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Asymptotic analysis at any order of Helmholtz’s problem in a
corner with a thin layer: an algebraic approach

Cédric Baudet*

May 14, 2024

Abstract: We consider the Helmholtz equation in an angular sector partially covered by a homogeneous
layer of small thickness, denoted ε. We propose in this work an asymptotic expansion of the solution
with respect to ε at any order. This is done using matched asymptotic expansion, which consists here in
introducing different asymptotic expansions of the solution in three subdomains: the vicinity of the corner,
the layer and the rest of the domain. These expansions are linked through matching conditions. The
presence of the corner makes these matching conditions delicate to derive because the fields have singular
behaviors. Our approach is to reformulate these matching conditions purely algebraically by writing all
asymptotic expansions as formal series. By using algebraic calculus we reduce the matching conditions to
scalar relations linking the singular behaviors of the fields. These relations have a convolutive structure
and involve some coefficients that can be computed analytically. Our asymptotic expansion is justified
rigorously with error estimates.
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larities, algebraic formal series.
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Introduction
Problems that involve thin layers appear in many areas, from composite materials engineering [35] to
biology [12], including elasticity [8, 20], fluid mechanics [31, 1, 24] and electrochemistry [37]. Applications
are especially numerous in electromagnetism, let us mention the studies of thin dielectric layers [22, 26,
34], ferromagnetic films [5, 21] and the skin effect [15]. All these situations are numerically challenging
because they require finely meshing the thin structure, which is very costly when its thickness is very
small compared to the wavelength and the size of the objects. In this work we propose to overcome
this difficulty by using an asymptotic expansion of the solution, such that each term of the expansion is
cheaper to compute than the solution itself.

Infinite planar layers and smooth curved layers were studied during the 90s in [9, 19]. Their method is to
stretch the layer in its transverse direction into a standard layer of thickness 1, and look for a Taylor-type
asymptotic expansion as a sum of integer powers of the original thickness, denoted ε. The terms of
this expansion can be computed by induction. Those results were later extended to heterogeneous and
periodic layers in [3, 2, 4] and more recently in [16, 10].

Here we want to handle more realistic situations where the coating has angles or covers only partially
the obstacle. We consider a two-dimensional model where the domain is the union of an infinite angular
sector and the coating, potentially with a perturbation at the corner of size proportional to ε. This
was studied for Poisson’s problems in [11, 6, 7], providing an asymptotic expansion at any order and
approximate models. These works show the presence of non-integer powers of ε and integer powers of ln ε
in the asymptotic expansion, that are linked to the corner singularities of the solution. That asymptotic
expansion at any order was generalized to periodic layer in [17], still for Poisson’s problems. In compar-
ison, Helmholtz’s problems not only present the same difficulties, but they also lead to more complex
singularities, which prompted us to introduce new and more efficient algebraic calculus tools in order to
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obtain an expansion at any order. Let us mention also that [33] proposes an asymptotic expansion of
Helmholtz’s problem up to order 2 in presence of periodic layers.

We can identify in these works two methods of analysis: multiscale asymptotic expansions and matched
asymptotic expansions (see [38, 28, 29] and [36, 23, 18] respectively for a general presentation). They
both involve two types of fields: “far fields” depending on the macroscopic scale described by (x, y) and
“near fields” depending on the microscopic scale described by (xε ,

y
ε ). In multiscale expansions, far and

near fields are defined in the whole domain and the near fields tend to 0 towards infinity so that they
describe a boundary layer effect in the “near zone” (the vicinity of the corner or the layer, depending on
the situation). In contrast, matched asymptotic expansions involve near fields only in the near zone and
far fields only in the “far zone” (the rest of the domain), and the near and far fields have to coincide in
an intermediate zone.

In this paper, we chose the method of matched expansions. In addition, we propose a new algebraic ap-
proach to derive the matching conditions, that are especially intricate in our problem. It avoids specific
cumbersome calculations, replacing them with abstract generalizable ones. We believe that this approach
gives a better understanding of the structure of the asymptotic expansion at any order. It reveals a con-
volutive structure and it provides explicit expressions to compute exactly and very cheaply the constants
that appear in the obtained matching formulas.

We consider the Helmholtz equation with absorption because it brings obvious well-posedness and stabil-
ity of the problem uniformly in ε, which allows us to focus on asymptotic expansion techniques. The case
without absorption requires to design a specific radiation condition, that will be the object of a future
paper. Moreover, we apply a Dirichlet condition on the boundary. The extension to Neumann is not
obvious and will be presented in a forthcoming article.

This paper is organized as follows. In Section 1, we define the problem, state the main result and
introduce the method based on matched asymptotic expansion. The matching condition around the
corner are derived using an algebraic approach in Section 2. It is the most original part of the article. In
Section 3, we introduce appropriate frameworks which allow to define uniquely the terms of the asymptotic
expansion. Error estimates are performed in Section 4, proving the main result of the paper.

Acknowledgment: I would like to thank Sonia Fliss and Patrick Joly for the helpful discussions we had
about the writing of this paper.
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1 Setting of the problem and the method
1.1 Definition of the problem and main result
To describe the domain, let us introduce Θ ∈ (0, 2π), Ω := {(r cos θ, r sin θ) | r ∈ R∗+, θ ∈ (0,Θ)},
Λ := R∗+ × (−1, 0), Γ = R∗+ × {0}, ΣΩ = {(r cos Θ, r sin Θ) | r ∈ R∗+} and ΣΛ := R∗+ × {−1}. All these
sets are shown in Figure 1. Then let Ω1 ⊂ R2 be an open set that coincides with Ω ∪ Γ ∪ Λ outside of the
disc B(0, Rc) for some Rc ∈ R∗+. In addition, let µ, ρ ∈ L∞(Ω1) be two functions greater than a positive
constant (ellipticity assumption), and equal to µ0 and ρ0 in Ω\B(0, Rc) and to µ1 and ρ1 in Λ\B(0, Rc).
See Figures 2 and 3 for different configurations.

Figure 1: The domains Ω (on the left) and Λ (on the right)

Figure 2: The domain Ω1 with a configuration example of Ω1 ∩B(0, Rc)

Figure 3: Other configuration examples of Ω1 ∩B(0, Rc) for different values of Θ
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Let ε > 0. The physical domain is given by Ωε := {(x, y) ∈ R2 | (xε ,
y
ε ) ∈ Ω1}. We introduce the scaled

coefficients µε : (x, y) ∈ Ωε 7→ µ(xε ,
y
ε ) and ρε : (x, y) ∈ Ωε 7→ ρ(xε ,

y
ε ), and the scaled variables X := x

ε
and Y := y

ε . Let ω ∈ C \ R and fs ∈ H−1(Ω) a source term s.t. dist(supp(fs),Γ) > 0. We denote uε the
unique solution in H1

0 (Ωε) of

div(µε∇uε) + ω2ρεuε = fs in Ωε (1.1)

ℑ(ω) ̸= 0 is a technical assumption that makes this problem well-posed (it suffices to use the Lax-Milgram
theorem) with a stability constant independent of ε :

∃C > 0, ∀fs ∈ H−1(Ω), ∀ε > 0, ∥uε∥H1(Ωε) ⩽ C∥fs∥H−1(Ω) (1.2)

The case ℑ(ω) = 0 is an open question and will be the object of a future work.

The main result of this paper is given in the following theorem, proven in Section 4, page 36.

Theorem 1.1: asymptotic expansion of uε
Let P := N + π

ΘN. There exist (np) ∈ NP and a family (up,ℓ)p∈P,ℓ∈[[0,np]] of elements of H1
loc(Ω) that

can be build recursively w.r.t. p (see Theorem 3.17 for the construction) such that

∀P ∈ R+,∀δ > 0,
∥∥∥∥uε −

∑
p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε up,ℓ
∥∥∥∥
H1(Ω\B(0,δ))

= o(εP ) when ε → 0.

The presence of integer powers of ε is entirely classical in asymptotic analysis. Integer powers of επ/Θ

and ln ε can be found in other asymptotic expansions involving corners, see [11, 6, 7]. Theorem 1.1 can
be extended to the case where ΣΩ is covered by another layer (see Remark 2.7 for a useful point).

Notations: We denote (x, y) the cartesian coordinates, (r, θ) the polar coordinates with θ ∈ [0, 2π),
B(0, r) the disc of R2 of radius r centered at (0, 0), ki := ω

√
ρi/µi for any i ∈ {0, 1} and α := e−iΘ.

1.2 The matched asymptotic expansion method
To take into account the different behaviors of the solution in the layer, near the corner and far from the
corner and the layer, we divide Ωε in three zones, illustrated in Figure 4. In each zone we postulate an
asymptotic expansion in powers of ε and ln ε, called “ansatz”.

Figure 4: Zones of the matched asymptotic expansion

Let us assume that for any (p, ℓ) ∈ P × N there exist three functions independent of ε – namely up,ℓ
defined on Ω called “far field”, Up,ℓ defined on Λ called “layer field” and Sp,ℓ defined on Ω1 called “corner
field” – such that uε is formally written as:

• uε(x, y) =
∑
p∈P

∑
ℓ∈N

εp lnℓε up,ℓ(x, y) when r := ∥(x, y)∥ ⩾
√
ε and (x, y) ̸∈ R+ × (−ε, 0) (far zone),
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• uε(x, y) =
∑
p∈P

∑
ℓ∈N

εp lnℓε Up,ℓ
(
x,
y

ε

)
when x ⩾

√
ε and y ∈ (−ε, 0) (layer zone),

• uε(x, y) =
∑
p∈P

∑
ℓ∈N

εp lnℓε Sp,ℓ
(x
ε
,
y

ε

)
when r ⩽ 2

√
ε (corner zone).

Remark: We will see in Proposition 3.14 that: ∀p ∈ P,∃np ∈ N,∀ℓ > np, up,ℓ = 0 and Up,ℓ =
0 and Sp,ℓ = 0.

Injecting the above sums in the Helmholtz equation, using that ∂2
x

[
φ(xε )

]
= ε−2[∂2

Xφ](X = x
ε ) and

∂2
y

[
φ(yε )

]
= ε−2[∂2

Y φ](Y = y
ε ) for any function φ, and formally identifying the powers of ε and ln ε, one

can easily derive the following volume equations and edge conditions for the various fields.
µ0∆up,ℓ + ω2ρ0up,ℓ = f δp,0 δℓ,0 in Ω

up,ℓ = Up,ℓ on Γ
up,ℓ = 0 on ΣΩ

(1.3)


µ1∂

2
Y Up,ℓ = −(µ1∂

2
x + ω2ρ1)Up−2,ℓ in Λ

µ1∂Y Up,ℓ = µ0 ∂yup−1,ℓ on Γ
Up,ℓ = 0 on ΣΛ

(1.4)

{
div(µ∇Sp,ℓ) = −ω2ρSp−2,ℓ in Ω1

Sp,ℓ = 0 on ∂Ω1
(1.5)

where we denote by convention up,ℓ = 0, Up,ℓ = 0 and Sp,ℓ = 0 for any (p, ℓ) ∈ R \ P × N, and δi,j := 1 if
i = j and 0 if not.

Remarks:
• The condition µ1∂Y Up,ℓ = µ0∂yup−1,ℓ is included in the problem satisfied by Up,ℓ whereas up,ℓ = Up,ℓ

is included in the problem satisfied by up,ℓ so that the construction is inductive: up−1,ℓ allows to
build Up,ℓ, which allows to build up,ℓ.

• The problem satisfied by Up,ℓ depends only on Y , the variable x playing the role of a parameter.

(1.3)–(1.5) would be sufficient to uniquely define the fields, if they were in their natural variational spaces
(e.g. H1(Ω) for up,ℓ). But we need to take into account a matching condition: the far and corner fields
must coincide in the intersection of the far and corner zones, and similarly for the layer and corner fields.
These intersections form the matching zone (see Figure 4). Given that ε → 0 and

√
ε
ε → ∞, this zone

tends to (0, 0) w.r.t. the far and layer fields, but it tends to infinity w.r.t. the corner fields. Thus, the
matching condition links the asymptotic behavior of far and layer fields at the corner to the one of corner
fields at infinity:{ ∑

εp lnℓε up,ℓ(x, y) ≈
∑

εp lnℓε Sp,ℓ(xε ,
y
ε ) in Ω when r → 0 and r

ε → ∞∑
εp lnℓε Up,ℓ(x, yε ) ≈

∑
εp lnℓε Sp,ℓ(xε ,

y
ε ) in Λ when x → 0 and x

ε → ∞
(1.6)

We will see that the far fields up,ℓ have an asymptotic expansion at the corner which is roughly a sum
of powers of r, some of which are positive (like in a Taylor expansion e.g.). The matching conditions
imply that these positive powers of r have to appear in the asymptotic expansions of the corner fields
at infinity. We call them singularities for the corner fields. Conversely, the asymptotic expansion of the
corner fields at infinity contain negative powers of r corresponding to the decay of the variational part,
and these powers must be found in the far fields, which corresponds to singularities at the corner. Thus
the fields cannot be searched in their natural variational spaces.

2 Matching conditions
This section establishes the matching condition linking corner fields to far and layer fields. This is by far
the most difficult relation to derive, while all the others have been easily stated in (1.3)–(1.5). In this
section we assume that the various fields exist and that they satisfy (1.3)–(1.5) and we give a necessary
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and sufficient condition for the matching assumptions (1.6) to be satisfied. Our approach is based on an
algebraic formulation of the problem, that reveals the structure of the matching relations by a rigorous
algebraic calculus.

To perform the matching of the corner fields with the far and the layer fields at the same time, we merge
the latter two into a single field denoted up,ℓ and called “far-and-layer field”. It is defined on a new
domain Π, defined as follows:

• If Θ ⩽ 3π
2 , then Π := Ω ⊔ Γ ⊔ Λ (disjoint union) and it is an open of R2.

• If Θ > 3π
2 , then Ω and Λ intersect as subsets of R2, so the previous definition is not valid anymore

(see Figure 5). Thus, we define Π as the disjoint gluing of Ω and Λ on Γ (which is a flat Riemannian
manifold).

Figure 5: The domain Π is equal to Ω ⊔ Γ ⊔ Λ when Θ ⩽ 3π
2 (open subset of R2) and it is a flat

Riemannian manifold when Θ > 3π
2 (Ω ∩ Λ ̸= ∅).

For all (p, ℓ) ∈ P×N, we define up,ℓ :=
{
up,ℓ in Ω
Up,ℓ in Λ and the generalized radial variable r :=

{
r in Ω
x in Λ

A straightforward reformulation of (1.3) and (1.4) gives that for any (p, ℓ) ∈ P × N:

µ0∆up,ℓ + ω2ρ0up,ℓ = f δp,0 δℓ,0 in Ω
µ1∂

2
Y up,ℓ = −(µ1∂

2
x + ω2ρ1)up−2,ℓ in Λ

µ1∂Y up,ℓ|Y=0− = µ0 ∂yup−1,ℓ|y=0+ on Γ
up,ℓ|y=0+ − up,ℓ|Y=0− = 0 on Γ

up,ℓ = 0 on ΣΩ ∪ ΣΛ

(2.1)

where by convention up,ℓ = 0 when (p, ℓ) ∈ R \ P × N.

Let us give some starting point ideas to dive into this section. The matching assumption under study
links the asymptotic behaviors of

∑
p,ℓ ε

p lnℓεup,ℓ when r → 0 and
∑
p,ℓ ε

p lnℓε Sp,ℓ when r → ∞. So
we can begin with a look at the asymptotic of up,ℓ when r → 0, especially on Ω because it is the most
interesting part. First, by (2.1), u0,0 satisfies µ0∆u0,0 + ω2ρ0u0,0 = 0 in the vicinity of the corner in Ω,
with homogeneous Dirichlet condition on ∂Ω. So using separation of variables, it is easy to show that:

u0,0(r, θ) =
r≪1

∑
d∈ π

ΘN∗

σd(u0,0) Jd(k0r) sin(dθ) =
∑

d∈ π
ΘN∗

σd(u0,0)
( ∞∑
n=0

ad,nr
d+2n

)
sin(dθ) (2.2)

with σd(u0,0) and ad,n some coefficients in C, Jd Bessel functions of the first kind and k0 := ω
√
ρ0/µ0.

Then, one can show that (2.1) implies that u1,0 satisfies the Helmholtz equation but with condition
µ1u1,0 = µ0 ∂yu0,0|y=0+ on Γ. Using (2.2), one can show that there exist some functions fq,i and coeffi-
cients σd(u1,0) s.t.:

u1,0 =
r≪1

∑
d∈P

rd−1(fd,0(θ) + ln(r) fd,1(θ)) +
∑

d∈ π
ΘN∗

σd(u1,0) Jd(k0r) sin(dθ)

where the first sum is a particular solution of Helmholtz’s equation that has trace µ0
µ1
∂yu0|y=0+ on Γ,

and the second one is a homogeneous solution. More generally, up,ℓ has a similar decomposition with
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potentially lower powers of r (the smallest power being −p) and higher powers of ln r.

u1,0(Ω) is not in H1 because it behaves as 1
r when r → 0. More generally up,ℓ is not in H1(Ω). It can

be decomposed as the sum of a H1 function and a function that is singular at (0, 0). Proposition 3.6 will
show how to find solutions in such spaces and it reveals that they depend on some coefficients σd(up,ℓ)
for d < 0 (corresponding to the singular part) while the coefficients for d > 0 (corresponding to the
variational part) are uniquely fixed. So the σd(up,ℓ) for d < 0 are degrees of freedom in the construction
of far-and-layer fields, and they will be fixed by the matching conditions. Likewise, the corner fields have
similar decompositions when r → ∞, and singular coefficients σd(Sp,ℓ) for d > 0 (but here singular when
r → ∞) that will be fixed by the matching conditions.

In Section 2.1 we introduce algebraic formal series later used to perform efficient calculations on the
asymptotic expansions. In Section 2.2 we define spaces of explicit functions called A(. . .) that contain
all possible singularities at 0 (for the far-and-layer fields) or at ∞ (for the corner fields). In the previous
paragraph, it corresponds to the functions rq lnir fq,i(θ). In Section 2.3 we give tools to compute these
singularities. In Section 2.4, we write the asymptotic expansions w.r.t. r of the various fields. Finally,
in Section 2.5, we re-express the matching conditions (1.6) with equations that can be used to build the
fields.

2.1 Algebraic preliminaries
To handle infinite series that may not converge, e.g. “

∑
p,ℓ ε

p lnℓε up,ℓ”, we use the algebraic notion of
formal series introduced in this section. Let E be a vector space and (Ei)i∈I be a family of vector
subspaces of E. To begin, let us remind that

∑
i∈I Ei designates the vector subspace of E made of finite

sums of elements of the Ei. If this sum is direct, we denote it
⊕

i∈I Ei. From now on, we assume that
the sum is direct. In order to deal with infinite sums we introduce the following definition.�




�

	

Notation 2.1: Let us denote

∀(φi) ∈
∏
i∈I

Ei,
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
i∈I

φi := (φi) and
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
i∈I

Ei :=
∏
i∈I

Ei.

Note the boldness of the symbol
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

.
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
i∈I φi is not a real sum that can be computed, but just a

notation called “formal series”. Its support is defined as {i ∈ I | φi ̸= 0}. In additional for any J ⊂ I
that contains this support, we also denote

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
j∈J φj := (φi)i∈I .

There is a canonical injection
⊕
Ei →

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
Ei, that maps any sum

∑
i∈I φi with finite support (and

∀i, φi ∈ Ei) to the formal series
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
i∈I φi. So we can consider in practice that

⊕
Ei is included in

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
Ei.

We will use Notation 2.1 with I = R and Ed = Ad(. . .) a space of functions that behave like rd defined in
Section 2.2. In Section 2.3 we build some operators in the spaces A that have a translation action on the
index d. We say that they have a “degree” (cf. Definition 2.2 and Figure 6). That allows us to naturally
extend them to the formal series of the spaces A via the construction below.�




�

	

Definition 2.2: operators with a degree
Let F be another vector space and (Fd)d∈R be a family of subspaces of F s.t. the sum

∑
Fd is direct.

Let f :
⊕
Ed →

⊕
Fd be a linear map and let d0 ∈ R.

We say that f has degree d0 iff: ∀d ∈ R, ∀φ ∈ Ed, f(φ) ∈ Fd+d0 . In this case we denote deg f := d0
and we extend f from

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
Ed to

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
Fd by setting f

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R φd

)
:=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R f(φd) for any (φd).
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d
} ⊕
d∈R

Ed

d
} ⊕
d∈R

Fd

•
Ed1

•
Fd1

•
Fd1+d0

f
•
Ed2

•
Fd2

•
Fd2+d0

f
•
Ed3

•
Fd3

•
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f

Figure 6: Schematic illustration of an operator that has degree d0 (here d0 > 0)
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Definition 2.3: Let
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R φd be an element of

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
Ed with a support bounded from below and

dinf := inf supp(φd). For any linear map f :
⊕
Ed →

⊕
Ed that has a positive degree, we define

∞∑
n=0

fn
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R

φd

)
:=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R

∑
n∈N

fn(φd−n deg f ) (2.3)

(where fn is the n-th iterated composition of f). See Figure 7. More generally, for any finite set F of
linear maps

⊕
Ed →

⊕
Ed that have positive degrees, we set

∞∑
n=0

∑
(f1,...,fn)∈Fn

f1 ◦ · · · ◦ fn
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R

φd

)
:=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R

∑
n∈N

∑
(f1,...,fn)∈Fn

f1 ◦ · · · ◦ fn(φd−Σ1⩽i⩽n deg fi
). (2.4)

We also denote it as ⟨F⟩
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

φd
)
, or ⟨f̃1, . . . , f̃k⟩

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
φd
)

if F = {f̃1, . . . , f̃k}. This is well-defined
because, for any d, the sums over n in the right-hand sides of (2.3)–(2.4) have a finite number of
non-zero terms and belong to Ed.
If supp(φd) is bounded from above and the elements of F have a negative degree, we can do the same
definition.

d

d

d

d

d

+
+
+
...

=

} ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
φd}

f
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

φd
)}

f2(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑φd
)}

f3(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑φd
)

...} ∑
fn
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

φd
)

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

•

•

•

•

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

dinf φd ̸= 0 φd = 0

finite sum

Figure 7: Schematic illustration of
∑∞
n=0 f

n for f a linear map that has a positive degree

In Section 2.5, we introduce formal series with powers of ε in order to express the matching condition.
They are defined similarly to Notation 2.1: for any set P ⊂ R and any family (Ẽp)p∈P of vector spaces,
we denote

∀(φp) ∈
∏
p∈P

Ẽp,
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

εpφp := (φp) and
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

εpẼ :=
∏
p∈P

Ẽp. (2.5)

Again this is only a notation and here ε is not a real number but an algebraic indeterminate. This is
similar to Notation 2.1 and we will later choose to use either notation depending on the physical meaning
of the formal series.

For instance, the case Ẽ = C and P = N gives the classical set of formal power series, usually denoted
C[[ε]] (see [30, 32]). The Taylor approximations at 0 of any smooth function f can be represented by∑∞
p=0 ε

p f
(p)(0)
p! ∈ C[[ε]]. Truncations of this series give approximations at a given order. We will use

similar representations for the asymptotic expansion of uε.

Let us take P := R, Ẽ :=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈REd and Ẽp := Ẽ for any p. Let p0 ∈ R and f :

⊕
Ed →

⊕
Ed a linear
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map that has a degree d0. For any (φp) ∈ ẼR, we define:

(εp0f)
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈R

εpφp

)
:=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈R

εpf(φp−p0) (2.6)

These kind of linear maps
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p ε

pẼ →
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p ε

pẼ are the one said to have a degree. We denote deg(εp0f) :=
(p0, d0).�




�

	

Definition 2.4: Let
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

(p,d)∈R2 εpφp,d ∈
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈R ε

pẼ. Let G be a finite set of linear maps
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
εpẼ →∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

εpẼ that have degrees. There is a finite set F of linear maps
⊕
Ed →

⊕
Ed and (pf )f ∈ RF s.t.

G = {εpf f | f ∈ F}. We assume that there is v ∈ R2 s.t. {⟨(p, d), v⟩ | (p, d) ∈ R2, φp,d ̸= 0} is bounded
from below and ∀g ∈ G, ⟨deg g, v⟩ > 0. We denote:
∞∑
n=0

∑
(g1,...,gn)∈Gn

g1◦· · ·◦gn
( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

(p,d)∈R2

εpφp,d

)
:=

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
(p,d)∈R2

εp
∑
n∈N

∑
(f1,...,fn)∈Fn

f1◦· · ·◦fn(φp−Σipfi
,d−Σi deg fi).

which is well-defined in
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
εpẼ. We also denote it as ⟨G⟩

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d ε

pφp,d
)
.

�



�
	

Definition 2.5: Let “ln ε” be here an algebraic indeterminate independent from the indeterminate ε.
We denote E[ln ε] the set of polynomials with coefficients in E. More precisely it is the set of elements
of EN with finite support and, for any (φℓ) ∈ E[ln ε], we denote

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N lnℓεφℓ := (φℓ).

