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Asymptotic analysis at any order of Helmholtz’s problem in a
corner with a thin layer: an algebraic approach

Cédric Baudet*

May 14, 2024

Abstract: We consider the Helmholtz equation in an angular sector partially covered by a homogeneous
layer of small thickness, denoted £. We propose in this work an asymptotic expansion of the solution
with respect to € at any order. This is done using matched asymptotic expansion, which consists here in
introducing different asymptotic expansions of the solution in three subdomains: the vicinity of the corner,
the layer and the rest of the domain. These expansions are linked through matching conditions. The
presence of the corner makes these matching conditions delicate to derive because the fields have singular
behaviors. Our approach is to reformulate these matching conditions purely algebraically by writing all
asymptotic expansions as formal series. By using algebraic calculus we reduce the matching conditions to
scalar relations linking the singular behaviors of the fields. These relations have a convolutive structure
and involve some coefficients that can be computed analytically. Our asymptotic expansion is justified
rigorously with error estimates.

Keywords: asymptotic analysis, Helmholtz’s equation, matched asymptotic expansions, corner singu-
larities, algebraic formal series.
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Introduction

Problems that involve thin layers appear in many areas, from composite materials engineering [35] to
biology [12], including elasticity [8, 20], fluid mechanics [31, 1, 24] and electrochemistry [37]. Applications
are especially numerous in electromagnetism, let us mention the studies of thin dielectric layers [22, 26,
34], ferromagnetic films [5, 21] and the skin effect [15]. All these situations are numerically challenging
because they require finely meshing the thin structure, which is very costly when its thickness is very
small compared to the wavelength and the size of the objects. In this work we propose to overcome
this difficulty by using an asymptotic expansion of the solution, such that each term of the expansion is
cheaper to compute than the solution itself.

Infinite planar layers and smooth curved layers were studied during the 90s in [9, 19]. Their method is to
stretch the layer in its transverse direction into a standard layer of thickness 1, and look for a Taylor-type
asymptotic expansion as a sum of integer powers of the original thickness, denoted . The terms of
this expansion can be computed by induction. Those results were later extended to heterogeneous and
periodic layers in [3, 2, 4] and more recently in [16, 10].

Here we want to handle more realistic situations where the coating has angles or covers only partially
the obstacle. We consider a two-dimensional model where the domain is the union of an infinite angular
sector and the coating, potentially with a perturbation at the corner of size proportional to . This
was studied for Poisson’s problems in [11, 6, 7], providing an asymptotic expansion at any order and
approximate models. These works show the presence of non-integer powers of ¢ and integer powers of In e
in the asymptotic expansion, that are linked to the corner singularities of the solution. That asymptotic
expansion at any order was generalized to periodic layer in [17], still for Poisson’s problems. In compar-
ison, Helmholtz’s problems not only present the same difficulties, but they also lead to more complex
singularities, which prompted us to introduce new and more efficient algebraic calculus tools in order to



obtain an expansion at any order. Let us mention also that [33] proposes an asymptotic expansion of
Helmholtz’s problem up to order 2 in presence of periodic layers.

We can identify in these works two methods of analysis: multiscale asymptotic expansions and matched
asymptotic expansions (see [38, 28, 29] and [36, 23, 18] respectively for a general presentation). They
both involve two types of fields: “far fields” depending on the macroscopic scale described by (z,y) and
“near fields” depending on the microscopic scale described by (%, %) In multiscale expansions, far and
near fields are defined in the whole domain and the near fields tend to 0 towards infinity so that they
describe a boundary layer effect in the “near zone” (the vicinity of the corner or the layer, depending on
the situation). In contrast, matched asymptotic expansions involve near fields only in the near zone and
far fields only in the “far zone” (the rest of the domain), and the near and far fields have to coincide in
an intermediate zone.

In this paper, we chose the method of matched expansions. In addition, we propose a new algebraic ap-
proach to derive the matching conditions, that are especially intricate in our problem. It avoids specific
cumbersome calculations, replacing them with abstract generalizable ones. We believe that this approach
gives a better understanding of the structure of the asymptotic expansion at any order. It reveals a con-
volutive structure and it provides explicit expressions to compute exactly and very cheaply the constants
that appear in the obtained matching formulas.

We consider the Helmholtz equation with absorption because it brings obvious well-posedness and stabil-
ity of the problem uniformly in €, which allows us to focus on asymptotic expansion techniques. The case
without absorption requires to design a specific radiation condition, that will be the object of a future
paper. Moreover, we apply a Dirichlet condition on the boundary. The extension to Neumann is not
obvious and will be presented in a forthcoming article.

This paper is organized as follows. In Section 1, we define the problem, state the main result and
introduce the method based on matched asymptotic expansion. The matching condition around the
corner are derived using an algebraic approach in Section 2. It is the most original part of the article. In
Section 3, we introduce appropriate frameworks which allow to define uniquely the terms of the asymptotic
expansion. Error estimates are performed in Section 4, proving the main result of the paper.

Acknowledgment: I would like to thank Sonia Fliss and Patrick Joly for the helpful discussions we had
about the writing of this paper.
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1 Setting of the problem and the method

1.1 Definition of the problem and main result

To describe the domain, let us introduce © € (0,27), Q := {(rcosf,rsinf) | r € R},0 € (0,0)},
A:=Ri x (=1,0), T =RL x {0}, ¥g = {(rcos©,rsin®) | r € Ri } and ¥ := R x {—1}. All these
sets are shown in Figure 1. Then let 2; C R? be an open set that coincides with Q UT' U A outside of the
disc B(0, R.) for some R. € R* . In addition, let p, p € L>(£;) be two functions greater than a positive
constant (ellipticity assumption), and equal to pg and pg in Q\ B(0, R.) and to p; and p; in A\ B(0, R.).
See Figures 2 and 3 for different configurations.

Y
Y T
0 { .
/Q . layer A 1
{ i
Yo I XA

Figure 1: The domains 2 (on the left) and A (on the right)
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Figure 2: The domain ; with a configuration example of Q; N B(0, R.)
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Figure 3: Other configuration examples of €y N B(0, R.) for different values of ©



Let € > 0. The physical domain is given by Q. := {(z,y) € R? | (£, %) € Q;}. We introduce the scaled
coefficients pe @ (z,y) € Qe+ p(Z,%) and pe : (z,y) € Q. = p(%, %), and the scaled variables X := £
and Y := Y. Let w € C\R and f; € H~ () a source term s.t. dlst(s p(fs),I') > 0. We denote u. the

unique solution in Hj(Q.) of
div(pe Vue) + w?peue = f in Q. (1.1)

S(w) # 0 is a technical assumption that makes this problem well-posed (it suffices to use the Lax-Milgram
theorem) with a stability constant independent of ¢ :

3C >0, Vfs € H_l(Q), Ve > 0, ||U5||H1(QE) < CHfSHH—l(Q) (1.2)

The case S(w) = 0 is an open question and will be the object of a future work.

The main result of this paper is given in the following theorem, proven in Section 4, page 36.

Theorem 1.1: asymptotic expansion of u.
Let P := N+ EZN. There exist (n,) € N* and a family (up.)pep co,n,] Of elements of HY! () that
can be build recursively w.r.t. p (see Theorem 3.17 for the construction) such that

p
Ue — E E P In‘eu, .

pePN[0,P] £=0

VP e R,V >0, = o(e") when £ — 0.

H(2\B(0,9))

The presence of integer powers of ¢ is entirely classical in asymptotic analysis. Integer powers of £7/©

and Ine can be found in other asymptotic expansions involving corners, see [11, 6, 7]. Theorem 1.1 can
be extended to the case where Xq is covered by another layer (see Remark 2.7 for a useful point).

Notations: We denote (z,y) the cartesian coordinates, (r,8) the polar coordinates with 6 € [0, 27),
B(0,7) the disc of R? of radius r centered at (0,0), k; := w+/pi/p; for any i € {0,1} and a := e71©,

1.2 The matched asymptotic expansion method

To take into account the different behaviors of the solution in the layer, near the corner and far from the
corner and the layer, we divide 2. in three zones, illustrated in Figure 4. In each zone we postulate an
asymptotic expansion in powers of € and In e, called “ansatz”.

Y
matching zon
far zone PP B atcning zone
7’ Z S S
4 \\ Q
// >~ o N €
K +‘corper™ \
1 I/ 3 :
zope 1
- T v
. 1§ e
\\ [—> <«—> \
N € €
Ve Ve layer zone

Figure 4: Zones of the matched asymptotic expansion

Let us assume that for any (p,f) € P x N there exist three functions independent of ¢ — namely u, ¢
defined on Q called “far field”, U, ¢ defined on A called “layer field” and Sj, ¢ defined on 2, called “corner
field” — such that u. is formally written as:

o us(z,y) ZZsp In‘e u, ¢(x,y) when r:= ||(z,9)|| = vz and (z,y) & Ry x (—¢,0) (far zone),
peP LEN



o u(x,y) = ZZsp In‘e U, (;1:, %) when z > /e and y € (—¢,0) (layer zone),

peEP LEN
o u(z,y) = ZZE” In‘e sz(g, g) when r < 24/ (corner zone).
peP LeN

Remark: We will see in Proposition 3.14 that: Vp € P,3n, € NJV/ > n,, upp = Oand U, =
0 and S, = 0.

Injecting the above sums in the Helmholtz equation, using that 02[p(2)] = e 2[0%¢](X = £) and

92 [p(¥)] = e2[08¢](Y = ¥) for any function ¢, and formally identifying the powers of ¢ and Ine, one

€
can easily derive the following volume equations and edge conditions for the various fields.

110 AUy ¢ + w?poupe = fp0de0 in Q

1105 Up e = = (11102 + w?p1)Up 20 in A
Upe = Up onT

110y Up ¢ = pto Oytip—1.¢ onT (1.4)

Up,e =0 on %o Upe =0 on X

(1.3)

(1.5)

div(uVSpe) = —w?p Sp—2e in
Spe =0 on 0

where we denote by convention u, , =0, U, ¢ = 0 and S, , = 0 for any (p,¢) e R\P x N, and §; ; :=1if
i = 7 and 0 if not.

Remarks:

o The condition p1 0y Up ¢ = poOyup—1,¢ is included in the problem satisfied by Uy, ¢ whereas up, ¢ = U, ¢
is included in the problem satisfied by u, , so that the construction is inductive: u,_1, allows to
build U, ¢, which allows to build u,, .

o The problem satisfied by U, depends only on Y, the variable x playing the role of a parameter.

(1.3)—(1.5) would be sufficient to uniquely define the fields, if they were in their natural variational spaces
(e.g. HY(Q) for uy, ). But we need to take into account a matching condition: the far and corner fields

must coincide in the intersection of the far and corner zones, and similarly for the layer and corner fields.

These intersections form the matching zone (see Figure 4). Given that ¢ — 0 and é — 00, this zone

tends to (0,0) w.r.t. the far and layer fields, but it tends to infinity w.r.t. the corner fields. Thus, the
matching condition links the asymptotic behavior of far and layer fields at the corner to the one of corner
fields at infinity:

{ ZEP 11165 Upj(l',y) ~ ng hlZE SIJ,@(H’

£,%)  in Q when r — 0 and
Zsp In‘e Uy o(x, ¥) ~ Zsp In‘e S, ¢(2,%) in A when z — 0 and

— 00
(1.6)

— 0

g O3

We will see that the far fields u, , have an asymptotic expansion at the corner which is roughly a sum
of powers of r, some of which are positive (like in a Taylor expansion e.g.). The matching conditions
imply that these positive powers of r have to appear in the asymptotic expansions of the corner fields
at infinity. We call them singularities for the corner fields. Conversely, the asymptotic expansion of the
corner fields at infinity contain negative powers of r corresponding to the decay of the variational part,
and these powers must be found in the far fields, which corresponds to singularities at the corner. Thus
the fields cannot be searched in their natural variational spaces.

2 Matching conditions

This section establishes the matching condition linking corner fields to far and layer fields. This is by far
the most difficult relation to derive, while all the others have been easily stated in (1.3)—(1.5). In this
section we assume that the various fields exist and that they satisfy (1.3)—(1.5) and we give a necessary



and sufficient condition for the matching assumptions (1.6) to be satisfied. Our approach is based on an
algebraic formulation of the problem, that reveals the structure of the matching relations by a rigorous
algebraic calculus.

To perform the matching of the corner fields with the far and the layer fields at the same time, we merge
the latter two into a single field denoted u,, and called “far-and-layer field”. It is defined on a new
domain II, defined as follows:

o If © <2, then I1:=QUT UA (disjoint union) and it is an open of R?.

e If ©® > 37 then  and A intersect as subsets of R?, so the previous definition is not valid anymore
(see Flgure 5). Thus, we define IT as the disjoint glumg of Q and A on I' (which is a flat Riemannian
manifold).

J r Q
()
o CHAD
layer A |1 \! layer A
Yo \ QNA
A

Figure 5: The domain IT is equal to Q UT LU A when © < 7” (open subset of R?) and it is a flat

Riemannian manifold when © > 32 (QN A # 2).

Up¢ in r in Q
Up¢ in A

A straightforward reformulation of (1.3) and (1.4) gives that for any (p,£) € P x N:

For all (p,£) € P x N, we define u, g := { and the generalized radial variable r := {

z in A

1A, +w?pouay e = f 0000 in Q
Nla}%up,f = — (102 + w2p1)up,2,z in A
10y Wy, gy —o- = fio OyUp_1 gjy—0+ onT (2.1)
Uy ¢ly=0+ — Uprly=0—- = 0 onI'
Uy ¢ =0 on Yo UX,

where by convention u,, = 0 when (p,¢) € R\ P x N.

Let us give some starting point ideas to dlve into this section. The matching assumptlon under study
links the asymptotic behaviors of }° ,e? In‘ euye whenr — 0 and > ,eP In‘ €Spe when r — oco. So
we can begin with a look at the asymptotlc of u, ¢ when r — 0, espec1ally on {2 because it is the most
interesting part. First, by (2.1), ug o satisfies poAug,o + w? Pouo,o0 = 0 in the vicinity of the corner in (2,
with homogeneous Dirichlet condition on 0. So using separation of variables, it is easy to show that:

upo(r,8) = o4(uo,0) Ja(kor) sin(df) = oa(ug,0) aq, rd+2"> sin(df 2.2
0,2, 3 atuon) dtbor) st = 3 (Z @) (22
with o4(ug0) and agq,, some coefficients in C, J; Bessel functions of the first kind and ko := w+/po/to-
Then, one can show that (2.1) implies that wu; o satisfies the Helmholtz equation but with condition
H1u1,0 = fio Oytig ojy—o+ on I'. Using (2.2), one can show that there exist some functions f, ; and coeffi-
cients og(uy,0) s.t.:

_ d—1 .

uLo =, > T (fa0(0) +In(r) fa1(0) + D oaluro) Ja(kor) sin(d6)
deP de &N+

where the first sum is a particular solution of Helmholtz’s equation that has trace Z—‘l’ Oyug|y—o+ on T,

and the second one is a homogeneous solution. More generally, u, ¢ has a similar decomposition with



potentially lower powers of r (the smallest power being —p) and higher powers of Inr.

u1,0(€2) is not in H' because it behaves as 2 when r — 0. More generally u, is not in H*(Q). It can
be decomposed as the sum of a H! function and a function that is singular at (0,0). Proposition 3.6 will
show how to find solutions in such spaces and it reveals that they depend on some coefficients oq4(uy, ¢)
for d < 0 (corresponding to the singular part) while the coefficients for d > 0 (corresponding to the
variational part) are uniquely fixed. So the o4(u, () for d < 0 are degrees of freedom in the construction
of far-and-layer fields, and they will be fixed by the matching conditions. Likewise, the corner fields have
similar decompositions when r — 0o, and singular coefficients 04(Sp ¢) for d > 0 (but here singular when
r — oo) that will be fixed by the matching conditions.

In Section 2.1 we introduce algebraic formal series later used to perform efficient calculations on the
asymptotic expansions. In Section 2.2 we define spaces of explicit functions called A(...) that contain
all possible singularities at 0 (for the far-and-layer fields) or at oo (for the corner fields). In the previous
paragraph, it corresponds to the functions r? In‘r fq,i(8). In Section 2.3 we give tools to compute these
singularities. In Section 2.4, we write the asymptotic expansions w.r.t. r of the various fields. Finally,
in Section 2.5, we re-express the matching conditions (1.6) with equations that can be used to build the
fields.

2.1 Algebraic preliminaries

7

To handle infinite series that may not converge, e.g. “Zp,é P In‘e up,¢”, we use the algebraic notion of
formal series introduced in this section. Let E be a vector space and (F;);c;r be a family of vector
subspaces of E. To begin, let us remind that ), ; I; designates the vector subspace of £/ made of finite
sums of elements of the FEj. If this sum is direct, we denote it ,.; F;. From now on, we assume that
the sum is direct. In order to deal with infinite sums we introduce the following definition.

~
Notation 2.1: Let us denote

V(pi) € HEL Z% = (1) and ZEi = HEz

i€l iel i€l el

Note the boldness of the symbol »7. >, ;s is not a real sum that can be computed, but just a
notation called “formal series”. Its support is defined as {i € I | ¢; # 0}. In additional for any J C I
that contains this support, we also denote Zje, ;= (¥i)ier-

N J

There is a canonical injection @ E; — Y E;, that maps any sum ), ; ¢; with finite support (and
Vi, ¢; € E;) to the formal series ), ;. So we can consider in practice that @ E; is included in ) E;.

We will use Notation 2.1 with I = R and E; = Ajy(...) a space of functions that behave like r defined in
Section 2.2. In Section 2.3 we build some operators in the spaces A that have a translation action on the
index d. We say that they have a “degree” (cf. Definition 2.2 and Figure 6). That allows us to naturally
extend them to the formal series of the spaces A via the construction below.

Definition 2.2: operators with a degree

Let F be another vector space and (Fy)acr be a family of subspaces of F s.t. the sum Y Fy is direct.
Let f: @ Es — € Fy be a linear map and let dy € R.

We say that f has degree dy iff: Vd € R, Vo € Eq4, f(p) € Fytd,- In this case we denote deg f := dj
and we extend f from Y Eq to 3 Fy by setting f( 3 cr ) = Yoger f(®a) for any (¢q).




@D Eq

Ed1 Edz Eds d }
deR

d }@Fd

Fdl Fd1+d0 Fd2 Fd2+do Fd;; Fd3+d0 deR

Figure 6: Schematic illustration of an operator that has degree dy (here dy > 0)

< ~
Definition 2.3: Let )7, p ¢4 be an element of )7 E; with a support bounded from below and
ding := inf supp(¢q). For any linear map f : @ Eq — @ E4 that has a positive degree, we define

an(zgpd> ::Zan(@d—ndegf) (23)

deR deRneN

(where f™ is the n-th iterated composition of f). See Figure 7. More generally, for any finite set F of
linear maps @ Eq — € E4 that have positive degrees, we set

z S fooh(Ten) = XXX hoohieasiaaen) (24)

O0(f1,sfn)EF™ deR deRNEN (f1,....fn)EF™

We also denote it as (F) (Y ¢q), or (f1,.. .,fk>(2god) if ¥ = {f1,...,fx}. This is well-defined
because, for any d, the sums over n in the right-hand sides of (2.3)—(2.4) have a finite number of
non-zero terms and belong to Fy.

If supp(pq) is bounded from above and the elements of F have a negative degree, we can do the same
definition.

