerodynamics was harder than we thought.
Despite the fact that we have good reproducible-research practices,
sharing our code and data openly." [42] The authors reported on
specific reasons, that we found are related to variability layers: (1)
meshing and bounding conditions (as expressed in some software
parameters) can ruin the computational result; (2) all linear algebra
libraries are not equal: despite their promise of computing the same
thing, implementation details matter and can lead to discrepancies

in results; (3) different versions of the code, or external libraries or
even compilers may challenge reproducibility. The insights echo
with deep variability exposed in Section 2 or reported in other
sections and prior works.

Performance modeling of software. Varying software is a
powerful means to achieve optimal functional and performance
goals. An observation is that only considering the software layer
might be naive to tune the performance of the system or test that the
functionality behaves correctly [26–28, 32, 38, 46, 51]. In fact, many
layers, themselves subject to variability, can alter performances of
software configurations. For instance, configuration options may
have very different effects on execution time or energy consumption
when used with different input data, depending on the way it has
been compiled and the hardware on which it is executed.

For instance, run-time options (e.g., command line parameters)
interact with compile-time options (e.g., using ./configure) with
different effects of non-functional properties of a software [37].
There are various consequences w.r.t. tuning, default configura-
tions, understanding, and testing of software. The best run-time
configuration may not be optimal depending on the way the soft-
ware has been compiled; the configuration knowledge about the
run-time options depends on the compile-time options; a perfor-
mance prediction model may not generalize and be pointless due to
a different compilation. In Lesoil et al. [35], a large study over 8 con-
figurable systems quantifies the existing interactions between input
data and configurations of software systems. The results exhibit
that (1) inputs fed to software systems interact with their configu-
ration options in non-monotonous ways, significantly impacting
their performance properties; (2) tuning a software system for its
input data makes it possible to multiply its performance by up to
ten (3) input variability can jeopardize the relevance of performance
predictive models for a field deployment. There are also cases in
which both compile-time, runtime, and input layer interact together,
with notable changes in the performance of a software system [37].
Iqbal et al. [25] found subtle performance bugs that manifest due to
the interaction of several layers: configuration options of each soft-
ware component in a pipeline, configurable low-level libraries that
implement functionalities required by different components, the
hardware characteristics (e.g., CPU Frequency). The generalizabil-
ity of performance models is under question, and every variability
layer can be a threat to their adoption and usefulness. Overall,
performance models of software systems can be challenging to
reproduce and reuse as such: there is a need to replicate and adapt
performance models to several variability factors.

Reproducible builds. In software development, Reproducible
build [8] refers to the practice of ensuring that the process of build-
ing software yields the same output each time it is performed under
identical conditions. It requires that resulting binary artifacts are
bit-for-bit identical, regardless of where or when the build process
is executed. It enhances transparency, verifiability, and trust in soft-
ware distribution by enabling anyone to independently verify that
the provided softwarematches the corresponding source code. How-
ever, there are various factors that break the reproducible builds
property. According to Bajaj et al. [4], the build path influences
81% of build reproducibility across a set of Arch Linux and Debian
packages. Eliminating this factor resulted in achieving reproducibil-
ity. The causes span from build path or timestamps embedded into
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the binary to the order in which object files are linked [8, 33]. We
can distinguish two approaches to overcome these issues. On the
one hand, purely functional package manager such as Nix [13, 14]
and Guix [11, 12] perform each build in a dedicated isolated en-
vironment. Following this approach up to 93% of Guix packages
for x86-64 are bit-by-bit reproducible [20]. Yet, Randrianaina et
al. [50] show that even for builds performed in an environment
with fixed settings, up to 47% of Linux kernel configurations build
are unreproducible due configuration options choices. Hence, on
the other hand, we have an approach that aims to ensure repro-
ducible builds from within the software, through its configuration.
The two approaches are complementary in the sense that they en-
sure reproducible builds from both the environment in which the
build is performed and the software that is built itself.

