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Crossover Master Model of the Equation-of-State
for a Simple Fluid: Critical Universality.

Yves Garrabos' - Carole Lecoutre' - Samuel Marre' - Inseob Hahn?

Abstract

We present a new extended parametric equation-of-state model for
thermodynamic properties and the correlation length for a simple fluid near its
liquid—gas critical point. The model involves 16 universal parameters (o
perfectly match 10 leading universal amplitudes of the asymptotic Ising-like
limit of the critical-to-classical crossover functions calculated by Garrabos and
Bervillier [Phys. Rev. E 74021113 (2006)] from the massive renormalization
scheme. The universal values of 8 Ising-like amplitude combinations are then
matched exactly. The closure of the construc-tion of parameters is determined
after a careful analysis of the intrinsic limitation of parametric equations (o
describe the universal features at the first order of the confluent corrections-to-
scaling. In the asymptotic mean-field limit, the crossover master model also
reproduces the mean-field amplitude combinations except for the susceptibility
case. The new model is compared with the crossover parametric model
previously developed by Agayan et. al [Phys. Rev. E 64, 02615 (2001)]. The
residuals from comparison with the mean crossover functions of Garrabos and
Ber-villier are reported to define the application range of the crossover master
model to any simple fluid for which the generalized critical coordinates of the
liquid—gas criti-cal point are known.
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1 Introduction

Over five decades after the effective scaling analysis of thermodynamic proper-
ties in the critical region of fluids [1], the fundamental interest for developing
a universal scaled form for the equation-of-state (e.o.s.) of simple fluids still is
concomitant to the quest of a true asymptotic singular behavior. However, the
observation of such asymptotic behavior always remains as a conundrum to the
experimentalists performing measurements closer and closer to the vapor-liquid
critical point [2]. Indeed, approaching the liquid—vapor critical point of a one-
component fluid, i. e. a simple fluid with short-ranged molecular interaction, it is
expected that the fluid singularities belong to the O(1) universality class defined
by {d =3.n = 1}. where d is the space dimension and »n is the dimension of the
order parameter (OP) density [3]. In addition, the asymptotic singular proper-
ties at finite distance from 7. can be described by the classical-to-critical cross-
over functions calculated for the N = l-vector model of three-dimensional (3D)

I[sing like systems and the O(1) symmetric (CI)Q)2 Field Theory (FT) framework
[4]. There are two main theoretical parametric models of the classical-to-critical
crossover phenomena [5-7] originated from the two main field-theoretical renor-
malization methods, namely the minimal-substraction renormalization (MSR)
scheme of Dohm and coworkers [8—12], and the massive renormalization (MR)
scheme of Bagnuls and Bervillier [7, 13—-16]. However, these schemes are only
applied to the primary critical path for zero value of the scaling ordering field
in the homogeneous and non-homogeneous domains. The analysis of the critical
fluid experiments is then limited only asymptotically to be conformed with the
accurate estimations of the universal values of the critical exponents and ampli-
tude combinations including the first-order of the confluent correction to scal-
ing [17. 18]. Moreover, the theoretical analysis is strictly limited to the results
obtained vsing a fluid cell filled at exact critical density very close to the critical
temperature, in the so-called fluid preasymptotic domain (PAD) only character-
ized by two leading amplitudes and a single first-order confluent amplitude [6, 14,
17-20].

Nevertheless, still staying with these accurate measurements within the PAD
(see for example [2, 21]), the actual level of knowledge of the singular features
of the simple fluids seems reasonably compatible with only three adjustable free
parameters in any crossover models of the e.o.s., which accurately account for
the first-order confluent corrections to scaling. However, despite this now well-
admitted fact that the singular one-component fluids belong to the O(1) universal-
ity class, some practical difficulties still remain when the objective is to formulate
the asymptotic Ising-like limit of this e.o.s.. These difficulties are unavoidable
since the experimental validation of the Ising-like limit of the e.o.s. always
involves measurements performed within a finite range of the phase diagram sur-
rounding the critical point largely beyond the PAD (see for example [22] and ref-
erence therein). In such a situation, the unambiguous determination of the three
Ising-like characteristic amplitudes remains problematic as the theoretical uncer-
tainties combine with an increasing number of adjustable parameters in the e.o.s..
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For instance, a phenomenological model, namely the crossover parametric model
(CPM) proposed by Agayan and co-workers [5, 23, 24], introduces a complete
parametric e.o.s., which needs to use at least four adjustable non-universal param-
eters. CPM results from a generic approach based on a phenomenological crosso-
ver transformation for a classical Landau expansion of the singular contribution
to a free energy density [25, 26]. This generic approach was at the origin of the
so-called crossover Landau model (CLM) where the van der Waals equation was
used to develop the parametric form of the equation-of-state. This initial formula-
tion by Chen et al [25, 26] was complemented by the implementation of a match-
point method by Nicoll et al [27. 28]. As a consequence, CPM appears to conform
with the so-called renormalization-group matching technique, while reproducing
the known theoretical values for seclected universal amplitudes combinations of
leading amplitudes and first-order amplitudes of the confluent singularities in
Wegner-like expansions [29]. Although it remains being phenomenological, this
crossover model has been successfully applied to describe properties of several
one-components fluids at large distances from the critical point. Furthermore, it
presents the main advantage for calculating the singular thermodynamic proper-
ties in any point of the density-temperature phase surface, specially in the close
vicinity of the liquid—vapor critical point in absence of experimental data. How-
cver, in spite of the essential features which evidence similar Ising-like critical
behaviors from the MR and CPM crossover functions, the intrinsic small differ-
ences in universal values of the critical exponents and amplitudes combinations
whatever the parametric forms used as an e.o.s. crossover model [30-32] limit the
CPM interest for applications where the main objective remains the unambigu-
ous determination of only three parameters that could characterize the Ising-like
nature of a simple fluid in conformity with the symmetrical MR scheme.