J

dint pa #0 g =10
+ / . / NERN N d }ngd

s (T

e e (T pa)
AY N N AY AY AY 3

\ X RN Ny 7 (E%)

+ +

- N~ finite sum } > (E Lpd)

Figure 7: Schematic illustration of Zf:o f™ for f a linear map that has a positive degree

In Section 2.5, we introduce formal series with powers of ¢ in order to express the matching condition.
They are defined similarly to Notation 2.1: for any set P C R and any family (E,),cp of vector spaces,

we denote y ~ R
Y(pp) € H E,, ngwp = (pp) and ZepE = H E,. (2.5)

peP peP peP peP

Again this is only a notation and here € is not a real number but an algebraic indeterminate. This is
similar to Notation 2.1 and we will later choose to use either notation depending on the physical meaning
of the formal series.

For instance, the case £ = C and P = N gives the classical set of formal power series, usually denoted
Cl[e]] (see [30, 32]). The Taylor approximations at 0 of any smooth function f can be represented by

)
Z;o:os % € CJ[e]]. Truncations of this series give approximations at a given order. We will use
similar representations for the asymptotic expansion of u..

Let us take P := R, E := Y ger Faq and Ep := F for any p. Let pg € Rand f: @ FE; — @ E; a linear



map that has a degree dy. For any (¢,) € E®, we define:
(L een) = el 26)
peER peR

These kind of linear maps Ep ePE — Ep ePE are the one said to have a degree. We denote deg(ePo f) :=
(Po, do)-

( _ _ )
Definition 2.4: Let 35, jcpe€P¢pa € 3o cre’E. Let G be a finite set of linear maps Y ePE —

Y- cPE that have degrees. There is a finite set F of linear maps @ Fy — @ Eq and (py); € R” s.t.
G = {ePr f | f € F}. We assume that there is v € R? s.t. {((p,d),v) | (p,d) € R%,p, 4 # 0} is bounded
from below and Vg € G, (degg,v) > 0. We denote:

o0
Z Z grome ( Z én. d) = z Epz Z fro--0 fn(@p—sip;, d-5; des f.)-
n=0(g1,...,gn)EG" (p,d)ER? (p,d)ER?  nEN(f1,....fn)EF™

which is well-defined in 3> e?E. We also denote it as (G2, 4" Pp.a)
J

~ R
Definition 2.5: Let “Ine” be here an algebraic indeterminate independent from the indeterminate e.

We denote E[lne] the set of polynomials with coefficients in E. More precisely it is the set of elements

of EN with finite support and, for any () € E[lne], we denote Y,y In‘e g := (¢y).
\ J

2.2 Definition of the spaces A

In [14, p.10], Costabel and Dauge build a similar asymptotic expansion for the Poisson equation in the
half plane with mixed boundary condition: Neumann in a part of the boundary and Robin u + ed,u =0
in another. They quickly mention that their singularities can be written as R[(—z)?P(In(—z))] with
z =x+1iy, ¢ € R and P a real polynomial. To define the spaces A, we adapted this idea to take into
account the layer, the angle © and the Helmholtz equation. These simple expressions give both powerful
algebraic tools for the theory and fast precise algorithms for the numerical resolution (see Section 2.3).

N
Definition 2.6: the spaces A
Let o := ¢7'©. We define in Q the complex variable z := z 4 iy = rel®. For all ¢ € R, we take the
following conventions: (az)? := r%@(=©) Fz1 .= rie=0=©) and log(az) := Inr +i(f — ©). Let
d € R. We denote:
o Ag(Q) the vector subspace of C°(£2, C) generated by the functions z — 3[(az)?@z* P(log(az))]
withg e R, k€N, g+ k=d and P € R[T],
o Ag(A) :={(2,Y) = 2?Q(Inz,Y) | Q € C[T,Y] and Q(T, —1) = 0},
e AT) = {a o 24 Q) | Q € CIT]),
o Ag(Il) := {p € C°(IL,C) | pjo € Ad(Q) and ¢z € Ag(A)},
o and for any D € {II,Q,A, T}, A(D Z.Ad (cf. the introduction of Section 2.1).
deR
J

Note that elements of A(2) and A(II) vanish on Xq, and elements of A(A) and A(IT) vanish on ¥,. In
addition, elements of A(Q2) are naturally functions depending on the polar coordinates. For instance:

o Sl(az)?az®] = ritksin((g — k) (0 — ©))
o S(az)?@z"log(az)] = r7* [In(r) cos((¢ — k)(6 — ©)) — (6 — ©)sin((q — k) (0 — ©))]

Note also that in this definition we used the variables x,y, which are relevant for far fields, but all the
tools developed in this section can also be used for corner fields, replacing (z,y) by (X,Y).



Remark 2.7: Definition 2.6 can be extended to the case where ¢ is covered by another layer, by
defining A4(f2) as the vector space generated by the functions z +— S[(az)?@z* P(log(az))] and z
S[z92F P(log 2)] with g € R, k €N, ¢+ k = d and P € R[T].

In order to build particular solutions of PDEs in A4, we will need the three following lemmas. The proof
of the first one can be found in Appendix A.

Lemma 2.8: For any D € {II, Q,T", A}, we have the following decomposition: A(D) = @Ad(D).
Furthermore, for any d € R, A;4(2) can itself be decomposed as follows: deR

A= @ {z+ AS[(az)!@Z* Plog(az))] | A € C, P € R[T] and P(q, k, P)} (2.7)

(g,k)ERXN
q+k=d

where P is the property defined by P(q, k, P) := (¢ ¢ N or ¢ > k or P(0) =0).

Remark: The condition P is a way to exclude the functions z — $[(az)?@z"] with ¢ € N and ¢ < k,
which are already present in the direct sum as they are equal to z — —S[(az)Faz4].

Let ¢ be a function of A(Q) of the form J[(az)?@z*P(log(az))]. Note that on T', ¢ is equal to
293 [t~k P(In 2—i0)]. Let us define S[a?* P(T—i0)] := 3294 F §(a,;)T* in C[T], where Y087 ¢, T" :=
a1 *P(T —i0). Then ¢p(z) = 27 Q(In z) for some Q € R[X], which implies ¢ € A(T'). Conversely,

for future constructions, it will be important to solve the equation:

given Q € R[T], find P € R[T] s.t. J[a?P(T —i0)] = Q(T). (2.8)

Lemma 2.9: Let a:=¢7'® d € R and Q € R[T].

1. If d € R\ §Z, then there is a unique solution P € R[T] of (2.8). Moreover deg P = deg Q. We
denote the solution Lg(Q).

2. If d € GZ, then the set of solutions of (2.8) is of the form {Fy + ¢ | ¢ € R} with Py € R[T] and
deg(Py) = deg(Q) + 1. We denote Lg4(Q) the unique solution that vanishes at 0.

In both cases, Ly is a linear map from R[T] into itself.

Proof: There are two cases whether the coefficient of degre m of S[a?(T — i©)™] vanishes or not.

1. Ifd € R\ ZZ, then a® € C\ R, so: Ym € N, deg S[a®(T — i©)™] = m. Therefore, ([ (T —
i©)™])men is a basis of R[T]. So writing @ in this basis gives a unique solution of (2.8).

2. If d € 5Z, since a’ € R, we have: Vm € N, degS[a?(T —i0)™] = m — 1. So in this case
(S[a(T — i0)™])men+ is a basis of R[T]. Thus, F : P — S[adP(T — i0)] is surjective and its
kernel is the set of constant polynomials. Its restriction to E := {P € R[T] | P(0) = 0} is therefore
an isomorphism and we set Ly := (F‘E)_l. Finally, for any @ € R[T] we have F~1({Q}) =
{L4(Q)} + Ker F. ]

For any ¢ € R, the maps Q € C[T] — S[z?Q(lnzx)] € A(T) and @ € C[T,Y] — S[z?Q(Inz,Y)] €
A(A) are clearly injective. In the following lemma we investigate the injectivity of P € R[T] —
S[(az)? @zt P(log(az))] € A(Q).

Lemma 2.10: Let (¢,k) € R x N. The map P + S[(az)?@z" P(log(az))] is injective from the set of
real polynomials P for which P(q, k, P) is true into A(£2).

Proof: For any 6 € (0,0) and r € R%, we have ¢(re'?) = rithg[el@=RE=O) p(lnr +i(0 — ©))] =
ritES[o/4=F P(Inr — i0')] with ©' := © — 0 and o := e19",
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o If ¢ # k, we can choose 6 so that ¢ — k € R\ &;Z. So Lemma 2.9 applied to (©', ') instead of
(0, «) implies that P is unique.

o Otherwise, ¢ — k = 0 € &;Z for any 6. So according to 2.9, P is unique up to a constant a priori.
But the property P implies that P(0) = 0, so this constant is fixed. O

2.3 Tools for solving the Poisson and Helmholtz equations in the spaces A

In this section, we show how to solve canonical problems set in II in the spaces A. More precisely, let
(Yo, ¥a,Yr) € AQ) x A(A)x € A(T), we look for the solutions ¢ € A(II) of: problems of the form

Ap=1q in
02p=1, inA (2.9)
Oypy=o- =¢r onl

Note that by definition of A(II), ¢ also satisfies yp|,—o+ — pjy—o- on I' and ¢5,us, = 0. Solving
this system will enable us to build in Section 2.4 the asymptotic expansion of u,, and S, . Indeed,
note for instance that this system is identical to (2.1) except for the first line. We first describe the
homogeneous solutions of (2.9), then build explicitly some particular solutions. Since functions of A are
uniquely determined by some polynomials (see Lemma 2.10), we are able to code an ezxact, very fast and
memory-thrifty solver of (2.9). This is one of the key advantages of the A framework.

Definition 2.11: For any d € ZZ*, we define on Q the function ¢ := (—1)%®/7rdsin(df) =
r?sin(d(§ — ©)) = S[(az)?] € Aq(2) and ¢q € A4(II) its extension by 0 in A.

These functions play an important role in the sequel because they solve the homogeneous Laplace equation
in Q, resp. II.

Proposition 2.12: the Laplace problem in A
1. Span({¢y | d € FZ*}) is the set of solutions in A(£2) of

Ap=0 inQ
{ =0 onlTUXg (2.10)
2. Span({¢q | d € FZ*}) is the set of solutions in A(II) of
Ap=0 inQ
02p=0 inA (2.11)

Oypy—-=0 onT

Proof:

1. ¢y is clearly solution of (2.10) for any d € FZ*. Conversely, let ¢ be a solution. Let us denote
9 [©
Vd e EN*, Vr e R, cq(r) := 6/ o(r,0) sin(de) do.
< Jo

Using separation of variables and ¢|pq = 0, it is easy to show that ¢ = Zde%N* cq(r) sin(do)

with convergence in H2(2 N {ry < r < ro}) for any 0 < r; < ry < co. Since Ap = 0, we have
(7'%)26(1 = d?cq for any d. Hence we get: Vd € EN*, a4, a_q € C,Vr € RY, ca(r) = agri+a_aqr—°.

Moreover, by definition of A(€), there is ¢ € R} s.t. o € 30,0, 1 Aa(Q2). So
9 ©
Vi€ FZ7 N (g.00), au= lim rteur) = lim o [y to(r.0) sinde)an =0,
—0

Similarly, looking at 7 — 0 one gets: Vd € §Z*N(—00, —q), ag = 0. So ¢ = Zde%z*m[_(m] aqsgn(d) ¢
(where sgn(d) := d/|d|), which is a finite sum. Therefore, ¢ is in the desired span.

11



2. Any solution of the system vanishes in A, so point 2 easily follows from point 1. |

Let us now define the following linear forms o4 which satisfy oq(¢,) = da,q for any d,q € FZ* and which
enable us to “project” any element of A(II) on Span({¢q | d € §Z*}). These linear forms appear later
as key singularity coefficients in the matching condition.

Definition 2.13: linear forms oy
Let d € &Z*. For any (q,k,P) € R x N x R[T] s.t. P(q,k,P) is true and ¢ : 2z
S[(az)?@zk P(log(az))], let us define:

{ oa(p)
04(S[(az)?P(log(az))])

0 ifg#dork#0
P(0) otherwise

It is well-defined by Lemma 2.10. By Lemma 2.8, o4 can be extended into a linear form A(2) — C.

Finally, for any ¢ € A(II), 04(p) := oa(@|n)-
\ J

Let us now build particular solutions of (2.9). By linearity, it suffices to build particular solutions of
three sub-problems. According to Definition 2.2, for any D;, Ds € {IL, 2, T, A}, we say that a linear map
F: A(Dq) = A(D3) has degree d € R iff: Vg € R, Vo € A (D), F(p) € Agra(D2).

Proposition 2.14: particular solutions of (2.9)
Let us denote A, (I) := {p € A(Il) | Vd € §Z*, 04(p) = 0}, which is a supplementary of Span({q |
d e Z7*}) in A(ID).

1. For any ¥q € A(Q) there exists a unique solution pa € A, (II) of
Ap=1qo inQ
02p=0 in A (2.12)
Oy ply—o- =0 onT
The associated map Ra : g € A(2) — pa € A, (II) is linear and has degree 2.
2. For any 15 € A(A) there exists a unique solution ¢z € A, (II) of
Ap =0 in Q
02 p=1p inA (2.13)
Oyey—o-=0 onT
The associated map Rz : ¢a € A(A) = @g2 € AL (II) is linear and has degree 0.
3. For any ¢r € A(T") there exists a unique solution ¢y € A, (IT) of
Ap=0 in
020=0 inA (2.14)
Oy py=0- =¢r onl

The associated map Ry : ¢¥r € A(T") — ¢n € A, (II) is linear and has degree 0.

Using Propositions 2.12 and 2.14, it is then easy to see that the set of solutions of (2.9) is Ra(¢q) +
Raz (oa)+Bn(pr)+Span({¢a | d € FZ*}). Moreover, the functions pa, pg2 and ¢n in Proposition 2.14
have explicit expressions (see the proof below), which allows to compute them easily in practice.

Proof: Proposition 2.12 gives the uniqueness of the solutions ¢a, ©o2 and @y, so only their existence
remains to prove. This is done by a construction. For any D € {II,Q,A, T}, let A(D,R) := A(D) N
C°(D,R). Since A(D) = A(D,R) & iA(D,R), it suffices to build the solutions when (g, ¥, r) €
A(Q,R) x A(A,R) x A(D,T"), and then extend it to any source term by complexification.
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1. According to Lemma 2.8, it suffices to build pa when 1q = 3[(az)?a@z" P, (log(az))] with (¢, k, Py) €
R x N x R[T] s.t. P(q, k, Py) is true. First, pa 5 = 0 because pa satisfies:

(‘)?chA =0 inA
aygDAD/:(r =0 onI’
oA =0 on Xy

Given that A = 40,0;, we have for any ¢ : z — 3[(az)? az* P (log(az))] that
Ay = 43[(az2)" ™ kygzes 1 (@1 Py + Py) (log(az))].

So taking ¢1 := ¢+ 1, k1 := k+ 1 and P, € R[T] a solution of 4k (¢1 Py + P{) = Py, we have
Ap; = 1Pgq in Q.

o If gy =0, P, is unique up to a constant, Moreover we can write
o1 = [ (P (log(a2) — P1(0))] — Py(0) S[(az)™]

where each term satisfy the property P. So for any d € FZ* different from k;, we have
oa(p1) = 0, while oy, (1) = —P1(0) if &y € NN §Z*. Taking P1(0) := 0 thus gives: Vd €
SZ*, 04(p1) = 0.

o If g1 # 0, there is a unique solution P;. Given that ¢; # 0 and k; # 0, Definition 2.13 implies
that: Vd € §Z*, oq(p1) = 0.

However, we cannot set pa|o = 1, because ¢ does not vanish on I'. Let us then introduce
@2 1z = S[(az)1TF2 Py (log(az))] with Po(T) := Lgipi2(Sa? ™ P (T — i0)]) that satisfies by

Lemma 2.9:
Agpy =0 in
g = 2ITF2G (1R 2Py (In g — 10)] = 29+ 2G5[ad P (Inz —i©)] =91 on T

In addition Lemma 2.9 implies that ¢ + k +2 € §Z* = P»(0) = 0, so: Vd € GZ*, oa(p2) = 0.
Finally we set pa g := 1 — 2, which is in A, (II).

2. Similarly, it suffices to build P2 for iy = a1 Qy(lnz,Y). Welook for pg2 of the form z7 Qu(lnz,Y)
in A with @, € R[T,Y]. Then necessarily we have

aSQ/Qso =Qy
8yQ¢(~,O) =0
Qw('a _1) =0

This uniquely defines Q,. Taking P, 1= Lq(Qy(,0)) and ¢z = S[(az)?P,(log(az))] then

implies that Apgz =0 in £, ¢ continuous and @z2 € AL (II).

|

3. Again it suffices to consider ¢p = 27 Py(Inz) with Py € R[T]. We take ¢n of the same form as in

point 2. Then Oy pn|y_o- = 27 dy Qp(Inx,0) so it suffices to take the polynomial solutions of:
aizsto =0
Oy Qy(-,0) = Py
Qup(-,—1)=0

P, = Lq(Qs@('a 0))

Finally the linearity of Problems 2.12-2.14 and the uniqueness of pa, ©o2 and ¢y imply that Ra, Raf,
and Ry are linear maps. O

Moreover, we will need analogous operators in A(Q2) to build the far fields in Theorem 3.6. The proof
is entirely similar to the one of Proposition 2.14, so we omit it. Again, these operators have explicit
expressions.
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Proposition 2.15: Let us denote A1 () = {¢ € A(Q) | Vd € FZ*, o4(e) = 0}, which is a
supplementary of Span({¢y | d € FZ*}) in A(Q).
1. For any ¥ € A(I") there exists a unique solution pa € A (Q) of

Ap=19q in
2.1
{ =0 on I (2.15)
The associated map R} : ¢r € A(Q) = pa € A () is linear and has degree 2.
2. For any ¢r € A(T") there exists a unique solution ¢p € A, () of

Ap = in

p=0 in (2.16)
p=1v% onl

The associated map Ry : ¢¥r € A(I') — pp € AL (Q) is linear and has degree 0.

To end this section, let us show that the spaces A are stable under some differential operators.

Lemma 2.16:
1. 8§|A : ¢ = 02¢x maps A(II) to A(A) and has degree —2 (see Definition 2.2).
2. Oy|r y=o+ : @+ Oyoir y—o+ maps A(II) to A(I') and has degree —1.
3. A Apjg maps A(2) (and A(IT)) to A(2) and has degree —2.

Note that, when used on corner fields (which depend on (X,Y)), the first two operators will rather be
denoted 5‘§(‘A and Oy y—o+-

Proof: It suffices to verify it when ¢ has the form S[(az)?az” P(log(az))] in Q and x9t* Q(Inx,Y) in A,
with ¢ € R, k € N, P[T] and Q € R[T,Y].
1. We have 9%2¢(x,Y) = 297%2((¢+ k) (¢ + k — 1) +2(¢ + k)Or + 02) Q(Inz,Y’) which is in A(A).
2. Let ¢ : 2 — (az)?@z" P(log(az)). From 0.1 = (9,1 — i0,%) and 0z = 3 (9,1 + i0,0) it follows
that 0y = S[0,¥] = R[0.¢ — 0:¢]. Therefore,

By pir y=o+ = Rla(ax)~taz*(¢P + P')(log(ax)) — (ax)? @ kaz""! P(log(ax))]
= 27 IR[0 (¢ — k)P + P))(Inz —i0)] € A()

3. Since A = 40.0:, we have Ap = 4 3[(az)? ! kazF 1@ 4 Pl (log(az))] which is in A(Q). ]

2.4 Asymptotic behaviors w.r.t. r of solutions of model problems

In this section we give tools that will be used to compute the asymptotic behaviors of u, ¢ and S, ¢ resp.
when r — 0 and r — oo using the spaces A. To do so, we will use series of elements of .4, which is made
rigorous by the following definition.