2.2 Definition of the spaces A
In [14, p.10], Costabel and Dauge build a similar asymptotic expansion for the Poisson equation in the
half plane with mixed boundary condition: Neumann in a part of the boundary and Robin u+ ε∂nu = 0
in another. They quickly mention that their singularities can be written as ℜ[(−z)qP (ln(−z))] with
z = x + iy, q ∈ R and P a real polynomial. To define the spaces A, we adapted this idea to take into
account the layer, the angle Θ and the Helmholtz equation. These simple expressions give both powerful
algebraic tools for the theory and fast precise algorithms for the numerical resolution (see Section 2.3).�




�

	

Definition 2.6: the spaces A
Let α := e−iΘ. We define in Ω the complex variable z := x + iy = reiθ. For all q ∈ R, we take the
following conventions: (αz)q := rqeqi(θ−Θ), αzq := rqe−qi(θ−Θ) and log(αz) := ln r + i(θ − Θ). Let
d ∈ R. We denote:

• Ad(Ω) the vector subspace of C0(Ω,C) generated by the functions z 7→ ℑ[(αz)q αzkP (log(αz))]
with q ∈ R, k ∈ N, q + k = d and P ∈ R[T ],

• Ad(Λ) := {(x, Y ) 7→ xdQ(ln x, Y ) | Q ∈ C[T, Y ] and Q(T,−1) = 0},
• Ad(Γ) := {x 7→ xdQ(ln x) | Q ∈ C[T ]},
• Ad(Π) := {φ ∈ C0(Π,C) | φ|Ω ∈ Ad(Ω) and φ|Λ ∈ Ad(Λ)},

• and for any D ∈ {Π,Ω,Λ,Γ}, A(D) :=
∑
d∈R

Ad(D) (cf. the introduction of Section 2.1).

Note that elements of A(Ω) and A(Π) vanish on ΣΩ, and elements of A(Λ) and A(Π) vanish on ΣΛ. In
addition, elements of A(Ω) are naturally functions depending on the polar coordinates. For instance:

• ℑ[(αz)q αzk] = rq+k sin
(
(q − k)(θ − Θ)

)
• ℑ[(αz)q αzk log(αz)] = rq+k [ln(r) cos

(
(q − k)(θ − Θ)

)
− (θ − Θ) sin

(
(q − k)(θ − Θ)

)]
Note also that in this definition we used the variables x, y, which are relevant for far fields, but all the
tools developed in this section can also be used for corner fields, replacing (x, y) by (X,Y ).
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Remark 2.7: Definition 2.6 can be extended to the case where ΣΩ is covered by another layer, by
defining Ad(Ω) as the vector space generated by the functions z 7→ ℑ[(αz)q αzkP (log(αz))] and z 7→
ℑ[zq z̄kP (log z)] with q ∈ R, k ∈ N, q + k = d and P ∈ R[T ].

In order to build particular solutions of PDEs in A, we will need the three following lemmas. The proof
of the first one can be found in Appendix A.

Lemma 2.8: For any D ∈ {Π,Ω,Γ,Λ}, we have the following decomposition: A(D) =
⊕
d∈R

Ad(D).
Furthermore, for any d ∈ R, Ad(Ω) can itself be decomposed as follows:

Ad(Ω) =
⊕

(q,k)∈R×N
q+k=d

{
z 7→ λℑ[(αz)q αzkP (log(αz))]

∣∣ λ ∈ C, P ∈ R[T ] and P(q, k, P )
}

(2.7)

where P is the property defined by P(q, k, P ) := (q ̸∈ N or q > k or P (0) = 0).

Remark: The condition P is a way to exclude the functions z 7→ ℑ[(αz)qαzk] with q ∈ N and q < k,
which are already present in the direct sum as they are equal to z 7→ −ℑ[(αz)kαzq].

Let φ be a function of A(Ω) of the form ℑ[(αz)q αzkP (log(αz))]. Note that on Γ, φ is equal to
xq+kℑ[αq−kP (ln x−iΘ)]. Let us define ℑ[αq−kP (T−iΘ)] :=

∑degP
i=1 ℑ(ai)T i in C[T ], where

∑degP
i=1 aiT

i :=
αq−kP (T − iΘ). Then φ|Γ(x) = xq+kQ(ln x) for some Q ∈ R[X], which implies φ|Γ ∈ A(Γ). Conversely,
for future constructions, it will be important to solve the equation:

given Q ∈ R[T ], find P ∈ R[T ] s.t. ℑ[αdP (T − iΘ)] = Q(T ). (2.8)

Lemma 2.9: Let α := e−iΘ, d ∈ R and Q ∈ R[T ].
1. If d ∈ R \ π

ΘZ, then there is a unique solution P ∈ R[T ] of (2.8). Moreover degP = degQ. We
denote the solution Ld(Q).

2. If d ∈ π
ΘZ, then the set of solutions of (2.8) is of the form {P0 + c | c ∈ R} with P0 ∈ R[T ] and

deg(P0) = deg(Q) + 1. We denote Ld(Q) the unique solution that vanishes at 0.
In both cases, Ld is a linear map from R[T ] into itself.

Proof: There are two cases whether the coefficient of degre m of ℑ[αd(T − iΘ)m] vanishes or not.
1. If d ∈ R \ π

ΘZ, then αd ∈ C \ R, so: ∀m ∈ N, deg ℑ[αd(T − iΘ)m] = m. Therefore, (ℑ[αd(T −
iΘ)m])m∈N is a basis of R[T ]. So writing Q in this basis gives a unique solution of (2.8).

2. If d ∈ π
ΘZ, since αd ∈ R, we have: ∀m ∈ N, deg ℑ[αd(T − iΘ)m] = m − 1. So in this case

(ℑ[αd(T − iΘ)m])m∈N∗ is a basis of R[T ]. Thus, F : P 7→ ℑ[αdP (T − iΘ)] is surjective and its
kernel is the set of constant polynomials. Its restriction to E := {P ∈ R[T ] | P (0) = 0} is therefore
an isomorphism and we set Ld := (F|E)−1. Finally, for any Q ∈ R[T ] we have F−1({Q}) =
{Ld(Q)} + KerF . □

For any q ∈ R, the maps Q ∈ C[T ] 7→ ℑ[xqQ(ln x)] ∈ A(Γ) and Q ∈ C[T, Y ] 7→ ℑ[xqQ(ln x, Y )] ∈
A(Λ) are clearly injective. In the following lemma we investigate the injectivity of P ∈ R[T ] 7→
ℑ[(αz)q αzkP (log(αz))] ∈ A(Ω).

Lemma 2.10: Let (q, k) ∈ R × N. The map P 7→ ℑ[(αz)q αzkP (log(αz))] is injective from the set of
real polynomials P for which P(q, k, P ) is true into A(Ω).

Proof: For any θ ∈ (0,Θ) and r ∈ R∗+, we have φ(reiθ) = rq+kℑ[ei(q−k)(θ−Θ)P (ln r + i(θ − Θ))] =
rq+kℑ[α′q−kP (ln r − iΘ′)] with Θ′ := Θ − θ and α′ := e−iΘ′ .
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• If q ̸= k, we can choose θ so that q − k ∈ R \ π
Θ′ Z. So Lemma 2.9 applied to (Θ′, α′) instead of

(Θ, α) implies that P is unique.
• Otherwise, q − k = 0 ∈ π

Θ′ Z for any θ. So according to 2.9, P is unique up to a constant a priori.
But the property P implies that P (0) = 0, so this constant is fixed. □

2.3 Tools for solving the Poisson and Helmholtz equations in the spaces A
In this section, we show how to solve canonical problems set in Π in the spaces A. More precisely, let
(ψΩ, ψΛ, ψΓ) ∈ A(Ω) × A(Λ)× ∈ A(Γ), we look for the solutions φ ∈ A(Π) of: problems of the form

∆φ = ψΩ in Ω
∂2
Y φ = ψΛ in Λ

∂Y φ|Y=0− = ψΓ on Γ
(2.9)

Note that by definition of A(Π), φ also satisfies φ|y=0+ − φ|Y=0− on Γ and φ|ΣΩ∪ΣΛ = 0. Solving
this system will enable us to build in Section 2.4 the asymptotic expansion of up,ℓ and Sp,ℓ. Indeed,
note for instance that this system is identical to (2.1) except for the first line. We first describe the
homogeneous solutions of (2.9), then build explicitly some particular solutions. Since functions of A are
uniquely determined by some polynomials (see Lemma 2.10), we are able to code an exact, very fast and
memory-thrifty solver of (2.9). This is one of the key advantages of the A framework.�



�
	

Definition 2.11: For any d ∈ π
ΘZ∗, we define on Ω the function ϕΩ

d := (−1)dΘ/πrd sin(dθ) =
rd sin

(
d(θ − Θ)

)
= ℑ[(αz)d] ∈ Ad(Ω) and ϕd ∈ Ad(Π) its extension by 0 in Λ.

These functions play an important role in the sequel because they solve the homogeneous Laplace equation
in Ω, resp. Π.

Proposition 2.12: the Laplace problem in A
1. Span({ϕΩ

d | d ∈ π
ΘZ∗}) is the set of solutions in A(Ω) of{

∆φ = 0 in Ω
φ = 0 on Γ ∪ ΣΩ

(2.10)

2. Span({ϕd | d ∈ π
ΘZ∗}) is the set of solutions in A(Π) of

∆φ = 0 in Ω
∂2
Y φ = 0 in Λ

∂Y φ|Y=0− = 0 on Γ
(2.11)

Proof:
1. ϕΩ

d is clearly solution of (2.10) for any d ∈ π
ΘZ∗. Conversely, let φ be a solution. Let us denote

∀d ∈ π
ΘN∗, ∀r ∈ R∗+, cd(r) := 2

Θ

∫ Θ

0
φ(r, θ) sin(dθ) dθ.

Using separation of variables and φ|∂Ω = 0, it is easy to show that φ =
∑
d∈ π

ΘN∗ cd(r) sin(dθ)
with convergence in H2(Ω ∩ {r1 < r < r2}) for any 0 < r1 < r2 < ∞. Since ∆φ = 0, we have
(r d

dr )2cd = d2cd for any d. Hence we get: ∀d ∈ π
ΘN∗,∃ad, a−d ∈ C,∀r ∈ R∗+, cd(r) = adr

d+a−dr−d.
Moreover, by definition of A(Ω), there is q ∈ R∗+ s.t. φ ∈

∑
d∈[−q,q] Ad(Ω). So

∀d ∈ π
ΘZ∗ ∩ (q,∞), ad = lim

r→∞
r−dcd(r) = lim

r→∞

2
Θ

∫ Θ

0
r−dφ(r, θ)︸ ︷︷ ︸
−→ 0

sin(dθ) dθ = 0.

Similarly, looking at r → 0 one gets: ∀d ∈ π
ΘZ∗∩(−∞,−q), ad = 0. So φ =

∑
d∈ π

ΘZ∗∩[−q,q] ad sgn(d)ϕΩ
d

(where sgn(d) := d/|d|), which is a finite sum. Therefore, φ is in the desired span.
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2. Any solution of the system vanishes in Λ, so point 2 easily follows from point 1. □

Let us now define the following linear forms σd which satisfy σd(ϕq) = δd,q for any d, q ∈ π
ΘZ∗ and which

enable us to “project” any element of A(Π) on Span({ϕd | d ∈ π
ΘZ∗}). These linear forms appear later

as key singularity coefficients in the matching condition.�




�

	

Definition 2.13: linear forms σd
Let d ∈ π

ΘZ∗. For any (q, k, P ) ∈ R × N × R[T ] s.t. P(q, k, P ) is true and φ : z 7→
ℑ[(αz)q αzkP (log(αz))], let us define:{

σd(φ) = 0 if q ̸= d or k ̸= 0
σd
(
ℑ[(αz)dP (log(αz))]

)
= P (0) otherwise

It is well-defined by Lemma 2.10. By Lemma 2.8, σd can be extended into a linear form A(Ω) → C.
Finally, for any φ ∈ A(Π), σd(φ) := σd(φ|Ω).

Let us now build particular solutions of (2.9). By linearity, it suffices to build particular solutions of
three sub-problems. According to Definition 2.2, for any D1, D2 ∈ {Π,Ω,Γ,Λ}, we say that a linear map
F : A(D1) → A(D2) has degree d ∈ R iff: ∀q ∈ R, ∀φ ∈ Aq(D1), F (φ) ∈ Aq+d(D2).

Proposition 2.14: particular solutions of (2.9)
Let us denote A⊥(Π) := {φ ∈ A(Π) | ∀d ∈ π

ΘZ∗, σd(φ) = 0}, which is a supplementary of Span({φd |
d ∈ π

ΘZ∗}) in A(Π).
1. For any ψΩ ∈ A(Ω) there exists a unique solution φ∆ ∈ A⊥(Π) of

∆φ = ψΩ in Ω
∂2
Y φ = 0 in Λ

∂Y φ|Y=0− = 0 on Γ
(2.12)

The associated map R∆ : ψΩ ∈ A(Ω) 7→ φ∆ ∈ A⊥(Π) is linear and has degree 2.
2. For any ψΛ ∈ A(Λ) there exists a unique solution φ∂2

Y
∈ A⊥(Π) of

∆φ = 0 in Ω
∂2
Y φ = ψΛ in Λ

∂Y φ|Y=0− = 0 on Γ
(2.13)

The associated map R∂2
Y

: ψΛ ∈ A(Λ) 7→ φ∂2
Y

∈ A⊥(Π) is linear and has degree 0.
3. For any ψΓ ∈ A(Γ) there exists a unique solution φN ∈ A⊥(Π) of

∆φ = 0 in Ω
∂2
Y φ = 0 in Λ

∂Y φ|Y=0− = ψΓ on Γ
(2.14)

The associated map RN : ψΓ ∈ A(Γ) 7→ φN ∈ A⊥(Π) is linear and has degree 0.

Using Propositions 2.12 and 2.14, it is then easy to see that the set of solutions of (2.9) is R∆(φΩ) +
R∂2

Y
(φΛ)+RN(φΓ)+Span({ϕd | d ∈ π

ΘZ∗}). Moreover, the functions φ∆, φ∂2
Y

and φN in Proposition 2.14
have explicit expressions (see the proof below), which allows to compute them easily in practice.

Proof: Proposition 2.12 gives the uniqueness of the solutions φ∆, φ∂2
Y

and φN, so only their existence
remains to prove. This is done by a construction. For any D ∈ {Π,Ω,Λ,Γ}, let A(D,R) := A(D) ∩
C0(D,R). Since A(D) = A(D,R) ⊕ iA(D,R), it suffices to build the solutions when (ψΩ, ψΛ, ψΓ) ∈
A(Ω,R) × A(Λ,R) × A(D,Γ), and then extend it to any source term by complexification.

12



1. According to Lemma 2.8, it suffices to build φ∆ when ψΩ = ℑ[(αz)q αzkPψ(log(αz))] with (q, k, Pψ) ∈
R × N × R[T ] s.t. P(q, k, Pψ) is true. First, φ∆|Λ = 0 because φ∆ satisfies:

∂2
Y φ∆ = 0 in Λ

∂Y φ∆|Y=0− = 0 on Γ
φ∆ = 0 on ΣΛ

Given that ∆ = 4∂z∂z̄, we have for any φ1 : z 7→ ℑ[(αz)q1 αzk1P1(log(αz))] that

∆φ1 = 4 ℑ[(αz)q1−1 k1αzk1−1(q1P1 + P ′1)(log(αz))].

So taking q1 := q + 1, k1 := k + 1 and P1 ∈ R[T ] a solution of 4k1(q1P1 + P ′1) = Pψ, we have
∆φ1 = ψΩ in Ω.

• If q1 = 0, P1 is unique up to a constant, Moreover we can write

φ1 = ℑ
[
αzk1

(
P1(log(αz)) − P1(0)

)]
− P1(0) ℑ[(αz)k1 ]

where each term satisfy the property P. So for any d ∈ π
ΘZ∗ different from k1, we have

σd(φ1) = 0, while σk1(φ1) = −P1(0) if k1 ∈ N ∩ π
ΘZ∗. Taking P1(0) := 0 thus gives: ∀d ∈

π
ΘZ∗, σd(φ1) = 0.

• If q1 ̸= 0, there is a unique solution P1. Given that q1 ̸= 0 and k1 ̸= 0, Definition 2.13 implies
that: ∀d ∈ π

ΘZ∗, σd(φ1) = 0.

However, we cannot set φ∆|Ω = φ1, because φ1 does not vanish on Γ. Let us then introduce
φ2 : z 7→ ℑ[(αz)q+k+2P2(log(αz))] with P2(T ) := Lq+k+2

(
ℑ[αq−kP1(T − iΘ)]

)
that satisfies by

Lemma 2.9:{
∆φ2 = 0 in Ω
φ2 = xq+k+2ℑ[αq+k+2P2(ln x− iΘ)] = xq+k+2ℑ[αq−kP1(ln x− iΘ)] = φ1 on Γ

In addition Lemma 2.9 implies that q + k + 2 ∈ π
ΘZ∗ =⇒ P2(0) = 0, so: ∀d ∈ π

ΘZ∗, σd(φ2) = 0.
Finally we set φ∆|Ω := φ1 − φ2, which is in A⊥(Π).

2. Similarly, it suffices to build φ∂2
Y

for ψΛ = xq Qψ(ln x, Y ). We look for φ∂2
Y

of the form xq Qφ(ln x, Y )
in Λ with Qφ ∈ R[T, Y ]. Then necessarily we have

∂2
YQφ = Qψ

∂YQφ(·, 0) = 0
Qφ(·,−1) = 0

This uniquely defines Qφ. Taking Pφ := Lq(Qφ(·, 0)) and φ∂2
Y |Ω

:= ℑ[(αz)qPφ(log(αz))] then
implies that ∆φ∂2

Y
= 0 in Ω, φ continuous and φ∂2

Y
∈ A⊥(Π).

3. Again it suffices to consider ψΓ = xq Pψ(ln x) with Pψ ∈ R[T ]. We take φN of the same form as in
point 2. Then ∂Y φN|Y=0− = xq ∂YQφ(ln x, 0) so it suffices to take the polynomial solutions of:

∂2
YQφ = 0

∂YQφ(·, 0) = Pψ
Qφ(·,−1) = 0

Pφ = Lq(Qφ(·, 0))

Finally the linearity of Problems 2.12–2.14 and the uniqueness of φ∆, φ∂2
Y

and φN imply that R∆, R∂2
Y

and RN are linear maps. □

Moreover, we will need analogous operators in A(Ω) to build the far fields in Theorem 3.6. The proof
is entirely similar to the one of Proposition 2.14, so we omit it. Again, these operators have explicit
expressions.
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Proposition 2.15: Let us denote A⊥(Ω) = {φ ∈ A(Ω) | ∀d ∈ π
ΘZ∗, σd(φ) = 0}, which is a

supplementary of Span({ϕΩ
d | d ∈ π

ΘZ∗}) in A(Ω).
1. For any ψΩ ∈ A(Γ) there exists a unique solution φ∆ ∈ A⊥(Ω) of{

∆φ = ψΩ in Ω
φ = 0 on Γ (2.15)

The associated map RΩ
∆ : ψΓ ∈ A(Ω) 7→ φ∆ ∈ A⊥(Ω) is linear and has degree 2.

2. For any ψΓ ∈ A(Γ) there exists a unique solution φD ∈ A⊥(Ω) of{
∆φ = 0 in Ω
φ = ψ on Γ (2.16)

The associated map RΩ
D : ψΓ ∈ A(Γ) 7→ φD ∈ A⊥(Ω) is linear and has degree 0.

To end this section, let us show that the spaces A are stable under some differential operators.

Lemma 2.16:
1. ∂2

x|Λ : φ 7→ ∂2
xφ|Λ maps A(Π) to A(Λ) and has degree −2 (see Definition 2.2).

2. ∂y|Γ,y=0+ : φ 7→ ∂yφ|Γ,y=0+ maps A(Π) to A(Γ) and has degree −1.
3. ∆ : φ 7→ ∆φ|Ω maps A(Ω) (and A(Π)) to A(Ω) and has degree −2.

Note that, when used on corner fields (which depend on (X,Y )), the first two operators will rather be
denoted ∂2

X|Λ and ∂Y |Γ,Y=0+ .

Proof: It suffices to verify it when φ has the form ℑ[(αz)q αzkP (log(αz))] in Ω and xq+kQ(ln x, Y ) in Λ,
with q ∈ R, k ∈ N, P [T ] and Q ∈ R[T, Y ].

1. We have ∂2
xφ(x, Y ) = xq+k−2((q + k)(q + k − 1) + 2(q + k)∂T + ∂2

T )Q(ln x, Y ) which is in A(Λ).
2. Let ψ : z 7→ (αz)q αzkP (log(αz)). From ∂zψ = 1

2 (∂xψ − i∂yψ) and ∂z̄ψ = 1
2 (∂xψ + i∂yψ) it follows

that ∂yφ = ℑ[∂yψ] = ℜ[∂zψ − ∂z̄ψ]. Therefore,

∂yφ|Γ,y=0+ = ℜ[α(αx)q−1 αxk(qP + P ′)(log(αx)) − (αx)q αk αxk−1P (log(αx))]
= xq+k−1ℜ[αq−k((q − k)P + P ′)(ln x− iΘ)] ∈ A(Γ)

3. Since ∆ = 4∂z∂z̄, we have ∆φ = 4 ℑ[(αz)q−1 kαzk−1(qP1 + P ′1)(log(αz))] which is in A(Ω). □

2.4 Asymptotic behaviors w.r.t. r of solutions of model problems
In this section we give tools that will be used to compute the asymptotic behaviors of up,ℓ and Sp,ℓ resp.
when r → 0 and r → ∞ using the spaces A. To do so, we will use series of elements of A, which is made
rigorous by the following definition.�




�

	
Definition 2.17: the spaces A±
Let D ∈ {Π,Ω,Γ,Λ}. We denote A+(D), resp. A−(D), the set of elements of

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈R Ad(D) whose

support is included in the image of a sequence that tends to ∞, resp. −∞. We write their elements
as formal series according to Definition 2.1.

Remarks:
• The asymptotic of up,ℓ when r → 0 involve increasing powers of r so it will be expressed in A+(D).

Similarly, Sp,ℓ when r → ∞ involves decreasing powers of r, so it will be expressed in A−(D).
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• As seen in Section 2.1, A(D) is included in A+(D) and A−(D). But elements of A±(D) are not in
general D → R functions, as the formal series may diverge pointwise.

Using Definitions 2.2, we can extend ∂2
x|Λ, ∂y|Γ,y=0+ , R∂2

Y
, RN and R∆ to the spaces A±. We also use

the notation ⟨.⟩ introduced in Definition 2.3. E.g. ⟨−k2
0 R∆⟩ =

∑∞
n=0(−k2

0 R∆)n. Moreover, we extend
σd to A±(Π) for any d ∈ π

ΘZ∗, by setting σd(
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d′ φd′) := σd(φd) for any

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d′ φd′ ∈ A±(Π).

Lemma 2.18: Let g0 ∈ A+(Λ) and h0 ∈ A+(Γ). The solutions in A+(Π) of
µ0∆u0 + ω2ρ0u0 = 0 in Ω

µ1∂
2
Y u0 = g in Λ

µ1∂Y |Y=0−u0 = h on Γ
(2.17)

are the formal series of the following form (where σd(u0) vanishes when d is small enough)

u0 =
〈
−k2

0 R∆
〉( 1

µ1
R∂2

Y
(g0) + 1

µ1
RN(h0) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗

σd(u0)ϕd
)

(2.18)

Proof: Let v0 := (id+k2
0R∆)u0. Since ⟨−k2

0R∆⟩ =
∑∞
n=0(−k2

0R∆)n, id+k2
0R∆ is the inverse of ⟨−k2

0R∆⟩,
so u0 = ⟨−k2

0R∆⟩v0. Moreover, Proposition 2.14 states that ∆◦R∆ = id, ∂2
Y |Λ ◦R∆ = 0 and ∂Y |Γ,Y=0− ◦

R∆ = 0, which imply resp. (µ0∆ + ω2ρ0) ◦ ⟨−k2
0R∆⟩ = µ0∆ ◦ (id + k2

0R∆) ◦ ⟨−k2
0R∆⟩ = µ0∆, ∂2

Y |Λ ◦
⟨−k2

0R∆⟩ = ∂2
Y |Λ and ∂Y |Γ,Y=0− ◦ ⟨−k2

0R∆⟩ = ∂2
Y |Γ,Y=0− . Therefore, (2.17) is equivalent to

µ0∆v0 = 0 in Ω
µ1∂

2
Y v0 = g0 in Λ

µ1∂Y v0
|Y=0− = h0 on Γ

(2.19)

Then Propositions 2.12 and 2.14 imply that the solutions of (2.19) in A+(Π) are the 1
µ1
R∂2

Y
(g0) +

1
µ1
RN(h0) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗ cd ϕd where cd vanishes for small enough d. Finally we have cd = σd(v0) = σd(u0)
for any d ∈ π

ΘZ∗ because σd ◦R∆, σd ◦R∂2
Y

and σd ◦RN vanish by Proposition 2.14. □

Lemma 2.19: Let F∞Ω ∈ A−(Ω) and F∞Λ ∈ A−(Λ). The solutions in A−(Π) of
µ0∆S∞ = F∞Ω in Ω
µ1∆S∞ = F∞Λ in Λ

µ0∂Y |Y=0+S∞ − µ1∂Y |Y=0−S∞ = 0 on Γ
(2.20)

are the formal series of the following form (where σd(S∞) vanishes when d is big enough)

S∞ =
〈

−R∂2
Y

◦ ∂2
X|Λ,

µ0

µ1
RN ◦ ∂Y |Γ,Y=0+

〉(
1
µ0
R∆(F∞Ω ) + 1

µ1
R∂2

Y
(F∞Λ ) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗

σd(S∞)ϕd
)

(2.21)

Proof: This is similar to Lemma 2.18. Let R1 := −R∂2
Y

◦ ∂2
X|Λ, R2 := µ0

µ1
RN ◦ ∂Y |Γ,Y=0+ and v∞ :=

(id −R1 −R2)S∞. By Definition 2.3 we have

⟨R1, R2⟩ =
∞∑
n=0

∑
(i1,...,in)∈{1,2}n

Ri1 ◦ · · · ◦Rin =
∞∑
n=0

(R1 +R2)n = (id −R1 −R2)−1.