It was previously shown [18, 33, 34] that the phenomenological master form
of the MR crossover functions only involves the generalized critical point coor-
dinates as entry data. Such phenomenological master forms provide the opportu-
nity to define a new crossover master model (CMM), without Ising-like adjustable
parameters, as suggested from Refs. [18, 22]. The only remaining differences take
their origin in the choice of the selected universal values of exponents and ampli-
tude combinations that are used to calculate the universal parameters in the crosso-
ver parametric e.o.s.. It is then our main goal of this work to determine the uni-
versal parameters of CMM analytically for the Ising-like universal exponents and
amplitude ratios which are similar (or assumed similar) to the ones calculated (or
expected) using the MR scheme and assuming the same level of quoted uncertain-
ties. The present analytical determination of the CMM universal parameters pro-
vides then the exact intrinsic origin of the finite residuals from the expected MR uni-
versality. As demonstrated in the following, these residuals (of order of 3%) appear
only restricted to one specific universal ratio between the first-order confluent cor-
rection amplitudes, leading to differentiate the so-called intrinsic and ideal CMM.
Therefore, the Ising-like asymptotic parameter characterization of CMM results well
in exact conformity with the two-scale-factor universality features calculated by the
MR scheme. As in such a case already analyzed for xenon, similar analyses of the
singular properties of any other simple fluid, measured at finite distance from 7.,
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should be useful to check that the single crossover parameter (noted Bf, see [35]).
assumed to be independent of the selected property, could characterize the conflu-
ent corrections well beyond its respective PAD. This analytical definition of the true
single temperature scaling factor along the critical isochore of fluids will thus be the
missing link to sustain the theoretical construction of the critical-to-classical crosso-
ver along the renormalized trajectory. In such a renormalized trajectory, only one
family of corrections-to-scaling terms governed by the specific lowest value of the
exponent A are summed into the crossover functions. In these MR crossover func-
tions, the Ising-like asymptotic behavior within the PAD is well characterized by
only three physical amplitudes, as previously noted. In the following CMM case, the
implicit introduction of §, starts also from the asymptotic distance to the physical
critical point, which defines the PAD extension where the crossover functions can be
restricted to the first-order term of the confluent corrections to the scaling. Beyond
the PAD, the so-called extended asymptotic domain (EAD), a similar single value of
9, then defines the true validity range of the Ising-like crossover estimated along the
renormalized trajectory when the non-trivial fixed point is reached. In return, it was
thus generally assumed that the true initial Hamiltonian points of these actual fluids
with comparable short-ranged molecular interaction lie very close to the renormal-
ized trajectory.

The above Ising-like asymptotic characterization of the EAD can be distinguished
from the characterization of the mean field limit of the critical-to-classical crossover.
Until now, the introduction of the (property-dependent) Ginzburg number to rescale
the mean-field temperature appeared as a convenient tool to define an order of mag-
nitude for the limit of the mean-field crossover behavior of each property. Such a
limiting criterion starts from the Gaussian fixed point of the renormalized trajectory
and needs the introduction of (at a minima) three unknown, mean-field-like, non-
universal parameters in the classical Hamiltonian (including thus a square-gradient
term). Therefore, the following CMM seems better adapted to describe the simple
fluid singularities since, to our knowledge, a complete crossover description from
the Gaussian fixed point to the non-trivial fixed point was never observed in the
subclass of simple fluids (see also below our comment related to the the crossover
behavior of the effective exponents y for the susceptibility case and f or the order
parameter density case). Such a non-observation of the mean field behavior of the
fluid is easily understood as the mean field approximation takes a plausible physi-
cal meaning for only a liquid very close to the triple point to satisty the necessary
high-density value of the systems. More generally, the mean-field-like van der Waals
€.0.s., or any cubic e.o.s., remains only a simple convenient concept, but always
incorrect on the basis of fundamental approaches developed such as, for example.
extended virial forms for the dense gas properties or specific liquid theories based
on the molecular dynamics simulations.

Any sophisticated crossover model of the e.o.s. incorporating more than three
free parameters is beyond the scope of this work where our main central interest
only concerns the physical description of the critical crossover limit, which is then
expected to be universal for short-ranged molecular interactions in simple fluids. For
instance, a fourth non-universal parameter can be related to the contributions of one
supplementary irrelevant field. In such a case. a proper treatment for the contribution
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of another confluent exponent (of value greater than A) in the Wegner expansions
seems necessary for theoretical coherence. It can also be related to a more complex
physical understanding of the microscopic nature introduced in the model, such as
an additional reference to a mesoscopic length or a significant modification of the
range of molecular interaction. A concomitant difficulty then appears generally in
the precise experimental characterization for the expected PAD behavior of the cor-
responding complex physical systems, where the order parameter choice remains not
unequivocal. Such a more complicated modeling strategy differs significantly from
the one given initially in Ref. [14]. The latter one was mainly focused on the con-
trolled reduction of the number of adjustable free parameters to support the experi-
mentalists in their analyses of the measured data in simple fluids closer and closer to
their gas-liquid critical point. Correlatively we note, since the 80’s until today, that
no theoretical progress has been made whatever the considered model to account
correctly for the true physical crossover behavior in simple fluids, observed until
the correlation length reaches the same order of magnitude than the range of the
molecular interactions. Such an irreducible theoretical problem was illustrated for
example by the crossover behavior of the effective exponents y in Fig. 1 of Ref. [14],
Fig. 1a of Ref. [18] and Fig. 2 of Ref. [22] for the susceptibility case, v in Fig. 1b of
Ref. [18] and Fig. 2 of Ref. [36] for the correlation length case, and f in Fig. 3 of
Ref. [37] and Fig. 3 of Ref. [22] for the order parameter density case.