Definition 2.17: the spaces A+

Let D € {IL,Q,T,A}. We denote A*(D), resp. A~(D), the set of elements of 3, Aq(D) whose
support is included in the image of a sequence that tends to oo, resp. —oo. We write their elements
as formal series according to Definition 2.1.

Remarks:

o The asymptotic of u, , when r — 0 involve increasing powers of r so it will be expressed in A*(D).
Similarly, Sp ¢ when r — oo involves decreasing powers of r, so it will be expressed in A~ (D).

14



e As seen in Section 2.1, A(D) is included in AT (D) and A~(D). But elements of A*(D) are not in
general D — R functions, as the formal series may diverge pointwise.

Using Definitions 2.2, we can extend 8§|A, Oy|r,y=0+» Ra;z,, Ry and Ra to the spaces A*. We also use
the notation (.) introduced in Definition 2.3. E.g. (—k2 Ra) = > oo ,(—k3 Ra)™. Moreover, we extend
o4 to AE(IL) for any d € ZZ*, by setting 0a(3 4 ¢ar) = a(pa) for any Y, pa € AF(I).

Lemma 2.18: Let ¢° € AT(A) and h° € AT(T'). The solutions in AT(II) of

poAu® +w?pou’ =0  in Q
pwoiu’ =g inA (2.17)
/,Llay|y20—u0 =h onl

are the formal series of the following form (where o4(u®) vanishes when d is small enough)

u’ < k‘ORA>( Raz( )—l— RN ho )+ Z oq(u ¢d> (2.18)

de §Z*

Proof Let vV := (id+ k3 Ra)u’. Since (—kZRa) = > 07 (—k2Ra)", id+kZRa is the inverse of (—kZRa),
sou’ = (— kQRA> 0. Moreover, Proposition 2.14 states that AORA =id, ay‘AORA =0 and Oy y—o-©

Ra = 0, which imply resp. (oA + w?pg) o (—kZRA) = pol o (id + k3RA) o (—k3RA) = poA, aY|A
(—kZRA) = 032/‘1\ and dy|r,y—o- o (—kiRa) = 8}2/|1‘,Y:0*' Therefore, (2.17) is equivalent to

poAvY =0 in
pdivl =g in A (2.19)
/mayv‘oyzo, =hY onT

Then Propositions 2.12 and 2.14 imply that the solutions of (2.19) in AT(II) are the iRaa (%) +

“11 Rn(RY) +3Y3 dezz- Cd ¢4 where cq vanishes for small enough d. Finally we have ¢y = 04(v°?) = o4(u®)

for any d € %Z* because 040 Ra, 040 R(g% and o4 o RN vanish by Proposition 2.14. m]

Lemma 2.19: Let F5° € A™(Q2) and F{° € A~ (A). The solutions in A~ (IT) of

[oAS® = F i Q
(AS® = F® in A (2.20)
poOy |y =+ S5 — 10y |y—o- 5S> =0 onT

are the formal series of the following form (where 04(S>) vanishes when d is big enough)

+ 3 ou(S ¢>d> (2.21)

1
S = <—R6;z/ oaqu, %RN an|1'*7y:0+> (ERA(FQ )+ Raz FA

degz*
Proof: This is similar to Lemma 2.18. Let R; := *Rag o 8§(‘A, Ry = z—?RN o dy|r,y—o+ and v :=
(id — Ry — R»)S*°. By Definition 2.3 we have
R =S Y Ryoeel = SR = G0 R R
n=0 (i1,...,in)€{1,2}" n=0

So 5% = (R, R2)v®™. Moreover, Proposition 2.14 implies that Ao Ry = Ao Ry =0, 0Y|A oR, =
832/|A oRy =0, Oy|r,y—o- oR1 = 0and dypy_o- o Ro =

2
—Oxas

o B0 Oy r,y—o+. We deduce that Ao (R, Ro) = A,

(0% + 0% |a) © (R, Ro) = 835 © (id — R1) o (R1, Ro) = 95, 0 (id — Ry — Ra) o (Ry, Ry) = 9%
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and similarly (uoOy|r,y—=o+ — 19y |r,y=o-) © (R1, R2) = 10y r,y—o-. Therefore, (2.20) is equivalent to

oAV = F§°  in §)
v = F  in A (2.22)
,ulc')yvf;:(), =0 onI'

Then Propositions 2.12 and 2.14 imply that the solutions of (2.22) in AT(II) are the /%ORA(FSO) +
LR% (F°) + Zdeiz* cd ¢q where ¢4 = 0 for big enough d. Finally, ¢y = 04(S°°) as for Lemma 2.18. O
e

M1
Definition 2.20: Let d € R and a € {0,00}. We define og, a kind of differentiable small o, as follows.
e For any ¢ : Q — R, we say that ¢ = 0g(r?) when r — a if ¢ is C* in a vicinity of » = a and
V(j, k) € N2, 010k p = o(r¢=7) uniformly w.r.t. § when r — a.
e For any ¢ : A — R, we say that ¢ = 0s(z?) when x — a if ¢ is C* in a vicinity of z = a and
V(j, k) € N2, 010% ¢ = o(x¢~7) uniformly w.r.t. Y when z — a.
o For any ¢ : I' = R, we say that ¢ = 05(z?) when z — a if ¢ is C* in a vicinity of * = a and
VjeN, 0l¢ = o(x?7) when z — a.
o For any ¢ : Il — R, we say that ¢ = 0p(r?) when r — a if | = 05(r?) and @) = 0a(x?).

Definition 2.21: Let d € R, D € {IL,Q, I, A} and ¢ = 3 g ¢, in AT(D) or A7(D) with ¢, € Ay(D)
for all ¢ € R. We denote Tq(p) := zqengd g and Tsq(p) == quR,@d ¢4 the truncations of ¢ below
and above d.

Using Lemmas 2.18-2.19 and Kondratiev’s theory (involving weighted Sobolev spaces, Laplace’s transform
and the residue theorem), we proved the following theorems, giving asymptotic behaviors for solutions
of model problems of the type of far-and-layer fields and corner fields. The proofs can be found in
Appendix B.

Theorem 2.22: Let u € H}

loc

(1), f € D'(Q), g € L2 (A) and h € L (T') be such that

loc loc
poAu +w?pou=f inQ
pmoitu=g inA
p10yy—o-u=nh onT (2.23)
Uy—o+ —Uy—o- =0 onl
u=0 onXoUX,

We assume that:
e f vanishes in the vicinity of the corner (0,0),
o there exists ¢ € AT(A) s.t.: Vd € R, g(2,Y) = T<a(g®)(z,Y) + 05(2?) when x — 0,
o there exists h% € AT(T) s.t.: Vd € R, h(z) = T<a(h°)(z) + 0p(x?) when z — 0,
o thereis n >0, u’ € H*(QN B(0,7)) and ¢ € A(Q) s.t. wonpo,,) = u’ + ¢
Then there is u® € AT(IT) that has the form (2.18) s.t.: Vd € R, u = T¢q(u) + 0s(r?) when r — 0.

Theorem 2.23: Let S € HL () and F € L () (i.e. L? on any bounded subset of ;) such that

loc

div(pVS)=F in
{ 0 (2.24)

S on 0,

We assume that:
« there exists F5° € A™(Q) such that Vd € R, Fjg = T5q(FS°) + 0s(r?) when r — oo,
o there exists F3° € A™(A) such that Vd € R, Fy = T>4(FR°) + 0p(z?) when z — oo,
e S belongs to V + xoo. A(II) (the space in which the corner fields will be build in Section 3.2).
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Then there is S € A~(II) that has the form (2.21) s.t.: Vd € R, S = T54(S*)+0s(r?) when r — oo.

Note that, since g° € AT(A), we have T<4(g°) € A(A), so the formula g = T<a(g°) + 0s(x?) makes sense.
The same applies to the truncations of h°, u®, F5° and F{° and S*°.

A consequence of Theorems 2.22-2.23 is Proposition 3.13 that states that for any (p,¢) there is ugj €
A*(II) and S55, € A(I0) s.
Up ¢ = ng(ug@) +05(r?)  when r — 0

VdER, { Sp.e = T>a(S5%) + 0a(r?)  when r — oo

In the rest of this section, we will assume that such formal series exist. In addition, given the equations
satisfied by u,, and Sy, ¢ (see (2.1) and (1.5)), (2.18) and (2.21) rewrite here as

ug,z:<—k§RA><—Ra$O(3§A+kf)( )+M RN © Oyjr y—o+ (U)_1 o) + Z oq(u pz)¢d) (2.25)

degzZ*

Ko 00
ot = <—Ra§ °© 0% s IRN o 8Y|F,Y_o+> (— kGRA(Sy2 5 ga) — ki Roz (S50 4a) + Z aa(Sp%) ¢d>
dEEL

where by convention uf) , and Sp%, vanish when p € R\ P. Therefore (u) ;)¢ and (Sp%),,¢ are uniquely
defined by (Jd(u27£))d,p’g and (04(S;%))d,p,e- When d < 0 (resp. d > 0) ¢q is non-variational for the
far-and-layer fields (resp. corner fields), and Theorems 3.6 and 3.11 show that o4(u) ,) (resp. ga(Sp%))
can be fixed arbitrarily. The rest of this section is devoted to finding how to fix them in order to satisfy
the matching conditions (1.6). On the contrary, when d > 0 (resp. d < 0), ¢4 is variational for the
far-and-layer fields (resp. corner fields) and the values of o4(u) ;) (resp. 04(S;%)) are uniquely defined
once (og (ug’é))d/@ (vesp. (04(S5%))ar>0) has been fixed. Ways to compute these values numerically
will be investigated in a future work.

2.5 Specifying of the matching conditions

In this section we express }_ ,&? In‘e-u® peand 3o e? In‘e - Sp%, in function of the oq(u ;) and g4(S5%),
we then rewrite rigorously the matching condltlons (1.6), and we finally show that they are equivalent to
a set of equations on the coefficients oq4(.). Here 3-  ,&? In‘e - up ,and 3- ), €P In‘e - Sp<, are formal series
that belong resp. to the spaces AT (II) and AZ (IT) defined below.

In this section, “&”
are not numbers).

and “Ine” denote two algebraic indeterminates independent of each other (so they

< B
Definition 2.24: We denote
A=Y Y 4ine  ad A=Y Y A e
p€eP deP—p peP dep—P
According to Section 2.1, we write their elements as formal series like
Z z Zsp In‘e - Pp,d.L, resp. Z Z Zsp In‘e - Pp,d.e-
pEP deP—p LeN pEP dep—P £eN )

Ansatz 2.25: We assume that

Z P Ine - ug)g € A (1) and Z el ln‘e - Spe € AZ (IT).

p€EPLEN pEP LEN

Compared to the ansatz of Section 1.2, it adds that, for any (p,¢) € P x N, u,  has components only in
the A4(II) s.t. d € P—p and Sy ¢ has only in the A4(II) s.t. d € p—P. This is necessary for the matching
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Figure 8: Points of {(d,p) | p € P and d € P — p} for © = I (on the left) and © = 2 (on the right)

because e.g. we will see that for any ¢ € P Aq(M)[Ine] A (1) that is a term of 3 In‘e S35 #(2)
must appear in 3 e” In‘e ud , and ¢(2) € e~ Ay()[Ine], so p—d € P.

Let us denote: Rt .= {3 Ry, —e2Ryp 092, —2*kiRog . =22 Ry 0 Oyir o+ |

Rz i={ -3 Ra, —Rog 0 0%y, —=*kiRpz, LRy 0 dyiry—o+ }

where the above operators are defined as in (2.6). For any R € RF UR_, we denote (deg, R,deg 4 R) :=
deg R. See Figure 9. Thanks to Definition 2.4, we can consider (RZ) which is well-defined on A*(TT) (it
suffices to take v := (£1,2) in Definition 2.4). Moreover one can check that it maps AZ(IT) into itself.

7 p1

deg,
—e2Ryz 002, deg, R
R REEEY SRR ket
l l —€ kfRa;zv l ‘ ‘ /
NG e e Ra
““RNOU - 0+ : 1 —R;;QEO() /\3 3 3
vIly= —k:alRA l de / < | < +1 — deg 4
T T T > Ko I |
I I i1 I g'A ,ulRNoaJ‘FJ o+

Figure 9: Degrees of the elements of R (on the left) and RZ (on the right)

Proposition 2.26: We have the following equalities in A} (IT) and A_ (II) respectively:

Z P In‘e - ug’z = (RT) ( Z P In'e Z Ud(ug,z)d)d) (2.26)

pEP.LEN pEP.LEN de 57 N(P—p)
Z eP Infe - ;?Z = <R€_> ( Z P In‘e Z Ud(S;?()(bd) (2.27)
pEP,LEN pEP LEN de £ (p—P)

Proof: We only prove (2.26), as (2.27) is similar. We could do it by inductively composing (2.25), but we
chose instead a proof similar to Lemma 2.19 to avoid heavy calculations. Let (p,¢) € P x N. Given the
equations satisfied by u, , in (2.1), and the fact that u,, = ng(ugﬁf) + 0p(r?) for any d € R, we have

,ugAug,e + pr()ugj =0 in Q
o) , = — (07 +wpr)u) ,, inA (2.28)
1110y |y —o- Ug_z = 1o dy\y:oﬂlg,l_g onT

Let u? := Z er In* Ell ;- Summing over (p, ) (2.28) times £ In‘e yields

poAul + w?ppul =0 in Q

2.0 4 20, 92 2 0_ :
0y ug + e (i 0z +w?pr)uy =0 in A
/Llay‘yzofug — € po Oy|y—o+ wW=0 onTl
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Let v := (id— Y pep+ R)ul. It is easy to see that id — Y p o+ R maps AX(TI) into itself, so v0 € AX(IT).
By Dehnltlon 2.4, we have

0o 0o n —1
D=y > Rlo---oRn:Z(ZR> :<id—ZR> :
n=0(Ry,...,R,)E(RT)" n=0 *ReRF ReRYT

So u? = (RF)v?%. Moreover, Proposition 2.14 implies VR € R \ {—k¢Ra}, Ao R = 0. Hence

(oA + w?po) o (RF) = poA o (id + kg Ra) o (RT) = poA o (id - R) o (RE) = noA
ReERT

Similarly, one can check that [;Llé)ym + &2(10? ‘A + w pl)} o (RT) = ula‘ém and (u10y|r,y—o- —
€ 10 Oy|ry=o+) © (RT) = p110y 1,y —o- . Therefore v? satisfies

oAv? =0 in Q
p102ve =0 inA
/Llay‘yzofvg =0 onI'
0 — Zp 0a ¥ P In‘e Cp,e.d @a. Finally we
have ¢, ¢4 = 0a(u) ;) for any (p, £, d) because Proposition 2.14 gives that VR € R}, 040 R = 0. O

Then Proposition 2.14 implies that there are numbers ¢, ¢ 4 s.t. v

Now, we want to define H. : AT (II) — AZ (II) as the scaling operator

(X,)Y) = ¢(eX,eY) inQ

(X,Y) = ¢(X,Y)  inA (2.29)

Vo € AT (D), He(p) = {

However, ¢ is an indeterminate. Let us first define H. for any ¢ € A4(Il), d € R. If | has the form
SI[(az)? @z P(log(az))] with (¢,k, P) € R x N x R[T] s.t. ¢+ k = d and P(q, k, P) is true, we set:

Z dlnj S(az)?@z" PY) (log(az))] € e Aq(Q)[Ine]. (2.30)

And if | has the form z¢ Q(In(z),Y) with Q € C[T7], we set:

deg Q j
He(ohp = Y & h;f 2L 0.Q(Inx,Y) € e Ag(A)[Ine]. (2.31)
7=0 '

Thanks to Lemmas 2.8 and 2.10, it defines well H. from Ay (II) to ¢ A4(IT)[Ing]. Then we extend H.
to AZX(IT) by setting He (35, 4, € In‘e o, a0) = dopd i€’ In‘e H(@p.ae) for any (¢par) st. ©pae €
A1) for any (p,d,£). One can check that is in AZ (II).

Remarks:
o In practice, we will only use the informal definition of (2.29), but everything we will do can be
checked using (2.30) and (2.31).
(,y) = @(£, %) inQ
(Jf, Y) (Ev ) in A
o For the first time, powers of Ine naturally appear because of the power of Inr. This explains why
the presence of these powers in the ansatz is necessary from the beginning.

o H. is invertible and H_ ! is roughly the scaling: H_-1(p) = {

Definition 2.27:
We rigorously rewrite the matching condition as: Z ePIne - up = ( Z P Ine - )
peP LN pEP,LEN

When composing Definition 2.27 and Proposition 2.26, H_* o( —) appears. Since R} and R_ only differ
on powers of ¢ due to the scaling, one could expect that H_ 1 o < T )oH. is equal to (RT). However, Ra
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(resp. Raz Ry) picks the particular solution of Equation 2.12 (resp. 2.13, 2.14) whose image by the o4
vanish. This means that they are the solutions in the kernels of the following projectors of AF (IT):

(Z D, D e ppa > =X X Deeoulppan) da (2.32)

peP de£(P—p) LEN p€EP de FZ* Nt (P—p) LEN

for any (¢p.a.r) st. pae € Aq(Il) for any (p,d,f). Lemma 2.28 below implies that HZ! does not map
Ker ¥ to Ker ¥. Therefore HZ! o Ra o H. selects other solutions than Ra, and likewise for Rz and

Rn. We will see that it implies that H_-! o (RZ) o H, it is equal to (RT) times a correction operator
given in Theorem 2.29.

To precise the action of H. on 7, we introduce 7+ and 7=, which map any ¢ € Ad( ) of the form
) to

S[(az)? @z P(log(az))] in Q (with (¢, k, P) € R x N x R[T], ¢ + k = d and P(q, k, P)

P(tlne)¢py; ifde ZZ* and k=0
= (%) —{ ° (2.33)

0 otherwise

By Lemmas 2.8 and 2.10, it defines a linear map A4(IT) — Ag(I1)[Ing]. Then we extend 72 into an
endomorphism of AZ(IT) by setting n(3°, ; ,&” In‘e @, 40) == a2 e’ In‘e 7 (@p.a.0)-

Lemma 2.28: We have HF! o} o HE! = 7.

Proof: Since the involved operators only depend on the part on §2, and by Lemma 2.8, it suffices to prove
that HI' o 7 o HE(p) = n¥(p) for any ¢ of the form I[(az)?@z* P(log(az))] in Q (with (¢, k, P) €
R x N x R[T] and P(q,k, P)). If k > 0 or ¢ ¢ §Z*, then both images vanish, so we can assume that
k=0 and g € §Z*. Then both images vanish in A, and we have in
HE (@) @ 2 = e9F[(z)?P(log(az) +Ine)]  (with abuse of notation)
73 oM () = £"P(Ine) b,
HI' o T o HE (p) = P(xIne) ¢, = 72 (p) 0

The next theorem is the key ingredient to match the far-and-layer fields with the corner fields because it
links (R}) to (RZ).