So S∞ = ⟨R1, R2⟩v∞. Moreover, Proposition 2.14 implies that ∆ ◦R1 = ∆ ◦R2 = 0, ∂2
Y |Λ ◦R1 = −∂2

X|Λ,
∂2
Y |Λ ◦R2 = 0, ∂Y |Γ,Y=0− ◦R1 = 0 and ∂Y |Γ,Y=0− ◦R2 = µ0

µ1
∂Y |Γ,Y=0+ . We deduce that ∆◦⟨R1, R2⟩ = ∆,

(∂2
Y |Λ + ∂2

X|Λ) ◦ ⟨R1, R2⟩ = ∂2
Y |Λ ◦ (id −R1) ◦ ⟨R1, R2⟩ = ∂2

Y |Λ ◦ (id −R1 −R2) ◦ ⟨R1, R2⟩ = ∂2
Y |Λ
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and similarly (µ0∂Y |Γ,Y=0+ − µ1∂Y |Γ,Y=0−) ◦ ⟨R1, R2⟩ = µ1∂Y |Γ,Y=0− . Therefore, (2.20) is equivalent to
µ0∆v∞ = F∞Ω in Ω
µ1∂

2
Y v∞ = F∞Λ in Λ

µ1∂Y v∞|Y=0− = 0 on Γ
(2.22)

Then Propositions 2.12 and 2.14 imply that the solutions of (2.22) in A+(Π) are the 1
µ0
R∆(F∞Ω ) +

1
µ1
R∂2

Y
(F∞Λ ) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗ cd ϕd where cd = 0 for big enough d. Finally, cd = σd(S∞) as for Lemma 2.18. □

Definition 2.20: Let d ∈ R and a ∈ {0,∞}. We define o∂ , a kind of differentiable small o, as follows.
• For any φ : Ω → R, we say that φ = o∂(rd) when r → a if φ is C∞ in a vicinity of r = a and

∀(j, k) ∈ N2, ∂jr∂
k
θφ = o(rd−j) uniformly w.r.t. θ when r → a.

• For any φ : Λ → R, we say that φ = o∂(xd) when x → a if φ is C∞ in a vicinity of x = a and
∀(j, k) ∈ N2, ∂jr∂

k
Y φ = o(xd−j) uniformly w.r.t. Y when x → a.

• For any φ : Γ → R, we say that φ = o∂(xd) when x → a if φ is C∞ in a vicinity of x = a and
∀j ∈ N, ∂jrφ = o(xd−j) when x → a.

• For any φ : Π → R, we say that φ = o∂(rd) when r → a if φ|Ω = o∂(rd) and φ|Λ = o∂(xd).

Definition 2.21: Let d ∈ R, D ∈ {Π,Ω,Γ,Λ} and φ =
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
q∈R φq in A+(D) or A−(D) with φq ∈ Aq(D)

for all q ∈ R. We denote T⩽d(φ) :=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
q∈R,q⩽d φq and T⩾d(φ) :=

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
q∈R,q⩾d φq the truncations of φ below

and above d.

Using Lemmas 2.18–2.19 and Kondratiev’s theory (involving weighted Sobolev spaces, Laplace’s transform
and the residue theorem), we proved the following theorems, giving asymptotic behaviors for solutions
of model problems of the type of far-and-layer fields and corner fields. The proofs can be found in
Appendix B.

Theorem 2.22: Let u ∈ H1
loc(Π), f ∈ D′(Ω), g ∈ L2

loc(Λ) and h ∈ L2
loc(Γ) be such that

µ0∆u + ω2ρ0u = f in Ω
µ1∂

2
Y u = g in Λ

µ1∂Y |Y=0−u = h on Γ
u|y=0+ − u|Y=0− = 0 on Γ

u = 0 on ΣΩ ∪ ΣΛ

(2.23)

We assume that:
• f vanishes in the vicinity of the corner (0, 0),
• there exists g0 ∈ A+(Λ) s.t.: ∀d ∈ R, g(x, Y ) = T⩽d(g0)(x, Y ) + o∂(xd) when x → 0,
• there exists h0 ∈ A+(Γ) s.t.: ∀d ∈ R, h(x) = T⩽d(h0)(x) + o∂(xd) when x → 0,
• there is η > 0, uv ∈ H1(Ω ∩B(0, η)) and φ ∈ A(Ω) s.t. u|Ω∩B(0,η) = uv + φ.

Then there is u0 ∈ A+(Π) that has the form (2.18) s.t.: ∀d ∈ R, u = T⩽d(u0) + o∂(rd) when r → 0.

Theorem 2.23: Let S ∈ H1
loc(Ω1) and F ∈ L2

loc(Ω1) (i.e. L2 on any bounded subset of Ω1) such that{
div(µ∇S) = F in Ω1

S = 0 on ∂Ω1
(2.24)

We assume that:
• there exists F∞Ω ∈ A−(Ω) such that ∀d ∈ R, F|Ω = T⩾d(F∞Ω ) + o∂(rd) when r → ∞,
• there exists F∞Λ ∈ A−(Λ) such that ∀d ∈ R, F|Λ = T⩾d(F∞Λ ) + o∂(xd) when x → ∞,
• S belongs to V + χ∞A(Π) (the space in which the corner fields will be build in Section 3.2).

16



Then there is S∞ ∈ A−(Π) that has the form (2.21) s.t.: ∀d ∈ R, S = T⩾d(S∞)+o∂(rd) when r → ∞.

Note that, since g0 ∈ A+(Λ), we have T⩽d(g0) ∈ A(Λ), so the formula g = T⩽d(g0) + o∂(xd) makes sense.
The same applies to the truncations of h0, u0, F∞Ω and F∞Λ and S∞.

A consequence of Theorems 2.22–2.23 is Proposition 3.13 that states that for any (p, ℓ) there is u0
p,ℓ ∈

A+(Π) and S∞p,ℓ ∈ A−(Π) s.t.:

∀d ∈ R,
{

up,ℓ = T⩽d(u0
p,ℓ) + o∂(rd) when r → 0

Sp,ℓ = T⩾d(S∞p,ℓ) + o∂(rd) when r → ∞

In the rest of this section, we will assume that such formal series exist. In addition, given the equations
satisfied by up,ℓ and Sp,ℓ (see (2.1) and (1.5)), (2.18) and (2.21) rewrite here as

u0
p,ℓ =

〈
−k2

0 R∆
〉(

−R∂2
Y

◦ (∂2
x|Λ + k2

1)(u0
p−2,ℓ) + µ0

µ1
RN ◦ ∂y|Γ,y=0+(u0

p−1,ℓ) +
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗

σd(u0
p,ℓ)ϕd

)
(2.25)

S∞p,ℓ =
〈

−R∂2
Y

◦ ∂2
X|Λ,

µ0

µ1
RN ◦ ∂Y |Γ,Y=0+

〉(
− k2

0R∆(S∞p−2,ℓ|Ω) − k2
1R∂2

Y
(S∞p−2,ℓ|Λ) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗

σd(S∞p,ℓ)ϕd
)

where by convention u0
p,ℓ and S∞p,ℓ vanish when p ∈ R \ P. Therefore (u0

p,ℓ)p,ℓ and (S∞p,ℓ)p,ℓ are uniquely
defined by (σd(u0

p,ℓ))d,p,ℓ and (σd(S∞p,ℓ))d,p,ℓ. When d < 0 (resp. d > 0), ϕd is non-variational for the
far-and-layer fields (resp. corner fields), and Theorems 3.6 and 3.11 show that σd(u0

p,ℓ) (resp. σd(S∞p,ℓ))
can be fixed arbitrarily. The rest of this section is devoted to finding how to fix them in order to satisfy
the matching conditions (1.6). On the contrary, when d > 0 (resp. d < 0), ϕd is variational for the
far-and-layer fields (resp. corner fields) and the values of σd(u0

p,ℓ) (resp. σd(S∞p,ℓ)) are uniquely defined
once (σd′(u0

p,ℓ))d′<0 (resp. (σd′(S∞p,ℓ))d′>0) has been fixed. Ways to compute these values numerically
will be investigated in a future work.

2.5 Specifying of the matching conditions
In this section we express

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ε

p lnℓε · u0
p,ℓ and

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ε

p lnℓε ·S∞p,ℓ in function of the σd(u0
p,ℓ) and σd(S∞p,ℓ),

we then rewrite rigorously the matching conditions (1.6), and we finally show that they are equivalent to
a set of equations on the coefficients σd(.). Here

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ε

p lnℓε · u0
p,ℓ and

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ε

p lnℓε ·S∞p,ℓ are formal series
that belong resp. to the spaces A+

ε (Π) and A−ε (Π) defined below.

In this section, “ε” and “ln ε” denote two algebraic indeterminates independent of each other (so they
are not numbers).�




�

	

Definition 2.24: We denote

A+
ε (Π) :=

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

εp
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈P−p

Ad(Π)[ln ε] and A−ε (Π) :=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

εp
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈p−P

Ad(Π)[ln ε].

According to Section 2.1, we write their elements as formal series like∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈P−p

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

εp lnℓε · φp,d,ℓ, resp.
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈p−P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

εp lnℓε · φp,d,ℓ.

Ansatz 2.25: We assume that∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε · u0
p,ℓ ∈ A+

ε (Π) and
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p∈P,ℓ∈N

εp lnℓε · S∞p,ℓ ∈ A−ε (Π).

Compared to the ansatz of Section 1.2, it adds that, for any (p, ℓ) ∈ P × N, up,ℓ has components only in
the Ad(Π) s.t. d ∈ P−p and Sp,ℓ has only in the Ad(Π) s.t. d ∈ p−P. This is necessary for the matching

17



Figure 8: Points of {(d, p) | p ∈ P and d ∈ P − p} for Θ = 3π
2 (on the left) and Θ = 2 (on the right)

because e.g. we will see that for any φ ∈ εpAd(Π)[ln ε] ⊂ A−ε (Π) that is a term of
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
εp lnℓε S∞p,ℓ, φ( ·ε )

must appear in
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
εp lnℓεu0

p,ℓ and φ( ·ε ) ∈ εp−dAd(Π)[ln ε], so p− d ∈ P.

Let us denote: R+
ε :=

{
−k2

0 R∆, −ε2R∂2
Y

◦ ∂2
x|Λ, −ε2k2

1R∂2
Y
, εµ0

µ1
RN ◦ ∂y|Γ,y=0+

}
R−ε :=

{
−ε2k2

0 R∆, −R∂2
Y

◦ ∂2
X|Λ, −ε2k2

1R∂2
Y
, µ0
µ1
RN ◦ ∂Y |Γ,Y=0+

}
where the above operators are defined as in (2.6). For any R ∈ R+

ε ∪ R−ε , we denote (degεR,degAR) :=
degR. See Figure 9. Thanks to Definition 2.4, we can consider ⟨R±ε ⟩ which is well-defined on A±ε (Π) (it
suffices to take v := (±1, 2) in Definition 2.4). Moreover one can check that it maps A±ε (Π) into itself.

degA

degε

+
1

+1

−k2
0 R∆

−ε2R∂2
Y

◦ ∂2
x|Λ

−ε2k2
1R∂2

Y

εµ0
µ1
RN ◦ ∂y|Γ,y=0+

degA

degε

+1

+1 −ε2k2
0 R∆

−R∂2
Y

◦ ∂2
x|Λ

−ε2k2
1R∂2

Y

µ0
µ1
RN ◦ ∂y|Γ,y=0+

Figure 9: Degrees of the elements of R+
ε (on the left) and R−ε (on the right)

Proposition 2.26: We have the following equalities in A+
ε (Π) and A−ε (Π) respectively:∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p∈P,ℓ∈N

εp lnℓε · u0
p,ℓ = ⟨R+

ε ⟩
( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(P−p)

σd(u0
p,ℓ)ϕd

)
(2.26)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε · S∞p,ℓ = ⟨R−ε ⟩
( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(p−P)

σd(S∞p,ℓ)ϕd
)

(2.27)

Proof: We only prove (2.26), as (2.27) is similar. We could do it by inductively composing (2.25), but we
chose instead a proof similar to Lemma 2.19 to avoid heavy calculations. Let (p, ℓ) ∈ P × N. Given the
equations satisfied by up,ℓ in (2.1), and the fact that up,ℓ = T⩽d(u0

p,ℓ) + o∂(rd) for any d ∈ R, we have
µ0∆u0

p,ℓ + ω2ρ0u0
p,ℓ = 0 in Ω

µ1∂
2
Y u0

p,ℓ = −(µ1∂
2
x + ω2ρ1)u0

p−2,ℓ in Λ
µ1∂Y |Y=0−u0

p,ℓ = µ0 ∂y|y=0+u0
p−1,ℓ on Γ

(2.28)

Let u0
ε :=

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ε

p lnℓεu0
p,ℓ. Summing over (p, ℓ) (2.28) times εp lnℓε yields

µ0∆u0
ε + ω2ρ0u0

ε = 0 in Ω
µ1∂

2
Y u0

ε + ε2(µ1∂
2
x + ω2ρ1)u0

ε = 0 in Λ
µ1∂Y |Y=0−u0

ε − ε µ0 ∂y|y=0+u0
ε = 0 on Γ
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Let v0
ε := (id−

∑
R∈R+

ε
R)u0

ε. It is easy to see that id−
∑
R∈R+

ε
R maps A+

ε (Π) into itself, so v0
ε ∈ A+

ε (Π).
By Definition 2.4, we have

⟨R+
ε ⟩ :=

∞∑
n=0

∑
(R1,...,Rn)∈(R+

ε )n

R1 ◦ · · · ◦Rn =
∞∑
n=0

( ∑
R∈R+

ε

R

)n
=
(

id −
∑
R∈R+

ε

R

)−1
.

So u0
ε = ⟨R+

ε ⟩v0
ε. Moreover, Proposition 2.14 implies ∀R ∈ R+

ε \ {−k2
0R∆}, ∆ ◦R = 0. Hence

(µ0∆ + ω2ρ0) ◦ ⟨R+
ε ⟩ = µ0∆ ◦ (id + k2

0R∆) ◦ ⟨R+
ε ⟩ = µ0∆ ◦

(
id −

∑
R∈R+

ε

R

)
◦ ⟨R+

ε ⟩ = µ0∆

Similarly, one can check that
[
µ1∂

2
Y |Λ + ε2(µ1∂

2
x|Λ + ω2ρ1)

]
◦ ⟨R+

ε ⟩ = µ1∂
2
Y |Λ and (µ1∂Y |Γ,Y=0− −

ε µ0 ∂y|Γ,y=0+) ◦ ⟨R+
ε ⟩ = µ1∂Y |Γ,Y=0− . Therefore v0

ε satisfies
µ0∆v0

ε = 0 in Ω
µ1∂

2
Y v0

ε = 0 in Λ
µ1∂Y |Y=0−v0

ε = 0 on Γ

Then Proposition 2.14 implies that there are numbers cp,ℓ,d s.t. v0
ε =

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ,d ε

p lnℓε cp,ℓ,d ϕd. Finally we
have cp,ℓ,d = σd(u0

p,ℓ) for any (p, ℓ, d) because Proposition 2.14 gives that ∀R ∈ R+
ε , σd ◦R = 0. □

Now, we want to define Hε : A+
ε (Π) → A−ε (Π) as the scaling operator

∀φ ∈ A+
ε (Π), Hε(φ) =

{
(X,Y ) 7→ φ(εX, εY ) in Ω
(X,Y ) 7→ φ(εX, Y ) in Λ (2.29)

However, ε is an indeterminate. Let us first define Hε for any φ ∈ Ad(Π), d ∈ R. If φ|Ω has the form
ℑ[(αz)q αzkP (log(αz))] with (q, k, P ) ∈ R × N × R[T ] s.t. q + k = d and P(q, k, P ) is true, we set:

Hε(φ)|Ω :=
degP∑
j=0

εd
lnjε
j! ℑ[(αz)q αzkP (j)(log(αz))] ∈ εdAd(Ω)[ln ε]. (2.30)

And if φ|Λ has the form xdQ(ln(x), Y ) with Q ∈ C[T ], we set:

Hε(φ)|Λ :=
degQ∑
j=0

εd
lnjε
j! xd ∂jTQ(ln x, Y ) ∈ εdAd(Λ)[ln ε]. (2.31)

Thanks to Lemmas 2.8 and 2.10, it defines well Hε from Ad(Π) to εd Ad(Π)[ln ε]. Then we extend Hε

to A+
ε (Π) by setting Hε(

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d,ℓ ε

p lnℓεφp,d,ℓ) :=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d

∑
ℓ ε
p lnℓεHε(φp,d,ℓ) for any (φp,d,ℓ) s.t. φp,d,ℓ ∈

Ad(Π) for any (p, d, ℓ). One can check that is in A−ε (Π).

Remarks:
• In practice, we will only use the informal definition of (2.29), but everything we will do can be

checked using (2.30) and (2.31).

• Hε is invertible and H−1
ε is roughly the scaling: H−1

ε (φ) =
{

(x, y) 7→ φ(xε ,
y
ε ) in Ω

(x, Y ) 7→ φ(xε , Y ) in Λ
• For the first time, powers of ln ε naturally appear because of the power of ln r. This explains why

the presence of these powers in the ansatz is necessary from the beginning.�



�
	

Definition 2.27:
We rigorously rewrite the matching condition as:

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε · u0
p,ℓ = H−1

ε

( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε · S∞p,ℓ
)

.

When composing Definition 2.27 and Proposition 2.26, H−1
ε ◦⟨R−ε ⟩ appears. Since R+

ε and R−ε only differ
on powers of ε due to the scaling, one could expect that H−1

ε ◦ ⟨R−ε ⟩ ◦ Hε is equal to ⟨R+
ε ⟩. However, R∆
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(resp. R∂2
Y

, RN) picks the particular solution of Equation 2.12 (resp. 2.13, 2.14) whose image by the σd
vanish. This means that they are the solutions in the kernels of the following projectors of A±ε (Π):

π±σ

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈±(P−p)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

εp lnℓε · φp,d,ℓ
)

:=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘZ∗∩±(P−p)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

εp lnℓε · σd(φp,d,ℓ)ϕd (2.32)

for any (φp,d,ℓ) s.t. φp,d,ℓ ∈ Ad(Π) for any (p, d, ℓ). Lemma 2.28 below implies that H±1
ε does not map

Kerπ±σ to Kerπ∓σ . Therefore H−1
ε ◦ R∆ ◦ Hε selects other solutions than R∆, and likewise for R∂2

Y
and

RN. We will see that it implies that H−1
ε ◦ ⟨R−ε ⟩ ◦ Hε it is equal to ⟨R+

ε ⟩ times a correction operator
given in Theorem 2.29.

To precise the action of Hε on π±σ , we introduce π+
ε and π−ε , which map any φ ∈ Ad(Π) of the form

ℑ[(αz)q αzkP (log(αz))] in Ω (with (q, k, P ) ∈ R × N × R[T ], q + k = d and P(q, k, P )) to:

π±ε (φ) :=
{

P (± ln ε)ϕd if d ∈ π
ΘZ∗ and k = 0

0 otherwise
(2.33)

By Lemmas 2.8 and 2.10, it defines a linear map Ad(Π) → Ad(Π)[ln ε]. Then we extend π±ε into an
endomorphism of A±ε (Π) by setting π±ε (

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d,ℓ ε

p lnℓεφp,d,ℓ) :=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d

∑
ℓ ε
p lnℓε π±ε (φp,d,ℓ).

Lemma 2.28: We have H∓1
ε ◦ π∓σ ◦ H±1

ε = π±ε .

Proof: Since the involved operators only depend on the part on Ω, and by Lemma 2.8, it suffices to prove
that H∓1

ε ◦ π∓σ ◦ H±1
ε (φ) = π±ε (φ) for any φ of the form ℑ[(αz)q αzkP (log(αz))] in Ω (with (q, k, P ) ∈

R × N × R[T ] and P(q, k, P )). If k > 0 or q ̸∈ π
ΘZ∗, then both images vanish, so we can assume that

k = 0 and q ∈ π
ΘZ∗. Then both images vanish in Λ, and we have in Ω:

H±1
ε (φ) : z 7→ ε±qℑ[(αz)qP (log(αz) ± ln ε)] (with abuse of notation)

π∓σ ◦ H±1
ε (φ) = εqP (ln ε)ϕq

H∓1
ε ◦ π∓σ ◦ H±1

ε (φ) = P (± ln ε)ϕq = π±ε (φ) □

The next theorem is the key ingredient to match the far-and-layer fields with the corner fields because it
links ⟨R+

ε ⟩ to ⟨R−ε ⟩.

Theorem 2.29: We have H∓1
ε ◦ ⟨R∓ε ⟩ ◦ H±1

ε = ⟨R±ε ⟩ ◦ (id − ⟨π±ε | R±ε ⟩) where we denote:

⟨π±ε | R±ε ⟩ := π±ε ◦
( ∑
R∈R±

ε

R

)
◦
〈{

(id − π±ε ) ◦R
∣∣ R ∈ R±ε

}〉
=
∞∑
n=1

∑
(R1,...,Rn)∈(R±

ε )n

π±ε ◦R1 ◦ (id − π±ε ) ◦R2 ◦ · · · ◦ (id − π±ε ) ◦Rn

Proof: We only prove that H−1
ε ◦ ⟨R−ε ⟩ ◦ Hε = ⟨R+

ε ⟩ ◦ (id − ⟨π+
ε | R+

ε ⟩), but the other formula works the
same. We have H−1

ε ◦ ⟨R−ε ⟩ ◦ Hε = ⟨{H−1
ε ◦R ◦ Hε | R ∈ R−ε }⟩, so we need to calculate the H−1

ε ◦R ◦ Hε

for each R ∈ R−ε . We claim that:

H−1
ε ◦ (−ε2k2

0 R∆) ◦ Hε = H−1
ε ◦ (id − π−σ ) ◦ Hε ◦ (−k2

0 R∆)
H−1
ε ◦ (−R∂2

Y
◦ ∂2

x|Λ) ◦ Hε = H−1
ε ◦ (id − π−σ ) ◦ Hε ◦ (−ε2R∂2

Y
◦ ∂2

x|Λ)
H−1
ε ◦ (−ε2k2

1R∂2
Y

) ◦ Hε = H−1
ε ◦ (id − π−σ ) ◦ Hε ◦ (−ε2k2

1R∂2
Y

)
H−1
ε ◦ (µ0

µ1
RN ◦ ∂y|Γ,y=0+︸ ︷︷ ︸

∈R−
ε

) ◦ Hε = H−1
ε ◦ (id − π−σ ) ◦ Hε ◦ (εµ0

µ1
RN ◦ ∂y|Γ,y=0+︸ ︷︷ ︸
∈R+

ε

)

Let us show the first line (the others are similar).
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Proposition 2.14 implies that for any ψ ∈ A−ε (Π), R∆(ψ) is a solution of:
∆φ = ψ in Ω
∂2
Y φ = 0 in Λ

∂Y φ|Y=0− = 0 on Γ
(2.34)

and π−σ ◦ R∆ = 0. Moreover, by Proposition 2.12, the solution of (2.34) is unique modulo Im π−σ .
But one can check that ε−2Hε ◦R∆ ◦ H−1

ε (ψ) is also solution of (2.34). So the image of ε−2Hε ◦R∆ ◦
H−1
ε −R∆ is included in Im π−σ . Hence (id − π−σ ) ◦ (ε−2Hε ◦R∆ ◦ H−1

ε −R∆) = 0. Therefore:

R∆ = (id − π−σ ) ◦R∆ = (id − π−σ ) ◦ ε−2Hε ◦R∆ ◦ H−1
ε

which implies H−1
ε ◦R∆ ◦ Hε = H−1

ε ◦ (id − π−σ ) ◦ Hε ◦ ε−2R∆.
Hence: H−1

ε ◦ ⟨R−ε ⟩ ◦ Hε = ⟨{H−1
ε ◦R ◦ Hε | R ∈ R−ε }⟩

= ⟨{H−1
ε ◦ (id − π−σ ) ◦ Hε ◦R | R ∈ R+

ε }⟩
= ⟨{(id − π+

ε ) ◦R | R ∈ R+
ε }⟩

=
∞∑
n=0

∑
(R1,...,Rn)∈(R+

ε )n

(id − π+
ε ) ◦R1 ◦ · · · ◦ (id − π+

ε ) ◦Rn

=
∞∑
n=0

∑
(R1,...,Rn)∈(R+

ε )n

(i1,...,in)∈{0,1}n

(−π+
ε )i1 ◦R1 ◦ · · · ◦ (−π+

ε )in ◦Rn

The terms s.t. (i1, . . . , in) = (0, . . . , 0) sum up to ⟨R+
ε ⟩, and for the rest we split the sums depending on

ℓ := min{k | ik = 1}:

H−1
ε ◦ ⟨R−ε ⟩ ◦ Hε = ⟨R+

ε ⟩ +
∞∑
n=0

n∑
ℓ=1

∑
(R1,...,Rn)∈(R+

ε )n

i1=···=iℓ−1=0, iℓ=1
(iℓ+1,...,in)∈{0,1}n−ℓ

(−π+
ε )i1 ◦R1 ◦ · · · ◦ (−π+

ε )in ◦Rn

Denoting m = n− ℓ+ 1, (R̃1, . . . , R̃m) := (Rℓ, . . . , Rn) and (j2, . . . , jm) := (iℓ+1, . . . , in) yields

H−1
ε ◦ ⟨R−ε ⟩ ◦ Hε = ⟨R+

ε ⟩ +
∑

ℓ,m∈N∗

∑
(R1,...,Rℓ−1)∈(R+

ε )ℓ−1

∑
(R̃1,...,R̃m)∈(R+

ε )m

(j2,...,jm)∈{0,1}m−1

R1 ◦ · · · ◦Rℓ−1 ◦ (−π+
ε ) ◦ R̃1

◦ (−π+
ε )j2 ◦ R̃2 ◦ · · · ◦ (−π+

ε )jm ◦ R̃m

= ⟨R+
ε ⟩ +

( ∑
ℓ∈N∗

(Rk)∈(R+
ε )ℓ−1

R1 ◦ · · · ◦Rℓ−1

)( ∑
m∈N∗, (R̃k)∈(R+

ε )m

(jk)∈{0,1}m−1

(−π+
ε ) ◦ R̃1 ◦ (−π+

ε )j2 ◦ R̃2 ◦ · · · ◦ (−π+
ε )jm ◦ R̃m

)

= ⟨R+
ε ⟩ −

( ∑
ℓ′∈N, (Rk)∈(R+

ε )ℓ′

R1 ◦ · · · ◦Rℓ′

)( ∑
m∈N∗, (R̃k)∈(R+

ε )m

π+
ε ◦ R̃1 ◦ (id − π+

ε ) ◦ R̃2 ◦ · · · ◦ (id − π+
ε ) ◦ R̃m

)
= ⟨R+

ε ⟩ − ⟨R+
ε ⟩ ◦ ⟨π+

ε | R+
ε ⟩ □

Corollary 2.30: The matching condition of Definition 2.27 is equivalent to each of these equalities:∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(P−p)

σd(up,ℓ)ϕd = (id − ⟨π+
ε | R+

ε ⟩) ◦ H−1
ε

( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(p−P)

σd(S∞p,ℓ)ϕd
)

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(p−P)

σd(Sp,ℓ)ϕd = (id − ⟨π−ε | R−ε ⟩) ◦ Hε

( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P,ℓ∈N

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗∩(P−p)

σd(u0
p,ℓ)ϕd

)

Proof: Let us prove only the first condition. Combining Proposition 2.26 with Theorem 2.29 shows that
the matching condition is equivalent to:

⟨R+
ε ⟩
(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p,ℓ

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d

σd(u0
p,ℓ)ϕd

)
= ⟨R+

ε ⟩ ◦ (id − ⟨π+
ε | R+

ε ⟩) ◦ H−1
ε

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ

εp lnℓε
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d

σd(S∞p,ℓ)ϕd
)

(2.35)
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It remains to simplify both ⟨R+
ε ⟩. Proposition 2.14 implies: ∀R ∈ R+

ε , π
+
σ ◦ R = 0. Since ⟨R+

ε ⟩ is a
sum of the identity and non-trivial products of elements of R+

ε , we have π+
σ ◦ ⟨R+

ε ⟩ = π+
σ ◦ id = π+

σ . So
applying π+

σ to (2.35) replaces the factors ⟨R+
ε ⟩ by π+

σ . Now, Im π+
σ is stable by id − ⟨π+

ε | R+
ε ⟩ and the

projector π+
σ is the identity on it, so we can finally simplify π+

σ on both sides of (2.35). □

For any (p, ℓ), let us define τp,ℓ : A±ε (Π) → A±(Π) by: ∀φ =
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p′,ℓ′ εp

′ lnℓ
′
εφp′,ℓ′ ∈ A±ε (Π), τp,ℓ(φ) := φp,ℓ.