The paper is organized as follows: In Sect. 2, we recall the main features of the
equations used to define the asymptotic (Ising-like and classical) limits of the para-
metric e.o.s. for CPM and intrinsic CMM. Section 3 provides the tables of the uni-
versal values for intrinsic CMM that can be substituted to the Tables I to IV for
CPM to define the crossover thermodynamic and correlation functions. The three
ideal Ising-like parameters matching between ideal CMM and MR functions is then
discussed in the Sect. 4, including the correlation length case. Conclusive remarks
are formulated in Section 5 just after the comparison of the MR and intrinsic CMM
crossover behaviors. Additional analytical materials are given in Appendix A to
demonstrate the perfect closure of CMM functions from reference to MR functions.

2 Crossover Master Model Versus Crossover Parametric model
2.1 Formulation of the Crossover Parametric Equation-of-State

In a crossover parametric equation-of-state, any point of the phase surface close to the
critical point is characterized by the radial variable r, which measures the distance to
the critical point, and the angular variable 6, which represents the density distance to
the critical density on a contour of constant r. The corresponding parametric forms of
the physical fields contain a crossover function able to represent the phenomenologi-
cal classical-to-critical crossover transformation for a Landau expansion of the singu-
lar contribution of a free energy approaching the critical point. This crossover function
then leads to recover the so-called Ising-like asymptotic behavior of the singular energy
very close to the critical point. In such a crossover approach, the dimensionless order-
ing field 4,. the dimensionless non-ordering field 4,. and the singular part A®, of the



dimensionless thermodynamic potential ®, can be described by parametric functional
forms in terms of the variables r and € and by appropriate scaling forms of the crosso-
ver function Y. The corresponding results are written as follows

3 2p6-3
hy =r2Y 2, 1(9), (h

hy =rk(). (2)

4D, =Y 3 0(0) + %Bwrz(l — b?0%)2, (3)

where f, 6, and a are the critical exponents for the top shape of the coexistence
curve, the antisymmetrical shape of the critical isotherm, and the singular behavior
of the heat capacity at constant volume, respectively. A, (in Agayan et al’s notations)
is identical to the lowest value of the MR critical exponent (hereafter noted A) for
the confluent singularities (see below). k(f), 1(@) and w(6) are the parametric forms
of present interest and B, an analytic fluctuation-induced background constant.

In the CPM, the crossover function Y is formulated to satisfy the following
equation

(Y.

2 ha
1—(l—ﬁ)Y=a(l+A—2) Y. 4)
K

where « is the inverse of the dimensionless correlation length £* and v is the corre-
sponding universal critical exponent. Equation (4) introduces the crossover param-
eter # when A is used as a wavelength cutoff. Similarly, a parametrization of k, as a
function of r, is such as

2v—1

K2(r)=crY 5 . (5

The crossover function Y, like «, are independent of # and only linear functions of r.
¢, is a dimensionless (fluid-dependent) scaling factor for the reduced temperature
distance to T, along the critical isochore. Using both Eqgs. 4 and 5 defines the crosso-

aAY . . . — A
ver parameter g = (u_] as a combination of the two crossover parameters u and i

“ ("r)z

characterizing, respectively, the crossover shape and the crossover temperature scale
of the function Y.

To describe a one-component fluid of N particles (of individual mass m,) and total
volume V using the usual intensive variables p and 7" associated to the mass density
p= N”—:j’. the CMM then assumes, as in Ref. [34], that the scaling fields /| and &, can
be expressed in the linear combinations of the usual reduced temperature distance

# T
At = — 1,
U=z (©)

c

and the usual dimensionless specific chemical potential distance
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EET 7
to their respective critical values. In Eq 7, the dimensionless form of the specific
chemical potential u, reads ji = ,u . As our present construction of the CMM is

mainly focused on the well-defined [smg like critical limit of the crossover behavior
calculated from the MR scheme, the energy reference p. = kzT, of the simple fluid
is then proportional to its critical temperature 7, (introducing the Boltzmann con-

_ kT, \d o
stant kp). while its volume reference is f}— = (@.)". Moreover, to maintain the

[sing-like similarity with the symmetrical (@2)2 field theory, we only consider the
symmetrical form of the parametric equation by fixing a zero value to the mixing
parameter b, that measures the asymptotic singular asymmetry in the slope of the
coexistence curve, i.e.,

b, = 0. (8)

Therefore, the simplified forms of the scaling fields Az, and &, write as follow

h] ZAE.
h, =At*, 9)
The corresponding conjugated parameters to &, and &, are
__(oad\ _ &
(pl - ah] h? - p‘ (10)
__(oAd) _ P

1

respectively. In Eq. 10, A® = AG =a—a, is the dimensionless difference of the
Helmbholtz free energy A(T. V N) versus its arbitrary critical value A(7,. V(..N(.),

A(TVN) v,N) (ag _ A(TLVN)
(&

with ay; = —< < yand Gy =L ( ay. = ‘)‘“). Here, added subscript

H avoids uonfusnon from the correlat10n angular function a(H, Yl) introduced below.
Ajp = p — 1 is the dimensionless order-parameter (proportional to the density differ-
ence versus the critical density p.), with p= £.In Eq. 11, 45 =5 -7, is the differ-

. . N sT . .
ence between the dimensionless entropy density s = ;p—‘ versus its (arbitrary) value

y. = SFT— at the critical point [38]. We note that the original CPM uses internal

B
energy in place of entropy for ¢, due to the choice of% in place of T for h,, with sig-
nificant effect on the confluent corrections for any order equal or greater than sec-
ond-order, when the main objective is the comparison with MR crossover functions
introducing the single characteristic crossover parameter at the first-order. Once h,,
hy. AD =7 - a,. are defined in terms of the parametric variables r and 6, all the fluid
properties can then be derived using well-known thermodynamics relations. We

recall that a decoration by a tilde means a dimensionless thermodynamics quantity



for a fluid of unit mass, while the superscript * refers to a dimensionless thermody-
namics quantity for a fluid particle [18]. Despite the dimensionless identity
= d . . . e
o= g =0* = CD[}C( o:(_) for any thermodynamic potential @, this distinction per-
mits the correct account of the extensive thermodynamics nature of each fluid, espe-
cially throughout the universal combinations between dimensionless correlation
properties and dimensionless thermodynamics properties, such as Q* or Q*/R,..