Theorem 2.29: We have HF! o (RF) o HE! = (RE) o (id — (nF | RE)) where we denote:

(w§|R§>:=w§o< > R> ({(id— 7)o R| ReREY)

ReRZE

:Z Z X oRyo(id—nE)oRyo---0(id—7F)oR,

n=1 <R1,.A.,Rn>e<R§>n

Proof: We only prove that HZ! o (RZ) o H. = (RF) o (id — (xF | RY)), but the other formula works the
same. We have H_'o (R;)oH. = ({H-'oRoH. | R € RZ}), so we need to calculate the H_ ' o RoH,
for each R € RZ. We claim that:

Holo (—e’kgRpa) oH. = HZ'lo(idd—m,;)oH:o (—k3 Ra)

Ho to (_RE))% o 85\1\) oH. = Hgl © (id - ﬂ;) oH.o <_52R(’)§, o a?n\A)

’H; (— QkQROQ ) oH. = Hgl o(id—m;)oHe o (752]@%}?«83)

Hto (B Ry 0 Oy ymov) oOHe = Moo (id — ;) 0 He © (=2 Ry 0 Dy ymo)
ERC erd

Let us show the first line (the others are similar).
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Proposition 2.14 implies that for any ¢ € A_ (II), Ra(v) is a solution of:

Ap=1 in{)
2p=0 inA (2.34)
8y<p|y20— =0 on I’

and 7 o R = 0. Moreover, by Proposition 2.12, the solution of (2.34) is unique modulo Im 7 .
But one can check that e 2H. o Ra o H_ (1)) is also solution of (2.34). So the image of e 2H.0 Ra o0
H-! — Rp is included in Im . Hence (id — 7, ) o (67 ?H. 0 Ra o H-t — Ra) = 0. Therefore:

Ra=(id—7,)oRa = (id—m,)oe ?H.0oRaoH_!

| which implies HZ'o RaoHe = H' o (id — 7, ) o He 02 Ra.
Hence: Ho'o (R7)oHe = ({H-'oRoH.|RER})
= ({H lo(idd—7m,)oH.0R|RERFY)
= {(ld=7f)oR|ReR})

:Z Z (id—7f)oRio--o(id—7)oR,

=X Y (m)eRioo(-n)oR,
n=0(Ry,....Rn)E(R)"
(i1,eyin) €{0,1}"
The terms s.t. (i1,...,4,) = (0,...,0) sum up to (RF), and for the rest we split the sums depending on
¢:=min{k | i = 1}:

Hlo(RO) oM. =(RO+Y D> >, (m)oRie-o(-ml)oR,
n=04=1 (Ry,..,R,)E(R)"
t1="=10—1=0,7,=1
(ie+17~~~xin)e{0’1}n_£

Denoting m=n— £+ 1, (Rl, ooy Ry) = (Re,...,Ry) and (Jo,. .., Jm) = (lp41,...,0n) yields

H;10<R;>°HEZ<R;>+Z Z Z R10~~-OR¢_1<2(771';)0R1 ‘ )
£,meN* (R1,...,RZ,1)€(R:)571 (Rl’“‘yém)e(ng—)m, o (_W;')]2 o R2 0O---0 (_/n-;")]m o Rm
(j27---7j7n)6{071}7”71

:<R2L>+< > R1O"'OR£1>( > (—WSL)ORN(—WQF)”ORzO"'O(—WJ)j”ORm>

£eN* meN”, (Rx)e(RI)™
(Re)e(RH)! (r)efo, 13!
:<7€2'>—( Z R10-~-0Rg/)< Z W:OR1O(id—ﬂ':)ORQO-HO(id—?T:)ORm)
¢'eN, (Ri)e(RE)Y meN”, (Rx)e(RI)™
= (RI) = (RI)o(nl | R) -

Corollary 2.30: The matching condition of Definition 2.27 is equivalent to each of these equalities:

Z P In‘e Z oa(upe)pg = (id — (7 | RF)) o 7-[5_1< Z P In‘e Z O'd(S;’oz)(ﬁd)

pEP LEN de 57+ N(P—p) pEP LN de E7*N(p—P)

‘ : s ‘
Y ol Y oulSptn= (id — {r |RE>)0HE< Y oomte Y ad<ug,e>¢d)
peP,LeN dE%Z*ﬂ(p—]P) peP,LeN de%Z*ﬂ(]P’—p)

Proof: Let us prove only the first condition. Combining Proposition 2.26 with Theorem 2.29 shows that
the matching condition is equivalent to:

(RE) (Zep In'e Zadmg,md) — (RF)o (id — (nF | RE)) o HZ? (Zep In'e Zadw;fmd) (2.35)
L d p,l d
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It remains to simplify both (RF). Proposition 2.14 implies: VR € RS, 7mf o R = 0. Since (RT) is a
sum of the identity and non-trivial products of elements of RT, we have 7} o (R¥) = nf oid = 7. So
applying 7 to (2.35) replaces the factors (RF) by 7. Now, Im 7 is stable by id — (71 | RY) and the
projector 7 is the identity on it, so we can finally simplify 7 on both sides of (2.35). O

For any (p, £), let us define 7, » : AZ(IT) — A*(IT) by: Vi = ot e In’e oprer € AZ(ID), 7p0(0) = Ppe-
It allows us to define the matching coefficients, that are for any (d,d’,p, () € (FZ*)* x Px N the following
complex numbers:

ciatpe = 0a0 mpraeo (id— (nl | R))(¢a) and  cfyt, = 0a0mpa o (id— (7 | RD))(ba)

In addition, for any a,b € R, we denote [a,b]pn := {c € R| c—a € P and b— ¢ € N}. It is a finite subset
of [a, b].

Theorem 2.31 gives equations to concretely build the fields u, ¢ and S, ¢ so that they match around the
corner. It fixes their non-variational, which are determined by Ud(ug’é) when d < 0 and 0q(5)%) when
d > 0 (see Theorems 3.6 and 3.11). It also provides inductive formulas, depending on the fields with
smaller p. Moreover these formulas have a convolutive structure w.r.t. p and /.

Theorem 2.31: The matching condition of Definition 2.27 is equivalent to the following set of
equations:

14
V(d,p, g) S (_%N*)XPXN, O'd(ugl) = Z Z Z c(lil,;i)—p',é—e’ . O'd/(S;/o’@/) (2363)

p'€[0,p+d]pn d’E%Z* =0
p'—d'€[0,plzn

¢
V(dapa e) S %N* x P x Nv Ud( Z’OZ) = Z Z Z Cgf;};),p/’gfgl . O'd/(ugr’g/) (23613)

p'€[0,p—dlen  d'€Zz* =0
p'+d’ €[0,p]en

Proof: Let V* be the set of families of complex numbers (upyd’@)pep_de%Z*m(]pfp),geN s.t. for any (p,d) only
a finite number of the u, 4 ¢ are non-zero. We define V® similarly by replacing “d € P—p” with “d € p—P”.
Let o(u) := (04(u) ;))p.ae € V* and o(8) = (04(S;%))p.a.e € V5. We define the following linear maps:

4
. yS S
P:V> =V (Spae)pae — ( Z Z Z Cdidr -y =t Sp/’d%/)
p,d,L

p’€[0,p+d]pn (l/E%Z* =0
p’—d' €[0,p]pn

4
. S S
Q: V' =V, (war)pdae = ( Z § : § :Cd7d',l;fp’,€718' 'up’,dﬂé’)
p,d,L

p'€[0,p—dlen  d'eZz* =0
p’+d' €[0,p]en

These sums have a finite number of terms, so they are well-defined.

Step 1: Let (d,p,f) € §Z* x P x N. Applying o4 0 7, ¢ to the first equation of Corollary 2.30 gives:

)= Y > cionypemeo(id— (| RD) o H (ba) - o (ST
p'€PLEN d'e EZ*N(P—p’)
= > Yo gio T prau—r o (d—(nF | RO ba) 0w (Sye)

p'€PLEN d'e EZ*N(P—p’)

2 : § : 2 : «—S
Czll,d’,pfp’,fff’ . O'd’(Sgloy‘g/).

p'€P d'€ FZ*p'+d' €P L'EN

Moreover, for any R € R, we have deg.R € N and deg.R + deg 4R € N (see Figure 9). So for
c}l‘gifp,j%, to be non-zero, we need p —p’' +d € Nand (p—p' +d)+d—d € N. In addition,
¢ — (" € N. Therefore, the matching condition in equivalent to o(u) = Po(S). Similarly, it is equivalent
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to o(S) =Qo(u).

Step 2: We define the subspaces Vi = {u € V* | V(p,d,{), upas # 0 = +d > 0} and likewise V5. So
V* = VY &V and similarly for V3. Let o(u)+ be the components of o(u) on V%, and similarly for (S)+.
We decompose P and Q on those subspaces, which gives in block matrix notation:

oo (NP o [(%) (e
“\p }vg | o Qt | Q- }vi
——

u u
VS V+ v

The present theorem rewrites as:

{ o(u)_ =P_o(S) (2.37)

a(S)y = Ay 0(u)
By Step 1, this is clearly a necessary condition for the matching. It remains to prove that it is sufficient.
Let us show that (2.37) implies one of the two conditions of Step 1, e.g. o(u) =P o(S).
Note that by Step 1 we have for any u € V* and S € V5: u = PS <= S = Qu. So P and Q are inverses of
each other. Hence Q(o(u) —Po(S)) = Qo(u) — o(S). Projecting this onto V& we deduce:

Gt (o(u)s — P, o)) + Q5 (o(w) —P_o(S)) = Q, o(u) — o(S) .
Let us show that Qi is injective. =0 =0
Let u € V¥ \ {0} and let us show that Q{u # 0. Let (p,d, ) be the smallest triplet for lexicographic
order such that u, 4, # 0. The term of Q}u of index (p + d, d, ?) is :
‘

S<+u _ S+u
E E E Cd,d’ ,p+d—p' e—¢ " Up',d' 0/ = Cq.d.d0  Up,d.l-

p'€[0,p]en d' e EN* £'=0
p'+d €[0,p+d]en

We claim that it is non-zero because cdS‘d_EO = 1. Indeed, in the sum

(| RT) : Z Z 7t oRjo(id—7l)oRyo---0o(id—7l)oR,
n= 1<R17 ,L)G(R;)
there is no term of degree (0,0) w.r.t. A and e. So the component of (71 | R} )(¢4) in e®A4(IT)[In €]
is zero. Thus ¢4 = 0a 070,00 (id = (xF | RF))(¢a) = 0a(da) = 1. So Qfu # 0.
We have proven that o(u) =P, 0(S). Given that o(u)_ =P_ o(5), we deduce o(u) =Po(S). O

Remarks 2.32:

« Thanks to the tools of Section 2.3, we can compute exactly and very quickly the coefficients c}i‘fd_,ﬁ)’ ‘
and ci‘;};’e. Moreover, these coefficients depend only on ©, w and (po, 1, po, p1), but not on

nor precisely on the functions p and p.

« In the sums of Theorem 2.31, the indexes d and d’ satisfy d — d’ € Z N §Z. Indeed, on the one
hand d,d" € §Z*. On the other we have in (2.36a) that p’ € [0,p + d[py and p’ —d' € [0,p]py,
sod—d ={p+d—p)—(p— @ —d)) € N-NCZ (and likewise in (2.36b)). Note that the set
ZN §Z can be very small. If © € 7Q, then Z N FZ = bZ where © = w§ with (a,b) € N x N* and
ged(a,b) = 1. Otherwise, Z N §Z = {0}.

3 Construction of the asymptotic expansion

Equations 1.3-1.5 and Theorem 2.31 give the equations that the fields u, ¢, Up ¢ and S, , must satisfy. In
this section, we will build these fields according to those conditions. First of all, let us express the layer
fields with the far fields, so that only two types of fields remain to build. Let (i4,,) € R[Y]Y be the unique
sequence of polynomials s.t. for any n € N*:

U’ =0 u' = — o
Uj(0) = 1o and U’ (0) =0 (3.1)
Up(—1) =0 Un(~1) =0

23



Lemma 3.1: expression of the layer fields
Let us assume that the fields u, ¢ and U, ¢ are regular enough (we will check later that they are). (1.4)
implies for any (p,¢) € P x N and (z,Y) € A:

Upo(z,Y) = (02 + k)" Oyup—1-2n.0(2,0) - Un (Y). (3.2)

n=0

where this sum has a finite number of non-zero terms by the convention: ¥p € R\P,V¢ € N, u, , :=0.

Proof: There exists an increasing sequence (py,) s.t. P = {p,, | m € N}. So we can prove the result by
induction on p € P. For p =0, (1.4) states:

0% U(]’g =0 in A
ay U()/ =0 on I
on =0 on EA
so Up¢ = 0 for any ¢. It is coherent (3.2) (which is a sum of zeros in this case).
Next, for the inductive step, we assume that (3.2) holds for ranks smaller that p. (1.4) gives:

a%/UP,K = 7(85 + k%)Upr-Z = = Zf,,o:o(aﬁ + k%)n“ayu(z)—Q)—l—Qrz,é(x7 0) -Z/I,L(Y)
- — ETOLOZI((?% + k%)""ayup,l,gn,g(:c,()) “Up—1(Y) in A

OyUpe = Z—T OyUp—1,¢ on T
Upe= 0 on Y,
It is easy to see that > oo (02 4 k7)"Oyup—1—2n,¢(x,0) - U, (Y) is the only solution of this. O

We saw in Section 2 that far and corner fields possess singularities when r — 0, resp. r — oco. So
the usual variational frameworks are not sufficient to build these fields and we need to design new
frameworks. It is done in Sections 3.1 and 3.2. In both sections we start by introducing the natu-
ral space Hy,, in which an ad hoc variational problem is well-posed. Then we define a bigger space
H := Hy + xAD) = {u+ x¢ | v € Hyar, o € A(D)} that contains the singularities, where x is a
C™ truncation function in the vicinity of 0 (for u,,) or infinity (for S,,), and D € {Q,II}. Next we
determine the elements of Hy,, N x.A(D), which allows us to define on H the linear forms o4 associated
to the singularities. Finally we show that some model problems are well-posed in H.

Before we start, the following lemma is a tool to estimate the behavior at 0 and oo of functions of A.

Lemma 3.2: Let a < bin R, n € N*, (d;,£;);e,n) be n distinct elements of R x N, (fi)ieqi,n] €
(C([a,b],C) \ {0})" and:

@:(r,0) e Ry x [a,b] — Zrdi In‘r - f;(6).
i=1

Then there is an interval I C [a, b] with non-empty interior, ¢ € R% and 71,72 € R such that:

Vr e (0,m),Y0 € I, |o(r,0)] >cr™™ 4 and  Vre (ry,00),¥0 € I, |p(r,0)| > crmaxidi,

Proof: Let j € [1,n] be s.t. (d;,¢;) is maximal for the lexicographic order. Let I C [a,b] be a non trivial
interval on which |f;| is greater than a positive constant. Since -, rd ‘e - f(0) = o(r® In% r), we

have when 7 — oo and 0 € I: |@(r,0)| > r% In% r > r%. And we can similarly treat the vicinity of 0. O

We can apply Lemma 3.2 to any ¢ € Aq(Q) with (a,b) := (0,0), or to any ¢ € Ayg(A) with (a,d) :=
(—1,0() (replacing the variables (r,0) by (x,Y)). We can also apply it to 0,¢ and Jpp when ¢ € A4(Q)
and to 0, and Jy ¢ when ¢ € Ag(A).
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Definition: For any D € {II,Q,I',A} and ¢ € A(D), we denote degminp = sup{d € R | ¢ €
> gsaAq(D)} and degmax ¢ :=inf{d e R[p € >, Ay(D)}.

3.1 Existence and uniqueness for far fields-like problems

We denote Hy/*(T) the set of functions of H'/2(T") whose extension by 0 to 92 = I'U{(0,0)} U £g, is in
H'/2(09). Using Lax-Milgram theorem, it is easy to prove the following lemma.

Lemma 3.3: the Helmholtz problem in H'()
Let f € (HY(Q)) and g € HégQ(F). The following system has a unique solution in H!(f2).

polAu + w?pou = f in Q
u=g onl
u=0 on X

Let xo be a radial function of C>°(R?) equal to 1 in the vicinity of 0 and to 0 in the vicinity of infinity.
The appropriate space to build the far fields is H'(2) + x0.A(2). One can check that it does not depend
on the choice of xq.

Lemma 3.4: H'(Q) N x0A(Q) = xo Z Aq(Q).
d>0

Proof: The inclusion D is easy to check, so we focus on C. Let ¢ € A(Q) \ {0} be s.t. xop € HY(Q).
There is d € R, ¢1 € Aq(€2) \ {0} and @2 € >° 5 Aq(2) s.t. o = @1 + pa. If g1 were null everywhere,
then would so too o1 because @5, = 0. But we assumed the contrary, so dp¢1 # 0. Thus Lemma 3.2
implies that there is a non-trivial interval I C [0,0] s.t. [Ggp1(r,0)| = r¢ when 7 — 0 and 6 € I. Finally
10 (xop) € L?(2) implies that d > 0. O

Définition 3.5: For any u € H'(2)+x0.A(2) and d € —EN*, we denote o4(u) := 04(p) where p € A(Q)
is s.t. u — o € HY(Q) (see Definition 2.13 for o4(¢)). It does not depend on the choice of ¢ thanks to
Lemma 3.4.

Theorem 3.6: existence and uniqueness for a far fields-like model problem

Let f € (HY (), g€ Hééz(f‘) + x0A(T") and (s4) € C~8Y" with finite support. The following system
has a unique solution in H!(Q) + x0A(Q).

poldu + w?pou = f  inQ
u=gq on I’
u=0 on Xq
oq(u) =84 Vde —gN*

Proof: Let us show the existence first, and then the uniqueness.

Existence: Let g € HégQ(F) and ¢ € A(") be s.t. g = g+ xop. We look for the solution in the form
u =1+ Yoy with @ € H'(Q) and ¥ € A(Q). Let

o0

ot =R (B + T wdh) € A7)

n=0 de—GN*

(where ¢ 1= bq)0) and Y = T<>(yp"). Using Proposition 2.15 one can check by calculus the first system
below (see also Lemma 2.18 for a similar result). Then, the second system below derives from ¢ € A(),
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=9t — (id — T<2)(¢p") and deg A = —2 (by Lemma 2.16).

(oA + w2po)db™ =0 in Q (HoA +w?po)p € A(Q) N dgo Aq(Q2) = dz>:0 Aa(2)
1/11 =¢ onl “ Yr—p € AT)N 52 Ay () = dgg Aq(T)
w =0 on EQ

Yzg = 0
2t — _ TN* Q
oayT) = sa vd€ —5N 0q(1) = sq ¥d € —EN"

Therefore (oA + w?po)(xot) € L*(Q2) and xo (Y0 — @) € H)/?(T). Finally, thanks to Lemma 3.3, we
can take @ as the unique solution in H' () of:

AT+ w?pott = f — (oA + w?po)(xo®) in Q
u=g—x0 W —¢) on I’
u=0 on X

Uniqueness: Let u be a homogeneous solution. There is @ € H'(Q2) and ¢ € A(2) such that u = @+ xo¢.
Let ¢ := At + k2¢p. By Lemma 2.16, p € A(Q). Let us show that degp, ¢ > —2.