It allows us to define the matching coefficients, that are for any (d, d′, p, ℓ) ∈ ( πΘZ∗)2 ×P×N the following
complex numbers:

cu←S
d,d′,p,ℓ := σd ◦ τp+d′,ℓ ◦ (id − ⟨π+

ε | R+
ε ⟩)(ϕd′) and cS←u

d,d′,p,ℓ := σd ◦ τp−d′,ℓ ◦ (id − ⟨π−ε | R−ε ⟩)(ϕd′)

In addition, for any a, b ∈ R, we denote [[a, b]]P,N := {c ∈ R | c− a ∈ P and b− c ∈ N}. It is a finite subset
of [a, b].

Theorem 2.31 gives equations to concretely build the fields up,ℓ and Sp,ℓ so that they match around the
corner. It fixes their non-variational, which are determined by σd(u0

p,ℓ) when d < 0 and σd(S∞p,ℓ) when
d > 0 (see Theorems 3.6 and 3.11). It also provides inductive formulas, depending on the fields with
smaller p. Moreover these formulas have a convolutive structure w.r.t. p and ℓ.

Theorem 2.31: The matching condition of Definition 2.27 is equivalent to the following set of
equations:

∀(d, p, ℓ) ∈ (− π
ΘN∗)×P×N, σd(u0

p,ℓ) =
∑

p′∈[[0,p+d]]P,N

∑
d′∈ π

ΘZ∗

p′−d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cu←S
d,d′,p−p′,ℓ−ℓ′ · σd′(S∞p′,ℓ′)

∀(d, p, ℓ) ∈ π
ΘN∗ × P × N, σd(S∞p,ℓ) =

∑
p′∈[[0,p−d]]P,N

∑
d′∈ π

ΘZ∗

p′+d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cS←u
d,d′,p−p′,ℓ−ℓ′ · σd′(u0

p′,ℓ′)

(2.36a)

(2.36b)

Proof: Let Vu be the set of families of complex numbers (up,d,ℓ)p∈P,d∈ π
ΘZ∗∩(P−p),ℓ∈N s.t. for any (p, d) only

a finite number of the up,d,ℓ are non-zero. We define VS similarly by replacing “d ∈ P−p” with “d ∈ p−P”.
Let σ(u) := (σd(u0

p,ℓ))p,d,ℓ ∈ Vu and σ(S) := (σd(S∞p,ℓ))p,d,ℓ ∈ VS. We define the following linear maps:

P : VS → Vu, (Sp,d,ℓ)p,d,ℓ 7→
( ∑
p′∈[[0,p+d]]P,N

∑
d′∈ π

ΘZ∗

p′−d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cu←S
d,d′,p−p′,ℓ−ℓ′ · Sp′,d′,ℓ′

)
p,d,ℓ

Q : Vu → VS, (up,d,ℓ)p,d,ℓ 7→
( ∑
p′∈[[0,p−d]]P,N

∑
d′∈ π

ΘZ∗

p′+d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cS←u
d,d′,p−p′,ℓ−ℓ′ · up′,d′,ℓ′

)
p,d,ℓ

These sums have a finite number of terms, so they are well-defined.

Step 1: Let (d, p, ℓ) ∈ π
ΘZ∗ × P × N. Applying σd ◦ τp,ℓ to the first equation of Corollary 2.30 gives:

σd(u0
p,ℓ) =

∑
p′∈P,ℓ′∈N

∑
d′∈ π

ΘZ∗∩(P−p′)

σd ◦ τp−p′,ℓ−ℓ′ ◦ (id − ⟨π+
ε | R+

ε ⟩) ◦ H−1
ε (ϕd′) · σd′(S∞p′,ℓ′)

=
∑

p′∈P,ℓ′∈N

∑
d′∈ π

ΘZ∗∩(P−p′)

σd ◦ τp−p′+d′,ℓ−ℓ′ ◦ (id − ⟨π+
ε | R+

ε ⟩)(ϕd′) · σd′(S∞p′,ℓ′)

=
∑
p′∈P

∑
d′∈ π

ΘZ∗,p′+d′∈P

∑
ℓ′∈N

cu←S
d,d′,p−p′,ℓ−ℓ′ · σd′(S∞p′,ℓ′).

Moreover, for any R ∈ R+
ε , we have degεR ∈ N and degεR + degAR ∈ N (see Figure 9). So for

cu←S
d,d′,p−p′,ℓ−ℓ′ to be non-zero, we need p − p′ + d′ ∈ N and (p − p′ + d′) + d − d′ ∈ N. In addition,
ℓ − ℓ′ ∈ N. Therefore, the matching condition in equivalent to σ(u) = Pσ(S). Similarly, it is equivalent
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to σ(S) = Qσ(u).

Step 2: We define the subspaces Vu
± = {u ∈ Vu | ∀(p, d, ℓ), up,d,ℓ ̸= 0 =⇒ ±d > 0} and likewise VS

±. So
Vu = Vu

+ ⊕ Vu
− and similarly for VS. Let σ(u)± be the components of σ(u) on Vu

±, and similarly for σ(S)±.
We decompose P and Q on those subspaces, which gives in block matrix notation:

P =

 P+

P−


}

Vu
+}

Vu
−︸ ︷︷ ︸

VS

and Q =

 Q+

Q−

 =

 Q+
+ Q−+

Q+
− Q−−


}

VS
+}

VS
−︸ ︷︷ ︸

Vu
+

︸ ︷︷ ︸
Vu
−

The present theorem rewrites as: {
σ(u)− = P− σ(S)
σ(S)+ = Q+ σ(u) (2.37)

By Step 1, this is clearly a necessary condition for the matching. It remains to prove that it is sufficient.
Let us show that (2.37) implies one of the two conditions of Step 1, e.g. σ(u) = Pσ(S).
Note that by Step 1 we have for any u ∈ Vu and S ∈ VS: u = PS ⇐⇒ S = Qu. So P and Q are inverses of
each other. Hence Q(σ(u) − Pσ(S)) = Qσ(u) − σ(S). Projecting this onto VS

+ we deduce:

Q+
+(σ(u)+ − P+ σ(S)) + Q−+(σ(u)− − P− σ(S)︸ ︷︷ ︸

=0

) = Q+ σ(u) − σ(S)+︸ ︷︷ ︸
=0

.

Let us show that Q+
+ is injective.

Let u ∈ Vu
+ \ {0} and let us show that Q+

+u ̸= 0. Let (p, d, ℓ) be the smallest triplet for lexicographic
order such that up,d,ℓ ̸= 0. The term of Q+

+u of index (p+ d, d, ℓ) is :∑
p′∈[[0,p]]P,N

∑
d′∈ π

ΘN∗

p′+d′∈[[0,p+d]]P,N

ℓ∑
ℓ′=0

cS←u
d,d′,p+d−p′,ℓ−ℓ′ · up′,d′,ℓ′ = cS←u

d,d,d,0 · up,d,ℓ.

We claim that it is non-zero because cS←u
d,d,d,0 = 1. Indeed, in the sum

⟨π+
ε | R+

ε ⟩ :=
∞∑
n=1

∑
(R1,...,Rn)∈(R+

ε )n

π+
ε ◦R1 ◦ (id − π+

ε ) ◦R2 ◦ · · · ◦ (id − π+
ε ) ◦Rn

there is no term of degree (0, 0) w.r.t. A and ε. So the component of ⟨π+
ε | R+

ε ⟩(ϕd) in ε0Ad(Π)[ln ε]
is zero. Thus cS←u

d,d,d,0 = σd ◦ τ0,0 ◦ (id − ⟨π+
ε | R+

ε ⟩)(ϕd) = σd(ϕd) = 1. So Q+
+u ̸= 0.

We have proven that σ(u)+ = P+ σ(S). Given that σ(u)− = P− σ(S), we deduce σ(u) = Pσ(S). □

Remarks 2.32:
• Thanks to the tools of Section 2.3, we can compute exactly and very quickly the coefficients cu←S

d,d′,p,ℓ

and cS←u
d,d′,p,ℓ. Moreover, these coefficients depend only on Θ, ω and (µ0, µ1, ρ0, ρ1), but not on Ω1

nor precisely on the functions µ and ρ.
• In the sums of Theorem 2.31, the indexes d and d′ satisfy d − d′ ∈ Z ∩ π

ΘZ. Indeed, on the one
hand d, d′ ∈ π

ΘZ∗. On the other we have in (2.36a) that p′ ∈ [[0, p + d]]P,N and p′ − d′ ∈ [[0, p]]P,N,
so d− d′ = (p+ d− p′) − (p− (p′ − d′)) ∈ N − N ⊂ Z (and likewise in (2.36b)). Note that the set
Z ∩ π

ΘZ can be very small. If Θ ∈ πQ, then Z ∩ π
ΘZ = bZ where Θ = π ab with (a, b) ∈ N × N∗ and

gcd(a, b) = 1. Otherwise, Z ∩ π
ΘZ = {0}.

3 Construction of the asymptotic expansion
Equations 1.3–1.5 and Theorem 2.31 give the equations that the fields up,ℓ, Up,ℓ and Sp,ℓ must satisfy. In
this section, we will build these fields according to those conditions. First of all, let us express the layer
fields with the far fields, so that only two types of fields remain to build. Let (Un) ∈ R[Y ]N be the unique
sequence of polynomials s.t. for any n ∈ N∗:

U ′′0 = 0
U ′0(0) = µ0

µ1

U0(−1) = 0
and


U ′′n = −Un−1

U ′n(0) = 0
Un(−1) = 0

(3.1)
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Lemma 3.1: expression of the layer fields
Let us assume that the fields up,ℓ and Up,ℓ are regular enough (we will check later that they are). (1.4)
implies for any (p, ℓ) ∈ P × N and (x, Y ) ∈ Λ:

Up,ℓ(x, Y ) =
∞∑
n=0

(∂2
x + k2

1)n∂yup−1−2n,ℓ(x, 0) · Un(Y ). (3.2)

where this sum has a finite number of non-zero terms by the convention: ∀p ∈ R\P,∀ℓ ∈ N, up,ℓ := 0.

Proof: There exists an increasing sequence (pm) s.t. P = {pm | m ∈ N}. So we can prove the result by
induction on p ∈ P. For p = 0, (1.4) states:

∂2
Y U0,ℓ = 0 in Λ
∂Y U0,ℓ = 0 on Γ
U0,ℓ = 0 on ΣΛ

so U0,ℓ = 0 for any ℓ. It is coherent (3.2) (which is a sum of zeros in this case).
Next, for the inductive step, we assume that (3.2) holds for ranks smaller that p. (1.4) gives:

∂2
Y Up,ℓ = −(∂2

x + k2
1)Up−2,ℓ = −

∑∞
n=0(∂2

x + k2
1)n+1∂yu(p−2)−1−2n,ℓ(x, 0) · Un(Y )

= −
∑∞
n=1(∂2

x + k2
1)n∂yup−1−2n,ℓ(x, 0) · Un−1(Y ) in Λ

∂Y Up,ℓ = µ0
µ1
∂yup−1,ℓ on Γ

Up,ℓ = 0 on ΣΛ

It is easy to see that
∑∞
n=0(∂2

x + k2
1)n∂yup−1−2n,ℓ(x, 0) · Un(Y ) is the only solution of this. □

We saw in Section 2 that far and corner fields possess singularities when r → 0, resp. r → ∞. So
the usual variational frameworks are not sufficient to build these fields and we need to design new
frameworks. It is done in Sections 3.1 and 3.2. In both sections we start by introducing the natu-
ral space Hvar in which an ad hoc variational problem is well-posed. Then we define a bigger space
H := Hvar + χA(D) = {u + χφ | u ∈ Hvar, φ ∈ A(D)} that contains the singularities, where χ is a
C∞ truncation function in the vicinity of 0 (for up,ℓ) or infinity (for Sp,ℓ), and D ∈ {Ω,Π}. Next we
determine the elements of Hvar ∩ χA(D), which allows us to define on H the linear forms σd associated
to the singularities. Finally we show that some model problems are well-posed in H.

Before we start, the following lemma is a tool to estimate the behavior at 0 and ∞ of functions of A.

Lemma 3.2: Let a < b in R, n ∈ N∗, (di, ℓi)i∈[[1,n]] be n distinct elements of R × N, (fi)i∈[[1,n]] ∈
(C([a, b],C) \ {0})n and:

φ : (r, θ) ∈ R∗+ × [a, b] 7→
n∑
i=1

rdi lnℓir · fi(θ).

Then there is an interval I ⊂ [a, b] with non-empty interior, c ∈ R∗+ and r1, r2 ∈ R such that:

∀r ∈ (0, r1),∀θ ∈ I, |φ(r, θ)| > c rminj dj and ∀r ∈ (r2,∞),∀θ ∈ I, |φ(r, θ)| > c rmaxj dj .

Proof: Let j ∈ [[1, n]] be s.t. (dj , ℓj) is maximal for the lexicographic order. Let I ⊂ [a, b] be a non trivial
interval on which |fj | is greater than a positive constant. Since

∑
i ̸=j r

di lnℓir · fi(θ) = o(rdj lnℓj r), we
have when r → ∞ and θ ∈ I: |φ(r, θ)| ≳ rdj lnℓj r ≳ rdj . And we can similarly treat the vicinity of 0. □

We can apply Lemma 3.2 to any φ ∈ Ad(Ω) with (a, b) := (0,Θ), or to any φ ∈ Ad(Λ) with (a, b) :=
(−1, 0() (replacing the variables (r, θ) by (x, Y )). We can also apply it to ∂rφ and ∂θφ when φ ∈ Ad(Ω)
and to ∂xφ and ∂Y φ when φ ∈ Ad(Λ).

24



Definition: For any D ∈ {Π,Ω,Γ,Λ} and φ ∈ A(D), we denote degmin φ := sup{d ∈ R | φ ∈∑
q⩾d Aq(D)} and degmax φ := inf{d ∈ R | φ ∈

∑
q⩽d Aq(D)}.

3.1 Existence and uniqueness for far fields-like problems

We denote H1/2
00 (Γ) the set of functions of H1/2(Γ) whose extension by 0 to ∂Ω = Γ ∪ {(0, 0)} ∪ ΣΩ is in

H1/2(∂Ω). Using Lax-Milgram theorem, it is easy to prove the following lemma.

Lemma 3.3: the Helmholtz problem in H1(Ω)
Let f ∈ (H1(Ω))′ and g ∈ H

1/2
00 (Γ). The following system has a unique solution in H1(Ω).

µ0∆u+ ω2ρ0u = f in Ω
u = g on Γ
u = 0 on ΣΩ

Let χ0 be a radial function of C∞(R2) equal to 1 in the vicinity of 0 and to 0 in the vicinity of infinity.
The appropriate space to build the far fields is H1(Ω) +χ0A(Ω). One can check that it does not depend
on the choice of χ0.

Lemma 3.4: H1(Ω) ∩ χ0A(Ω) = χ0
∑
d>0

Ad(Ω).

Proof: The inclusion ⊃ is easy to check, so we focus on ⊂. Let φ ∈ A(Ω) \ {0} be s.t. χ0φ ∈ H1(Ω).
There is d ∈ R, φ1 ∈ Ad(Ω) \ {0} and φ2 ∈

∑
q>d Aq(Ω) s.t. φ = φ1 + φ2. If ∂θφ1 were null everywhere,

then would so too φ1 because φ1|ΣΩ = 0. But we assumed the contrary, so ∂θφ1 ̸= 0. Thus Lemma 3.2
implies that there is a non-trivial interval I ⊂ [0,Θ] s.t. |∂θφ1(r, θ)| ≳ rd when r → 0 and θ ∈ I. Finally
r−1∂θ(χ0φ) ∈ L2(Ω) implies that d > 0. □

Définition 3.5: For any u ∈ H1(Ω)+χ0A(Ω) and d ∈ − π
ΘN∗, we denote σd(u) := σd(φ) where φ ∈ A(Ω)

is s.t. u− χ0φ ∈ H1(Ω) (see Definition 2.13 for σd(φ)). It does not depend on the choice of φ thanks to
Lemma 3.4.

Theorem 3.6: existence and uniqueness for a far fields-like model problem
Let f ∈ (H1(Ω))′, g ∈ H

1/2
00 (Γ) +χ0A(Γ) and (sd) ∈ C− π

ΘN∗ with finite support. The following system
has a unique solution in H1(Ω) + χ0A(Ω).

µ0∆u+ ω2ρ0u = f in Ω
u = g on Γ
u = 0 on ΣΩ

σd(u) = sd ∀d ∈ − π
ΘN∗

Proof: Let us show the existence first, and then the uniqueness.
Existence: Let g̃ ∈ H

1/2
00 (Γ) and φ ∈ A(Γ) be s.t. g = g̃ + χ0φ. We look for the solution in the form

u = ũ+ χ0ψ with ũ ∈ H1(Ω) and ψ ∈ A(Ω). Let

ψ+ :=
∞∑
n=0

(−k2
0R

Ω
∆)n

(
R

Ω
D(φ) +

∑
d∈− π

ΘN∗

sd ϕ
Ω
d

)
∈ A+(Ω)

(where ϕΩ
d := ϕd|Ω) and ψ := T⩽2(ψ+). Using Proposition 2.15 one can check by calculus the first system

below (see also Lemma 2.18 for a similar result). Then, the second system below derives from ψ ∈ A(Ω),

25



ψ = ψ+ − (id − T⩽2)(ψ+) and deg ∆ = −2 (by Lemma 2.16).


(µ0∆ + ω2ρ0)ψ+ = 0 in Ω

ψ+ = φ on Γ
ψ+ = 0 on ΣΩ

σd(ψ+) = sd ∀d ∈ − π
ΘN∗

so


(µ0∆ + ω2ρ0)ψ ∈ A(Ω) ∩

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d>0

Ad(Ω) =
∑
d>0

Ad(Ω)

ψ|Γ − φ ∈ A(Γ) ∩
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d>2

Ad(Γ) =
∑
d>2

Ad(Γ)

ψ|ΣΩ = 0
σq(ψ) = sd ∀d ∈ − π

ΘN∗

Therefore (µ0∆ + ω2ρ0)(χ0ψ) ∈ L2(Ω) and χ0 (ψ|Γ − φ) ∈ H
1/2
00 (Γ). Finally, thanks to Lemma 3.3, we

can take ũ as the unique solution in H1(Ω) of:
µ0∆ũ+ ω2ρ0ũ = f − (µ0∆ + ω2ρ0)(χ0ψ) in Ω

ũ = g̃ − χ0 (ψ − φ) on Γ
ũ = 0 on ΣΩ

Uniqueness: Let u be a homogeneous solution. There is ũ ∈ H1(Ω) and ψ ∈ A(Ω) such that u = ũ+χ0ψ.
Let φ := ∆ψ + k2

0ψ. By Lemma 2.16, φ ∈ A(Ω). Let us show that degmin φ > −2.
We denote d := degmin φ and φ̃ := (∆ + k2

0)(χ0ψ). By Lemma 3.2, there is a non-trivial interval
I ⊂ [0,Θ] s.t. when r → 0 and θ ∈ I: φ̃(r, θ) = φ(r, θ) ≳ rd. Besides, φ̃ = −(∆ + k2

0)ũ ∈ (H1
0 (Ω))′.

Let us test it with ζq : (r, θ) 7→ φ̃(r, θ) ·rq−2d−2 (1−χ0(21/qr)
)
χ(θ) where q > 0 and χ ∈ D(0,Θ)\{0}

is everywhere non negative. Since ζq ∈ D(Ω):

⟨φ̃, ζq⟩ :=
∫ ∞

0

∫ Θ

0
φ̃ · ζq · rdθ dr ≲ ∥ζq∥H1(Ω) ∀q > 0

Let us assume by contradiction that d ⩽ −2. It is not difficult to check that when q → 0+:

⟨φ̃, ζq⟩ ≳
∫ c2

c12− 1
q

rd rq−d−2 rdr ≳ 1
q

and ∥ζq∥H1 ≲ ∥∇ζq∥L2 ≲

(∫ c4

c32− 1
q

r2(q−d−3) rdr
) 1

2

≲
1

√
q

with some constants ci and Poincaré’s inequality. But it contradicts ⟨φ̃, ζq⟩ ≲ ∥ζq∥H1 . So d > −2.
Now let us show that degmin ψ > 0.

Let us assume the contrary. Then there is d ⩽ 0, ψ1 ∈ Ad(Ω) \ {0} and ψ2 ∈
∑
q>d Aq(Ω) s.t.

ψ = ψ1 + ψ2. Lemma 2.16 states that deg ∆ = −2, so ∆ψ1 ∈ Ad−2(Ω) and ∆ψ2 ∈
∑
q>d−2 Aq(Ω).

In addition, φ ∈
∑
q>−2 Aq(Ω) and A(Ω) =

⊕
q∈R Aq(Ω) according to Lemma 2.8. So identifying

the coordinate of ∆ψ + k2
0ψ = φ in Ad−2(Ω) gives ∆ψ1 = 0.

Moreover, ψ|Γ = −ũ|Γ ∈ H1/2(Γ), so ψ|Γ ∈
∑
q>0 Aq(Γ). Hence:{

∆ψ1 = 0 in Ω
ψ1 = 0 on ΣΩ ∪ Γ

By Proposition 2.12, it implies d ∈ − π
ΘN∗ and ψ1 = σd(ψ1)ϕΩ

d . However, σd(ψ1) = σd(ψ) = σd(u) =
0, which contradicts ψ1 ̸= 0.

Finally, Lemma 3.4 implies χ0ψ ∈ H1(Ω), so u ∈ H1(Ω). This means that u = 0 by Lemma 3.3. □

3.2 Existence and uniqueness for corner fields-like problems�




�

	
Definition 3.7: the variational space V

We define V := {v ∈ H1
loc(Ω1) | ∇v ∈ L2(Ω1) and v|∂Ω1 = 0} and the norm ∥v∥V := ∥∇v∥L2(Ω1).

Here “v|∂Ω1 = 0” means that χ0( ·R ) v ∈ H1
0 (Ω1) for any R > 0, where χ0( ·R ) : (X,Y ) 7→ χ0

(
X
R
,Y
R

)
.