Following Agayan’s dissertation [23]. the thermodynamics extensive description
is made per unit of volume V, while the volume reference for correlation length
description is v, = (ac)( . In such a case, the CPM crossover behavior of the dimen-
sionless correlation length & = = is specified through its relation to the dimension-

HC
2
. e a . . .
less isothermal susceptibility y = (f) = (1) p.kp. given by the following
t /h, pe

crossover equation

32 v
€ _ Y & @A) "a(0.Y,). (12)

~

where a(#,Y, ) is the correlation angular function that remains to define below (see

Eq. 16) for the CMM case, with Y, (r) = AL'F% Kp = i(g—;)T is the usual isother-

mal compressibility factor.

However for the present work, due to the fact that Y is independent of 8, we can
avoid the detailed formulations of the crossover function ¥, which can be found in
Refs. [23, 24]. Therefore, the main concern of the next section is only focused on the
formulation of new extended parametric forms of k(8), 1(8). Ww(8). a(ﬁ', Y ) A spe-
cial attention is given on their relative effects on the estimates of the 26 amplitudes

Table 1 26 amplitudes (using Agayan’s notations [23, 24]) of the crossover parametric functions consid-
ered in the present work

Ising-like 1" order Mean-field-like
limit confluent corrections limit
(a) Thermodynamics (7 (3) (6)
[23, 24] AT A7 At = 2a[1 + 3(_3?»:;)] ACy = A5
F;-FE l'T =2(r—-1 l"ar,ﬁ
By.Dy. T ATTT.B, B,.D,.T;
(b) Correlations 3 2) (3)
[23] £ £, £ o EEE
Total: (26) (10) ) 9)

Part (a): 7 Ising-like, 5 first-order confluent corrections, and 6 mean-field-like amplitudes of thermody-
namic properties; Part (b): 3 Ising-like, 2 first-order confluent correction, and 3 mean-field-like ampli-
tudes of the correlation properties. The first-order confluent amplitudes of susceptibility (I')) and correla-
tion length (£7) along the critical isotherm are not accounted for in column 3. The mean-field amplitude
of the heat capacity at constant volume above T, is fixed to zero (A = 0)
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Page |9

of Table | (using Agayan’s notations [23, 24]), through the use of the various aux-
iliary angular functions involved in the calculation of the singular behaviors of the
fluid properties.

2.2 Extended Parametric Forms of the Thermodynamics and Correlation Length
Angular Functions

The CMM uses the following extended analytic functions of &

k(0) =1 — b*6°, (13)
16)=1,0(1-6°)(1+d6” +eb* +16°), (14)
ﬂ}(e) zf'ﬁoﬂjﬂ(WO + WIBZ + W294 + W396 + W498 + Wﬁglo). (15)
-3(7\3 2 4 * * 02 *nd\ [ |
a(6.Y,) =(ig) *(Iy)* [(ag + a,60° + a,6* )Y, + (a] +aT 0> +a36*)(1-Y,)]
or
5 1 2
a(0,v,) =(my) 7 (1) Z Y,a;0% + Y, )aXe*) |,
(16)
and the following fluctuation induced constant

where we introduce 16 universal parameters (b2, d, e, f. w;, with i = {0, 5}, a; and
a}* with j = {0,2}) which characterize the model, while the fluid is characterized by
two non-universal parameters 7, and . Flom Eq. 12, the correlation angular func-
tion of Eq. 16 is proportional to (mo) (IO) as the isothermal compressibility is
proportional to 7, (?0)_]. Such results account for the hyperscaling universal nature
of the Ising-like singular behaviors of the product ¢y, & — Q% when Ar" — 0%,

1
where the specific heat ¢ o 7y, implies the correlation length & « (rngly) 3. In
such a Ising-like critical limit, the two parameters i, and [, are defined in the fol-
lowing rescaled forms

g =m0gﬂ_3, (18)

Ty = log" 2. (19)

of two system-dependent parameters my,, and [;, which characterize the asymptotic
[sing-like singular behavior of the system to be in conformity with the two-scale-
factor universality (see below). Due to the singular energy form of Eq. 3, Ww(6)
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introduces the dimensionless energy scale of the physical system and it is then
essential to note that the product of the rescaled physical parameters is such that the
ratio
myly
— = ga. (20)
gl
appears only dependent on the physical crossover parameter g. Consequently, the
universal parameter w;, defined by the ratio

w(0)
~— 5 = Yo 21
ol (21
is the single universal parameter of the CMM which characterizes the dimension-
less energy of the universal model of dimensionless volume unity above T,. From
Eq. 17, we obtain

cr

3, = — =~ 2wy, (22)
myly

introducing the notation of the quantities independent of the system-dependent
parameters m,, and [, (see below Eqs. 30, 31 and 32). Moreover. anticipating the fol-
lowing construction of the intrinsic CMM. we introduce four additional universal
sums of the w;, with i = {0, 5}, and b? parameters and one additional universal sum
of the d, e, f parameters:

~ l) i=5
2= ‘f(_~ =2 w; (23)
mglg =0
RSV =]
I = ——— =2 iw, (24)
gl i=0
(1 i=5
5 =" v, (25)
mgi[] i=0
ﬁ;(#) i=5 1\
S = 2 _ .(_ , 26
0 Mgly Eﬂwi bz) (20
A, 14
LozTﬂzf_)=1+d+e+f. (27)
l[] z[]

The latter sum of Eq. 27 is a convenient measure of the relative modification of
Eq. 14 for the CMM case versus the CPM case where d = ¢ = f = 0. To comple-
ment the above energy characterization above T,, we note that the universal sum
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2, defined by Eq. 23 is the single universal sum of CMM. which characterizes the
dimensionless energy of the universal model of dimensionless volume unity below
T.. Therefore, we expect w, «x X,, as demonstrated in next Section. As a noticeable
practical interest, X, can be used in Appendix as a single scaling factor to rescale all
the CMM universal quantities w; and the related angular functions.