We denote d := degmin ¢ and ¢ := (A + kZ)(x0t). By Lemma 3.2, there is a non-trivial interval
IC0,0]st. whenr — 0and 8 € I: $(r,0) = p(r,0) = rd. Besides, p = —(A +k3)a € (HZ(Q))'.
Let us test it with ¢, : (r,0) — @(r, 0) 1972472 (1—yo(2'/r)) x(6) where ¢ > 0 and x € D(0,0)\ {0}
is everywhere non negative. Since ¢, € D(2):

) S}
@G= [ [ 76 rdodr S Gl Va0
o Jo
Let us assume by contradiction that d < —2. It is not difficult to check that when ¢ — 07:

_ Cc2 e 1 C4
Gz [ iz ad ole SIVGLe s ([
c32

_1
c12 4 q

L
NG

with some constants ¢; and Poincaré’s inequality. But it contradicts (@, (q) < |[¢qllar. So d > —2.

p2la—d=3) rdr) ’ <

1
q

Now let us show that degpin ¥ > 0.

Let us assume the contrary. Then there is d < 0, 11 € Ag(Q) \ {0} and o2 € > -, A(Q) s.t.
¥ = 11 + 1h9. Lemma 2.16 states that deg A = —2, so Ay € Ag_2(Q) and Ay € iq>d72 Aq ().
In addition, ¢ € >° o 5 A(€2) and A(Q) = D g Ag(§?) according to Lemma 2.8. So identifying
the coordinate of Ay + k31 = ¢ in Ag_2(Q) gives Ay = 0.

Moreover, ¢p = —iyr € H/*(T), s0 ¢r € 3. Ag(T). Hence:

Awle in Q
P1 =0 onXqUTD

By Proposition 2.12, it implies d € —EN* and ¢y = 04(1) ¢y. However, o4(1p1) = 04(¢) = 04(u) =
0, which contradicts ¢ # 0.

Finally, Lemma 3.4 implies xov € H*(£2), so u € H*(2). This means that u = 0 by Lemma 3.3. O

3.2 Existence and uniqueness for corner fields-like problems

Definition 3.7: the variational space V'
We define V := {v € H, (Q) | Vv € L*(Q1) and vjgq, = 0} and the norm [[v]|ly := [|[Vo| r2(q,)-
Here “vjgq, = 0” means that xo(%)v € Hg () for any R > 0, where xo(5) : (X,Y) — XO(%%)'

S llollv

=
L2 ()

147

Lemma 3.7: Any v € V satisfies ||v[|g1(an{x>r.}) S [[vllv and H
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Proof: We denote A := AN{X > R} and B := B(0, R.), and we recall that R. > 0iss.t. Q;\ B =1II\B.
Poincaré’s inequality gives for a.e. X > Re: [[o(X,)[[z2(—1,0) S [1Ovv(X,-)||L2(~1,0)- Integrating w.r.t.
X the square of this then gives: ||v||z2(a) S [0y v]lL2ca) < [[v]lv. So [[v]laray S llvllv.

Next, a generalized Poincaré inequality on circular slices of Q\ B gives for a.e. > Re: |[v(r,-)||2(0,x) S
10gv(r, )| 2(0,7) + |v(r,0 = 0)|. Then integrating w.r.t. r the square of this times 1

1+7r
g 2 20\ 2 r 2
/ Y dbdr < / 960)” g9 ar + / Y dr.
Jons (L+7)r Jons (L+7)r nel+r

Therefore ||$”%2(Q\B) s HVUHQLQ(Q\B) + ||UH2L2(F\B). But we know that [[v||z2m\ ) S [Vl a) S llvllv,
so |15 l2an\B) S [lv]lv. Finally Poincaré’s inequality in B also gives ||1+ [ z2(,nB) < [[v]lv- O

gives:

Lemma 3.8: the Poisson problem in

Let F: Oy - Cbest. (1+7r)F € L*(Q), and g € L>(I'N {X > R.}). The following system is
well-posed in V.

div(uV>S)

S

Sy =0+ — Sjy=0- =

HoOy S)y =0+ — p10yS)y =o- =

=F inQ\Tn{X >R}
=0 ond
0
g

onI'N{X > R.}
onI'N{X > R.}

Proof: The variational formulation of this problem is:

Yv eV, / uVS-Vv:—/ FU+/ gu.
of o} rN{X>Rc}

The left-hand side is coercive by definition of V. Lemma 3.7 ensures that the right-hand side is continuous.
Moreover it is easy to see that V' is complete. So we can conclude using the Lax-Milgram theorem. O

Let xoo be a function of C*°(R?) equal to 0 on B(0, R.) and 1 in a vicinity of infinity. The proper space
to build the corner fields is V 4 xo0.A(I1). One can check that it does not depend on the choice of yoo.

Lemma 3.9: V N x. A(Il) = {xoogo | @ € A(IT), degmax(@j0) <0 and degmax(pja) < —%}

Proof: The inclusion D is easy to check, so we focus on C. Let ¢ € A(II) be s.t. xoop € V. The same
method as Lemma 3.4 shows that degmax ¢jo < 0. And using that dy (X)) € L2?(A) we likewise get

degmax((ﬂ/\) < _%- ]

Definition 3.10: For any S € V + X A(Il) and d € ZN*, we denote 04(S) := 04(p) where v € A(II)
is s.t. S — Xeop € V. It does not depend on the choice of ¢ thanks to Lemma 3.9.

Theorem 3.11: existence and uniqueness for a corner fields-like model problem
Let f: Q1 — Cbest. (14+7)F € L*(), ¢ : I — C best. o € AQ) and g5 € A(A), and
(sq) € C8Y" with finite support. The following system has a unique solution in V + xo.A(II).

div(pVS) = F + xeop  in
S=0 on 0
0a(S) = 54 vd € ZN*

Remark: ¢ is not just an element of A(IT) because it may be discontinuous on I'.
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Proof: This proof is similar to Theorem 3.6. Let us show the existence first, and then the uniqueness.
Existence: We look for the solution in the form S = S + xoo¥ with S € V and ¢ € A(II). More precisely
we denote (using notation (.) from Definition 2.3)

1 1
= <—R3€/ o 85(‘/\7 Ho Ry o 8Y|[‘,Y=0+> (RA(QOQ) + fRag/ (o1a) + E Sq (j)d) e A (II)
H1 Ho H1 dE BN~

and ¢ := T>_2(¢~). By Lemma 2.19, we have the first system below. Then, similarly to the proof of
Theorem 3.6, one can check that it implies the second system below.

(1oAY =)o € AQ)N 30 Aa() = >0 Au(Q)

HoAp~ =¢ in ) d<—4 d<—4
A~ =¢ inA (AY =)y € AN N 32 Aa(A) = 30 Ag(A)
[¢"lr=0 onT . Wy = 0 d<—2 d<—2
oy~ lr=0 onT oy vlr € AT)N 3 Ag(D) = 30 Ag(D)
- =0 on Xq UX\ " 0 d<—2 d<—2
“)=s4 Vde EN* et
ga(p™) = sa €% oq() = sa Vd € ZN*

where [...]p stands for the jump on I'. Therefore (1 4 r) [div(uV(xeo?®)) — Xoop] € L*(€1) and

[110y (Xoo®)]r € L2 (TN {X > R.}). Finally, thanks to Lemma 3.8, we take S as the unique solution in
V of:

div(u Ng = F + Xoop — div(uV(xoo®))  in Q1 \ (N{X > R.})
S = on 0
[1dy Slr = [N3Y(Xoo¢)] on I'N{X > R.}

Uniqueness: Let S be a homogeneous solution and let us show that S = 0. There is S € V and ¢ € A(Q)
s.t. S =S + Xoo®. The proof decomposes into the following steps, all proven by contradiction.
1. degmax(Athq) < —2: Like in step 1 of the uniqueness proof of Theorem 3.6, we test the inequality:

Alxoot) - / AS .= / VS-VC<|clv Y eD@)

Q
with {4 @ (7,0) = A(Xec®)(7,0) - poa—2d=2 X0(2’1/q7") x(0) when ¢ — 0%, where d := degmax (A1)
and y € D(0,0) \ {0} is everywhere non negative.

2. degmax(Av)) < —l : This step works like the previous one.

3. degmax [0y Y]r < —%: Let d := degmax[udy]r and ¢ = [udy (xoot®)]r. We have VS € L?())
and, by steps 1 and 2, div(uVSs) = —div(uV(xee®)) € L*(). Thus ¢ = —[udy SIr € Hil/z(I‘).
Like previously, we test it with (; : © — ¢(z ) a: —a=2d=1y(271/9g) when ¢ — 0F. If d >
get (0, C)r 2 ¢ and [[Cqllmizry S ICqllmry S 7, which contradicts (@, Co)r < gl mavz(ry-

4. degmax(¥)a) < —5: Let d := degmax(¥)a). There is ¢y € Ag(A) \ {0} and ¢ € Zq<qu(A)
st. YA = 1 + ¥2. By Lemma 2.16, deg(@im) = —2, deg(dy|r,y=0+) = —1 and deg(&%m) =
deg(Oy|r,y=0-) = 0. In addition, Proposition 2.8 states that A(D) = g Aq(D) for any D €
{A,T'}. So by taking the coordinates of Atx in Ag(A) and of [udy¢]r in Ag(T"), we get if d > —%:

{ 832/1#1 =0 in A
Oyry=o-v1=0 onT
But since 9|5, = 0, it implies 11 = 0, which is contradictory.
5. degmax(¥)a) < 0: We denote d := degmax(¥)). There is ¢y € Ag(Q) \ {0} and v € 37 _;Ay()

s.t. Yo = Y1 + . Since deg(A|q) = —2, taking the coordinate of Avq in Ag_2(Q) and of ¢ in
Ay(A) gives if d > 0:

27We

{Awlzo in

wl =0 onI
By Proposition 2.12, it implies d € §N* and 11 = 0q(¥1)dq. But 04(¢1) = 0a(¢)) = 0a(S) = 0.
Finally, Lemma 3.9 implies xoo% € V, so S € V. So the uniqueness in Lemma 3.8 implies S = 0. O
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3.3 Construction of the fields

4 R
Definition 3.12: For any (p,¢) € (R\P) x N we denote by convention u, ¢ =0, U, =0and S, = 0.
We define by induction on p € P that for any ¢ € N:

« Upe: (,Y) €A D (82 + k)" Oyup-1-2n,0(x, 0) - Un (V). (3.3)
n=0

e U,y is the unique solution in H*(Q) + x0A(Q) of :

MOAup,é + WZPOUp,Z = fs 6;0,0 6@,0 in Q
up7£ = O on EQ
Up,e = Up,e on I 3.4)

¢
oa(upe) = g E E ci‘d_,i,_p,,z_é, o (Syry)  Vde -GN
p’'€[0,p+dlen  d'eFZz* £'=0
p'—d'€[0,plzn

o S, is the unique solution in V' + xoo. A(II) of :
div(pVSpe) = —w?p Sp_a in O
Spe=0 ¢ on 9
Ud(Sp,f) = Z Z Z Cg;;jlp_p/,@_@/ Oqr (ug/,@/) Vd € %N* (35)

p'€[0.p—dlen  d'eZz* €'=0
p'+d €[0,p]en

We will show that these fields are well-defined at the same time as the following proposition.

Proposition 3.13: For any (p,¢) € P x N there exist ug’g € A*(II) and Sp5, € A~(I0) s.t., for any d € R,
w, ¢ = Tea(uy ;) + 05(r?) when r — 0 and S, = T>a(S55) + 05(r?) when r — oo.

Justification of Definition 3.12 and Proposition 3.13: Let us show by induction on p that for any ¢:

(H1) upe, Upe and S, ¢ exist and are unique,
(H2) Proposition 3.13 is true at rank (p, ¢),
(H3) Vm € N, 07"0yuy, r € Hg(T') + x0A(T) (additional property that will be useful during the proof).

Since all fields are null for p < 0, the initial case is trivial and only the inductive step remains to prove.
Let p € P. Let us assume (H1)-(H3) at any rank p’ < p and prove it at rank p.

1. Existence and uniqueness of the fields:

o Upy¢: By (H3), the Oyu, gr with p’ < p are all in H]J\.(T') for any m € N. So the functions
(92 4 k)" Oytp_1_2n ¢r are continuous and Formula (3.3) is well-defined at any point of A.

e u,y: By (H2), S, exists for any p’ < p and ', so the coefficients o4 (S5 /) are well-defined.

D, p’ L 'L
Thus, (3.4) defines well o4(up ¢). And we have: o4(up¢) # 0= [0,p+dlpy # & = d = —p, so
(0a(up,e))de—zn+ has finite support. Next, we apply Theorem 3.6. Its hypotheses are satisfied,

because (H3) implies:

Uper = 3 (02 + k)" 0ty 1-20,0(2,0) - Un(0) € HG(T) + x0AT) C Ho)*(T) + xoA(T)
n=0
o Spe: Similarly, (H2) implies that (¢4(Sp.¢))ae zn+ is well defined and has finite support. Next,
we apply Theorem 2.23. We need to check its hypotheses, i.e. there is f : 3 — C and
@ : I = Cst. w?pSpor=F+Xxcip, (L+7)F € L*(), g0 € A(Q) and g5 € A(A).
By (H2), there is ¢ € A(I) s.t. Sp—a, = ¥ + 0p(r™*). So it suffices to set ¢ := w?py) and
Fi=w?pSy_2.0— Xoop-

2. Asymptotic expansions:
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e u,¢: We use Theorem 2.22. To do so, we must check that there is gr € AT(T") and gy € AT(A)

T Vd e R { 85 Upe = T<a(ga) + 0p(x?)  in A
’ Oy Up iy —o- = T<algr) + 0o(z?)  onT
Given the definition of U, (3.3) , it suffices to show that, for any p’ < p there is h € AH(T)
s.t.: Vd € R, Oyt or = T<a(h) + 0s(x?). But it derives from (H2).
o Sp: Similarly, we use Theorem 2.23 thanks to (H2).

3. Let m € N. The asymptotic expansion of u, implies: 3h € A(T'), 070yu, qr = h + 0s(x'). So
there is 29 € RY s.t. 97"Oyupr — his H on I'N{z < 20} = (0,20) x {0} and it vanishes at
0. To prove (H3) at rank p, it remains to show that 97'0yu, ; € Hl((“‘—o o0) x {0}). To do so, it
suffices to get u € H™3((£2, 00) x (0, 2)) with § := dist(supp(f),T'). But it follows from classical
elliptic regularity because on one side p1gAuy ¢+ w?pouy e = 0 on (22, 00) x (0,4), and on the other

4 b
Up o = Upgr € H’”Jrg((g”0 o0) x {0}) by (3.3) and (H3). O

Proposition 3.14: Vp € P,3n, € N,V/ > n,, (up¢=0and Uy, =0 and S, =0).

Proof: For any (d,d’,p) € (5Z*)* x P, one has (id — (7} | R}))(¢a) € AL (II), so by definition of AF (II)
there is n (depending of d, d’, p) s.t. for any £ > n: 445 , = oqomya g0 (id— (7 | RY))(¢ar) = 0. The

same is true for the coefficients cdsgu ¢~ Finally the result follows by induction from Definition 3.12. O

Proposition 3.15: Ansatz 2.25 and the matching condition of Definition 2.27 is satisfied.

Proof: First let us note that for any (p, ¢)

oa(upe) = ad(u%E) when d € —EN*  and  04(Sp¢) = 0a(S5

o) when d € gN*. (3.6)

where og(up, ), resp. 0q(Sp.e), is set by Definition 3.5, resp. 3.10, whereas Ud(ugl) and O’d(S;?Z) rest on
the definition of o4 on A*(II) at page 15. Indeed we have u, , — Tél(ug,tz)lﬂ = 0p(r!), so Xo (upe —
T<i(u) ,)jo) € H'(Q) which implies by Definition 3.5 that o4(u,.¢) = 04 (Tg](uzehg) = 0q(u) ;). Like-
wise for Sp p.

Now, given Proposition 3.14, to prove Ansatz 2.25 it suffices to check that, for any (p,£), u®

L
Zdep_p Ay (IT) and S5 € Zdep_P Ag(IT). Let us show it for ugj only, using induction.

S

Since all fields vanish for p < 0, only the inductive step is non-trivial. (2.25) states that

oo

ug,e = Z(—kz% RA)" (Ra§ o (8§|A + k%)(ugﬂ,e) + %RN 0 Oy|r y=0+ (ugq,e) + Z Ud(ug,e) ¢d)-

n=0 de 5z~

=A
Since deg Ra € N, it suffices to show that the big brackets belong to Zde?—p A, (IT). This is true for
A using the induction hypothesis and deg Rpz = 0, deg(@2 A) = —2 and deg(RN 0 dy|py—ot) = —1
(see Proposition 2.14 and Lemma 2.16). It remains to show that Vd € 77, O’d( ) F0=decP-p.

This last assertlon holds because on one hand ZN* C P — p, and on the other (3 6) and (3.4) imply:
Vde —§ *,Ud( )#O@ad(upg);é()ﬁ[[Op—|—d]]1p>N7é®:>d€IP P.

Finally (3.4)—(3.5) and (3.6) show that the matching relations of Theorem 2.31 are satisfied, and we can
apply Theorem 2.31 thanks to Ansatz 2.25. Thus the matching condition of Definition 2.27 is satisfied.O

3.4 Practical way to build the far fields

This section shows how to build directly the far fields without computing the layer and corner fields.
Thanks to the explicit expression of the layer fields in (3.3), the layer is replaced by boundary conditions
on I', while the corner fields are replaced by corner conditions depending on corner profiles.
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- N
Definition 3.16: corner profiles

Let d € gN*. We denote (San)nen the unique sequence of V' + xoo A(II) s.t. for any n € N*:

div(pVSa0) =0  in div(uVSan) = —w?pSypn_1 in O
Si0=0 on o and Sin=0 on 0
04(Sa0) = 0a,q Vq € N 04(San) =0 Vg € gN*

And for any (d,n) we denote Sg°, the element of A~(I) s.t. Vd € R, Sgn = T>a(S3,) + 0a(r?).
These objects are well-defined thanks to Theorems 3.11 and 2.23. The proof is the same as for

Definition 3.12 and Proposition 3.13.
N J

Using (3.5) and the uniqueness in Theorem 3.11, one can easily show by induction on p:

Y(p,0) eEPXN, Spo=>. > 0d(Sp—2n,0) San (3.7)

n=0 de ZN*N(p—2n—P)

Thus, the same holds replacing Sy ¢ and Sa,, by resp. S5 and S35,
For any (d,d',p,/) € (—gN*) x §Z* x P x N, we 1ntroduce the corner coefficient ¢ ,, we have

u—u 00 S<+u
Cd,d'p,e E E E E Ca.d, dl P10 Ody (SdQ,n) Cdy,d',ps 0o (3.8a)

(p1,p2)EN—d)X (N+d') di€FZ" daeZN" (£1,05)EN?
neEN, p1+p2+2n=p  pi1+di€EN pidzeN by1+la=1

= > oYY e o (SEL) e, (38D)

(p1,p2)E(N—d)x (N+d') die—EN" da€ZN* (¢;,05)eN?
neEN, p1+p2+2n=p p1+diEN po—da €N £ 4Llr=L

u«—S S+u
* Z Z Z Cd,dy,p1,61 " Cdy,d',pa,bs (3.8¢)

(p1,p2)€(N—d)x (N+d") diegN” (£1,62)eN?
pP1+p2=p p1+diEN, pa—di1EN L1 +Lo=0

(the two given formulas are equal because, when d; > 0, o4, (Sg;n) = 04,(Sdy,n) = Ody.dy Ony0). Like
in Remark 2.32, we have d — dy,dy —d' € ZN §Z in (3.8a). Thus, if d —d' ¢ Z N FZ, line (3.8¢c)
vanishes. Moreover, for any (p, £), we denote ug,e = ug 0 € AT(2), which satisfies: Vd € R, u,, =

—0
ng(ug’z) + Oa(’r'd).