Lemma 3.7: Any v ∈ V satisfies ∥v∥H1(Λ∩{X>Rc}) ≲ ∥v∥V and
∥∥∥ v

1 + r

∥∥∥
L2(Ω1)

≲ ∥v∥V .
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Proof: We denote A := Λ∩{X > Rc} and B := B(0, Rc), and we recall that Rc > 0 is s.t. Ω1 \B = Π\B.
Poincaré’s inequality gives for a.e. X > Rc: ∥v(X, ·)∥L2(−1,0) ≲ ∥∂Y v(X, ·)∥L2(−1,0). Integrating w.r.t.
X the square of this then gives: ∥v∥L2(A) ≲ ∥∂Y v∥L2(A) ⩽ ∥v∥V . So ∥v∥H1(A) ≲ ∥v∥V .
Next, a generalized Poincaré inequality on circular slices of Ω \B gives for a.e. r > Rc: ∥v(r, ·)∥L2(0,π) ≲
∥∂θv(r, ·)∥L2(0,π) + |v(r, θ = 0)|. Then integrating w.r.t. r the square of this times 1

1+r gives:∫
Ω\B

v2

(1 + r)r rdθ dr ≲
∫

Ω\B

(∂θv)2

(1 + r)r rdθ dr +
∫

Γ\B

v2

1 + r
dr.

Therefore ∥ v
1+r∥2

L2(Ω\B) ≲ ∥∇v∥2
L2(Ω\B) +∥v∥2

L2(Γ\B). But we know that ∥v∥L2(Γ\B) ≲ ∥v∥H1(A) ≲ ∥v∥V ,
so ∥ v

1+r∥L2(Π\B) ≲ ∥v∥V . Finally Poincaré’s inequality in B also gives ∥ v
1+r∥L2(Ω1∩B) ≲ ∥v∥V . □

Lemma 3.8: the Poisson problem in Ω1
Let F : Ω1 → C be s.t. (1 + r)F ∈ L2(Ω1), and g ∈ L2(Γ ∩ {X > Rc}). The following system is
well-posed in V . 

div(µ∇S) = F in Ω1 \ (Γ ∩ {X > Rc})
S = 0 on ∂Ω1

S|Y=0+ − S|Y=0− = 0 on Γ ∩ {X > Rc}
µ0∂Y S|Y=0+ − µ1∂yS|Y=0− = g on Γ ∩ {X > Rc}

Proof: The variational formulation of this problem is:

∀v ∈ V,

∫
Ω1

µ∇S · ∇v = −
∫

Ω1

Fv +
∫

Γ∩{X>Rc}
gv.

The left-hand side is coercive by definition of V . Lemma 3.7 ensures that the right-hand side is continuous.
Moreover it is easy to see that V is complete. So we can conclude using the Lax-Milgram theorem. □

Let χ∞ be a function of C∞(R2) equal to 0 on B(0, Rc) and 1 in a vicinity of infinity. The proper space
to build the corner fields is V + χ∞A(Π). One can check that it does not depend on the choice of χ∞.

Lemma 3.9: V ∩ χ∞A(Π) =
{
χ∞φ

∣∣ φ ∈ A(Π), degmax(φ|Ω) < 0 and degmax(φ|Λ) < − 1
2
}
.

Proof: The inclusion ⊃ is easy to check, so we focus on ⊂. Let φ ∈ A(Π) be s.t. χ∞φ ∈ V . The same
method as Lemma 3.4 shows that degmax φ|Ω < 0. And using that ∂Y (χ∞φ) ∈ L2(Λ) we likewise get
degmax(φ|Λ) < − 1

2 . □

Definition 3.10: For any S ∈ V + χ∞A(Π) and d ∈ π
ΘN∗, we denote σd(S) := σd(φ) where φ ∈ A(Π)

is s.t. S − χ∞φ ∈ V . It does not depend on the choice of φ thanks to Lemma 3.9.

Theorem 3.11: existence and uniqueness for a corner fields-like model problem
Let f : Ω1 → C be s.t. (1 + r)F ∈ L2(Ω1), φ : Π → C be s.t. φ|Ω ∈ A(Ω) and φ|Λ ∈ A(Λ), and
(sd) ∈ C π

ΘN∗ with finite support. The following system has a unique solution in V + χ∞A(Π).
div(µ∇S) = F + χ∞φ in Ω1

S = 0 on ∂Ω1
σd(S) = sd ∀d ∈ π

ΘN∗

Remark: φ is not just an element of A(Π) because it may be discontinuous on Γ.
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Proof: This proof is similar to Theorem 3.6. Let us show the existence first, and then the uniqueness.
Existence: We look for the solution in the form S = S̃ +χ∞ψ with S̃ ∈ V and ψ ∈ A(Π). More precisely
we denote (using notation ⟨.⟩ from Definition 2.3)

φ− :=
〈

−R∂2
Y

◦ ∂2
X|Λ,

µ0

µ1
RN ◦ ∂Y |Γ,Y=0+

〉(
1
µ0
R∆(φ|Ω) + 1

µ1
R∂2

Y
(φ|Λ) +

∑
d∈ π

ΘN∗

sd ϕd

)
∈ A−(Π)

and ψ := T⩾−2(φ−). By Lemma 2.19, we have the first system below. Then, similarly to the proof of
Theorem 3.6, one can check that it implies the second system below.

µ0∆φ− = φ in Ω
µ1∆φ− = φ in Λ

[φ−]Γ = 0 on Γ
[µ∂Y φ−]Γ = 0 on Γ

φ− = 0 on ΣΩ ∪ ΣΛ
σd(φ−) = sd ∀d ∈ π

ΘN∗

so



(µ0∆ψ − φ)|Ω ∈ A(Ω) ∩
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d<−4

Ad(Ω) =
∑
d<−4

Ad(Ω)

(µ1∆ψ − φ)|Λ ∈ A(Λ) ∩
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d<−2

Ad(Λ) =
∑
d<−2

Ad(Λ)

[ψ]Γ = 0
[µ∂Y ψ]Γ ∈ A(Γ) ∩

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d<−2

Ad(Γ) =
∑
d<−2

Ad(Γ)

ψ|ΣΩ∪ΣΛ = 0
σq(ψ) = sd ∀d ∈ π

ΘN∗

where [. . .]Γ stands for the jump on Γ. Therefore (1 + r)
[
div
(
µ∇(χ∞ψ)

)
− χ∞φ

]
∈ L2(Ω1) and

[µ∂Y (χ∞ψ)]Γ ∈ L2(Γ ∩ {X > Rc}). Finally, thanks to Lemma 3.8, we take S̃ as the unique solution in
V of: 

div(µ∇S̃) = F + χ∞φ− div
(
µ∇(χ∞ψ)

)
in Ω1 \ (Γ ∩ {X > Rc})

S̃ = 0 on ∂Ω1

[µ∂Y S̃]Γ = −[µ∂Y (χ∞ψ)]Γ on Γ ∩ {X > Rc}

Uniqueness: Let S be a homogeneous solution and let us show that S = 0. There is S̃ ∈ V and ψ ∈ A(Ω)
s.t. S = S̃ + χ∞ψ. The proof decomposes into the following steps, all proven by contradiction.

1. degmax(∆ψ|Ω) < −2 : Like in step 1 of the uniqueness proof of Theorem 3.6, we test the inequality:∫
Ω

∆(χ∞ψ) · ζ = −
∫

Ω
∆S̃ · ζ =

∫
Ω

∇S̃ · ∇ζ ≲ ∥ζ∥V ∀ζ ∈ D(Ω)

with ζq : (r, θ) 7→ ∆(χ∞ψ)(r, θ) · r−q−2d−2 χ0(2−1/qr)χ(θ) when q → 0+, where d := degmax(∆ψ|Ω)
and χ ∈ D(0,Θ) \ {0} is everywhere non negative.

2. degmax(∆ψ|Λ) < − 1
2 : This step works like the previous one.

3. degmax[µ∂Y ψ]Γ < − 1
2 : Let d := degmax[µ∂Y ψ]Γ and φ := [µ∂Y (χ∞ψ)]Γ. We have ∇S̃ ∈ L2(Ω1)

and, by steps 1 and 2, div(µ∇S̃) = − div
(
µ∇(χ∞ψ)

)
∈ L2(Ω1). Thus φ = −[µ∂Y S̃]Γ ∈ H−1/2(Γ).

Like previously, we test it with ζq : x 7→ φ(x) · x−q−2d−1 χ0(2−1/qx) when q → 0+. If d ⩾ − 1
2 , we

get ⟨φ, ζq⟩Γ ≳ 1
q and ∥ζq∥H1/2(Γ) ≲ ∥ζq∥H1(Γ) ≲

1√
q , which contradicts ⟨φ, ζq⟩Γ ≲ ∥ζq∥H1/2(Γ).

4. degmax(ψ|Λ) < − 1
2 : Let d := degmax(ψ|Λ). There is ψ1 ∈ Ad(Λ) \ {0} and ψ2 ∈

∑
q<d Aq(Λ)

s.t. ψ|Λ = ψ1 + ψ2. By Lemma 2.16, deg(∂2
x|Λ) = −2, deg(∂Y |Γ,Y=0+) = −1 and deg(∂2

Y |Λ) =
deg(∂Y |Γ,Y=0−) = 0. In addition, Proposition 2.8 states that A(D) =

⊕
q∈R Aq(D) for any D ∈

{Λ,Γ}. So by taking the coordinates of ∆ψ|Λ in Ad(Λ) and of [µ∂Y ψ]Γ in Ad(Γ), we get if d ⩾ − 1
2 :{

∂2
Y ψ1 = 0 in Λ

∂Y |Γ,Y=0−ψ1 = 0 on Γ

But since ψ|ΣΛ = 0, it implies ψ1 = 0, which is contradictory.
5. degmax(ψ|Ω) < 0 : We denote d := degmax(ψ|Ω). There is ψ1 ∈ Ad(Ω) \ {0} and ψ2 ∈

∑
q<d Aq(Ω)

s.t. ψ|Ω = ψ1 + ψ2. Since deg(∆|Ω) = −2, taking the coordinate of ∆ψ|Ω in Ad−2(Ω) and of ψ|Γ in
Ad(Λ) gives if d ⩾ 0: {

∆ψ1 = 0 in Ω
ψ1 = 0 on Γ

By Proposition 2.12, it implies d ∈ π
ΘN∗ and ψ1 = σd(ψ1)ϕq. But σd(ψ1) = σd(ψ) = σd(S) = 0.

Finally, Lemma 3.9 implies χ∞ψ ∈ V , so S ∈ V . So the uniqueness in Lemma 3.8 implies S = 0. □
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3.3 Construction of the fields

Definition 3.12: For any (p, ℓ) ∈ (R\P)×N we denote by convention up,ℓ = 0, Up,ℓ = 0 and Sp,ℓ = 0.
We define by induction on p ∈ P that for any ℓ ∈ N:

• Up,ℓ : (x, Y ) ∈ Λ 7→
∞∑
n=0

(∂2
x + k2

1)n∂yup−1−2n,ℓ(x, 0) · Un(Y ). (3.3)

• up,ℓ is the unique solution in H1(Ω) + χ0A(Ω) of :

µ0∆up,ℓ + ω2ρ0up,ℓ = fs δp,0 δℓ,0 in Ω
up,ℓ = 0 on ΣΩ
up,ℓ = Up,ℓ on Γ

σd(up,ℓ) =
∑

p′∈[[0,p+d]]P,N

∑
d′∈ π

ΘZ∗

p′−d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cu←S
d,d′,p−p′,ℓ−ℓ′ · σd′(S∞p′,ℓ′) ∀d ∈ − π

ΘN∗
(3.4)

• Sp,ℓ is the unique solution in V + χ∞A(Π) of :
div(µ∇Sp,ℓ) = −ω2ρSp−2,ℓ in Ω1

Sp,ℓ = 0 on ∂Ω1

σd(Sp,ℓ) =
∑

p′∈[[0,p−d]]P,N

∑
d′∈ π

ΘZ∗

p′+d′∈[[0,p]]P,N

ℓ∑
ℓ′=0

cS←u
d,d′,p−p′,ℓ−ℓ′ · σd′(u0

p′,ℓ′) ∀d ∈ π
ΘN∗ (3.5)

We will show that these fields are well-defined at the same time as the following proposition.

Proposition 3.13: For any (p, ℓ) ∈ P×N there exist u0
p,ℓ ∈ A+(Π) and S∞p,ℓ ∈ A−(Π) s.t., for any d ∈ R,

up,ℓ = T⩽d(u0
p,ℓ) + o∂(rd) when r → 0 and Sp,ℓ = T⩾d(S∞p,ℓ) + o∂(rd) when r → ∞.

Justification of Definition 3.12 and Proposition 3.13: Let us show by induction on p that for any ℓ:
(H1) up,ℓ, Up,ℓ and Sp,ℓ exist and are unique,
(H2) Proposition 3.13 is true at rank (p, ℓ),
(H3) ∀m ∈ N, ∂mx ∂yup,ℓ|Γ ∈ H1

0 (Γ) + χ0A(Γ) (additional property that will be useful during the proof).
Since all fields are null for p < 0, the initial case is trivial and only the inductive step remains to prove.
Let p ∈ P. Let us assume (H1)–(H3) at any rank p′ < p and prove it at rank p.

1. Existence and uniqueness of the fields:

• Up,ℓ : By (H3), the ∂yup′,ℓ|Γ with p′ < p are all in Hm
loc(Γ) for any m ∈ N. So the functions

(∂2
x + k2

1)n∂yup−1−2n,ℓ|Γ are continuous and Formula (3.3) is well-defined at any point of Λ.
• up,ℓ : By (H2), S∞p′,ℓ′ exists for any p′ < p and ℓ′, so the coefficients σd′(S∞p′,ℓ′) are well-defined.

Thus, (3.4) defines well σd(up,ℓ). And we have: σd(up,ℓ) ̸= 0 =⇒ [[0, p+d]]P,N ̸= ∅ =⇒ d ⩾ −p, so
(σd(up,ℓ))d∈− π

ΘN∗ has finite support. Next, we apply Theorem 3.6. Its hypotheses are satisfied,
because (H3) implies:

Up,ℓ|Γ =
∞∑
n=0

(∂2
x + k2

1)n∂yup−1−2n,ℓ(x, 0) · Un(0) ∈ H1
0 (Γ) + χ0A(Γ) ⊂ H

1/2
00 (Γ) + χ0A(Γ)

• Sp,ℓ : Similarly, (H2) implies that (σd(Sp,ℓ))d∈ π
ΘN∗ is well defined and has finite support. Next,

we apply Theorem 2.23. We need to check its hypotheses, i.e. there is f : Ω1 → C and
φ : Π → C s.t. ω2ρSp−2,ℓ = F + χ∞φ, (1 + r)F ∈ L2(Ω1), φ|Ω ∈ A(Ω) and φ|Λ ∈ A(Λ).
By (H2), there is ψ ∈ A(Π) s.t. Sp−2,ℓ = ψ + o∂(r−4). So it suffices to set φ := ω2ρψ and
F := ω2ρSp−2,ℓ − χ∞φ.

2. Asymptotic expansions:
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• up,ℓ : We use Theorem 2.22. To do so, we must check that there is gΓ ∈ A+(Γ) and gΛ ∈ A+(Λ)
s.t.:

∀d ∈ R,
{

∂2
Y Up,ℓ = T⩽d(gΛ) + o∂(xd) in Λ

∂Y Up,ℓ|Y=0− = T⩽d(gΓ) + o∂(xd) on Γ

Given the definition of Up,ℓ (3.3) , it suffices to show that, for any p′ < p there is h ∈ A+(Γ)
s.t.: ∀d ∈ R, ∂nup′,ℓ|Γ = T⩽d(h) + o∂(xd). But it derives from (H2).

• Sp,ℓ : Similarly, we use Theorem 2.23 thanks to (H2).

3. Let m ∈ N. The asymptotic expansion of up,ℓ implies: ∃h ∈ A(Γ), ∂mx ∂yup,ℓ|Γ = h + o∂(x1). So
there is x0 ∈ R∗+ s.t. ∂mx ∂yup,ℓ|Γ − h is H1 on Γ ∩ {x < x0} = (0, x0) × {0} and it vanishes at
0. To prove (H3) at rank p, it remains to show that ∂mx ∂yup,ℓ ∈ H1((x0

2 ,∞) × {0}). To do so, it
suffices to get u ∈ Hm+3((x0

2 ,∞) × (0, δ2 )) with δ := dist(supp(f),Γ). But it follows from classical
elliptic regularity because on one side µ0∆up,ℓ +ω2ρ0up,ℓ = 0 on (x0

4 ,∞) × (0, δ), and on the other
up,ℓ|Γ = Up,ℓ|Γ ∈ Hm+3((x0

4 ,∞) × {0}) by (3.3) and (H3). □

Proposition 3.14: ∀p ∈ P,∃np ∈ N,∀ℓ > np, (up,ℓ = 0 and Up,ℓ = 0 and Sp,ℓ = 0).

Proof: For any (d, d′, p) ∈ ( πΘZ∗)2 ×P, one has (id − ⟨π+
ε | R+

ε ⟩)(ϕd′) ∈ A+
ε (Π), so by definition of A+

ε (Π)
there is n (depending of d, d′, p) s.t. for any ℓ > n: cu←S

d,d′,p,ℓ := σd ◦τp+d′,ℓ ◦ (id−⟨π+
ε | R+

ε ⟩)(ϕd′) = 0. The
same is true for the coefficients cS←u

d,d′,p,ℓ. Finally the result follows by induction from Definition 3.12. □

Proposition 3.15: Ansatz 2.25 and the matching condition of Definition 2.27 is satisfied.

Proof: First let us note that for any (p, ℓ)

σd(up,ℓ) = σd(u0
p,ℓ) when d ∈ − π

ΘN∗ and σd(Sp,ℓ) = σd(S∞p,ℓ) when d ∈ π
ΘN∗. (3.6)

where σd(up,ℓ), resp. σd(Sp,ℓ), is set by Definition 3.5, resp. 3.10, whereas σd(u0
p,ℓ) and σd(S∞p,ℓ) rest on

the definition of σd on A±(Π) at page 15. Indeed we have up,ℓ − T⩽1(u0
p,ℓ)|Ω = o∂(r1), so χ0 · (up,ℓ −

T⩽1(u0
p,ℓ)|Ω) ∈ H1(Ω) which implies by Definition 3.5 that σd(up,ℓ) = σd

(
T⩽1(u0

p,ℓ)|Ω
)

= σd(u0
p,ℓ). Like-

wise for Sp,ℓ.
Now, given Proposition 3.14, to prove Ansatz 2.25 it suffices to check that, for any (p, ℓ), u0

p,ℓ ∈∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈P−p Ad(Π) and S∞p,ℓ ∈

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈p−P Ad(Π). Let us show it for u0

p,ℓ only, using induction.

Since all fields vanish for p < 0, only the inductive step is non-trivial. (2.25) states that

u0
p,ℓ =

∞∑
n=0

(−k2
0 R∆)n

(
R∂2

Y
◦ (∂2

x|Λ + k2
1)(u0

p−2,ℓ) + µ0
µ1
RN ◦ ∂y|Γ,y=0+(u0

p−1,ℓ)︸ ︷︷ ︸
:=A

+
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

d∈ π
ΘZ∗

σd(u0
p,ℓ)ϕd

)
.

Since degR∆ ∈ N, it suffices to show that the big brackets belong to
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈P−p Ad(Π). This is true for

A using the induction hypothesis and degR∂2
Y

= 0, deg(∂2
x|Λ) = −2 and deg(RN ◦ ∂y|Γ,y=0+) = −1

(see Proposition 2.14 and Lemma 2.16). It remains to show that ∀d ∈ π
ΘZ∗, σd(u0

p,ℓ) ̸= 0 =⇒ d ∈ P−p.
This last assertion holds because on one hand π

ΘN∗ ⊂ P − p, and on the other (3.6) and (3.4) imply:
∀d ∈ − π

ΘN∗, σd(u0
p,ℓ) ̸= 0 ⇐⇒ σd(up,ℓ) ̸= 0 =⇒ [[0, p+ d]]P,N ̸= ∅ =⇒ d ∈ P − p.

Finally (3.4)–(3.5) and (3.6) show that the matching relations of Theorem 2.31 are satisfied, and we can
apply Theorem 2.31 thanks to Ansatz 2.25. Thus the matching condition of Definition 2.27 is satisfied.□

3.4 Practical way to build the far fields
This section shows how to build directly the far fields without computing the layer and corner fields.
Thanks to the explicit expression of the layer fields in (3.3), the layer is replaced by boundary conditions
on Γ, while the corner fields are replaced by corner conditions depending on corner profiles.
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Definition 3.16: corner profiles
Let d ∈ π

ΘN∗. We denote (Sd,n)n∈N the unique sequence of V + χ∞A(Π) s.t. for any n ∈ N∗:
div(µ∇Sd,0) = 0 in Ω1

Sd,0 = 0 on ∂Ω1
σq(Sd,0) = δd,q ∀q ∈ π

ΘN∗
and


div(µ∇Sd,n) = −ω2ρSd,n−1 in Ω1

Sd,n = 0 on ∂Ω1
σq(Sd,n) = 0 ∀q ∈ π

ΘN∗

And for any (d, n) we denote S∞d,n the element of A−(Π) s.t. ∀d ∈ R, Sd,n = T⩾d(S∞d,n) + o∂(rd).
These objects are well-defined thanks to Theorems 3.11 and 2.23. The proof is the same as for
Definition 3.12 and Proposition 3.13.

Using (3.5) and the uniqueness in Theorem 3.11, one can easily show by induction on p:

∀(p, ℓ) ∈ P × N, Sp,ℓ =
∞∑
n=0

∑
d∈ π

ΘN∗∩(p−2n−P)

σd(Sp−2n,ℓ) Sd,n (3.7)

Thus, the same holds replacing Sp,ℓ and Sd,n by resp. S∞p,ℓ and S∞d,n.
For any (d, d′, p, ℓ) ∈ (− π

ΘN∗) × π
ΘZ∗ × P × N, we introduce the corner coefficient cu←u

d,d′,p,ℓ, we have

cu←u
d,d′,p,ℓ :=

∑
(p1,p2)∈(N−d)×(N+d′)
n∈N, p1+p2+2n=p

∑
d1∈ π

ΘZ∗

p1+d1∈N

∑
d2∈ π

ΘN∗

p2−d2∈N

∑
(ℓ1,ℓ2)∈N2

ℓ1+ℓ2=ℓ

cu←S
d,d1,p1,ℓ1

· σd1(S∞d2,n) · cS←u
d2,d′,p2,ℓ2

(3.8a)

=
∑

(p1,p2)∈(N−d)×(N+d′)
n∈N, p1+p2+2n=p

∑
d1∈− π

ΘN∗

p1+d1∈N

∑
d2∈ π

ΘN∗

p2−d2∈N

∑
(ℓ1,ℓ2)∈N2

ℓ1+ℓ2=ℓ

cu←S
d,d1,p1,ℓ1

· σd1(S∞d2,n) · cS←u
d2,d′,p2,ℓ2

(3.8b)

+
∑

(p1,p2)∈(N−d)×(N+d′)
p1+p2=p

∑
d1∈ π

ΘN∗

p1+d1∈N, p2−d1∈N

∑
(ℓ1,ℓ2)∈N2

ℓ1+ℓ2=ℓ

cu←S
d,d1,p1,ℓ1

· cS←u
d1,d′,p2,ℓ2

(3.8c)

(the two given formulas are equal because, when d1 > 0, σd1(S∞d2,n
) = σd1(Sd2,n) = δd1,d2 δn,0). Like

in Remark 2.32, we have d − d1, d2 − d′ ∈ Z ∩ π
ΘZ in (3.8a). Thus, if d − d′ ̸∈ Z ∩ π

ΘZ, line (3.8c)
vanishes. Moreover, for any (p, ℓ), we denote u0

p,ℓ := u0
p,ℓ|Ω ∈ A+(Ω), which satisfies: ∀d ∈ R, up,ℓ =

r→0
T⩽d(u0

p,ℓ) + o∂(rd).

Theorem 3.17: direct construction of the far fields
Let (Tn)n∈N be the sequence of Taylor coefficients of the tangent: ∀t ∈ (−π

2 ,
π
2 ), tan t =

∑∞
n=0 Tnt

2n+1.
(up,ℓ)p∈P,ℓ∈N is the unique family of H1(Ω) + χ0A(Ω) s.t. for any (p, ℓ) ∈ P × N:

µ0∆up,ℓ + ω2ρ0up,ℓ = fs δp,0 δℓ,0 in Ω
up,ℓ = 0 on ΣΩ

up,ℓ =
∞∑
n=0

µ0

µ1
Tn · (∂2

x + k2
1)n∂yup−1−2n,ℓ on Γ

σd(up,ℓ) =
∑
p′∈P

p−p′∈P+ 2π
Θ

∑
d′∈ π

ΘZ∗

p′+d′∈[[0,p+d]]P,N

ℓ∑
ℓ′=0

cu←u
d,d′,p−p′,ℓ−ℓ′ · σd′(u0

p′,ℓ′) ∀d ∈ − π
ΘN∗

Proof: Uniqueness follows from the uniqueness in Theorem 3.6. So it suffices to prove that the far fields
satisfy the equations above.

Boundary condition: By (3.3) and (3.4), we have

up,ℓ(x, 0) = Up,ℓ(x, 0) =
∞∑
n=0

(∂2
x + k2

1)n∂yup−1−2n,ℓ(x, 0) · Un(0).
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So we need to calculate Un(0). Let U : (Y, t) 7→
∑∞
n=0 Un(Y ) t2n+1. The definition of (Un) (reminded in

(3.9) below) formally implies a differential equation on U given in (3.10).

∀n ∈ N,


U ′′n = −Un−1

U ′n(0) = µ0
µ1
δn,0

Un(−1) = 0
(3.9)


∂2
Y U = −t2U

∂Y U|Y=0 = U ′0(0) · t = µ0
µ1
t

U|Y=−1 = 0
(3.10)

Thus U(Y, t) = µ0
µ1

sin(t(Y+1))
cos(t) := φ(Y, t). This is formal, as we do not know whether the series U converges.