The above Eqgs. 13 to 17 need to define 10 universal parameters (b2, d, e, f. and
w;, withi = {0,5}) for the modelling of the thermodynamic properties and 6 addi-
tional parameters (a; and a;. with j = {0,2}) for the modelling of the correlation

lengths of each fluid. As in the Agayan’s notation for the correlation length cases,
superscript x in Eq. 16 distinguishes the 3 mean-field-like parameters from the 3
[sing-like parameters.

We note that a, = a7 = 0 in the Agayan’s CPM formulation (see Eq. 5.177 of
the Agayan dissertation). Moreover, in this initial formulation of the CPM, the
thermodynamic parameters d, e, f, and ws are equal to zero, while wy = —11s a
fixed parameter. The remaining 5 parameters b* and w; (i = {1,4}) were chosen
such that the asymptotic amplitude ratios and combinations, agree, as close as
possible, with a restricted number of theoretical predictions of the universal
asymptotic features of 3D Ising-like systems belonging to the {d = 3.n = 1} uni-
versality class [16, 31]. Nevertheless, a careful analysis of Ref. [24] shows that,
selecting % = 1.691047 and w, = —1, fixes unequivocally all the four remaining
values of w; (i = {1.4}) (see Table IV of Ref. [24]), through 4 values of 4 univer-
sal combinations and ratios (see 4 upper lines of their Table II) between 6 leading
thermodynamic amplitudes A;, Aa, F{T. Fa, B,. and D, (see Egs. (2.18) to (2.21)
in Ref. [24]). For example, CPM value X; = —0.94970813 (see Table 4) is well in
agreement with the universal ratio i—‘l = (b* - '1)2_6‘% =0.52369 (see below

0 0
Eq. 38). As a consequence, among the 6 universal asymptotic parameters b* and

w;, only two, namely b? and w,, are independent in order to satisfy the two-scale-
factor universality in the CPM case. The independence of b? is trivial as
k(1) = 1 — b?* is a quantity independent of the physical system, while the inde-
pendence of w, as dimensionless energy reference of the model was discussed
just above (see Eq. 21).

In a similar fashion, »* and w;, are also independent in our present intrinsic (or
ideal) CMM case and the intrinsic features of the parametric models [39] can be
easily explained through some irreducible characteristic features of the angular
functions, anticipating a more detailed discussion given in Appendix.

Indeed, the crossover forms of the CMM can be characterized from a crossover
approach based on the Wegner-like expansions where are distinguished the two
limiting asymptotic behaviors for any physical property P! along the thermody-
namic line labeled by the superscript /. For instance, along the critical isochore
where I=+,— for T>T, and T <T,, the Ising-like critical limit |[A7*| — 0
approaching the liquid—vapor critical point and the mean-field-like classical limit
|Az*| > 1 at large distance from T, are well characterized by the respective fol-
lowing power law equations,



Table2 MR (or CMM), CPM,
and MF values of the critical
exponents, where here @ and y
are selected as two independent
leading exponents, and @ as the
characteristic exponent of the
first-order confluent corrections
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Universal exponents

MR or CMM CPM MF
Ref. [71 [24]
« 0.1088375 0.110 [ 0
y 1.2395935 1.239 Ymf 1
g = %(dv -9 0.325785 0.3255 Pt %
§= % 4.80495 4.80645 [ 3
v—y
V= 2—1“ 0.6303875 0.630 Ving %
[«
n=2- % 0.03360076 0.033333 Honf 0
0] 0, 79616
A=owv 0.50189 0.52 A

1
2

The column 2 must be used for CMM on place of Table 1 of Ref.
[24] for CPM (here recalled in column 3)

Pl (|At*| = 0) = PL|Ac* |77 [1 + P! Ac*]],

Ising

P (147" > 1) = PL|Ac"| 7,

(28)

(29)

In such limiting descriptions, the non-universal character of the fluid enters in the
[sing-like leading amplitude Pf]. the first-order confluent correction amplitude P!,

and the mean-ficld leading amplitude Pg. 7p. A, and 7p ¢ are the related univer-
sal critical exponents considered in present work (see Table 2). Accounting for the
CMM results given in Appendix A (see also Table III and Eqgs. (4.45) to (4.49) in
Ref. [24]), the non-universal amplitudes of Eqgs. 28 and 29 must be then rewritten in
the following universal scaling ratios

{

P, A
P 3p:
-P,Ising(mo’ 0)

[
P, _31.1
—_\ —po
focc(A.g.1)
P _
0
=3

f;;.mf (ﬁIU ’ ?U )

(30)

(31

(32)

where the non-universal character of the fluid is now contained, on the one hand, in

the leading terms f;,llsing(mo.io) and f} (. 1y). which express the (Ising-like or
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mean-field-like) property P' in units of {my. I, } or {iny. ]y} and on the other, in the

~ { =\ _ Yo _ _-A = o .
uonﬂuen}. term -fP,cc(‘.A’.g’”) =a-8 (l - u), Whluh expresses the LOI:I]I‘[]OH
scaling factor characterizing the contribution of the single non-relevant field (for the

Y,, formulation, see Eq. 4.35 in Ref [24]). Therefore, the 26 prefactors 3, l;f, and
3;, are universal constants related to the 16 universal parameters of the CMM
through the auxiliary angular (asymptotic, correction-to-scaling, and classical) func-
tions given in Ref. [24]. However, among the 26 selected prefactors, the following 6
prefactors related to the Ising-like singular behaviors (including the first-order con-
fluent correction-to-scaling) of the specific heat above and below T and the isother-
mal compressibility above T, show remarkable links to the Ising exponents a, y. and