Theorem 3.17: direct construction of the far fields
Let (T5)nen be the sequence of Taylor coefficients of the tangent: Vi € (=%, %), tant = Y~  T,t*"+1.
(up.¢)pep.cen is the unique family of H*(Q) + x0.A(Q2) s.t. for any (p,£) € P x N:
/’LOAup,é + WQPOUp,Z = fs 61)70 6@,0 in Q2
Upp = 0 on EQ
— L
0
Up, = Z ,LT T - (82 + k%)nayupflf%,@ on I
1
= [
= XY S e na) e g
p/E]P, d/E%Z* 0/ =0
p—p'€P+35 p'yd’ €[0,p+d]py

Proof: Uniqueness follows from the uniqueness in Theorem 3.6. So it suffices to prove that the far fields
satisfy the equations above.

Boundary condition: By (3.3) and (3.4), we have

Up,e(x,0) = Upe(2,0) = Z(dj + k‘f)nayup7172n,l/(w7 0) - Un(0).
n=0
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So we need to calculate U, (0). Let U: (Y,t) — Y07 (U, (Y) t>"*1. The definition of (i4,,) (reminded in
(3.9) below) formally implies a differential equation on U given in (3.10).

Ul = —Up_1 03U = —t2U
Vn €N, UL(0) = L05, 0 (3.9) Oy Upy_o = Uj(0) - t = ot (3.10)
Un(—1) =0 Uy=-1=0
Thus U(Y,t) = £° % = (Y, t). This is formal, as we do not know whether the series U converges.
However, there i IS a sequence of polynomial functions (®,,) s.t., for any (Y,t) € (—1,0)x (=3, 5), o(Y,t) =

S0 o @n(Y) 12T (because ¢ is odd w.r.t. t). Since ¢ satisfies (3.10), (®,,) is a solution of (3.9). But
this solution is unique, so (®,) = () and U = ¢. Hence Vt € (=5, %), >0~ U (0) t*" 1 = “O > tan(t).

w
That is to say Vn € N, Uy (0) = £2 T5,.

Corner condition: For any (d,p, /) € EN* x R x N, let Sdp/ =835,2 if § € Nand £ =0 and Se° e =0
otherwise. For any family (x,.), we denote z,. := (z,,) the famlly itself. We also denote * the
convolution product w.r.t. (p,£). Let d € —gN*. We have

oa(te.) = D S x 0, (53) by (3.4)
dle%Z*
- z c:l‘“(;{?o . * Z O—dl (ggj,o,-) * UdQ (S07') by (3'7)
dieEz dr€ ZN*
= Z CEZ?-,. Z adl Sdz, Z Cdz,d'o . * O.d/( ) by (35)
dieG5L* d2€ GN* d'eFL*

- S (X X . <s>e)<>

d'€ZT* Ndi€ET doc SN*

= D aut.orow(ul,)

deszr

: ~u+u L u«S 0o S<+u
with &% = D DRED DD SO VAT T () RYCr Aty

(p1,p2),nEN diEFZ* d2€FN* (41 £5)EN?
p1t+p2+2n=p b1 +lo=0

Moreover, for any R € R , we have deg R € N and deg_R +deg 4R € N (see Figure 9). So by definition
of the coefficients c*<9 and e

o 498 L #A0=p+deNandp +d €N,
° ngyd’mzlz #0=p2—dy €Nandp, —d €N.

This implies that ¢4%Y, , = ci", ¢ for any (d,d', p, ).
Furthermore, those conditions on (prg, d1,dz) imply that, if ¢§", , # 0, then:

e p=P1+d)+2n+(pa—dy) —d+dy e N+ IN* + IN* C P+ 3
eandp+d—d =(p1+d)+2n+(po—d)€eN.

This and the property (o4 (uy ) # 0= p' € P and p’ + d’ € P) explain the sum indexes of the formula
given for oq4(up, ) in Theorem 3.17. |

Example: Using Theorem 3.17, one can check that u, e ¢ vanishes for any /. In addition %’r > 1, so the
first non-zero far fields are ug ¢ and u; ¢ and they satisfy

/LOAU070 + w2pou0,0 = fs in /LOAULO + w2p0u170 =0 in
ugo =0 on Xq urog=0 on Yo
’ and ’
Up,0 = 0 onI’ Ui,0 = %ay’U,(Lo onI
oa(upe) =0 Vd e —ZN* oa(u10) =0 Vd € —IN*
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4 Error estimates

Let x € C*(R?) be equal to 1 on B(0,1) and 0 outside B(0,2), and, for any n > 0, X, : © X(%) We
denote A; := (—¢,1) x R} and Il := QUT U A, (defined similarly as II at page 6). We define on I, the
following variant of the far-and-layer fields u, ¢

R | upe(z,y)  inQ
up,l(xvy) T { Up,e(ﬂﬁ, g) in AE

We also denote, for any p € P, n, :=max{¢ € N | u,, # 0 or U, , # 0 or Sy, # 0}.

Let us define the approximate global field at order P € R as follows for any ¢ small enough

V(2,y) € Qe uep(e,y) = (1= xy(wy) D e’l'cus (v,9) + xy(z,y) Y l'eS, (2,1
pEPN[0,P] pEPN[0,P]
Le0,n,] Le0,n,]
where 1) := /e. Note that (1—x,(z,y))u; ,(z,y) is well-defined on Q. when n > R, since II.\ B(0,eR..) =
Q: \ B(0,eR.). We will see as a consequence of Theorem 4.2 that u. p € H'(Q.).

The matching zone is Q. N C,, where C,, is the annulus C,, := B(0,2n) \ B(0,n). Letting n = /¢ makes
the matching zone tend to 0 w.r.t. the far fields (because n — 0 when £ — 0) and to infinity w.r.t. the
corner fields (because 2 — oo0). Thanks to the matching assumption, we can state the following first
error estimate concercing the error in the matching zone. We use the symbol < for majorations valid up
to a constant independent of ¢.

Lemma 4.1: Let P € R;. For ¢ small enough, we have

Z Zsplns u;, ,(z,y) — Spe(%,

pePN0,P] £EN

P
£
Sez .

mlm

)|

HY(2.NC,)

Proof: We will compare u;,e and S, ¢ in ), to their asymptotic expansions at 0, resp co. Let us denote:
* Wep =D cpno,p] 2reNE’ In‘e u; , in Il
o Se,P =2 ,cpn(0,P] 2oten E In‘ eSpe(Z,4) in Q.
0 .
* Wip = Ypernio,r) Leen e In'e {Ti_pgzﬁﬁ;g y)) E 5\2
° SEL,\P = ZpEPﬁ[O,P] D ren€” In‘e - T>pr(S°O )%, %) in IL.
(see Definition 2.21 for T,). We split the estimate into three parts that we will majorize separately:

lue,p — Se Plla(@.ne,) < lluep — uéP”Hl(QEﬁCn) + [[ufp = S2plmr (one,) + HSg‘,‘p = Se pla (.00,
In addition, we will split some of the norms |...|| g1 (.nc,) into ||. . .[[z1@nc,) + |- -ll#1(Acne,)-

L. |juc,p — uéPHHl(chn) : By Proposition 3.13, for any (p, £) we have u, s — Tgp,p(ug‘[) = 0y(rf—P)
in © when 7 — 0. By Definition 2.20 of 0y, it implies u, ¢ — T<p_p(ul) ,) = O(rF~7) = O(r"P71)
and Vuy ¢ — T<pp(u) )] = O(P~P~1) uniformly in 0. Thus:

Np

Hua,P - uéPHHl(QﬁC,,) < Z pr In‘e - ||Up,z - TgP—p(ug;f)”Hl(QmC”)
pePNI0,P] £=0

Tp 1/2
S Y Yem ( [ g m)
pePN[0,P] £=0 J B(0,2n)
S Z ZSI’ In‘e - nt—p
pePN[0,P] £=0

< b2 because e? < 7P and In‘e <7

-2
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2. |Juep — u;‘}PHHl(AEan) : Similarly, Up ¢ — Tgp_p(ugyé) = 0p(zF7P) in A when x — oco. Thus

¢ Upet— TSP—p(ug,e) = O(a"77) so Up,e(z, £) — T<P—p(ug,e)(gjv 4 =0@"")
o 0x[Ups = Tp—p(uy )] = O 7P71) 50 0:[Upe(w, ) = T<p—p(uy )(2, )] = O(c~'2P7P7)

(
o Iy [Upe—T<p—p(u) )] = O="77) 50 dy [Uye(x, %) — T<pp(u) ) (z, ¥

which are all O(e~!z”~P~1) (uniformly in Y'). Hence:

p 1/2
luep —wlpllmmane) S > Y e ! / 22P=p=1) 4 dy
7 [0,2n] % [—¢£,0]

pEPN[0,P] £=0

< E Esplnse -%P*p*%

pePN[0,P] £=0

< P2 because £ = 7? and In‘e <7

1
2
3. ||Se.p — "EAPHHI anc,) : Similarly S, — T, p(S5%) = 0a(r?~F) in Q when r — oo, so S, —

Tsp-p(S9) = O(rp Py and Vix,y)[Spe — Tsp— p(S;f’é)] = O(rP=P=1) = O(rP=F) uniformly in 6.
Since V() =€~ V(X)y), we deduce:

||SE,P*S;L}p||H1(ann)< Z Zsplns H —Topp(S55)] (2, 2)

pePN[0,P] £=0

‘Hl(QﬂCn)

np

< Plnfe e " g -
S Y Yt (/Rg\m,,,)(e) )

pePN[0,P] £=0

p
SO D et P

p€ePNI0,P] £=0

< P2 because & = 1? and In‘e <7t

~

4. ||Se.p — S;}PHHI(AEQC") Spu = Top-p(S59) = 0o(XP~F) in A when x — 0, so:

® Opl— T>p—P( 2@) = O(XP~F)
. 6X[ T>p P ] O(XP=P=1y = O(xP~P)
. 8}/[5177@— ] o(xr—F)

uniformy in Y. Hence:

|Se,p — S;}P”Hl(AEﬂCU) < Z ZEP In‘e H [Spe — Top—p(Sp)] (2, 4)

pEPN[0,P] £=0

" /
< Z Zep Infe. et (/ (E)Q(pip) d:r:dy)1 2
[n,00[x[—e,0] *&

pePN[0,P] £=0

‘Hl(AEﬂC’n)

np
— 1 _
< E E ePInfe . PPl gagp= Pt
peP[0, P] £=0

3
< P2 because ¢ = n° and In‘e <=2

Nl=

5. Huép — S;‘}PHHl(QEan) : Let us show that this norm vanishes. It suffices to prove that in AF (II):

Yo Y ewle Tep_,(uf)) ( S Y emle 1, P(sp,)) (4.1)

pEPN[0,P] £EN pEPN[0,P] £EN

where H. is defined in (2.29)-(2.31), and € and In e denote the algebraic indeterminates of AZX (IT)
(we denote them differently from Sections 2.1 and 2.5 to avoid confusion with the real number ¢).
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For any (p,d) let @, q be the coordinate of 37 ,€? In‘e ugl inNAd(H)[ln ¢] and S, 4 be the one of
2o In‘e 555 Moreover, for any d and ¢ € Aq(IT)[Ine], let H_'(p) == eH ' (p) € Aa(IT)[Ine].

Then:
)= T i, = Hel(z )y epgp,d>

p<Pd<P-—p p<Pdzp—P

=D Fha=) Y HIS)
p<P p+d<P p<Pp—d<P

DI IR WE S S ATCN
p<P p+d<P p+d<P p<P

=V(pd)st. p<Pandp+d< P, tpq=H"(Spraa) (4.2)

because two formal series coincide iff their coordinates coincide one by one.

But Proposition 3.15 shows the matching condition Y €1, 4 = H_* ( > epgpvd) = S PH N (Spiaa),
p,d p,d p,d

which is equivalent to: V(p,d), @y q = HZ " (Spra.a). Thus we get (4.2), and then (4.1). ]

Theorem 4.2: global error estimate
For any P € Ry we have |ju. — ugJaHHl(Q )= o(c¥72).

Proof: Let 7. p := u. p — u.. It satisfies, for some functions f. and g.,

div(peVre p) + w?perep = fo in Q
re,p =0 on 082
Te,ply=0+ — Te,ply—0- =0 onT'N{z>n}
109y Te ply—o+ — H10yTe ply—o- = ge on I'N{z >n}

As for (1.2), this problem is well-posed with a stability constant independent of e:

[re, Pz S Ifellrz.) + ||96HL2(1"0{90>7]}).

2 _ P-4

To get our error estimate, it suffices to show that || 2|12 + ||gellr2 <eT 2 =17

Estimate of || f||L2: We denote:

o Pl sy 3
e U pi= ZpEIF’ﬂ[O,P] ZZeNE In eu,,1m 11,

¢ z .
* e, P = Zper[o,P] D en €’ In’e Sp (£, L) in Q2

e and D, : u+ div(ueVu) + w?p.u the differential operator of Helmholtz’s equation.

Since D.u. = [ by definition of u., we have

fe = DETS,P
= Ds((l - Xn)ue,P + XnSs,P - Us)
= ((1 - Xn)Daue,P - f) + XnDESE,P + [D€7 XT]](SE,P - ue,P)

where [.,.] is the commutator. Let us estimate these terms one by one.

1. For € small enough, 1 — x, is equal to 0 in B(0,eR.) and 1 in supp(f), so (1 — x,)D-u. pjo =

(1= xn) (oA + w?po)uc, pio = (1 — xy) f = f.
Moreover, using that 103Uy = — (1102 + w?p1)Up—2 ¢ for any (p, ), we get in A. \ B(0,eR.):

Daue,P = (/JlA + W2p1)u£,P
= Z Z e?In‘e (1102 + w?p1)Upe

pePN(P—2,P] £eN

S N i me > (02 + k)"0 up—1—on,e(w,0) - Un (L) by (3.3)

pePN(P—2,P] £eN neN
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Since U,, € L>=(—1,0) for any n (see (3.1)), we deduce:

» L(p—1)/2]
1.0 n
0= x)Peteplran S > D Y e e @2 4+E) Byt 1 am el paongasyy)
pEPN(P—2,P] £=0  n=0
Let us show that, for any p, £, m, [|07"0yup vl L2rnfessy) S0P (4.3).
o The proof of Proposition 3.13 shows that 97'0,u,, € H(T) + x0A(T) for any p,¢,m. So
105 0y up oir [l L2 (P {a>1}) < 00
By Proposition 3.13, 9yu, gr = 8yT<7p7%(ug’e) + 0p(z7P73) when # — 0, and Ansatz 2.25
is satisfied, thus Tg_p_;(u0 ,) = 0. SO' Vm € N, 07" Oyuy or = O(z™P=2=™) when z — 0. It

implies ||07"Oyup ol 2 (rafn<o<iy S0P

Hence:
np . L(p—1)/2]
(1= X)) Dette Pl 2(a.) S Z Z€p+7 Infe Z n—(p—1—2n)—2(n+1)—1
pePN(P—2,P] £=0 n=0

p

1 —p—

< E E Pt Inle . P2
pEPN(P—2,P] (=0

/i because In‘e <7t

So [|(1 = xn)Deue,p — fllrzia) SnP%

2. For the second term of f., (3.5) implies that D.Sc p = > cpr(p_2,p] Dren " In‘ew?pS, . But
by Proposition 3.13 and Ansatz 2.25: V(p, ), S, ¢ = O(r?). Thus, using that p is bounded and
[1Sp,e(Z5 D)2 @.nB(0,20)) = € 1Sp.ell22(01nB(0,2n/2))> We get

IXnDeSepllzzeny S D>, D e’In‘e-e|Spelle@inboznse)
pEPN(P—2,P] =0

N Z Z€p+1ln£ ( )pH

pePN(P—2,P] £=0

<pP=4 because In‘e <773

3. Using that [|Ax, |2 + |Vxyllze = O(n2), the last term of f. satisfies

I[De, xnl(Se,.p — v p)llz20) S |1AXy - (Se,p —ue p) +2Vxy, - V(Se.p —uc p)|l 200,
S072Sep — e Pl @.nB0.20)\BO.))
<Pt by Lemma 4.1.

Estimate of ||g.||z2: Without loss of generality, we assume 0y x,r = 0. (3.5) implies that o0y Sy, ¢y —o+ =
P10y Sp gy —o- on I' N {X > R} for any (p, £). Thus we have on I' N {x > n}:

Je = Moayrs7P|y:0+ - M13y7"s,P\y:0*

=Xn * (H00y e, ply—0+ — 110y U Ply—o-)

= Xy Z Zep In‘e - HoOy Uy gy—o+

pePN(P—1,P] teN

By (4.3), we have that ||0yu, ¢rll2rnizsn)) S n P! So l9ell 2 (0rgasny) S nP =4 since In' e <n 2 O

Remark: Theorem 4.2 can be improved to |u — ue, p||g1(o.) = o(¥/?). Indeed with the same nota-

tions as the above proof, one can show that, for any (p,f) € P x N, ||(1 — Xn)u;’ZHHl(QE) < 9P and
X0 Sp.ell (o) S n~P. Therefore:

P
2

).

Ire.pllmey S lreprallmen+ Y. D ePIn‘e- (1= xp)us olm o) + IxXaSpellzr o)) = ol
peEPN(P,P+4] LEN
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Proof of Theorem 1.1: It follows from Theorem 4.2 applied at order 2P + 4 and from the fact that, for
small enough €, 3° cpnio2p) 2 ren €7 In‘cu, ¢ and u. 2p coincide in Q\ B(0,6):

Z Z“p In® € Up.¢

pEPN[0,P] £EN

Sllue —veopiallmoy + Y, D" n‘elluyllm@\so.s)
HI(Q\B(0,9)) pEPN(P,2P+4] LEN

= o(e?) + o(eh).

Remark: An alternative way of stating the error estimate is:

Ue — E g splneupg

pePN[0,P) LeN

= 0(e" In"e) with n :=max{¢ € N| up, # 0}.
H(Q\B(0,5))

A Appendix: proof of Lemma 2.8

By Definition 2.6, we already know that the formulas to prove are true replacing @ by Y. So it suffices
to show that those sums are direct.
1. Let us show that A(Q) = @ cp Aa(Q). Let n € N and, for any j € [1,n], d; € R and ¢; € Aqg, ().
We assume that di < dp < --- < d, and Y7, ¢; = 0. Let us show that Vj € [1,n], ¢; = 0.
Let 6 € (0,0). By definition of Ag,(2), for any j € [1,n], there is Py; € C[T] s.t.: Vr €
R%, ¢;j(r,0) = r% Py j(Inr). Let us assume by contradiction that: 3j € [1,n], Pp; # 0. Let
jo = max{j € [1,n] | Py; # 0}. Then 0 = Y"1, Nigi(r,0) ~ r%oPp ; (Inr) when r — oo, so
Py j, = 0. This is contradictory, so: V0 € (0,0),Vj € [1,n],Vr € R, ¢;(r,0) =0.
2. By the same method, one can show that A(D) = @ cp Aa(D) for any D € {II, T, A}.