However, there is a sequence of polynomial functions (Φn) s.t., for any (Y, t) ∈ (−1, 0)×(−π
2 ,

π
2 ), φ(Y, t) =∑∞

n=0 Φn(Y ) t2n+1 (because φ is odd w.r.t. t). Since φ satisfies (3.10), (Φn) is a solution of (3.9). But
this solution is unique, so (Φn) = (Un) and U = φ. Hence ∀t ∈ (−π

2 ,
π
2 ),

∑∞
n=0 Un(0) t2n+1 = µ0

µ1
tan(t).

That is to say ∀n ∈ N, Un(0) = µ0
µ1
Tn.

Corner condition: For any (d, p, ℓ) ∈ π
ΘN∗ × R × N, let S̃∞d,p,ℓ := S∞d,p/2 if p

2 ∈ N and ℓ = 0 and S̃∞d,p,ℓ := 0
otherwise. For any family (xp,ℓ), we denote x•,• := (xp,ℓ) the family itself. We also denote ∗ the
convolution product w.r.t. (p, ℓ). Let d ∈ − π

ΘN∗. We have

σd(u•,•) =
∑

d1∈ π
ΘZ∗

cu←S
d,d1,•,• ∗ σd1(S∞•,•) by (3.4)

=
∑

d1∈ π
ΘZ∗

cu←S
d,d1,•,• ∗

∑
d2∈ π

ΘN∗

σd1(S̃∞d2,•,•) ∗ σd2(S•,•) by (3.7)

=
∑

d1∈ π
ΘZ∗

cu←S
d,d1,•,• ∗

∑
d2∈ π

ΘN∗

σd1(S̃∞d2,•,•) ∗
∑

d′∈ π
ΘZ∗

cS←u
d2,d′,•,• ∗ σd′(u0

•,•) by (3.5)

=
∑

d′∈ π
ΘZ∗

( ∑
d1∈ π

ΘZ∗

∑
d2∈ π

ΘN∗

cu←S
d,d1,•,• ∗ σd1(S̃d2,•,•) ∗ cS←u

d2,d′,•,•

)
∗ σd′(u0

•,•)

=
∑

d′∈ π
ΘZ∗

c̃u←u
d,d′,•,• ∗ σd′(u0

•,•)

with c̃u←u
d,d′,p,ℓ :=

∑
(p1,p2),n∈N
p1+p2+2n=p

∑
d1∈ π

ΘZ∗

∑
d2∈ π

ΘN∗

∑
(ℓ1,ℓ2)∈N2

ℓ1+ℓ2=ℓ

cu←S
d,d1,p1,ℓ1

· σd1(S∞d2,n) · cS←u
d2,d′,p2,ℓ2

.

Moreover, for any R ∈ R±ε , we have degεR ∈ N and degεR± degAR ∈ N (see Figure 9). So by definition
of the coefficients cu←S

... and cS←u
... :

• cu←S
d,d1,p1,ℓ1

̸= 0 =⇒ p1 + d ∈ N and p1 + d1 ∈ N,
• cS←u

d2,d′,p2,ℓ2
̸= 0 =⇒ p2 − d2 ∈ N and p2 − d′ ∈ N.

This implies that c̃u←u
d,d′,p,ℓ = cu←u

d,d′,p,ℓ for any (d, d′, p, ℓ).
Furthermore, those conditions on (p1,p2, d1, d2) imply that, if cu←u

d,d′,p,ℓ ̸= 0, then:
• p = (p1 + d) + 2n+ (p2 − d2) − d+ d2 ∈ N + π

ΘN∗ + π
ΘN∗ ⊂ P + 2π

Θ

• and p+ d− d′ = (p1 + d) + 2n+ (p2 − d′) ∈ N.
This and the property (σd′(up′,ℓ′) ̸= 0 =⇒ p′ ∈ P and p′ + d′ ∈ P) explain the sum indexes of the formula
given for σd(up,ℓ) in Theorem 3.17. □

Example: Using Theorem 3.17, one can check that uπ/Θ,ℓ vanishes for any ℓ. In addition 2π
Θ > 1, so the

first non-zero far fields are u0,0 and u1,0 and they satisfy
µ0∆u0,0 + ω2ρ0u0,0 = fs in Ω

u0,0 = 0 on ΣΩ
u0,0 = 0 on Γ

σd(up,ℓ) = 0 ∀d ∈ − π
ΘN∗

and


µ0∆u1,0 + ω2ρ0u1,0 = 0 in Ω

u1,0 = 0 on ΣΩ
u1,0 = µ0

µ1
∂yu0,0 on Γ

σd(u1,0) = 0 ∀d ∈ − π
ΘN∗
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4 Error estimates
Let χ ∈ C∞(R2) be equal to 1 on B(0, 1) and 0 outside B(0, 2), and, for any η > 0, χη : x 7→ χ(xη ). We
denote Λε := (−ε, 1) ×R∗+ and Πε := Ω ⊔ Γ ⊔ Λε (defined similarly as Π at page 6). We define on Πε the
following variant of the far-and-layer fields up,ℓ

uεp,ℓ(x, y) :=
{
up,ℓ(x, y) in Ω
Up,ℓ(x, yε ) in Λε

We also denote, for any p ∈ P, np := max{ℓ ∈ N | up,ℓ ̸= 0 or Up,ℓ ̸= 0 or Sp,ℓ ̸= 0}.

Let us define the approximate global field at order P ∈ R+ as follows for any ε small enough

∀(x, y) ∈ Ωε, uε,P (x, y) := (1 − χη(x, y))
∑

p∈P∩[0,P ]
ℓ∈[[0,np]]

εp lnℓεuεp,ℓ(x, y) + χη(x, y)
∑

p∈P∩[0,P ]
ℓ∈[[0,np]]

εp lnℓε Sp,ℓ(xε ,
y
ε )

where η :=
√
ε. Note that (1−χη(x, y))uεp,ℓ(x, y) is well-defined on Ωε when η > εRc since Πε\B(0, εRc) =

Ωε \B(0, εRc). We will see as a consequence of Theorem 4.2 that uε,P ∈ H1(Ωε).

The matching zone is Ωε ∩ Cη where Cη is the annulus Cη := B(0, 2η) \ B(0, η). Letting η =
√
ε makes

the matching zone tend to 0 w.r.t. the far fields (because η → 0 when ε → 0) and to infinity w.r.t. the
corner fields (because η

ε → ∞). Thanks to the matching assumption, we can state the following first
error estimate concercing the error in the matching zone. We use the symbol ≲ for majorations valid up
to a constant independent of ε.

Lemma 4.1: Let P ∈ R+. For ε small enough, we have∥∥∥∥ ∑
p∈P∩[0,P ]

∑
ℓ∈N

εp lnℓε
(
uεp,ℓ(x, y) − Sp,ℓ(xε ,

y
ε )
)∥∥∥∥
H1(Ωε∩Cη)

≲ ε
P
2 −1.

Proof: We will compare uεp,ℓ and Sp,ℓ in Cη to their asymptotic expansions at 0, resp ∞. Let us denote:
• uε,P :=

∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓεuεp,ℓ in Πε

• Sε,P :=
∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓε Sp,ℓ(xε ,
y
ε ) in Ωε

• uAε,P :=
∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓε ·
{
T⩽P−p(u0

p,ℓ)(x, y) in Ω
T⩽P−p(u0

p,ℓ)(x,
y
ε ) in Λε

• SAε,P :=
∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓε · T⩾p−P (S∞p,ℓ)(xε ,
y
ε ) in Πε.

(see Definition 2.21 for T•). We split the estimate into three parts that we will majorize separately:

∥uε,P − Sε,P ∥H1(Ωε∩Cη) ⩽ ∥uε,P − uAε,P ∥H1(Ωε∩Cη) + ∥uAε,P − SAε,P ∥H1(Ωε∩Cη) + ∥SAε,P − Sε,P ∥H1(Ωε∩Cη).

In addition, we will split some of the norms ∥. . .∥H1(Ωε∩Cη) into ∥. . .∥H1(Ω∩Cη) + ∥. . .∥H1(Λε∩Cη).
1. ∥uε,P − uAε,P ∥H1(Ω∩Cη) : By Proposition 3.13, for any (p, ℓ) we have up,ℓ −T⩽P−p(u0

p,ℓ) = o∂(rP−p)
in Ω when r → 0. By Definition 2.20 of o∂ , it implies up,ℓ − T⩽P−p(u0

p,ℓ) = O(rP−p) = O(rP−p−1)
and ∇

[
up,ℓ − T⩽P−p(u0

p,ℓ)
]

= O(rP−p−1) uniformly in θ. Thus:

∥uε,P − uAε,P ∥H1(Ω∩Cη) ⩽
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ∥up,ℓ − T⩽P−p(u0
p,ℓ)∥H1(Ω∩Cη)

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε ·

(∫
B(0,2η)

r2(P−p−1) dr rdθ
)1/2

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ηP−p

≲ ηP−2 because εp ≲ ηp and lnℓε ≲ η−2
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2. ∥uε,P − uAε,P ∥H1(Λε∩Cη) : Similarly, Up,ℓ − T⩽P−p(u0
p,ℓ) = o∂(xP−p) in Λ when x → ∞. Thus

• Up,ℓ − T⩽P−p(u0
p,ℓ) = O(xP−p) so Up,ℓ(x, yε ) − T⩽P−p(u0

p,ℓ)(x,
y
ε ) = O(xP−p)

• ∂x
[
Up,ℓ − T⩽P−p(u0

p,ℓ)
]

= O(xP−p−1) so ∂x
[
Up,ℓ(x, yε ) − T⩽P−p(u0

p,ℓ)(x,
y
ε )
]

= O(ε−1xP−p−1)
• ∂Y

[
Up,ℓ − T⩽P−p(u0

p,ℓ)
]

= O(xP−p) so ∂Y
[
Up,ℓ(x, yε ) − T⩽P−p(u0

p,ℓ)(x,
y
ε )
]

= O(ε−1xP−p)

which are all O(ε−1xP−p−1) (uniformly in Y ). Hence:

∥uε,P − uAε,P ∥H1(Λε∩Cη) ≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ε−1

(∫
[0,2η]×[−ε,0]

x2(P−p−1) dx dy
)1/2

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ε−1 · ε 1
2 ηP−p−

1
2

≲ ηP−2 because ε = η2 and lnℓε ≲ η− 1
2

3. ∥Sε,P − SAε,P ∥H1(Ω∩Cη) : Similarly Sp,ℓ − T⩾p−P (S∞p,ℓ) = o∂(rp−P ) in Ω when r → ∞, so Sp,ℓ −
T⩾p−P (S∞p,ℓ) = O(rp−P ) and ∇(X,Y )

[
Sp,ℓ − T⩾p−P (S∞p,ℓ)

]
= O(rp−P−1) = O(rp−P ) uniformly in θ.

Since ∇(x,y) = ε−1∇(X,Y ), we deduce:

∥Sε,P − SAε,P ∥H1(Ω∩Cη) ⩽
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε ·
∥∥∥[Sp,ℓ − T⩾p−P (S∞p,ℓ)

]
(xε ,

y
ε )
∥∥∥
H1(Ω∩Cη)

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ε−1

(∫
R2\B(0,η)

(r
ε

)2(p−P )
dr rdθ

)1/2

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · εP−p−1 · ηp−P+1

≲ ηP−2 because ε = η2 and lnℓε ≲ η−1

4. ∥Sε,P − SAε,P ∥H1(Λε∩Cη) : Sp,ℓ − T⩾p−P (S∞p,ℓ) = o∂(Xp−P ) in Λ when x → 0, so:

• Sp,ℓ − T⩾p−P (u0
p,ℓ) = O(Xp−P )

• ∂X
[
Sp,ℓ − T⩾p−P (S∞p,ℓ)

]
= O(Xp−P−1) = O(Xp−P )

• ∂Y
[
Sp,ℓ − T⩾p−P (S∞p,ℓ)

]
= O(Xp−P )

uniformy in Y . Hence:

∥Sε,P − SAε,P ∥H1(Λε∩Cη) ⩽
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε
∥∥∥[Sp,ℓ − T⩾p−P (S∞p,ℓ)

]
(xε ,

y
ε )
∥∥∥
H1(Λε∩Cη)

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · ε−1

(∫
[η,∞[×[−ε,0]

(x
ε

)2(p−P )
dxdy

)1/2

≲
∑

p∈P∩[0,P ]

np∑
ℓ=0

εp lnℓε · εP−p−1 · ε 1
2 ηp−P+ 1

2

≲ ηP−2 because ε = η2 and lnℓε ≲ η− 3
2

5. ∥uAε,P − SAε,P ∥H1(Ωε∩Cη) : Let us show that this norm vanishes. It suffices to prove that in A+
ε (Π):

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P∩[0,P ]

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

ϵp lnℓϵ · T⩽P−p(u0
p,ℓ) = H−1

ε

( ∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p∈P∩[0,P ]

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
ℓ∈N

ϵp lnℓϵ · T⩾p−P (S∞p,ℓ)
)

(4.1)

where Hε is defined in (2.29)–(2.31), and ϵ and ln ϵ denote the algebraic indeterminates of A+
ε (Π)

(we denote them differently from Sections 2.1 and 2.5 to avoid confusion with the real number ε).

34



For any (p, d) let ũp,d be the coordinate of
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,ℓ ϵ

p lnℓϵu0
p,ℓ in Ad(Π)[ln ϵ] and S̃p,d be the one of∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p,ℓ ϵ
p lnℓϵ S∞p,ℓ. Moreover, for any d and φ ∈ Ad(Π)[ln ϵ], let H̃−1

ε (φ) := εdH−1
ε (φ) ∈ Ad(Π)[ln ϵ].

Then:

(4.1) ⇐⇒
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d⩽P−p

ϵpũp,d = H−1
ε

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d⩾p−P

ϵpS̃p,d

)
⇐⇒

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p+d⩽P

ϵpũp,d =
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p−d⩽P

ϵp−dH̃−1
ε (S̃p,d)

⇐⇒
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p+d⩽P

ϵpũp,d =
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑

p+d⩽P

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p⩽P

ϵpH̃−1
ε (S̃p+d,d)

⇐⇒ ∀(p, d) s.t. p ⩽ P and p+ d ⩽ P, ũp,d = H̃−1
ε (S̃p+d,d) (4.2)

because two formal series coincide iff their coordinates coincide one by one.
But Proposition 3.15 shows the matching condition

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d

ϵpũp,d = H−1
ε

(∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d

ϵpS̃p,d

)
=
∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
p,d

ϵpH̃−1
ε (S̃p+d,d),

which is equivalent to: ∀(p, d), ũp,d = H̃−1
ε (S̃p+d,d). Thus we get (4.2), and then (4.1). □

Theorem 4.2: global error estimate
For any P ∈ R+ we have

∥∥uε − uε,P
∥∥
H1(Ωε) = o(εP

2 −2).

Proof: Let rε,P := uε,P − uε. It satisfies, for some functions fε and gε,
div(µε∇rε,P ) + ω2ρεrε,P = fε in Ωε

rε,P = 0 on ∂Ωε
rε,P |y=0+ − rε,P |y=0− = 0 on Γ ∩ {x > η}

µ0∂yrε,P |y=0+ − µ1∂yrε,P |y=0− = gε on Γ ∩ {x > η}

As for (1.2), this problem is well-posed with a stability constant independent of ε:

∥rε,P ∥H1(Ωε) ≲ ∥fε∥L2(Ωε) + ∥gε∥L2(Γ∩{x>η}).

To get our error estimate, it suffices to show that ∥fε∥L2 + ∥gε∥L2 ≲ ε
P
2 −2 = ηP−4.

Estimate of ∥fε∥L2 : We denote:

• uε,P :=
∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓεuεp,ℓ in Πε

• Sε,P :=
∑
p∈P∩[0,P ]

∑
ℓ∈N ε

p lnℓε Sp,ℓ(xε ,
y
ε ) in Ωε

• and Dε : u 7→ div(µε∇u) + ω2ρεu the differential operator of Helmholtz’s equation.
Since Dεuε = f by definition of uε, we have

fε = Dεrε,P

= Dε

(
(1 − χη)uε,P + χηSε,P − uε

)
=
(
(1 − χη)Dεuε,P − f

)
+ χηDεSε,P + [Dε, χη](Sε,P − uε,P )

where [., .] is the commutator. Let us estimate these terms one by one.
1. For ε small enough, 1 − χη is equal to 0 in B(0, εRc) and 1 in supp(f), so (1 − χη)Dεuε,P |Ω =

(1 − χη)(µ0∆ + ω2ρ0)uε,P |Ω = (1 − χη)f = f .
Moreover, using that µ1∂

2
Y Up,ℓ = −(µ1∂

2
x + ω2ρ1)Up−2,ℓ for any (p, ℓ), we get in Λε \B(0, εRc):

Dεuε,P = (µ1∆ + ω2ρ1)uε,P
=

∑
p∈P∩(P−2,P ]

∑
ℓ∈N

εp lnℓε (µ1∂
2
x + ω2ρ1)Up,ℓ

=
∑

p∈P∩(P−2,P ]

∑
ℓ∈N

εp+ 1
2 lnℓε

∑
n∈N

µ1 (∂2
x + k2

1)n+1∂yup−1−2n,ℓ(x, 0) · Un(yε ) by (3.3)
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Since Un ∈ L∞(−1, 0) for any n (see (3.1)), we deduce:

∥(1−χη)Dεuε,P ∥L2(Λε) ≲
∑

p∈P∩(P−2,P ]

np∑
ℓ=0

⌊(p−1)/2⌋∑
n=0

εp+ 1
2 lnℓε ·

∥∥(∂2
x+k2

1)n+1∂yup−1−2n,ℓ
∥∥
L2(Γ∩{x>η}).

Let us show that, for any p, ℓ,m, ∥∂mx ∂yup,ℓ|Γ∥L2(Γ∩{x>η}) ≲ η−p−m−1 (4.3).

• The proof of Proposition 3.13 shows that ∂mx ∂yup,ℓ ∈ H1
0 (Γ) + χ0A(Γ) for any p, ℓ,m. So

∥∂mx ∂yup,ℓ|Γ∥L2(Γ∩{x>1}) < ∞.
• By Proposition 3.13, ∂yup,ℓ|Γ = ∂yT⩽−p− 1

2
(u0
p,ℓ) + o∂(x−p− 3

2 ) when x → 0, and Ansatz 2.25
is satisfied, thus T⩽−p− 1

2
(u0
p,ℓ) = 0. So: ∀m ∈ N, ∂mx ∂yup,ℓ|Γ = O(x−p− 3

2−m) when x → 0. It
implies ∥∂mx ∂yup,ℓ|Γ∥L2(Γ∩{η<x<1}) ≲ η−p−m−1.

Hence:

∥(1 − χη)Dεuε,P ∥L2(Λε) ≲
∑

p∈P∩(P−2,P ]

np∑
ℓ=0

εp+ 1
2 lnℓε

⌊(p−1)/2⌋∑
n=0

η−(p−1−2n)−2(n+1)−1

≲
∑

p∈P∩(P−2,P ]

np∑
ℓ=0

εp+ 1
2 lnℓε · η−p−2

≲ ηP−4 because lnℓε ≲ η−1

So ∥(1 − χη)Dεuε,P − f∥L2(Ωε) ≲ ηP−4.
2. For the second term of fε, (3.5) implies that DεSε,P =

∑
p∈P∩(P−2,P ]

∑
ℓ∈N ε

p lnℓε ω2ρSp,ℓ. But
by Proposition 3.13 and Ansatz 2.25: ∀(p, ℓ), Sp,ℓ = O(rp). Thus, using that ρ is bounded and
∥Sp,ℓ(xε ,

y
ε )∥L2(Ωε∩B(0,2η)) = ε ∥Sp,ℓ∥L2(Ω1∩B(0,2η/ε)), we get

∥χηDεSε,P ∥L2(Ωε) ≲
∑

p∈P∩(P−2,P ]

np∑
ℓ=0

εp lnℓε · ε ∥Sp,ℓ∥L2(Ω1∩B(0,2η/ε))

≲
∑

p∈P∩(P−2,P ]

np∑
ℓ=0

εp+1 lnℓε ·
(η
ε

)p+1

≲ ηP−4 because lnℓε ≲ η−3

3. Using that ∥∆χη∥L2 + ∥∇χη∥L2 = O(η−2), the last term of fε satisfies

∥[Dε, χη](Sε,P − uε,P )∥L2(Ωε) ≲ ∥∆χη · (Sε,P − uε,P ) + 2∇χη · ∇(Sε,P − uε,P )∥L2(Ωε)

≲ η−2∥Sε,P − uε,P ∥H1(Ωε∩B(0,2η)\B(0,η))

≲ ηP−4 by Lemma 4.1.

Estimate of ∥gε∥L2 : Without loss of generality, we assume ∂yχη|Γ = 0. (3.5) implies that µ0∂Y Sp,ℓ|Y=0+ =
µ1∂Y Sp,ℓ|Y=0− on Γ ∩ {X > Rc} for any (p, ℓ). Thus we have on Γ ∩ {x > η}:

gε = µ0∂yrε,P |y=0+ − µ1∂yrε,P |y=0−

= χη ·
(
µ0∂yuε,P |y=0+ − µ1∂yuε,P |y=0−

)
= χη

∑
p∈P∩(P−1,P ]

∑
ℓ∈N

εp lnℓε · µ0∂yup,ℓ|y=0+

By (4.3), we have that ∥∂yup,ℓ|Γ∥L2(Γ∩{x>η}) ≲ η−p−1. So ∥gε∥L2(Γ∩{x>η}) ≲ ηP−4 since lnℓ ε ≲ η−2. □

Remark: Theorem 4.2 can be improved to ∥uε − uε,P ∥H1(Ωε) = o(εP/2). Indeed with the same nota-
tions as the above proof, one can show that, for any (p, ℓ) ∈ P × N, ∥(1 − χη)uεp,ℓ∥H1(Ωε) ≲ η−p and
∥χηSp,ℓ∥H1(Ωε) ≲ η−p. Therefore:

∥rε,P ∥H1(Ωε) ≲ ∥rε,P+4∥H1(Ωε) +
∑

p∈P∩(P,P+4]

∑
ℓ∈N

εp lnℓε ·
(
∥(1 −χη)uεp,ℓ∥H1(Ωε) + ∥χηSp,ℓ∥H1(Ωε)

)
= o(εP

2 ).
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Proof of Theorem 1.1: It follows from Theorem 4.2 applied at order 2P + 4 and from the fact that, for
small enough ε,

∑
p∈P∩[0,2P ]

∑
ℓ∈N ε

p lnℓε up,ℓ and uε,2P coincide in Ω \B(0, δ):∥∥∥∥uε −
∑

p∈P∩[0,P ]

∑
ℓ∈N

εp lnℓε up,ℓ
∥∥∥∥
H1(Ω\B(0,δ))

≲ ∥uε − uε,2P+4∥H1(Ωε) +
∑

p∈P∩(P,2P+4]

∑
ℓ∈N

εp lnℓε ∥up,ℓ∥H1(Ω\B(0,δ))

= o(εP ) + o(εP ).

□

Remark: An alternative way of stating the error estimate is:∥∥∥∥uε −
∑

p∈P∩[0,P )

∑
ℓ∈N

εp lnℓε up,ℓ
∥∥∥∥
H1(Ω\B(0,δ))

= O(εP lnnε) with n := max{ℓ ∈ N | uP,ℓ ̸= 0}.

A Appendix: proof of Lemma 2.8
By Definition 2.6, we already know that the formulas to prove are true replacing

⊕
by
∑

. So it suffices
to show that those sums are direct.

1. Let us show that A(Ω) =
⊕

d∈R Ad(Ω). Let n ∈ N and, for any j ∈ [[1, n]], dj ∈ R and φj ∈ Adj
(Ω).

We assume that d1 < d2 < · · · < dn and
∑n
j=1 φj = 0. Let us show that ∀j ∈ [[1, n]], φj = 0.

Let θ ∈ (0,Θ). By definition of Adj (Ω), for any j ∈ [[1, n]], there is Pθ,j ∈ C[T ] s.t.: ∀r ∈
R∗+, φj(r, θ) = rdjPθ,j(ln r). Let us assume by contradiction that: ∃j ∈ [[1, n]], Pθ,j ̸= 0. Let
j0 := max{j ∈ [[1, n]] | Pθ,j ̸= 0}. Then 0 =

∑n
i=1 λiφi(r, θ) ∼ rdj0Pθ,j0(ln r) when r → ∞, so

Pθ,j0 = 0. This is contradictory, so: ∀θ ∈ (0,Θ),∀j ∈ [[1, n]],∀r ∈ R∗+, φj(r, θ) = 0.
2. By the same method, one can show that A(D) =

⊕
d∈R Ad(D) for any D ∈ {Π,Γ,Λ}.

3. Now we will prove (2.7). Let d ∈ R and I := {(q, k) ∈ R × N | q + k = d}. Separating real and
imaginary parts, it is enough to show that:

Ad(Ω) ∩ C0(Ω,R) =
⊕

(q,k)∈I

{
z 7→ ℑ[(αz)q αzkP (log(αz))]

∣∣ P ∈ R[T ] and P(q, k, P )
}
.