A and to the b%, wy, X, and w1 parameters, i.c.,

‘ . AB+A-a)

o= [2a +244,,(0)] = 2a[l + m] (33)
— S —A . A AB+A-a)
Sé =(b2_1) [2&’+2Aq21(1)]=(b2—1) 2(x|:l+mj|,
(34)
2O 5o

3= ol (2 = a)(1l = a)wy, (35)

_ 1 [‘Iz(])] _ Q-ol-ax,
= (bZ— 1)2 m{]f[] - (bz— 1)2—a . (36)

It is essential to note that the value of the universal prefactor of the first-order con-
fluent correction-to-scaling of Eq. 33 is only dependent of the values of the critical
exponents a and A. Equations (33) to (36) lead to the following universal ratios:

At 1+ A
—=——=(-1) (37)
AT 3 ’ ;
1 C
A+ + w
L= 2o (pr o) (38)
Ay 35 ) 2

which explicit the specific roles of % and % in the parametric models of the scaled
U]

€.0.5..
In a similar manner, the two prefactors related to the Ising-like singular behaviors of
the isothermal susceptibility above T', are
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0
8;: L:—Z[(Z—a)b2w0+w1]. (40)

mo(l{])fl

We note that this universal prefactor of the first-order confluent correction-to-scaling
is only dependent of the value of the critical exponent y. Equations (33) and (39)
lead to the infrinsic universal ratio,

AT 3¢ __a ||, AG+A-w "
AT | AT TR "

only dependent of the critical exponent values. Therefore the corresponding ratio
value (0.913263) is not conform to the MR value (0.941872) and specific to the so-
called intrinsic CMM in the sense where the mathematical formulation of CMM
implies that this amplitude ratio is only dependent of the critical exponents, a con-
straint not accounted for in the two main field-theoretical renormalization methods.

Now, in order to close our present construction of the CMM as close as possible
to the MR mean crossover functions, it remains to reformulate the CPM universal
quantities provided in Tables I to IV of Ref. [24] and to provide the needed addi-
tional universal quantities which extend the CMM estimates for the 26 amplitudes
of Table 1.

2.3 Universal Parameter Sets for CMM Versus CPM

The universal values of the critical and mean-field exponents involved in the MR
crossover functions are given in Table 2, which replaces Table I of Ref. [24]. For
convenience, the CPM critical exponents are also reported in column 2 of present
Table 2. We note that y and v are selected as the two independent exponents (to be
conform with the universal features of the Ising-like critical limit).

The 20 amplitudes combinations and ratios considered in the present work are
defined in column 2, lines | to 20 of Table 3. Lines 1 to 8 in part (a) give 8 universal
ratios and combinations between 10 Ising-like leading amplitudes, while lines 9 to
14 in part (b) give 5 universal ratios between 7 first-order confluent amplitudes. In
the latter case, 4 supplementary ratios are mentioned as combinations of the 5 previ-
ous ones. Lines 15 to 20 in part (c) give 6 universal ratios and combinations between
9 mean-field-like leading amplitudes (Q_;l (line 20(e)) takes the same value above
and below T,). Also for convenience, the corresponding CPM values are reported in
column 7 of Table 3 where the additional label (u) recalls for a universal quantity
used in the construction of the CPM (with six universal parameters). The values
used in the present CMM are given in column 3, while the MR values, or assumed
MR-like values (and thus noted between brackets), calculated in the MR scheme are
given in column 5. Line 10(i) indicates the irreducible (3%) failure of the parametric

. . Af . . .
model in the estimate of the r_]+ value only dependent of the critical exponents. Sign

1
= in Column 4, indicates 16 universal ratios and combinations exactly accounted for
in the determination of the 16 universal parameters involved in the parametric
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Table 3 20 universal amplitude combinations (column 2) for estimation of the CMM universal param-
eters given in Table (4)

1 2 3 4 5 6 7
CMM vs MR CPM
This work [17] R%  [23,24]

(a) Ising-like leading ratios or combinations

I(e) A5 _ Uy 0.5368012 = 0.5368012 0 0.52369(u)
Ay
2(e) T U, 4788337344 = 4788337344 0 4.94426(u)
Iy
3(e) ey _ R. 0.057406065 = 0.057406065 0 0.0579693(u)
2 .
4(e) FJDSBS“ =R, 1.7 = (1.7) 0 1.7066(u)
-1 (0.895446) (0.894753)
Q] = x
5(e) Dere)? = (5% 5.30298 = 5.30298 0 5.2826
o(Fo) =@ X107+ x107* X107+
6(e) & _ I, 1.96 = (1.96) 0 (1.96)(u)
& ¢
3 : _ L
T(e) aAar(fg] L:T =0 0.01961673 = 0.01961673 0 0.0188(u)
8(e) g\ 1.17 = (1.17) 0 1.188
(2) %=
50 0
(b) Confluent correction ratios or combinations
9e)-(el) A7 _ (b2 _ l)A 1.20386 = 1.20386 0 0.825171
10(i) AV _ L[] + A(3+A—:ﬂ] 0.913263 (#  0.941872 =3 0.945429
s oyl (1-a)(2-a)
11(e) s 0.211618 = 0.211618 0 0.154415
rr
12(e) B 0.9 = 0.9 0 1.116155
o
13(7) & n.a %) 0.679191 <03
ry %)
14(7) & n.a 9] (1) <03
& (@)
I.TO(i) AT 0.758861 (#  0.782374 =3 1.145737
: rs
%(i) Af 1.014737 (# 104652 -3 0.84704
Z B,
10 AL 0.843179 (#)  0.869305 -3
12 B,
11x12(e) l’f_i 0.190456 = 0.190456 0
1
(c) mean-field-like leading ratios or combinations
15(i) E T 5.34037 # 2 167 2.056
_E 2
16(e) AC,T; o 1 = % 0 0.5109(u)
7 = e 2 2
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1 2 3 4 5 6 7
CMM Vs MR CPM
This work [17] R%  [23,24]
17e) o\ e ] = 1 0 1.015
SoR(R) -7 -,
18(e) — ==\ 1 0.037037 = 0.037037 0
DE( 0) =3
Pe 8 _g V2 = V2 0 Vaw
2 1 = () 0 1