3. Now we will prove (2.7). Let d € R and I := {(¢,k) € Rx N | ¢ + k = d}. Separating real and
imaginary parts, it is enough to show that:

Aad(Q)NC°(QLR) = GB {2+ S[(az)?az" P(log(az) )] | P € R[T] and P(q,k, P)}.
(q,k)el

Let, for any (¢,k) € I, P, € R[T] and ¢, : z + S[(az)?@z"P, ;(log(az))]. We assume that
P(q,k, Py 1) holds for any (g, k) € I, that the P, ; are all null except for a finite number, and that
> (a.kyer Pak = 0. Let us show by induction on m := maxq,k)er deg P,k that: V(q,k) € I, Pyr =0
(which implies in turn: V(g, k), ¢q% = 0). We initialize at m = —oo, i.e. (V(¢,k), Py = 0), which
is trivial. Thus, only the inductive step (m € N) remains to prove.

To do so, we first note that in Q:

=r Y ok 0)= D S[EHEOP, (Inr +i(6 - O))] (A1)
(¢.k)erl (g,k)eT

By applying rd,., we deduce: 0 = Z S[ei(q_k)(g_@)P;k(lnr +1i(0 — 9))].

(g,k)el
For any (g, k) € I, let us define (note the switch of indexes at line 2):

Pl if g ¢ N
Qq.ic == P(,‘/(,k — Pg’[’k(O) ifgeNand g <k
P~ P ,0) ifgeNandg>k

Then (V(q,k) € I, P(g,k,Qqx)). Since S[(az)?az"] = —S[(az)* @z (and it is null when q = k),
the previous equality rewrites as

0= Sl(az)?az*Qy(log(a2))].

(g,k)el

Then, by induction hypothesis: V(gq, k) € I, Q¢ = 0. This means for P, j that:
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e Ifg¢N, then P/, =0.
e IfgeNand g #k, then P,; =0and P, ,(0) — P (0)=0 (A.2).
e IfgeNand g =k, then P, =0.

So (A.1) reduces to :

0= Y Sl RO=OIP, 1 (0)] + 1gen - S[e!@HE=O P! (0)(Inr +i(0 — O))]

(q,k)eI
= ) Lganor gk - S[ETHE=OIP, 4 (0)] by P
(g,k)el '
+ L(geN and g=k) - S[THO=OI P! (0)(In7 +i( — ©))]
+ L(geN and g>k) - S[THE=OI P (0)2i(6 — ©)] by (A.2)
= Y Lo gon)  Pakl0) -sin((q — k)(0 — ©))
(q,k)eI

+ 1(q€N and g=k) ° Pq/ﬁk(o) : (6 - 8)
+ L(gen and g>k) - 2P, (0) -sin((¢ — k)(0 —©) + 5) - (6 — ©)

The functions of 6 present here are linearly independent. So the coefficients P, 4 (0) and P, ; (0) are
all zero. This concludes the proof. O

B Appendix: asymptotic behaviors w.r.t. r

In this section, we prove Theorems 2.22 and 2.23. We will use Sections 3.1 and 3.2 which are after
Theorems 2.22 and 2.23 in the paper, but are independent of them.

B.1 Proof of Theorem 2.23: asymptotic behavior for corner fields-like prob-
lems

The proof relies on the Kondratiev theory, usually used to analyse singularities of solutions of elliptic
equations, see [25, 27, 11, 13, 26]. We use it in a way that gives an expansion in A™T(II).

First we introduce the variables (t,6), defined as (Inr,0) in @ and (Inz,Y) in A. The pair (¢,6) lies in
IT:=R x (—1,0). Moreover, we denote Q, A, o, I' and ¥ the images of Q, A, ¥, I' and ¥, by the

change of variable (z,y) ~ (t,0), see Figure 10. The notation ... is intended to remind the strip shape
of II. Finally, for any u : Il — C, we denote

i - t0 Q
a: (o) el — 4 ¢, 9) e
wlx=¢e',Y =60) inA
Y 0
A 7
Q 7 r Q _
r I
I A . 7,
layer A |1 A 1
Ya \EA \E:A

Figure 10: The change of variables (z,y) ~ (t,0) and the associated domains.
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Definition B.1: Kondratiev spaces

Let H be a Hilbert space and (s, ) € R%2. We define KR, H) = {t — ePlu(t) | uw € H*(R,H)},
equipped with the norm ||uHK;(R7H) = ||t = e P'ut)|g@,m. We also denote KPR, H) =
Noer K5(R, H), and K5(T) := K3(R,C) (identifying the line T with R).

Remarks:
o If s=m €N, then K7(R,H) = {u € H (R, H) | Vk € [0,m], e PtoFu(t) € L3R, H)}.
« Note that if u € K3(R, H) and u is zero in a vicinity of —oo, then: V3’ > 8, u € K3,(R, H).
« Kondratiev’s spaces are linked to 0p (see Definition 2.20) in the following way. Let x € C*°(R) be
equal to 0 in a vicinity of —oo and 1 in a vicinity of +oco. Then for any u : Q2 — C:
{ VBER, xue | KF(R H™(0,0)) = Vd>p5, u = 05 (r?)

vd € R, meN oy = 0p(r?) = g €R, VB> d, X(-+to)i€ N KF(R H™(0,0))
77— 00 meN

And there are similar implications in A and T'.

Let H be a Hilbert space, 5 € R and ¢ € Kg (R, H). For any A € Cs.t. R(A) = 8 we define the (bilateral)
Laplace transform of ¢ at A as

+oo
o\ = / e Mpt)dt = F[t — e o) (S(N) (B.1)

—00

where F denotes the Fourier transform. By properties of F, we have p € L2({\ € C | R(\) = 8}). If ¢
depends on t and 6, ¢ implies that we see ¢ as a function from R to a space of functions of 6.

To introduce the method, let us use the Laplace transform on S. Let yo be the truncation function
introduced in Section 3.2 and s := Y0.S. Since S € V4xoo A(II), thereis f € Rs.t. s € Kg(R, L?(—1,0)),
s0 8(, 0) is well-defined for any A € C s.t. R(\) > 3. In addition we have for any f € L?(Q), g € L2(A),
h e H-Y(T') and u € HL (TI):

—poAu = f in Q) —e2ppAu=f inQ
—mAu=g in A —p (e72(02 — B) + 82 =g in A
Uly=0+ — Ujy—o- =0 on T = Ujg—o+ — Ujg—o~ =0 on r
poOyujy—o+ — p10yujy—o- =h onT e p00ptjg—o+ — p1Opljg—o- = h onT
u=0 onXqoUX\ =0 OIlE:QUE:A
(B.2)
Taking u := XS in (B.2) and applying the Laplace transform yield that § satisfies:
(OF + N3\, 0) = f if 6 € (0,0)
03N 0)=g—[(A+22—=(A+2)]38(A+2,0) iffe(-1,0)
5(A\,07) —8(A,07)=0 (B.3)

M189§()‘7 O_) = M089§()‘ +1, 0+)
3(\,0)=8\-1)=0
for some functions functions f and g depending on F and X . Solving this system w.r.t. 8 allows us to ex-

tend § w.r.t. A further to the left in the complex plane, except at the A for which (B.3) is ill-posed. These
A are poles of § and they will be used in Proposition B.3 to identify terms of the asymptotic expansion of S.

For any m € N*, let us define the Hilbert spaces H™ := {u € H}(-1,0) | u)0,0) € H™(0,0) and u)(_1,0) €
H™(—1,0)} with the norm ||u/|3,m := ||u||?{m(_1y0) + ||u||%{m(07@), and H .= H™(0,0) x H™(-1,0) x C.
We need to solve problems of the following form with v € H™*2? and (f,g,a) € H?, m € N:

u’ +XNu=f on(0,0)

u”’ = on (—1,0)
w(0T) —u(07) =0 (B.4)
W(07)=a
u(®@) =u(-1)=0



Denoting A(A) : u— ((u” + Xu))(0,0) uf’(_l 0y w'(07)), (B.4) is equivalent to A(\)(u) = (f,g,a). Note
that for any m € N, A(\) € L(H™T2, H™) where L(...) denotes the space of continuous linear maps
between two normed vector spaces.

Lemma B.2: Let m € N.
L. A(\) : H™ 2 — H is invertible iff X € C\ §Z*.
2. XA — A(X)~! is meromorphic from C to L(H}, H™*?). Its poles are in ZZ* and are simple.

Moreover, for any ¢ € FZ* and v € H'?, the residue (Resy—q A(X\)~")(v) is proportional to the
function 6 € [~1,0] = 1(g,6(0) - sin(¢f).

3. Let 81 < f32 be some reals. There is C' > 0 depending only on (m, 1, 82) s.t., for any A € C
satisfying 51 < R(A\) < B2 and |S(A\)| > 1, we have: ||A(>\)_1||£(’HZ’L”HWL+2) < CI3(N)|™*2 (B.5).

Proof:

1. Let A € C. An easy calculation gives that any element of Ker A(\) must be proportional to

0 € [~1,0] = 1jg,e)(#) - sin(AF). This function belongs to H™ \ {0} iff A\ € FZ*. Therefore
Ker A(N) #0 <= A € §Z~.
Moreover, it is easy to see that, for any (f,g,a) € H7', (B.4) with A := 0 has a unique solution in
H™H2. Thus A(0) : H™T2 — HT is invertible. Now, for any A € C, we have A(\) = A(0) + A\°B
with B : u = (u),e),0,0). B is a compact operator from H™F2 to H?, so the Fredholm alternative
holds for A(X). Therefore A(X) : ™2 — HT is invertible iff A € C\ 5Z*.

2. Since A — A(X) is holomorphic on C\ &§Z*, so too is A — A(X)~!. Let us describe its behavior
near the points ¢ € §Z* using [25, Theorem 5.1.1, p.147]. It depends on the “Jordan chains” of
A(q), which are the sequences (ug,...,u,) € (H™)""1 n € N, s.t.

k .
1d74
vk € [0, n], ;0 ﬁwjkzq(uk_j) ~0 (B.6)
Let us compute these chains. Taking &k := 0 in (B.6) gives A(¢)(ug) = 0, so ug is proportional to
0 — 1(,0)() -sin(gf) by step 1. In addition, if n > 1, taking k := 1 gives A(q)(u1) + 92 (¢)(uo) = 0.
This implies on one hand u} + q?u; + 2qug = 0 in (0,0). On the other we get U7 (_1,0) = 0 and
w4 (07) =0, 80 uy|(—1,0) = 0, which gives u;(0) = u1(©) = 0. Therefore
e S )
0 # / 2q|uo|?® = / —(uf + ¢Puy) - ug = / —u1 - (uf + q?up) = 0.
0 0 0 —

This is absurd, so we must have n = 0 for any Jordan chain of A(q). Therefore, [25, Theorem 5.1.1,
p.147] states that A(A)~! has a simple pole at ¢, and Im(Resy—, A(A\)~!) = Cuo.

3. Let (f,g,a) € H and u := A(N)"Y(f, g,a) € H™ 2. We will write < for inequalities valid up to a
constant that depends on (m, 1, B2) but not on (A, f, g,a). By Poincaré’s inequality and integration
by parts, we have

a1 5 [

0 —1
P = - / g+ aw(0) < (lgllz2r0) + lal) - [ull 1 (109

thus [[ullz1(—1,0) < [I9llz2(=1,0) + lal. Since uji_; o) = g, we deduce |Jul|gm+2(—1,0) < [lgllzm + lal.
Then, let uy : 6 € [0,0] = u(0)(1— &), v:=u—uy and f5 := f — A*u;. We have v(0) = v(©) =0

and v 4+ A\?v = fy, so
(€] €]
| cr ) = [ e
0 0
SOl

Dividing by A and taking the absolute value of the imaginary part, we get: 57 0'[125+SV)|[|lv]|22 <
ﬁ”fAHL?HU”LQ' Now we asume |S(\)| > 1 and 81 < R(\) < B2, so [A| < [S(A)]. Thus [|v/|2. +
IN2v]122 < [[fallpz]lvll L2, which yields [Jv]|z2 < [A]72][fallz2 and then [|v/||2 < A7 fallz2. Now
from v" = f) — A?v, one can easily derive by induction on m that ||[v| gm+2 < [N™||fxllz=. This
implies ||ull grm+20.0) S AN f|lm + [A™F2|w(0)], with [u(0)| S [l gm+2(-1,0)-

So finally [[ullsnss < 1S)™*2[(f,g, )l -
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Proposition B.3 is the base step of the asymptotic expansion. It will be applied to s the rest of the at a
given order, and the function s, below will be the rest at the next order. Iterating this process provides
an asymptotic expansion of S at any order. Since Theorem 2.23 implies infinite regularity on S, we work
in the spaces K3° and H™ for any m.

Proposition B.3: Let d € R, m € N\ {0,1}, s € | KF®R,H™), fe N KPR H™ *0,0)),
B>d

B B>d—1
ge N KF®R,H"?(=1,0)),he N Kgo(f‘) and din = min(FZ* N (d — 1,d]). We assume:
B>d—1 B>d—1
toAs=f in Q
i (e (@7 —0) + B)s =g in A
Sjp=0+ — Sjp=0- =0 on f

e ' 1o0ps|p=0+ — p10pSjg—o- =h onT
s=0 on ET) U E\

Then thereis s, € (] KZF(R,H™) and (¢g) € C&¥ N1l 5t 5 = > ¢q Gy + 51
d-1<B<dmin g€ B2 (d—1,d]

Proof: For any 8 € R, let Cpsp := {A € C | R(A\) > S}. The Laplace transform of s is well-defined and
holomorphic from Cg~4 to H™. We will show that § has a meromorphic extension on Cy~ 41, with poles
belonging in P := FZ* N (d — 1,d], then we will apply the residue theorem on a rectangle surrounding
these poles. The functions ¢, will appear in the residues.

Step 1 : § satisfies in Cg~gq:

po(93 + 2?31, 0) = f(A.0) if 6 € (0,0)
11023(X,0) = §(N,0) — 1 [(A+2)2 = (A +2)] 8(A+2,0) := G(\,0) if6 € (—1,0)
3(\,01) = 3(\,07) =0
1119p3(X,07) = h(A) + podp5(A 4 1,0) := h(N)
3(\,0) =5\ —-1)= 0

For any A € Cpsa—1 \ GZ%, let 3(\) = A()\)*l(ﬁf()\), ig(/\), iiz()\)) Then 3§ is also solution of
the above system, so 3 and 3 coincide on Cgxq \ §Z* by Lemma B.2. Hence 5 is an extension of § on
Cxsd—1 \ B, that we will still denote §. Lemma B.2 implies that this extension is meromorphic with

simple poles and: Vg € B, Resy § = (Resx=q AN) 1) (£ F(q), £3(9), 2-h(q))-

Ho

Step 2 : Let t € R, b € (d — 1,dmin) and k € R%. The residue theorem applied to A — e**3(\) on the
rectangle [b,d + 1] x [k, k] C C gives the following equality in H™.

k k
2im Z Res, (A = eM3())) = / eIV (d 41 i) dy — / eCHNIS(b + iy) dy
Sy k

cd+1
e(B— o(B+ik)t
+/b —ik)dp — / 3(p+1ik)dg

Note that when k& — oo the first integral tends to the inverse Laplace transform of s (up to a constant).
We will show that the last two integrals tend to 0, by proving the following:

vaelN, s [ (@) dy < oc (B.7)
Be[b,d+1] JR\[~1,1]

Let n € Nand 3 € [b,d +1]. (B.5) and the expressions of § and & yield
[ a1+ mlndy < [ AN Mg o | (B 56+ 1), 235 + 1), 2R + 1),
R\[-1,1] R\[-1,1] x

S /\[ ],Yn+m+2 (Hf(ﬂ +17)HH7>772 + Hg(ﬂ +i7)||Hm,—2 + |B(5+1’Y)|
R\[-1,1

+ 11808 + iy + Dllaem +2215(8 + iy +2) aem ) dy
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Let us treat the term with f, given that the others are similar.

n+m+2 £ : -1 n+m—+3|| £ :
Y FB+i)lgm-—dy < v [lz2@\[-1, ~’7 J(B+ 1) || gm—2
/R\[m] [ N e S 17 2 e\ (- 1,1 1 b P
S e PPt fll e 20,09
S max |[le™” LT fll 2w, rm-2(0,0))

B'e{b,d+1}

I ] P

thanks to an interpolation between b and d + 1. We have majorized by a finite constant independent
of 8, so the supremum on £ is finite. Thus (B.7) is proven.

- e’} d+1 oo pd+1
Therefore: / ‘ / BN 3 L ikyag|l  dk < / / 15(8 £ ik) | e dB dk < +00.
1 b H™ 1

So by taking arbitrarily large k, we can make the terms fb be(BEimts (B+£ik)dg tend to 0 in H™. Hence:

1

1 .
. (d+1+4iy)t & o (b+ivy)t 4 .
5 / $(d+1+iy)dy - 5 /Re 5(b+iv)dy.

D Resg(A > eM5(N)) =

qeP

Now, since § has only simple poles, the terms of the sum are equal to

" Res, § = % (Resz—g AN ™) (2 (), -3(a), 27(a)) = %, 10,6)(6) sin(d6) = ¢, Gy(1,0)

? pa

for some constant ¢, € C by point 2 of Lemma B.2. The first intergral is equal to s(¢) by inverse Laplace
transform (because s € K79, (R, H™)). We define s.(t) to be equal to the last integral. Thus we get the
desired formula, and (B.7) shows that s, € K °(R, H™). |

Let S be the function set in Theorem 2.23 and (04(S))aczn- the coefficients of Definition 3.10, which
vanish for d big enough. With the o4(S), the non-variational part of S (denoted S* below) can be
explicitly computed, so it remains to get an asymptotic expansion of its variational part (denoted SV

below). In order to apply Proposition B.3, we need that x..S" belongs to some space Kz (since
1\ B(0,R.) =TI\ B(0, R.), XooS" can be seen as a function defined on II, which allows us to consider
XooSV). We will use again the notations (.) and 7%, of Definitions 2.3 and 2.21.

Proposition B.4: Let d € R_,

SA = T)d

<—R3§oa§(m, %RN08Y|F,Y_O+>( RA(FS )+ Raz (F)+ Y oulS ¢d>1

de 5N*

in A(TT) and SV := S — oo S Thereis d € R_s.t. SV € V and: Vm € N, xSV € K37 (R, H™).

Proof: We consider any d € R_ and we will fix it later. The proof has three steps: showing that SV € V,
showing that SV is regular w.r.t ¢, and deducing that it is regular w.r.t. 6. For any ri,75 € R s.t.
R. <11 < 1o, we will denote x € C°°(R?) a radial function equal to 0 on B(0,71) and 1 on R? \ B(0,73)
(r1, 72 are implicit in this notation).