Let, for any (q, k) ∈ I, Pq,k ∈ R[T ] and φq,k : z 7→ ℑ[(αz)q αzkPq,k(log(αz))]. We assume that
P(q, k, Pq,k) holds for any (q, k) ∈ I, that the Pq,k are all null except for a finite number, and that∑

(q,k)∈I φq,k = 0. Let us show by induction on m := max(q,k)∈I degPq,k that: ∀(q, k) ∈ I, Pq,k = 0
(which implies in turn: ∀(q, k), φq,k = 0). We initialize at m = −∞, i.e. (∀(q, k), Pq,k = 0), which
is trivial. Thus, only the inductive step (m ∈ N) remains to prove.
To do so, we first note that in Ω:

0 = r−d
∑

(q,k)∈I

φq,k(r, θ) =
∑

(q,k)∈I

ℑ[ei(q−k)(θ−Θ)Pq,k(ln r + i(θ − Θ))] (A.1)

By applying r∂r, we deduce: 0 =
∑

(q,k)∈I

ℑ[ei(q−k)(θ−Θ)P ′q,k(ln r + i(θ − Θ))].

For any (q, k) ∈ I, let us define (note the switch of indexes at line 2):

Qq,k :=


P ′q,k if q ̸∈ N
P ′q,k − P ′q,k(0) if q ∈ N and q ⩽ k
P ′q,k − P ′k,q(0) if q ∈ N and q > k

Then (∀(q, k) ∈ I, P(q, k,Qq,k)). Since ℑ[(αz)q αzk] = −ℑ[(αz)k αzq] (and it is null when q = k),
the previous equality rewrites as

0 =
∑

(q,k)∈I

ℑ[(αz)q αzkQq,k(log(αz))].

Then, by induction hypothesis: ∀(q, k) ∈ I, Qq,k = 0. This means for Pq,k that:
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• If q ̸∈ N, then P ′q,k = 0.
• If q ∈ N and q ̸= k, then P ′′q,k = 0 and P ′q,k(0) − P ′k,q(0) = 0 (A.2).
• If q ∈ N and q = k, then P ′′q,k = 0.

So (A.1) reduces to :

0 =
∑

(q,k)∈I

ℑ[ei(q−k)(θ−Θ)Pq,k(0)] + 1q∈N · ℑ[ei(q−k)(θ−Θ)P ′q,k(0)(ln r + i(θ − Θ))]

=
∑

(q,k)∈I

1(q ̸∈N or q>k) · ℑ[ei(q−k)(θ−Θ)Pq,k(0)] by P

+ 1(q∈N and q=k) · ℑ[ei(q−k)(θ−Θ)P ′q,k(0)(ln r + i(θ − Θ))]

+ 1(q∈N and q>k) · ℑ[ei(q−k)(θ−Θ)P ′q,k(0) 2i(θ − Θ)] by (A.2)

=
∑

(q,k)∈I

1(q ̸∈N or q>k) · Pq,k(0) · sin((q − k)(θ − Θ))

+ 1(q∈N and q=k) · P ′q,k(0) · (θ − Θ)

+ 1(q∈N and q>k) · 2P ′q,k(0) · sin
(
(q − k)(θ − Θ) + π

2
)

· (θ − Θ)

The functions of θ present here are linearly independent. So the coefficients Pq,k(0) and P ′q,k(0) are
all zero. This concludes the proof. □

B Appendix: asymptotic behaviors w.r.t. r
In this section, we prove Theorems 2.22 and 2.23. We will use Sections 3.1 and 3.2 which are after
Theorems 2.22 and 2.23 in the paper, but are independent of them.

B.1 Proof of Theorem 2.23: asymptotic behavior for corner fields-like prob-
lems

The proof relies on the Kondratiev theory, usually used to analyse singularities of solutions of elliptic
equations, see [25, 27, 11, 13, 26]. We use it in a way that gives an expansion in A+(Π).

First we introduce the variables (t, θ), defined as (ln r, θ) in Ω and (ln x, Y ) in Λ. The pair (t, θ) lies in
Π := R × (−1,Θ). Moreover, we denote Ω, Λ, ΣΩ, Γ and ΣΛ the images of Ω, Λ, ΣΩ, Γ and ΣΛ by the
change of variable (x, y) ⇝ (t, θ), see Figure 10. The notation . . . is intended to remind the strip shape
of Π. Finally, for any u : Π → C, we denote

u : (t, θ) ∈ Π 7→

{
u(r = et, θ) in Ω
u(x = et, Y = θ) in Λ

Figure 10: The change of variables (x, y)⇝ (t, θ) and the associated domains.
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Definition B.1: Kondratiev spaces
Let H be a Hilbert space and (s, β) ∈ R2. We define Ks

β(R, H) := {t 7→ eβtu(t) | u ∈ Hs(R, H)},
equipped with the norm ∥u∥Ks

β
(R,H) := ∥t 7→ e−βtu(t)∥Hs(R,H). We also denote K∞β (R, H) :=⋂

s∈RK
s
β(R, H), and Ks

β(Γ) := Ks
β(R,C) (identifying the line Γ with R).

Remarks:
• If s = m ∈ N, then Km

β (R, H) = {u ∈ Hm
loc(R, H) | ∀k ∈ [[0,m]], e−βt∂kt u(t) ∈ L2(R, H)}.

• Note that if u ∈ Ks
β(R, H) and u is zero in a vicinity of −∞, then: ∀β′ ⩾ β, u ∈ Ks

β′(R, H).
• Kondratiev’s spaces are linked to o∂ (see Definition 2.20) in the following way. Let χ ∈ C∞(R) be

equal to 0 in a vicinity of −∞ and 1 in a vicinity of +∞. Then for any u : Ω → C:{
∀β ∈ R, χu ∈

⋂
m∈N

K∞β (R, Hm(0,Θ)) =⇒ ∀d > β, u =
r→∞

o∂(rd)
∀d ∈ R, u =

r→∞
o∂(rd) =⇒ ∃t0 ∈ R, ∀β > d, χ(· + t0)u ∈

⋂
m∈N

K∞β (R, Hm(0,Θ))

And there are similar implications in Λ and Γ.

Let H be a Hilbert space, β ∈ R and φ ∈ K0
β(R, H). For any λ ∈ C s.t. ℜ(λ) = β we define the (bilateral)

Laplace transform of φ at λ as

φ̂(λ) :=
∫ +∞

−∞
e−λtφ(t) dt = F

[
t 7→ e−βtφ(t)

]
(ℑ(λ)) (B.1)

where F denotes the Fourier transform. By properties of F , we have φ̂ ∈ L2({λ ∈ C | ℜ(λ) = β}). If φ
depends on t and θ, φ̂ implies that we see φ as a function from R to a space of functions of θ.

To introduce the method, let us use the Laplace transform on S. Let χ∞ be the truncation function
introduced in Section 3.2 and s := χ∞S. Since S ∈ V+χ∞A(Π), there is β ∈ R s.t. s ∈ K0

β(R, L2(−1,Θ)),
so ŝ(λ, θ) is well-defined for any λ ∈ C s.t. ℜ(λ) > β. In addition we have for any f ∈ L2(Ω), g ∈ L2(Λ),
h ∈ H−1/2(Γ) and u ∈ H1

loc(Π):

−µ0∆u = f in Ω
−µ1∆u = g in Λ

u|y=0+ − u|y=0− = 0 on Γ
µ0∂yu|y=0+ − µ1∂yu|y=0− = h on Γ

u = 0 on ΣΩ ∪ ΣΛ

⇐⇒



−e−2tµ0∆u = f in Ω
−µ1 (e−2t(∂2

t − ∂t) + ∂2
θ )u = g in Λ

u|θ=0+ − u|θ=0− = 0 on Γ
e−tµ0∂θu|θ=0+ − µ1∂θu|θ=0− = h on Γ

u = 0 on ΣΩ ∪ ΣΛ
(B.2)

Taking u := χ∞S in (B.2) and applying the Laplace transform yield that ŝ satisfies:

(∂2
θ + λ2)ŝ(λ, θ) = f if θ ∈ (0,Θ)

∂2
θ ŝ(λ, θ) = g −

[
(λ+ 2)2 − (λ+ 2)

]
ŝ(λ+ 2, θ) if θ ∈ (−1, 0)

ŝ(λ, 0+) − ŝ(λ, 0−) = 0
µ1∂θ ŝ(λ, 0−) = µ0∂θ ŝ(λ+ 1, 0+)

ŝ(λ,Θ) = ŝ(λ,−1) = 0

(B.3)

for some functions functions f and g depending on F and χ∞. Solving this system w.r.t. θ allows us to ex-
tend ŝ w.r.t. λ further to the left in the complex plane, except at the λ for which (B.3) is ill-posed. These
λ are poles of ŝ and they will be used in Proposition B.3 to identify terms of the asymptotic expansion of S.

For anym ∈ N∗, let us define the Hilbert spaces Hm := {u ∈ H1
0 (−1,Θ) | u|(0,Θ) ∈ Hm(0,Θ) and u|(−1,0) ∈

Hm(−1, 0)} with the norm ∥u∥2
Hm := ∥u∥2

Hm(−1,0) + ∥u∥2
Hm(0,Θ), and Hm

× := Hm(0,Θ) ×Hm(−1, 0) ×C.
We need to solve problems of the following form with u ∈ Hm+2 and (f, g, a) ∈ Hm

× , m ∈ N:

u′′ + λ2u = f on (0,Θ)
u′′ = g on (−1, 0)

u(0+) − u(0−) = 0
u′(0−) = a

u(Θ) = u(−1) = 0

(B.4)
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Denoting A(λ) : u 7→
(
(u′′ + λ2u)|(0,Θ), u

′′
|(−1,0), u

′(0−)
)
, (B.4) is equivalent to A(λ)(u) = (f, g, a). Note

that for any m ∈ N, A(λ) ∈ L(Hm+2,Hm
× ) where L(. . .) denotes the space of continuous linear maps

between two normed vector spaces.

Lemma B.2: Let m ∈ N.
1. A(λ) : Hm+2 → Hm

× is invertible iff λ ∈ C \ π
ΘZ∗.

2. λ 7→ A(λ)−1 is meromorphic from C to L(Hm
× ,Hm+2). Its poles are in π

ΘZ∗ and are simple.
Moreover, for any q ∈ π

ΘZ∗ and v ∈ Hm
× , the residue (Resλ=q A(λ)−1)(v) is proportional to the

function θ ∈ [−1,Θ] 7→ 1[0,Θ](θ) · sin(qθ).
3. Let β1 < β2 be some reals. There is C > 0 depending only on (m,β1, β2) s.t., for any λ ∈ C

satisfying β1 < ℜ(λ) < β2 and |ℑ(λ)| > 1, we have: ∥A(λ)−1∥L(Hm
× ,Hm+2) ⩽ C |ℑ(λ)|m+2 (B.5).

Proof:
1. Let λ ∈ C. An easy calculation gives that any element of KerA(λ) must be proportional to
θ ∈ [−1,Θ] 7→ 1[0,Θ](θ) · sin(λθ). This function belongs to Hm \ {0} iff λ ∈ π

ΘZ∗. Therefore
KerA(λ) ̸= 0 ⇐⇒ λ ∈ π

ΘZ∗.
Moreover, it is easy to see that, for any (f, g, a) ∈ Hm

× , (B.4) with λ := 0 has a unique solution in
Hm+2. Thus A(0) : Hm+2 → Hm

× is invertible. Now, for any λ ∈ C, we have A(λ) = A(0) + λ2B
with B : u 7→ (u|(0,Θ), 0, 0). B is a compact operator from Hm+2 to Hm

× , so the Fredholm alternative
holds for A(λ). Therefore A(λ) : Hm+2 → Hm

× is invertible iff λ ∈ C \ π
ΘZ∗.

2. Since λ 7→ A(λ) is holomorphic on C \ π
ΘZ∗, so too is λ 7→ A(λ)−1. Let us describe its behavior

near the points q ∈ π
ΘZ∗ using [25, Theorem 5.1.1, p.147]. It depends on the “Jordan chains” of

A(q), which are the sequences (u0, . . . , un) ∈ (Hm)n+1, n ∈ N, s.t.

∀k ∈ [[0, n]],
k∑
j=0

1
j!

djA
dλj

∣∣∣
λ=q

(uk−j) = 0 (B.6)

Let us compute these chains. Taking k := 0 in (B.6) gives A(q)(u0) = 0, so u0 is proportional to
θ 7→ 1[0,Θ](θ) · sin(qθ) by step 1. In addition, if n ⩾ 1, taking k := 1 gives A(q)(u1)+ dA

dλ (q)(u0) = 0.
This implies on one hand u′′1 + q2u1 + 2qu0 = 0 in (0,Θ). On the other we get u′′1|(−1,0) = 0 and
u′1(0−) = 0, so u1|(−1,0) = 0, which gives u1(0) = u1(Θ) = 0. Therefore

0 ̸=
∫ Θ

0
2q|u0|2 =

∫ Θ

0
−(u′′1 + q2u1) · u0 =

∫ Θ

0
−u1 · (u′′0 + q2u0︸ ︷︷ ︸

=0

) = 0.

This is absurd, so we must have n = 0 for any Jordan chain of A(q). Therefore, [25, Theorem 5.1.1,
p.147] states that A(λ)−1 has a simple pole at q, and Im(Resλ=q A(λ)−1) = Cu0.

3. Let (f, g, a) ∈ Hm
× and u := A(λ)−1(f, g, a) ∈ Hm+2. We will write ≲ for inequalities valid up to a

constant that depends on (m,β1, β2) but not on (λ, f, g, a). By Poincaré’s inequality and integration
by parts, we have

∥u∥2
H1(−1,0) ≲

∫ 0

−1
|u′|2 = −

∫ −1

0
gū+ a ū(0) ≲ (∥g∥L2(−1,0) + |a|) · ∥u∥H1(−1,0)

thus ∥u∥H1(−1,0) ≲ ∥g∥L2(−1,0) + |a|. Since u′′|(−1,0) = g, we deduce ∥u∥Hm+2(−1,0) ≲ ∥g∥Hm + |a|.
Then, let u1 : θ ∈ [0,Θ] 7→ u(0)

(
1 − θ

Θ
)
, v := u− u1 and fλ := f − λ2u1. We have v(0) = v(Θ) = 0

and v′′ + λ2v = fλ, so ∫ Θ

0
(−|v′|2 + λ2|v|2) =

∫ Θ

0
fλv̄

Dividing by λ and taking the absolute value of the imaginary part, we get: |ℑ(λ)|
|λ|2 ∥v′∥2

L2+|ℑ(λ)|∥v∥2
L2 ⩽

1
|λ|∥fλ∥L2∥v∥L2 . Now we asume |ℑ(λ)| > 1 and β1 < ℜ(λ) < β2, so |λ| ≲ |ℑ(λ)|. Thus ∥v′∥2

L2 +
|λ|2∥v∥2

L2 ⩽ ∥fλ∥L2∥v∥L2 , which yields ∥v∥L2 ≲ |λ|−2∥fλ∥L2 and then ∥v′∥L2 ≲ |λ|−1∥fλ∥L2 . Now
from v′′ = fλ − λ2v, one can easily derive by induction on m that ∥v∥Hm+2 ≲ |λ|m∥fλ∥Hm . This
implies ∥u∥Hm+2(0,Θ) ≲ |λ|m∥f∥Hm + |λ|m+2|u(0)|, with |u(0)| ≲ ∥u∥Hm+2(−1,0).
So finally ∥u∥Hm+2 ≲ |ℑ(λ)|m+2∥(f, g, a)∥Hm

×
. □
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Proposition B.3 is the base step of the asymptotic expansion. It will be applied to s the rest of the at a
given order, and the function sr below will be the rest at the next order. Iterating this process provides
an asymptotic expansion of S at any order. Since Theorem 2.23 implies infinite regularity on S, we work
in the spaces K∞β and Hm for any m.

Proposition B.3: Let d ∈ R, m ∈ N \ {0, 1}, s ∈
⋂
β>d

K∞β (R,Hm), f ∈
⋂

β>d−1
K∞β (R, Hm−2(0,Θ)),

g ∈
⋂

β>d−1
K∞β (R, Hm−2(−1, 0)), h ∈

⋂
β>d−1

K∞β (Γ) and dmin := min( πΘZ∗ ∩ (d− 1, d]). We assume:

µ0∆s = f in Ω
µ1 (e−2t(∂2

t − ∂t) + ∂2
θ )s = g in Λ

s|θ=0+ − s|θ=0− = 0 on Γ
e−tµ0∂θs|θ=0+ − µ1∂θs|θ=0− = h on Γ

s = 0 on ΣΩ ∪ ΣΛ

Then there is sr ∈
⋂

d−1<β<dmin

K∞β (R,Hm) and (cq) ∈ C π
ΘZ∗∩(d−1,d] s.t. s =

∑
q∈ π

ΘZ∗∩(d−1,d]

cq ϕq + sr.

Proof: For any β ∈ R, let Cℜ>β := {λ ∈ C | ℜ(λ) > β}. The Laplace transform of s is well-defined and
holomorphic from Cℜ>d to Hm. We will show that ŝ has a meromorphic extension on Cℜ>d−1, with poles
belonging in P := π

ΘZ∗ ∩ (d − 1, d], then we will apply the residue theorem on a rectangle surrounding
these poles. The functions ϕq will appear in the residues.
Step 1 : ŝ satisfies in Cℜ>d:

µ0(∂2
θ + λ2)ŝ(λ, θ) = f̂(λ, θ) if θ ∈ (0,Θ)
µ1∂

2
θ ŝ(λ, θ) = ĝ(λ, θ) − µ1

[
(λ+ 2)2 − (λ+ 2)

]
ŝ(λ+ 2, θ) := g̃(λ, θ) if θ ∈ (−1, 0)

ŝ(λ, 0+) − ŝ(λ, 0−) = 0
µ1∂θ ŝ(λ, 0−) = ĥ(λ) + µ0∂θ ŝ(λ+ 1, 0+) := h̃(λ)

ŝ(λ,Θ) = ŝ(λ,−1) = 0

For any λ ∈ Cℜ>d−1 \ π
ΘZ∗, let s̃(λ) := A(λ)−1( 1

µ0
f̂(λ), 1

µ1
g̃(λ), 1

µ1
h̃(λ)

)
. Then s̃ is also solution of

the above system, so s̃ and ŝ coincide on Cℜ>d \ π
ΘZ∗ by Lemma B.2. Hence s̃ is an extension of ŝ on

Cℜ>d−1 \ P, that we will still denote ŝ. Lemma B.2 implies that this extension is meromorphic with
simple poles and: ∀q ∈ P, Resq ŝ = (Resλ=q A(λ)−1)

( 1
µ0
f̂(q), 1

µ1
g̃(q), 1

µ1
h̃(q)

)
.

Step 2 : Let t ∈ R, b ∈ (d − 1, dmin) and k ∈ R∗+. The residue theorem applied to λ 7→ eλtŝ(λ) on the
rectangle [b, d+ 1] × [−k, k] ⊂ C gives the following equality in Hm.

2iπ
∑
q∈P

Resq(λ 7→ eλtŝ(λ)) =
∫ k

−k
e(d+1+iγ)tŝ(d+ 1 + iγ) dγ −

∫ k

−k
e(b+iγ)tŝ(b+ iγ) dγ

+
∫ d+1

b

e(β−ik)tŝ(β − ik) dβ −
∫ d+1

b

e(β+ik)tŝ(β + ik) dβ

Note that when k → ∞ the first integral tends to the inverse Laplace transform of s (up to a constant).
We will show that the last two integrals tend to 0, by proving the following:

∀n ∈ N, sup
β∈[b,d+1]

∫
R\[−1,1]

γn∥ŝ(β + iγ)∥Hm dγ < ∞ (B.7)

Let n ∈ N and β ∈ [b, d+ 1]. (B.5) and the expressions of g̃ and h̃ yield∫
R\[−1,1]

γn∥ŝ(β + iγ)∥Hmdγ ⩽
∫
R\[−1,1]

γn∥A(λ)−1∥L(Hm−2
× ,Hm)

∥∥∥( 1
µ0
f̂(β + iγ), 1

µ1
g̃(β + iγ), 1

µ1
h̃(β + iγ)

)∥∥∥
Hm−2

×

dγ

≲
∫
R\[−1,1]

γn+m+2
(

∥f̂(β + iγ)∥Hm−2 + ∥ĝ(β + iγ)∥Hm−2 + |ĥ(β + iγ)|

+ ∥ŝ(β + iγ + 1)∥Hm + γ2∥ŝ(β + iγ + 2)∥Hm

)
dγ
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Let us treat the term with f , given that the others are similar.∫
R\[−1,1]

γn+m+2∥f̂(β + iγ)∥Hm−2 dγ ⩽
C.S.

∥γ−1∥L2(R\[−1,1]) ·
∥∥∥γn+m+3∥f̂(β + iγ)∥Hm−2

∥∥∥
L2(R\[−1,1])

≲ ∥e−βt∂n+m+3
t f∥L2(R,Hm−2(0,Θ))

≲ max
β′∈{b,d+1}

∥e−β
′t∂n+m+3

t f∥L2(R,Hm−2(0,Θ))

= max
β′∈{b,d+1}

∥f∥Kn+m+3
β′ (R,Hm−2(0,Θ))

thanks to an interpolation between b and d+ 1. We have majorized by a finite constant independent
of β, so the supremum on β is finite. Thus (B.7) is proven.

Therefore:
∫ ∞

1

∥∥∥∥∫ d+1

b

e(β±ik)tŝ(β ± ik) dβ
∥∥∥∥
Hm

dk ≲
∫ ∞

1

∫ d+1

b

∥ŝ(β ± ik)∥Hm dβ dk < +∞.

So by taking arbitrarily large k, we can make the terms
∫ d+1
b

e(β±iγ)tŝ(β± ik) dβ tend to 0 in Hm. Hence:∑
q∈P

Resq(λ 7→ eλtŝ(λ)) = 1
2iπ

∫
R
e(d+1+iγ)tŝ(d+ 1 + iγ) dγ − 1

2iπ

∫
R
e(b+iγ)tŝ(b+ iγ) dγ.

Now, since ŝ has only simple poles, the terms of the sum are equal to

eqt Resq ŝ = eqt(Resλ=q A(λ)−1)
( 1
µ0
f̂(q), 1

µ1
g̃(q), 1

µ1
h̃(q)

)
= eqtcq1[0,Θ](θ) sin(dθ) = cq ϕq(t, θ)

for some constant cq ∈ C by point 2 of Lemma B.2. The first intergral is equal to s(t) by inverse Laplace
transform (because s ∈ K∞d+1(R,Hm)). We define sr(t) to be equal to the last integral. Thus we get the
desired formula, and (B.7) shows that sr ∈ K∞b (R,Hm). □

Let S be the function set in Theorem 2.23 and (σd(S))d∈ π
ΘN∗ the coefficients of Definition 3.10, which

vanish for d big enough. With the σd(S), the non-variational part of S (denoted SA below) can be
explicitly computed, so it remains to get an asymptotic expansion of its variational part (denoted SV

below). In order to apply Proposition B.3, we need that χ∞SV belongs to some space K∞β (since
Ω1 \B(0, Rc) = Π \B(0, Rc), χ∞SV can be seen as a function defined on Π, which allows us to consider
χ∞S

V ). We will use again the notations ⟨.⟩ and T⩾d of Definitions 2.3 and 2.21.

Proposition B.4: Let d ∈ R−,

SA := T⩾d

[〈
−R∂2

Y
◦ ∂2

X|Λ,
µ0

µ1
RN ◦ ∂Y |Γ,Y=0+

〉(
1
µ0
R∆(F∞Ω ) + 1

µ1
R∂2

Y
(F∞Λ ) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
d∈ π

ΘN∗

σd(S)ϕd
)]

in A(Π) and SV := S − χ∞S
A. There is d ∈ R− s.t. SV ∈ V and: ∀m ∈ N, χ∞SV ∈ K∞1/2(R,Hm).

Proof: We consider any d ∈ R− and we will fix it later. The proof has three steps: showing that SV ∈ V ,
showing that SV is regular w.r.t t, and deducing that it is regular w.r.t. θ. For any r1, r2 ∈ R s.t.
Rc < r1 < r2, we will denote χ ∈ C∞(R2) a radial function equal to 0 on B(0, r1) and 1 on R2 \B(0, r2)
(r1, r2 are implicit in this notation).

Step 1: Let φ : Π → C be equal to T⩽d(F∞D ) on D for any D ∈ {Ω,Λ}, and Fv = F − χ∞φ. If d < −2
then (1 + r)Fv ∈ L2(Ω1). So the same construction than in Theorem 3.11 shows that for d small enough,
the problem

div(µ∇SV ) = f1 := Fv + χ∞φ− div
(
µ∇(χ∞ · SA)

)
in Ω1 \ (Γ ∩ {X > Rc})

[µ∂Y SV ]Γ = g1 := −[µ∂Y (χ∞SA)]Γ on Γ ∩ {X > Rc}
SV = 0 on ∂Ω1

(B.8)

has a unique solution in V and that S = SV + χ∞S
A. In addition, it also gives that (µ∆SA − φ)|D ∈∑

d′<d Ad′(D) for any D ∈ {Ω,Λ}, and [µ∂Y SA]Γ ∈
∑
d′<d Ad′(Γ). And we have Fv = o∂(rd) by
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hypothesis, so for d small enough and up to increasing Rc (without loss of generality): ∀m ∈ N,

(χf1)|Ω ∈ K∞−2(R, Hm(0,Θ)) and (χf1)|Λ ∈ K∞−3/2(R, Hm(−1, 0)) and χg1 ∈ K∞−1/2(Γ) (B.9)

Step 2: For any β ∈ R, we denote K0
β(Ω) := K0

β(R, L2(0,Θ)) = {(t, θ) 7→ eβtu(t, θ) | u ∈ L2(Ω)} and
K0
β(Λ) := K0

β(R, L2(−1, 0)). And we define

V := {w ∈ H1
loc(Π) | ∇w|Ω ∈ L2(Ω), ∂tw|Λ ∈ K0

1/2(Λ), ∂θw|Λ ∈ K0
−1/2(Λ) and w|ΣΩ∪ΣΛ

= 0}.