4 VISION
Our vision is that there is a need to systematically identify and
explicit points of variability that may give rise to reproducibility
issues (e.g., language, libraries, compiler, virtual machine, OS, en-
vironment variables, etc.). Capturing and modelling variability at
different layers is a pre-requisite to reason about the configuration
space and reproduce some experiments. Furthermore, we aim to em-
brace this deep variability – by opposition to fixing everything once
and for all – since replicating an experiments calls to pro-actively
and on purpose different computational settings. On the one hand,
reproducing a computational study means running the same com-
putation, and then checking if the results are the same, or at least
"close enough" when it comes to e.g., numerical approximations. In
practice, we do not test in one run, in one computing environment,
with one kind of input data, etc. Hence this deep variability can be
used to validate an experiment and ensure a certain level of repro-
ducibility. Some configurations are sampled and executed to verify
that the results are consistent. On the other hand, scientists and
engineers are interested in replicating a scientific study (computa-
tional or other): repeating a published protocol, respecting its spirit
and intentions but varying the technical details. Deep variability is
here a mean to use different software, diversify initial conditions of
simulations, and particularly uncover unexpected variations that
initially appeared insignificant, aiming to assess the impact on scien-
tific conclusions. Hence this deep variability aims to explore diverse
configurations to replicate computational experiments, and gaining
more robustness, flexibility, confidence, and eventually consensus
of scientific results. It is also a mean to gather new knowledge
thanks to the systematic exploration of hypotheses, methodologies,
and analyses as encoded in deep variability. In both cases, a model
of variability is a key step to represent what can be varied and thus
defining a valid envelope of worthy configurations to explore, for
either reproducing or replicating a software-intensive experiment.

Running example. To give a very simple example, if we realize
that in a C program, 𝑎 + (𝑏 + 𝑐) could also have been written as
(𝑎 + 𝑏) + 𝑐 or even (𝑐 + 𝑏) + 𝑎 (associativity property), and that
the program is compiled with the option -O2 but it could also be
-O3, then we could model these variability points using the well
known formalism of feature models [3, 5], as illustrated in Figure 2.
For instance, from the feature model of Figure 2 we could select
𝑎 + (𝑏 + 𝑐) (Associativity) and -O3, and automatically obtain a

Figure 2: Feature model (excerpt). Inverse (resp. Relation-
WithPi) corresponds to checking the property (𝑥 ∗𝑧)/(𝑦 ∗𝑧) =
𝑥/𝑦 (resp. (𝑥 ∗ 𝑧 ∗ 𝜋)/(𝑦 ∗ 𝑧 ∗ 𝜋) = 𝑥/𝑦) with 𝑧,𝑦 ≠ 0

particular variant of our component, while a choice of (𝑎 + 𝑏) + 𝑐)
and -O2 would yield another one. Other variation point such as
number of repetitions, number of samples, methods of random
generations, types, or simply the programming language can well
be specified and then systematically explored.

Then our idea is to resort to statistical reasoning à laMonte Carlo
to obtain an uncertainty profile for software components, along sev-
eral axes such as accuracy, response time, power consumption or
reliability. Monte Carlo methods are a set of approaches that rely
on repeated random sampling to obtain numerical results, such as
an estimate of the probability distributions that we need here. To
extrapolate from observed executions, applied statistics provides
a rich set of tools and methodologies that can be adopted for our
purposes. But these methods heavily depend on their ability to
sample the search space (the satisfiable space of a feature model
in our case) in such a way that samples are independent and iden-
tically distributed. Developing such uniform sampling methods
remains a challenge because on the one hand there are numer-
ous constraints among options (e.g., some options are mutually
exclusive) and on the other hand the number of options (hence
variables) is many orders of magnitude beyond the capabilities of
state-of-the-art SAT samplers (≈ 1010.000 vs. ≈ 10300). In the soft-
ware engineering literature, numerous sampling techniques for
testing or measuring programs associated with feature models have
been proposed [21, 23, 43, 45, 48, 52]. In practice, there is the need
to find operational trade-offs that are close to uniformity with a
controlled uncertainty. For instance, the notion of feature impor-
tance [44] (e.g., the fact that variability factors can be ranked w.r.t.
their impact on the performance of a component [40]) be automat-
ically learned or can come from experts’ knowledge that would
typically prioritize variability of interest as part of the sampling.

Complementary with existing tools and endeavor. There are sev-
eral tools and initiative to support the idea of reproducible builds.
For instance, ReproZip [10] aims to creates a self-contained package
for an experiment by automatically tracking and identifying all its
required dependencies. Guix [11, 12] and Nix [13, 14] are power-
ful package and system managers that aim to provide reliable and
reproducible build environments. In a sense, ReproZip, Guix and
Nix focus on controlling and fixing the build environment, includ-
ing variables such as dependencies, compiler versions, and system
libraries, aiming to achieve reproducibility. At first glance, this is
the "opposite" of what our vision about embracing deep variability
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is suggesting, since we aim to vary the build environments. How-
ever, and in fact, both approaches are complementary. With the
modeling of variability, we capture and document a set of possible
and valid configurations for the sake of reproducibility. These con-
figurations can be instantiated and fed to ReproZip, Nix and Guix.
Furthermore, we can explore diverse configurations to replicate,
and hence expand the generalizability or transferability of results.
A variability model will drive the deep exploration while ReproZip,
Nix and Guix will be a mean to build, execute, and observe each
point of the envelope in a portable and reproducible environment.
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