Step 1: Let ¢ : IT — C be equal to Tq(F2°) on D for any D € {Q, A}, and F\, = F — xoop. If d < —2
then (1+7)F, € L?>(Q4). So the same construction than in Theorem 3.11 shows that for d small enough,
the problem

div(uVSY) = fi = Fy + Xootp — div(uV (X - S4))  in Q4 \ (TN {X > R.})
[0y SV]r = g1 = —[pdy (xoc S)]r on I'N{X > R} (B.8)
SV =0 on 0

has a unique solution in V and that S = SV 4 y.S*. In addition, it also gives that (uAS“ — ©)p €
S y<qAa(D) for any D € {Q,A}, and [u0ySAr € Y, 4 Ae(T). And we have F, = 0y(r?) by
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hypothesis, so for d small enough and up to increasing R. (without loss of generality): Vm € N,
() € KSR, H™(0,0))  and  (xfi);5 € K5(R, H™(=1,0)) and  Xg1 € K> 5(T) (B.9)

Step 2: For any € R, we denote Kg((zl) = g(R,LQ(Q@)) = {(t,0) — eP'u(t,0) | u € L*(Q)} and
K9(A) == KY(R, L*(~1,0)). And we define

V= {w e Hi\ () | Vwg € L*(Q), dywz € KY)5(A), dpuwyg € K2y j5(A) and wis s = 0}

Note that if €, were equal to II, 1% would simply be {u [ u € V'}. So it is the natural variational space

for Poisson’s problem transferred into II. Looking at xSV as a function defined on II, we will show by
induction on n that: _
Vn eN, VR, <r; <rg, opxSY e V.

Since SY € V, the initial case is trivial, so only the inductive step remains to prove. Let us assume
the property at rank n and show it at rank n + 1. We will use the method of finite differences. Letting
1= po on Q and p:= pg on A, (B.8) implies:
pAXSY) = fo = xfr —2uVx - VSV —pAx- SV in D, VD € {Q, A}
[1dy (xS)]r = g2 == xon onT
xSV =0 on o UX,

By induction hypothesis applied to (r{,75) := (Betrr py), OFVSY and 9f SV are L? on {r; < r < 1}
for any k& € [0,n]. So (B.9) implies fng € K",(R, L?*(0,0)) and fg‘A € K"3/2(R7L2(—1,0)). Similarly
g2 € K™ %920 (T'). Next, we apply the change variables (z,y) ~ (t,6) using (B.2), and then 9;". We get that
5= 8{1()(3‘/) satisfies:

2

—e’Qtqus = fqo = 872268;1(6%‘](:'2‘9) in

— n—1 -
—p1 (€720 — 8y) + 03)s = fa = 0P faip + D (=2)" Fe 2 1y (97 — 9,)0F (xSY) in A
k=0

S19=0+ — S|9=0— = 0 on f (B.IO)
e 100psjg—o+ — 1109Sj9=0- = 9 := 0}'G2 onlI'
s=0 on Yo UXA

with fo € K°,(Q), fa € K93/2([:\) and g € Kiol/Q(f‘) by induction hypothesis. The variational formula-
tion of (B.10) is: Vo € V,

/ oV's - Vgo+/ 1(e7"0rs Oy + €' Bys Dyp) = /ZeztmeJr/ th<P+/€9<P
Q o

Let us denote Dyp(t, ) := M for any n € R* and any function ¢. Taking ¢ := D_,D,5 and
discretely integrating by parts D_,, we have:

/:MO|D77V5|2 + /: p1 (Dy(e™"0p5) - Dydy5 + €' | Dyps|?)
Q A

= ﬁe2tf9 -D_,D,5 + ﬁ el fa - D_,D,5+ [ D,nDn(etg) .3
Q A r

But for any functions ¢, v, we have D, (o)) = ¢ - Dy + Dy - . Therefore:
o D,(e7t0s) - D05 = e | Dy0s|* + i{le_t@ts - D,0;8

en_ el — 2
« D_yD,(etg) = €'D_,Dyg +25Lel Dyg + (<51)elg

Let us assume that 7 is small enough so that @ < 2 and @ < 2. Then:
||D,,V8H22(§) + ||Dn6t3H§<(1)/2(7\) + HDnaGSHigl/z(K) +/ﬂ1 — _tats D a153

S HfSZHng(S:))HD*UDWSHL?(S:)) + “fA||K93/2(7\)”D*W‘DU‘SHK?/Q(/:\) + HQHK:/Q(T“)||3HK31/2(1:“)
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Then, moving the intergral to the right-hand side and majorizing some || D,, - || by ||0;- || or ||V - ||, we get:
1751y + D51y 5+ I1Da05I%0 ) S ol | D1Vl
+ HfAHKO (A)HD aztSHKO & T ||9||K21 @ 8llgo L@ T ||6t8||K0 & [1Dn at5||K0 (&)

. . P . . . 2
But, since S5y = 0, a Poincaré-type inequality gives ||s||Kg ()
1

inequality ab < 5a 4 b on norm products with ¢ small enough and moving the |\D,,8ts||§(0 &) and
1/2

< ||8gs||?{gl/2(/:\). Finally, using Young’s

HDnagSHi{o &) from the right-hand side to the left-hand one, we get:
—1/2

2 2,112 2
Hvat3||L2(§) + Hat SHK(I)/Z’([:\) + ||898t8||K81/2(/:\)

< limsgp ||D7IVS||i2(§) + ||Dnat5||§<?/2(7\) + ||D77898H§(01/2(7\)

n— -
< 2 _ 2 B 2 _ 2 _ 2 _
~ ||fQ||KO_2(Q) + ||fA||K83/2(A) + HgHKil/z(F) + ||698||K81/2(A) + HatSHK?/Q(A)

< 0

By definition of V, it implies that 0;s € V and completes the induction.

Step 3: Let Kf/Q(ﬁ) Klo/Z(R L?(—1,0)). For now we have proven that, for any (n,i) € (N x {0,1})\
({(0,0)}) and R, < r; < 72, anaexsv € Kl/Q(i) It generalizes to the case (n,i) = (0,0) thanks to a

Poincaré inequality: HXSV”KO () S H@ngVHKU L) S ||39xSV||L2 o) T ||3ngV||Ko (&) <00

To treat higher-order 6- derlvatlves we start from the equality uA(xSY) = xf1 — 2;LVX VS V—uly-SY
in QU A proven in to step 2. Applying the change of variables (x,y) ~ (¢, 6) gives by (B.2):

{ e AXSY = X1 — 2i0Vx - VSY —pody SV i © (B.11)

i1 (€729 = 0) + ) (xSY) = xfi = 2 V- VSV =y -S¥ in A
Moreover, (B.9) implies that, for any m € N, Xf1|Q e K 3/2(R H™(0,0)) and Xfl‘A S Kl/Q(]R, H™(—1,0)).

So deriving (B.11) w.r.t. ¢ and 6 enough times gives by induction: V(n,i) € N*,VR, < r1 < r3,VD €
{Q A} 8”8’)(5‘/ D E K1/2(D). Finally, applying this to x := Xxso completes the proof. O

Proof of Theorem 2.23: For any ¢ € §N*, let 0,(S%) := 04(S5). We denote, for any d € R, T4 := id—T¢q
and

1 1
Sgo = < RaQ OazlA, RN an‘ny 0+> </,LORA(FSO) + ZR‘??’(FXO) + Z Jq(Sw)¢q>

q€ &2 N (d,00)

and, for any n € N, d,, := 5 —nand S 5 = XooS — Xoo T4, (9 ). Let m € N. We will show by induction
on n that there are coefficients (04(5%))ge—zn- s.t.:

VneN, V8 >dy,  Spn€ KFP(RH™).

For now we only know 0,(5) for ¢ > & > do, and S; ,, involves 0,(5°) only when ¢ > dp, so the n-th
inductive step involves fixing o,(5°°) for all ¢ € FZ* N (dy,, dp—1].

Initial case: By Proposition B.4, there is d € R_ and SV s.t. S = SV + XooT>a(S7) and YooV €
1/2(R H™). Hence

Sr,O - XOOS - XOOT>d0 (Sgoo)
= Xoo (SV + XooT>d(53§)) - XOOT>do(Sg§)
= XooS" 4 Xoo - (Xoo = 1) - T2a(S3) + Xoo - (T2a(S5) — T>0(S5))

So SrO € Kl/Q(R, H™). But ST) is null in a vicinity of —oo, so: V3 > dy = %, Sro € KEO(R, H™).
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Inductive step: We assume the property at rank n and will show it at rank n + 1. Let Sr’n+1 =

XooS — XocT>dn+1(Sjj) and © := FZ" N (dnt1,dn]. Srnyr is a variant of S; .41 that does not

involve o, (5>°) for ¢ € ©. We will apply Proposition B.3 to d := d,, and s := Sini1. To do so, we
must check that:

poAS: nig € N KFR,H™2(0,0))

B>dn41
M1 (eizL(atQ - 81‘) + ag)gr,n-i-”/:\ € ﬂ KEO(Ra Hm72(7170))
B>dnt1 )
(e”*10dgjo=0+ — 1196j9=0-)Srmt1 € (1 K3(T)
B>dnt1

Let us show only the first line, the others being similar.
Since AS},,LH = e*QtASI.mH, it suffices to have that: VS > d,41 — 2, AS’M,,H €
K (R, H™=2(0,0)). And this is true because we have in ) in a vicinity of r — oo:

MOAS},nH =F - /J()A[T>dn+l(S§:)] by definition of S'r,nﬂ, and poAS = F in Q
=Tsa,,,—2(F3) + Oa(?‘d"“ _2) by hypothesis on F'
— poT>a,,,—2(AST) by deg A = —2 (Lemma 2.16)

= T<dpir—2—T<a,—2)(FS) + Og)(Td"‘+172) by o ASG = F5° (Lemma 2.19)

Therefore, Proposition B.3 states that there are coefficients (¢q)geo, $r and dpin := min(D) s.t.:

VB € (dnt1,dmin), Sr € KEC(R.,H"”’) and §r7n+1 = qug cqa + ;. Let 04(S%) := —¢, for any
q € §Z* N (dpt1,dy]. Then:

Sr,n+1 = Sr,nJrl + Z Uq(SOO) Xoo@sq = S+ Z Cq (1 - Xm)¢q € n K;O(R7Hm)

qED qED Be(dn+1,dmin)

Moreover, S n41 is null in a vicinity of —oco, so: V3 > dy1, Sipy1 € KF° (R, H™). This concludes
the induction.

To complete the proof of the theorem, we must show that: Vd € R, S = T54(S>) + 0p(r?) when r — oco.
We will do it in 2, but it works the same in A. Let d € R and n € N s.t. d,, < d. We have in €:

S = XooS — XooT>d(SOC) = Sr,n + Xoo " T<q© T>dn,(SOC) with Teao T>‘1”(SOO) = Z Adl(Q)

d'<d
So there is d’ < d s.t.: Ym €N, 5§ € K3 (R, H™(0,0)). Thus for any (4,5) € N*:
r=4 (rd,)i0ls = e~ V1010)5 € H*(R, H(0,0)) C L®(9).
So r’d/”@fags is also bounded. By definition of 0y (given in 2.20), this concludes the proof. O

B.2 Proof of Theorem 2.22: asymptotic behavior for far-and-layer fields-like
problems

This proof is very similar to Section B.1. The main difference is that we look at the asymptotic expansion
when r — 0 (i.e. ¢ — —o0) instead of r — co (i.e. t = +00). So this time we use a truncation function
X7 € C=(II) that is equal to 1 in a vicinity of r = 0 and to 0 in a vicinity of infinity. In addition, we can
assume that x¢f = 0. Moreover the Laplace transform of xsu is first defined in a left half-plane of the
complex plan (instead of a right one), and then extended to the right.

Applying the change of variables (z,y) ~» (t,0) on the equations satisfied by xsu (that one can easily
deduce from (2.23)) and then the Laplace transform yields that s := yu satisfies:
MO(ag + )\2)§()‘7 9) = f - W2P0§()‘ -2, 9) if ¢ (Oa 9)
028\, 0) =g if 0 ¢ (-1,0)
(B.12)
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for some functions f, §, h depending on ¢, h, x ¢. This system has the form of (B.4), so Lemma B.2 gives
the tools to solve it and to extend § to the right (by steps of 2 here). This is stated in Proposition B.5,
whose proof is very similar to Proposition B.3.

Proposition B.5: Let d € R, m € N\ {0,1}, s € (] KPR, H™), f€ N KFR H"%0,0)),
p<d

B<d+2
ge N KF®R,H"?(-1,0)), he N Kgo(f‘) and diax = max(gZ* N [d,d + 2)). We assume:
B<d+2 B<d+2
foAs + e2w?pgs = f in Q
Rs=g inA
Slo=0+ — S|p=0- = 0 on f
p10959—0- = h onT
s=0 on E:Q U E:A
Then there is s, € N KPR H™) and (¢;) € CEZ NI 5 5= Z Cq bq + Sr-

Amax<pf<d+2

q€E2*N[d,d+2)

Assumption B.6: Replacing u by yxou, we assume without loss of generality that u has a compact
support.

For any ¢ € —gN*, let o (u) := o4(u)q), where o,(u)q) is set in Definition 3.5. This quantity vanishes
when ¢ is small enough. Proposition B.7 is the analogue of Proposition B.4.

Proposition B.7: Let d € R,

uA = ng

<_kgRA><iRa§(90)+iRN(hO)Jr > Uq(u)(bq)]

qge— N>

in A(IT) and u¥ := u — yyu?. There is d € Ry s.t. uj, € H'(Q) and: Ym € N, ysu’ € K> (R, H™).

Proof: We consider any d € Ry and we will fix it later. The proof has five steps: writing the equations
satisfied by u", and then showing that u" is regular in the layer, that it is H' in ), that it is regular in
Q w.r.t ¢, and that it is regular in Q w.r.t. 6. For any r1,72 € R s.t. r1 <7y < rg, we denote y € C*(R?)
a radial function equal to 1 on B(0,71) and 0 on R? \ B(0,73) (71,72 are implicit in this notation).

Step 1: Similarly to the proofs of theorems 3.6 and 3.11 and Proposition B.4, one can show that:

2 v o__ £ 2 AN s
(koA +w?po)u’ = f1:= f = (noA +w?po) (xsu?) in (oA +w2po)ud € 3 Au ()

o3y = g == g — 0% (xut) in A ) A i=d
Uymor ~ Yy—o- =0 on I' with oFufy — T<a(g®) € dEdAd’(A)
( =
pdyuy_o = hi:=h— mdy(x;ut) on I vury_y —T<a(h®) € 32 Ax(T)
u’ =0 on Lo U3y d'>d

Moreover, given that xf = 0 for any 1 < r2 < 7y, one can check that for d big enough and up to
decreasing ry (without loss of generality), we have xfi € K& (R, H™(0,0)), xg1 € K&°(R, H™(—1,0))
and xh; € K§°(T') for any m € N.

Step 2: Let us show that: Vry < ry < ry,Vm € N, xuyy € Kg° (R, H™(—1,0)). By assumption, for any
x>0, u’ in H' in a vicinity of {z} x [~1,0] C A, so uf[,3, ;¢ is well-defined in L*({z} x [-1,0]).
Moreover, g1 and h; are 0p(x?), so they are differentiable on (0,7) x [—1,0] (up to decreasing ;). Hence,

Y € (—1,0) = uV(z,Y) is C? and the ODE it satisfies (see step 1) is explicitly solvable:

V@ ¥) € Ourg) X L0, u'(z )= / (Y =YY" —Y 1) gu, V) AY' + () - (V + 1),

—1
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Since xg1 € K(R, H™(—1,0)) for any m and X:h1 € Kgo(f‘), we deduce xujy € K (R, H™(—1,0)).

Step 3: Let us show that uy, € H'(Q). First, step 2 implies yu. € Kg°(T) so xujp € H'/2(T). Since
u € Hl _ and u has a compact support by assumption B.6, we get u. € H 1/2(T"). So the following system
has a solution in H'(2) by Lemma 3.3:

HoAuY + w?pou’ = fi in
v — v
Uyt = Wy_g- ON r
u’ =0 on Yo

But u" also satisfies these equations, so u¥ + y fu‘“;‘2 satisfies the same problem as uj, and they both
belong to H'(Q) + x0.A(Q). Then by uniqueness in Theorem 3.6, u" + Xfulff‘l = ujq, i.e. u¥ = up,. Thus,
u, € H'(Q).

Step 4: Let v :  — C defined by v := u“’Q — vy, with vyg (1, 0) == (1 — %)u“’r(r) in polar coordinates.
Let Kg Q) := Kg (R, L?(0,0)) for any 8 € R. We will show by induction on n that:

Vn e N*, Vr <rg<rp,  OPxve K% (Q) and VI'xve L*(Q).

For the initial case, we have on the one hand yuj, € H(Q) so Xujg € K°,(€) and Vxuj, € L2(Q), and

on the other Xu|F € K} (I‘) so xunr € K° (Q) and Vyvug, € L2(§:2). Thus the initial case is proven and
only the inductive step remains to prove. We assume the property at rank n and we will show it at rank
n + 1, using the method of finite differences. Step 1 implies that:

(1A +w?po) (xv) = fa := xf1 — X toAviise — 200V X - Vu¥ — pipAx - u¥  in Q
xv =0 on XoUT
In addition, we have f, € K" (R, L%(0,©)) since:
o by step 1, xfi € K&(R,L2(0,0)), so xfi € K°%(R, L?(0,0)),
o by step 2, XT‘VF € K§°(T), so Yunn € Kg°(R, H2(0,0)), and applying it at (},75) := (ro, #)
gives yAuvi € K°%(R, L%(0,0)),

o and by induction hypothesis applied to (r},75) := (72, m) O0FVv and OFvare L? on {r; <r < ry}
for any k € [0,n].

Let s := 0;*(xv). By changing variables (z,y) ~» (¢,0) in the previous system and applying 9}, we get:
_ n—1 —
e 2 ugAs + wlpgs = f3 1= e 2P (e fo) — 3 w?pe2"FOF(xv)  in Q

k=0 .

s=0 on Yo UT

with f3 € K 92(5) by induction hypothesis. And the variational formulation of this is:
Vo e K9, (Q (:) V€ L? ( ) and Psour =0 = / Vs - Vo + w?ppe’lsp) = /ﬁthfg)gD.

Let us denote Dyp(t,0) == M for any 7 € R* and any function ¢. Taking ¢ := D_, D,5 and
discretely integrating by parts D_, gives:

[ ol DT = woncls) = [ fa-D_,Dys
Q Q
Then by coercivity (since Im(w) # 0), we have for any § > 0:
HDnV‘g”iqﬁ) + ||D773||K0 L@~ s ||f3HK0 Q) ”D D SHKO Q) %Hf3|| 0 (@) +5|‘Dn6t5”i2(§)
Taking § small enough and moving || D, 8ts|| =. from the right-hand side to the left-hand one, we get:

2(Q)

||atvsHL2(Q)+”at5”K0 @ = hmsup||D VSH 2(Q) Jr”D S”KU (Q) < Hf3||K0 (Q) < 0.
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This completes the induction.

Step 5: We have shown that for any (n,i) € N x {0,1} and r; < ry < 7y, Or9ixo € K°,(Q). Since
Youre € K (R, H(0,0)), we also have 6?0@@ € K°,(Q) for these (n,i).

To treat higher-order f-derivatives, we begin with the equality (oA +w?po)(xu¥) = xf1 —2uoVyx - Vu' —
oAx - uY in €, which follows from step 1. Applying the change of variables (z,y) ~~ (¢,0), we get:

(€™ oA + w?po) (xu") = xfi — 20V x - VU¥ — oA - u. (B.13)

Now X:fl € Kg°(R,H™(0,0)) for any m € N by step 1. So deriving (B.13) w.r.t. ¢ and 6 enough times
ges by induction: V(n,i) € N2, Vry < re < ry, &Zlaéxu“’@ € K%,(Q). Combining it with step 2, we get
xu' € K (R, H™). Finally, we apply it to x := X~ to conclude. |

Finally, Propositions B.5 and B.7 give all the ingredients to prove Theorem 2.22. The proof is very similar
to the one of Theorem 2.23 on page 44, so we do not go into details again.
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