Note that if Ω1 were equal to Π, V would simply be {u | u ∈ V }. So it is the natural variational space
for Poisson’s problem transferred into Π. Looking at χSV as a function defined on Π, we will show by
induction on n that:

∀n ∈ N, ∀Rc < r1 < r2, ∂nt χS
V ∈ V .

Since SV ∈ V , the initial case is trivial, so only the inductive step remains to prove. Let us assume
the property at rank n and show it at rank n + 1. We will use the method of finite differences. Letting
µ := µ0 on Ω and µ := µ1 on Λ, (B.8) implies:

µ∆(χSV ) = f2 := χf1 − 2µ∇χ · ∇SV − µ∆χ · SV in D, ∀D ∈ {Ω,Λ}
[µ∂Y (χSV )]Γ = g2 := χg1 on Γ

χSV = 0 on ΣΩ ∪ ΣΛ

By induction hypothesis applied to (r′1, r′2) := (Rc+r1
2 , r1), ∂kt ∇SV and ∂kt S

V are L2 on {r1 < r < r2}
for any k ∈ [[0, n]]. So (B.9) implies f2|Ω ∈ Kn

−2(R, L2(0,Θ)) and f2|Λ ∈ Kn
−3/2(R, L2(−1, 0)). Similarly

g2 ∈ K∞−1/2(Γ). Next, we apply the change variables (x, y)⇝ (t, θ) using (B.2), and then ∂nt . We get that
s := ∂nt (χSV ) satisfies:

−e−2tµ0∆s = fΩ := e−2t∂nt (e2tf2|Ω) in Ω

−µ1 (e−2t(∂2
t − ∂t) + ∂2

θ )s = fΛ := ∂nt f2|Λ +
n−1∑
k=0

(−2)n−ke−2tµ1(∂2
t − ∂t)∂kt (χSV ) in Λ

s|θ=0+ − s|θ=0− = 0 on Γ
e−tµ0∂θs|θ=0+ − µ1∂θs|θ=0− = g := ∂nt g2 on Γ

s = 0 on ΣΩ ∪ ΣΛ

(B.10)

with fΩ ∈ K0
−2(Ω), fΛ ∈ K0

−3/2(Λ) and g ∈ K∞−1/2(Γ) by induction hypothesis. The variational formula-
tion of (B.10) is: ∀φ ∈ V ,∫

Ω
µ0∇s · ∇φ+

∫
Λ
µ1 (e−t ∂ts ∂tφ+ et ∂θs ∂θφ) =

∫
Ω
e2tfΩφ+

∫
Λ
etfΛφ+

∫
Γ
etgφ.

Let us denote Dηφ(t, θ) := φ(t+η,θ)−φ(t,θ)
η for any η ∈ R∗ and any function φ. Taking φ := D−ηDη s̄ and

discretely integrating by parts D−η, we have:∫
Ω
µ0|Dη∇s|2 +

∫
Λ
µ1 (Dη(e−t∂ts) ·Dη∂ts̄+ et |Dη∂θs|2)

=
∫

Ω
e2tfΩ ·D−ηDη s̄+

∫
Λ
etfΛ ·D−ηDη s̄+

∫
Γ
D−ηDη(etg) · s̄

But for any functions φ,ψ, we have Dη(φψ) = φ ·Dηψ +Dηφ · ψ. Therefore:
• Dη(e−t∂ts) ·Dη∂ts̄ = e−t|Dη∂ts|2 + e−η−1

η e−t∂ts ·Dη∂ts̄

• D−ηDη(etg) = etD−ηDηg + 2 eη−1
η etDηg +

(
eη−1
η

)2
etg

Let us assume that η is small enough so that |e
η−1|
η < 2 and |e

−η−1|
η < 2. Then:

∥Dη∇s∥2
L2(Ω) + ∥Dη∂ts∥2

K0
1/2(Λ) + ∥Dη∂θs∥2

K0
−1/2(Λ) +

∫
Λ
µ1

e−η−1
η e−t∂ts ·Dη∂ts̄

≲ ∥fΩ∥K0
−2(Ω)∥D−ηDηs∥L2(Ω) + ∥fΛ∥K0

−3/2(Λ)∥D−ηDηs∥K0
1/2(Λ) + ∥g∥K2

−1/2(Γ)∥s∥K0
−1/2(Γ)
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Then, moving the intergral to the right-hand side and majorizing some ∥Dη · ∥ by ∥∂t · ∥ or ∥∇ · ∥, we get:

∥Dη∇s∥2
L2(Ω) + ∥Dη∂ts∥2

K0
1/2(Λ) + ∥Dη∂θs∥2

K0
−1/2(Λ) ≲ ∥fΩ∥K0

−2(Ω)∥Dη∇s∥L2(Ω)

+ ∥fΛ∥K0
−3/2(Λ)∥Dη∂ts∥K0

1/2(Λ) + ∥g∥K2
−1/2(Γ)∥s∥K0

−1/2(Γ) + ∥∂ts∥K0
1/2(Λ)∥Dη∂ts∥K0

1/2(Λ)

But, since s|ΣΛ
= 0, a Poincaré-type inequality gives ∥s∥2

K0
−1/2(Γ) ≲ ∥∂θs∥2

K0
−1/2(Λ). Finally, using Young’s

inequality ab ≲ 1
δa + δb on norm products with δ small enough and moving the ∥Dη∂ts∥2

K0
1/2(Λ) and

∥Dη∂θs∥2
K0

−1/2(Λ) from the right-hand side to the left-hand one, we get:

∥∇∂ts∥2
L2(Ω) + ∥∂2

t s∥2
K0

1/2(Λ) + ∥∂θ∂ts∥2
K0

−1/2(Λ)

⩽ lim sup
η→0

∥Dη∇s∥2
L2(Ω) + ∥Dη∂ts∥2

K0
1/2(Λ) + ∥Dη∂θs∥2

K0
−1/2(Λ)

≲ ∥fΩ∥2
K0

−2(Ω) + ∥fΛ∥2
K0

−3/2(Λ) + ∥g∥2
K1

−1/2(Γ) + ∥∂θs∥2
K0

−1/2(Λ) + ∥∂ts∥2
K0

1/2(Λ)

< ∞

By definition of V , it implies that ∂ts ∈ V and completes the induction.

Step 3: Let K0
1/2(Π) := K0

1/2(R, L2(−1,Θ)). For now we have proven that, for any (n, i) ∈ (N × {0, 1}) \

({(0, 0)}) and Rc < r1 < r2, ∂nt ∂iθχSV ∈ K0
1/2(Π). It generalizes to the case (n, i) = (0, 0) thanks to a

Poincaré inequality: ∥χSV ∥K0
1/2(Π) ≲ ∥∂θχSV ∥K0

1/2(Π) ≲ ∥∂θχSV ∥L2(Ω) + ∥∂θχSV ∥K0
−1/2(Λ) < ∞.

To treat higher-order θ-derivatives, we start from the equality µ∆(χSV ) = χf1 −2µ∇χ ·∇SV −µ∆χ ·SV
in Ω ∪ Λ proven in to step 2. Applying the change of variables (x, y)⇝ (t, θ) gives by (B.2):{

−e−2tµ0∆χSV = χf1 − 2µ0∇χ · ∇SV − µ0∆χ · SV in Ω
−µ1 (e−2t(∂2

t − ∂t) + ∂2
θ )(χSV ) = χf1 − 2µ1∇χ · ∇SV − µ1∆χ · SV in Λ

(B.11)

Moreover, (B.9) implies that, for anym ∈ N, χf1|Ω ∈ K∞−3/2(R, Hm(0,Θ)) and χf1|Λ ∈ K∞1/2(R, Hm(−1, 0)).
So deriving (B.11) w.r.t. t and θ enough times gives by induction: ∀(n, i) ∈ N2,∀Rc < r1 < r2,∀D ∈
{Ω,Λ}, ∂nt ∂iθχSV |D ∈ K0

1/2(D). Finally, applying this to χ := χ∞ completes the proof. □

Proof of Theorem 2.23: For any q ∈ π
ΘN∗, let σq(S∞) := σq(S). We denote, for any d ∈ R, T>d := id−T⩽d

and

S∞d :=
〈

−R∂2
Y

◦ ∂2
x|Λ,

µ0

µ1
RN ◦ ∂y|Γ,y=0+

〉(
1
µ0
R∆(F∞Ω ) + 1

µ1
R∂2

Y
(F∞Λ ) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
q∈ π

ΘZ∗∩(d,∞)

σq(S∞)ϕq
)

and, for any n ∈ N, dn := 1
2 −n and Sr,n := χ∞S−χ∞T>dn

(S∞dn
). Let m ∈ N. We will show by induction

on n that there are coefficients (σq(S∞))q∈− π
ΘN∗ s.t.:

∀n ∈ N, ∀β > dn, Sr,n ∈ K∞β (R,Hm).

For now we only know σq(S∞) for q ⩾ π
Θ > d0, and Sr,n involves σq(S∞) only when q > dn, so the n-th

inductive step involves fixing σq(S∞) for all q ∈ π
ΘZ∗ ∩ (dn, dn−1].

Initial case: By Proposition B.4, there is d ∈ R− and SV s.t. S = SV + χ∞T⩾d(S∞d0
) and χ∞S

V ∈
K∞1/2(R,Hm). Hence

Sr,0 = χ∞S − χ∞T>d0(S∞d0
)

= χ∞
(
SV + χ∞T⩾d(S∞d0

)
)

− χ∞T>d0(S∞d0
)

= χ∞S
V + χ∞ · (χ∞ − 1) · T⩾d(S∞d0

) + χ∞ ·
(
T⩾d(S∞d0

) − T>0(S∞d0
)
)

So Sr,0 ∈ K∞1/2(R,Hm). But Sr,0 is null in a vicinity of −∞, so: ∀β > d0 = 1
2 , Sr,0 ∈ K∞β (R,Hm).
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Inductive step: We assume the property at rank n and will show it at rank n + 1. Let S̃r,n+1 :=
χ∞S − χ∞T>dn+1(S∞dn

) and D := π
ΘZ∗ ∩ (dn+1, dn]. S̃r,n+1 is a variant of Sr,n+1 that does not

involve σq(S∞) for q ∈ D. We will apply Proposition B.3 to d := dn and s := S̃r,n+1. To do so, we
must check that:

µ0∆S̃r,n+1|Ω ∈
⋂

β>dn+1

K∞β (R, Hm−2(0,Θ))

µ1 (e−2t(∂2
t − ∂t) + ∂2

θ )S̃r,n+1|Λ ∈
⋂

β>dn+1

K∞β (R, Hm−2(−1, 0))

(e−tµ0∂θ|θ=0+ − µ1∂θ|θ=0−)S̃r,n+1 ∈
⋂

β>dn+1

K∞β (Γ)

Let us show only the first line, the others being similar.
Since ∆S̃r,n+1 = e−2t∆S̃r,n+1, it suffices to have that: ∀β > dn+1 − 2, ∆S̃r,n+1 ∈
K∞β (R, Hm−2(0,Θ)). And this is true because we have in Ω in a vicinity of r → ∞:

µ0∆S̃r,n+1 = F − µ0∆
[
T>dn+1(S∞dn

)
]

by definition of S̃r,n+1, and µ0∆S = F in Ω
= T⩾dn+1−2(F∞Ω ) + o∂(rdn+1−2) by hypothesis on F

− µ0T>dn+1−2(∆S∞dn
) by deg ∆ = −2 (Lemma 2.16)

= (T⩽dn+1−2 − T<dn+1−2)(F∞Ω ) + o∂(rdn+1−2) by µ0∆S∞dn
= F∞Ω (Lemma 2.19)

Therefore, Proposition B.3 states that there are coefficients (cq)q∈D, sr and dmin := min(D) s.t.:
∀β ∈ (dn+1, dmin), sr ∈ K∞β (R,Hm) and S̃r,n+1 =

∑
q∈D cq ϕq + sr. Let σq(S∞) := −cq for any

q ∈ π
ΘZ∗ ∩ (dn+1, dn]. Then:

Sr,n+1 = S̃r,n+1 +
∑
q∈D

σq(S∞)χ∞ϕq = sr +
∑
q∈D

cq (1 − χ∞)ϕq ∈
⋂

β∈(dn+1,dmin)

K∞β (R,Hm)

Moreover, Sr,n+1 is null in a vicinity of −∞, so: ∀β > dn+1, Sr,n+1 ∈ K∞β (R,Hm). This concludes
the induction.

To complete the proof of the theorem, we must show that: ∀d ∈ R, S = T⩾d(S∞) + o∂(rd) when r → ∞.
We will do it in Ω, but it works the same in Λ. Let d ∈ R and n ∈ N s.t. dn < d. We have in Ω:

s := χ∞S − χ∞T⩾d(S∞) = Sr,n + χ∞ · T<d ◦ T>dn(S∞) with T<d ◦ T>dn(S∞) ∈
∑
d′<d

Ad′(Ω).

So there is d′ < d s.t.: ∀m ∈ N, s ∈ K∞d′ (R, Hm(0,Θ)). Thus for any (i, j) ∈ N2:

r−d
′(r∂r)i∂jθs = e−d

′t∂it∂
j
θs ∈ H2(R, H2(0,Θ)) ⊂ L∞(Ω).

So r−d′+i∂ir∂
j
θs is also bounded. By definition of o∂ (given in 2.20), this concludes the proof. □

B.2 Proof of Theorem 2.22: asymptotic behavior for far-and-layer fields-like
problems

This proof is very similar to Section B.1. The main difference is that we look at the asymptotic expansion
when r → 0 (i.e. t → −∞) instead of r → ∞ (i.e. t → +∞). So this time we use a truncation function
χf ∈ C∞(Π) that is equal to 1 in a vicinity of r = 0 and to 0 in a vicinity of infinity. In addition, we can
assume that χff = 0. Moreover the Laplace transform of χfu is first defined in a left half-plane of the
complex plan (instead of a right one), and then extended to the right.

Applying the change of variables (x, y) ⇝ (t, θ) on the equations satisfied by χfu (that one can easily
deduce from (2.23)) and then the Laplace transform yields that s := χfu satisfies:

µ0(∂2
θ + λ2)ŝ(λ, θ) = f̃ − ω2ρ0ŝ(λ− 2, θ) if θ ∈ (0,Θ)

∂2
θ ŝ(λ, θ) = g̃ if θ ∈ (−1, 0)

ŝ(λ, 0+) − ŝ(λ, 0−) = 0
∂θ ŝ(λ, 0−) = h̃

ŝ(λ,Θ) = ŝ(λ,−1) = 0

(B.12)
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for some functions f̃ , g̃, h̃ depending on g, h, χf . This system has the form of (B.4), so Lemma B.2 gives
the tools to solve it and to extend ŝ to the right (by steps of 2 here). This is stated in Proposition B.5,
whose proof is very similar to Proposition B.3.

Proposition B.5: Let d ∈ R, m ∈ N \ {0, 1}, s ∈
⋂
β<d

K∞β (R,Hm), f̃ ∈
⋂

β<d+2
K∞β (R, Hm−2(0,Θ)),

g̃ ∈
⋂

β<d+2
K∞β (R, Hm−2(−1, 0)), h̃ ∈

⋂
β<d+2

K∞β (Γ) and dmax = max( πΘZ∗ ∩ [d, d+ 2)). We assume:

µ0∆s+ e2tω2ρ0s = f̃ in Ω
∂2
θs = g̃ in Λ

s|θ=0+ − s|θ=0− = 0 on Γ
µ1∂θs|θ=0− = h̃ on Γ

s = 0 on ΣΩ ∪ ΣΛ

Then there is sr ∈
⋂

dmax<β<d+2
K∞β (R,Hm) and (cq) ∈ C π

ΘZ∗∩[d,d+2) s.t. s =
∑

q∈ π
ΘZ∗∩[d,d+2)

cq ϕq + sr.

Assumption B.6: Replacing u by χ∞u, we assume without loss of generality that u has a compact
support.

For any q ∈ − π
ΘN∗, let σq(u) := σq(u|Ω), where σq(u|Ω) is set in Definition 3.5. This quantity vanishes

when q is small enough. Proposition B.7 is the analogue of Proposition B.4.

Proposition B.7: Let d ∈ R+,

uA := T⩽d

[〈
−k2

0 R∆
〉( 1

µ1
R∂2

Y
(g0) + 1

µ1
RN(h0) +

∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑
q∈− π

ΘN∗

σq(u)ϕq
)]

in A(Π) and uv := u − χfuA. There is d ∈ R+ s.t. uv
|Ω ∈ H1(Ω) and: ∀m ∈ N, χfuv ∈ K∞−1(R,Hm).

Proof: We consider any d ∈ R+ and we will fix it later. The proof has five steps: writing the equations
satisfied by uv, and then showing that uv is regular in the layer, that it is H1 in Ω, that it is regular in
Ω w.r.t t, and that it is regular in Ω w.r.t. θ. For any r1, r2 ∈ R s.t. r1 < r2 < rf , we denote χ ∈ C∞(R2)
a radial function equal to 1 on B(0, r1) and 0 on R2 \B(0, r2) (r1, r2 are implicit in this notation).

Step 1: Similarly to the proofs of theorems 3.6 and 3.11 and Proposition B.4, one can show that:

(µ0∆ + ω2ρ0)uv = f1 := f − (µ0∆ + ω2ρ0)(χfuA) in Ω
µ1∂

2
Y uv = g1 := g − µ1∂

2
Y (χfuA) in Λ

uv
|y=0+ − uv

|y=0− = 0 on Γ
µ1∂Y uv

|Y=0− = h1 := h− µ1∂Y (χfuA) on Γ
uv = 0 on ΣΩ ∪ ΣΛ

with


(µ0∆ + ω2ρ0)uA ∈

∑
d′>d

Ad′(Ω)

∂2
Y uA|Λ − T⩽d(g0) ∈

∑
d′>d

Ad′(Λ)

∂Y uA|Y=0− − T⩽d(h0) ∈
∑
d′>d

Ad′(Γ)

Moreover, given that χf = 0 for any r1 < r2 < rf , one can check that for d big enough and up to
decreasing rf (without loss of generality), we have χf1 ∈ K∞0 (R, Hm(0,Θ)), χg1 ∈ K∞0 (R, Hm(−1, 0))
and χh1 ∈ K∞0 (Γ) for any m ∈ N.

Step 2: Let us show that: ∀r1 < r2 < rf ,∀m ∈ N, χuv
|Λ ∈ K∞0 (R, Hm(−1, 0)). By assumption, for any

x > 0, uv in H1 in a vicinity of {x} × [−1, 0] ⊂ Λ, so uv
|{x}×[−1,0] is well-defined in L2({x} × [−1, 0]).

Moreover, g1 and h1 are o∂(xd), so they are differentiable on (0, rf )× [−1, 0] (up to decreasing rf ). Hence,
Y ∈ (−1, 0) 7→ uv(x, Y ) is C2 and the ODE it satisfies (see step 1) is explicitly solvable:

∀(x, Y ) ∈ (0, rf ) × [−1, 0], uv(x, Y ) =
∫ 0

−1

(
(Y − Y ′)+ − Y − 1

)
g1(x, Y ′) dY ′ + h1(x) · (Y + 1).
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Since χg1 ∈ K∞0 (R, Hm(−1, 0)) for any m and χh1 ∈ K∞0 (Γ), we deduce χuv
|Λ ∈ K∞0 (R, Hm(−1, 0)).

Step 3: Let us show that uv
|Ω ∈ H1(Ω). First, step 2 implies χuv

|Γ ∈ K∞0 (Γ) so χuv
|Γ ∈ H1/2(Γ). Since

u ∈ H1
loc and u has a compact support by assumption B.6, we get uv

|Γ ∈ H1/2(Γ). So the following system
has a solution in H1(Ω) by Lemma 3.3:

µ0∆uv + ω2ρ0u
v = f1 in Ω

uv
|y=0+ = uv

|y=0− on Γ
uv = 0 on ΣΩ

But uv also satisfies these equations, so uv + χfuA|Ω satisfies the same problem as u|Ω, and they both
belong to H1(Ω) +χ0A(Ω). Then by uniqueness in Theorem 3.6, uv +χfuA|Ω = u|Ω, i.e. uv = uv

|Ω. Thus,
uv
|Ω ∈ H1(Ω).

Step 4: Let v : Ω → C defined by v := uv
|Ω − vlift with vlift(r, θ) :=

(
1 − θ

Θ
)
uv
|Γ(r) in polar coordinates.

Let K0
β(Ω) := K0

β(R, L2(0,Θ)) for any β ∈ R. We will show by induction on n that:

∀n ∈ N∗, ∀r1 < r2 < rf , ∂nt χ v ∈ K0
−1(Ω) and ∇∂nt χ v ∈ L2(Ω).

For the initial case, we have on the one hand χuv
|Ω ∈ H1(Ω) so χuv

|Ω ∈ K0
−1(Ω) and ∇χuv

|Ω ∈ L2(Ω), and
on the other χuv

|Γ ∈ K1
0 (Γ) so χvlift ∈ K0

−1(Ω) and ∇χvlift ∈ L2(Ω). Thus the initial case is proven and
only the inductive step remains to prove. We assume the property at rank n and we will show it at rank
n+ 1, using the method of finite differences. Step 1 implies that:{

(µ0∆ + ω2ρ0)(χv) = f2 := χf1 − χµ0∆vlift − 2µ0∇χ · ∇uv − µ0∆χ · uv in Ω
χv = 0 on ΣΩ ∪ Γ

In addition, we have f2 ∈ Kn
−2(R, L2(0,Θ)) since:

• by step 1, χf1 ∈ K∞0 (R, L2(0,Θ)), so χf1 ∈ K∞−2(R, L2(0,Θ)),
• by step 2, χuv

|Γ ∈ K∞0 (Γ), so χvlift ∈ K∞0 (R, H2(0,Θ)), and applying it at (r′1, r′2) := (r2,
r2+rf

2 )
gives χ∆vlift ∈ K∞−2(R, L2(0,Θ)),

• and by induction hypothesis applied to (r′1, r′2) := (r2,
r2+rf

2 ), ∂kt ∇v and ∂kt v are L2 on {r1 < r < r2}
for any k ∈ [[0, n]].

Let s := ∂nt (χv). By changing variables (x, y)⇝ (t, θ) in the previous system and applying ∂nt , we get: e−2tµ0∆s+ ω2ρ0s = f3 := e−2t∂nt (e2tf2) −
n−1∑
k=0

ω2ρ02n−k∂kt (χv) in Ω
s = 0 on ΣΩ ∪ Γ

with f3 ∈ K0
−2(Ω) by induction hypothesis. And the variational formulation of this is:

∀φ ∈ K0
−1(Ω), ∇φ ∈ L2(Ω) and φ|ΣΩ∪Γ = 0 =⇒

∫
Ω

(µ0∇s · ∇φ+ ω2ρ0e
2tsφ) =

∫
Ω
e2tf3φ.

Let us denote Dηφ(t, θ) := φ(t+η,θ)−φ(t,θ)
η for any η ∈ R∗ and any function φ. Taking φ := D−ηDη s̄ and

discretely integrating by parts D−η gives:∫
Ω

(µ0|Dη∇s|2 − ω2ρ0e
2t|s|2) =

∫
Ω
e2tf3 ·D−ηDη s̄

Then by coercivity (since Im(ω) ̸= 0), we have for any δ > 0:

∥Dη∇s∥2
L2(Ω) + ∥Dηs∥2

K0
−1(Ω) ≲ ∥f3∥K0

−2(Ω)∥D−ηDηs∥K0
−1(Ω) ≲

1
δ ∥f3∥2

K0
−2(Ω) + δ∥Dη∂ts∥2

L2(Ω)

Taking δ small enough and moving ∥Dη∂ts∥2
L2(Ω) from the right-hand side to the left-hand one, we get:

∥∂t∇s∥2
L2(Ω) + ∥∂ts∥2

K0
−1(Ω) ⩽ lim sup

η→0
∥Dη∇s∥2

L2(Ω) + ∥Dηs∥2
K0

−1(Ω) ≲ ∥f3∥2
K0

−2(Ω) < ∞.
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This completes the induction.

Step 5: We have shown that for any (n, i) ∈ N × {0, 1} and r1 < r2 < rf , ∂nt ∂iθχv ∈ K0
−1(Ω). Since

χvlift ∈ K∞−1(R, H1(0,Θ)), we also have ∂nt ∂iθχuv
|Ω ∈ K0

−1(Ω) for these (n, i).
To treat higher-order θ-derivatives, we begin with the equality (µ0∆+ω2ρ0)(χuv) = χf1 −2µ0∇χ ·∇uv −
µ0∆χ · uv in Ω, which follows from step 1. Applying the change of variables (x, y)⇝ (t, θ), we get:

(e−2tµ0∆ + ω2ρ0)(χuv) = χf1 − 2µ0∇χ · ∇uv − µ0∆χ · uv. (B.13)

Now χf1 ∈ K∞0 (R, Hm(0,Θ)) for any m ∈ N by step 1. So deriving (B.13) w.r.t. t and θ enough times
gives by induction: ∀(n, i) ∈ N2,∀r1 < r2 < rf , ∂

n
t ∂

i
θχuv

|Ω ∈ K0
−1(Ω). Combining it with step 2, we get

χuv ∈ K∞−1(R,Hm). Finally, we apply it to χ := χ∞ to conclude. □

Finally, Propositions B.5 and B.7 give all the ingredients to prove Theorem 2.22. The proof is very similar
to the one of Theorem 2.23 on page 44, so we do not go into details again.
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