20(e) ( z )

Part (a) 8 Ising-like amplitude combinations; Part (b) 6 first-order confluent correction amplitude ratios
(not available along the critical isotherm); Part (c¢) 6 mean-field-like amplitude combinations. Notations
(e), (i) or (7) are for the exact induced or non available values of the amplitude combinations accounted
in CMM (column 3), with reference to the corresponding RG estimates of Refs. [7, 17] (column 3).
Column 4 compares columns 3 and 5 (see text) while residuals (expressed in %) are reported in col-
umn 6. Column 7: Recall of the related CPM values from Ref. [24] where the 10 CPM universal param-
eters control the 8 amplitude combination values (with additional label (u)), using the fixed values of
b? = 1.691047 and w, = —1. In columns 5 and 7, () indicates a fixed value from a different source. This
Table (column 3) must be used for CMM in place of Table II of Ref. [24] for CPM (recalled in column 7)

Egs. 13 to 16. Signs (#), (=) and (?) in Column 4, complemented by the values of
the related residuals R% in column 6 indicate the induced results for the remaining 8
amplitudes ratios and combinations. Accordingly, additional (e), (i), and (n.a) indi-
cate, respectively, the exact, induced or non-available account of each theoretical
estimate provided by the MR scheme. Our Table 3 replaces and complements Table
IT of Ref. [24].

The CMM values of the 16 universal parameters involved in the paramet-
ric Egs. 13 to 16 are reported in column 3 of Table 4. Lines | to 10 in part (a) of
Table 4 give the values of 10 universal parameters involved in the CMM description
of the thermodynamic properties. Lines 11 to 16 in part (b) give 6 universal param-
eters involved in the CMM crossover angular function of Eq. 16 for the correlation
lengths. The unambiguous determination of these universal parameters is detailed in
next Section and in Appendix A. As mentioned above, the closed procedure for their
successive calculations account for 16 universal values characterizing the Ising-
like critical limit (including the first-order confluent corrections to scaling) and the
mean-field-like classical limit of the classical-to-critical crossover calculated in the
MR scheme along the renormalized trajectory. The universal values of 5 auxiliary
parameters introduced in the next section are also reported in lines 17 to 21 of part
(c). Table 4 for the CMM case replaces and complements Table IV of Ref. [24] for
the CPM case. As above, the CPM results are also recalled in column 4 of our pre-
sent Table 4.

Finally, in column 2 of Table 5 are defined 26 universal prefactors involved in
the determination of 26 physical amplitudes selected in Table 1 (using Agayan’s
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Table 4 Universal parameters involved in the parametric forms of intrinsic CMM

Parameters CMM CPM Normed Line-step
E— parameters number
this work Table IV see see
[24] Appendix A Table (8)

(a) Thermodynamics

1 bt (®) 24472625381 1.691047 b? 4

2 Wy (®) —0.327010546 -1 Wy 9

3 Wy 1.113948 1.504493 W) 21

4 Wy —0.55015526 —1.321901 W) 52

5 Wy —6.03256705 —0.1898336 Wi 51

6 Wy 7.36008178 0.05753347 1 50

7 W —2.78995524 0 Wi 49

8 d —1.2687866 0 d 43

9 e 4.11505 0 € 44

10 f —2.55972 0 f 45
(b) Correlations

11 ag 0.594073 0.064360 a,g 25

12 a; 0.289390 0.019119 a, 67

13 a, —0.148760 0 Qs 63

14 aa’ 0.487738 0.057984 a;:] 26

15 ay —0.562864 0.0016173 ax 69

16 ay 1.37746 0 ax, 70
(c) Auxiliary

17 Z —1.225658220 —0.94970813 =1 53

18 Z —5.187025250 —2.95735 I 16

19 Zs —24.2823698 —-15.327 z 46

20 So —0.20186565 —4.94578 S5 47

21 L 1.2865406 0 L 20

(a) 10 thermodynamic parameters used in Eqgs. 13 to 15; (b) 6 correlation parameters used in Eq.(16);
(c): 5 subparameters of Eqs. 23 to 27. This Table must be used for CMM on place of Table 1V of Ref.
[24] for CPM (here recalled in column 4). Column 5: notation of the corresponding normed parameter
defined in Appendix A. Column 6: line-step number of Table 8 in Appendix A where is performed the
unequivocal determination of the normed parameter

notations). Lines 1 to 10 of part (a) give 10 Ising-like leading prefactors, while lines
11 to 17 of part (b) give 7 first-order confluent prefactors. Lines 18 to 26 of part (c¢)
give 9 mean-field-like leading prefactors. The universal values of the different pref-
actors are reported in column 3 for the present intrinsic CMM case and in column
5 for the ideal CMM (see below next section), while their identity (=) or difference
(#) are illustrated in column 4. The corresponding MR [17] and CPM [24] ampli-
tude values are reported in columns 6 and 7, respectively. Table (5) for CMM case
replaces and complements Table IIT of Ref. [24] for CPM case.

The 10 Ising-like leading amplitudes of part (a) are related by the 8 universal
ratios and combinations of part (a) of Table 3. Two Ising-like amplitudes are then
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Table 5 Universal values of 26 prefactors involved in the determination of the 26 amplitudes reported in
Table 1
1 2 3 4 5 6 7
intrinsic Vs ideal MR CPM
CMM % CMM [17] [24]
(a) Ising-like prefactors
e3+) Ar _ 3+ 05511217 = [L‘ri@ifazf- Z;=1719788 1.68210
mgly — VC ) ]
2(e3— Ay 4 1.02667754 = d@l-az— Z-.=3.203771 3.21198
(e3-) 2 =3¢ ez, c
3(6‘4) Ty _ o+ 0.7990253675 = A2 o=t N -1 . -1 _ 3.38317
TSRl ey (z;)  (zp) =o0269s71
4 Iy — 3_ 0.16686906 = PR _ -1 _ -1 0.684260
T =3 Loy (z;)  (z;) =o00s62974
5 By =3y 0.91372273 = I]—fnqjmeﬁ-:ZM Zy = 0.937528 3.28614
??]'D
6 D 2.99907597 = —dsgp—(6+1) = 0.00544595
o = 3 Lz, (2= 806073
I = i+l
7 ¢ = ¢ 0.16559269 = Ldys ze [Zc. _ 0.134796] 0.615451
my ()" meom o g
8 & 0.68897 = -1 - 0.466628
= 3f 1o (z;) (7r) =0471474
(mgfo) 3 S m o m 3 E
& = —1lg—-v7—
9 § __g- 03sISIS = L0y z; [ZE _ 0.240548] 0.238076
(mofo)_j = ?
10 £ _ Aec 0.335178 = L [ . ] 0.214128
= ¢ -1 &2-n) —7c Z( = 0358975
(rr*ufu)_% 35 = ¥ Z;’ ¢
(b) confluent prefactors
uel+) _ AL _ gLy 0476 # @AZL* 7" =8.06569 0.451915
L =304 gLt 0451333
Wel—) A _ 51— 03635164 eA7!- - _ 66 0.547662
w0 = 3¢ 704 _OZc Z: = 6.69984
: B = 0.374904
13(e2) rf _ 31'+ 0.479187 = —EAZL+ ZV = —8.56347 0.478
S O e ‘
14 T gl 22643938 = _@A7 1~ Zl— = —_40.4666 3.09555
g‘b-‘(lfﬁ) x m oy re
B = Azl 1 _
15 — (JI_H) =gl o8z = er7! zl =770712 0.533522
o _H gl Cos oL Z* = -5.81623
s (1-1 E S g
e (<03 i+ _ 325450
17 I _ Al— mna = @Azl~— - _ )
i (<03) . ombe 7)™ =581623
3oz = 0.325459
(c) mean-field leading prefactors
T E— d @2 - .= L
18 d,i;i — 3w, 0.516299 3356 [LmE)mZIE.mf e =3 1.97745
-3 Jmac, = nc
¢ = 0.514470
19 [ighr 5T 0.973226 * dawr? el -1 =1 3.75520
ﬁ,nu(gﬂ)-' - ‘8; 30.04 I]_mqjmem (Z;.mf) (Z;mf) =1

3;, = 0.748403
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Table 5 (continued)
1 2 3 4 5 6 7
intrinsic Vs ideal MR CPM
CMM % CcMM [17] [24]
20 Ter  —=— 018224 # e et (o N\ oo\ 1.82665
ﬁ"o(io)_l TNy —51.3 I]_m‘Pmem (Z,y.mf) (Zx,mf) 2
35, = 0.374202
21 By —— 100247 # 4 ! 7. =+/6 3.81255
Ty = 1424 Lo PnOnZym ot = V6
Bmy = 0.877531
2 Dre’? s # LoMg=sz, [ZH 1 ]
() 1, O —0.631 3 . =1.028939 e
23 Tes™ o 0.330876 # dwio. § 54
o (1) 3 - 3x 0.211 I]‘nllpmz,{"nlf ymf e
24 Tetw  —— 0688970 # e -1 -1 0.466628
(:u;)_é -3 T0286 Lm0 (Zi)  (Ziw) =1
K 37, = 0.690946
25 — 1. 0.487175 # R _ 2 0.329956
ik r=3; —0.286 I]‘ml@mhzf.mf [ &mf T]
iigly )3 = ' - _ y
(ko) 3;,, = 0.488573
26 =1 0.401722 # e 1 0.272315
> =3 Tioon L' Zg [Zémﬁ j]
(i) 3, = 0.457622

This Table (column 3) must be used for intrinsic CMM in place of Table III of Ref. [24] for CPM. In
column 5 are given the analytical formulations to calculate the corresponding universal values of 26 pref-
actors for ideal CMM using only the three universal scale factors @, ¥, and L. In column 6, the uni-
versal amplitude values not involved through the limited number of calculated MR functions of Ref. [17],
are noted between []. Column I: ordering number (with added reference (ei, i = {1,4}) for the four steps

explicated in the text). 37 = 0 fixed

characteristics of the fluid system. as expected from the MR scheme. Similarly,
among the 7 confluent amplitudes. only one is independent and characteristic of
the confluent corrections-to-scaling (despite the fact that the numerical values of
some universal ratios are not available). So that, only three amplitudes character-
ize the universality features of the simple fluid in the Ising-like limit. In the classi-

cal limit, introducing some additional constants (such as 3; = —2w,,. cr= 1. and

A;]L = 32 = 0, see Ref. [24] and CPM construction), among the 9 mean-field-like
leading amplitudes only two mean-field amplitudes are fluid dependent according to
a two parameters van der Waals-like e.o.s..

As detailed in Appendix A, we note that our closed analytical scheme provides the
expected three parameter characterization of the CMM universality features in con-
formity with the three Ising-like parameter characterization of the MR scheme. Such
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closed analytic scheme avoids the reference (o the 3 fluid-dependent mean-field-like

parameters my, [, and g = @ (the latter one combining the physical crossover param-

eters & and —21) using now instead three master values myo=1L,0=g, = 1. which
(cr)? ' '

agree with the infinite cutoff approximation A — oo, but# — 0. so that the product uA

remains finite.

3 MR Crossover Forms of the Ideal CMM
3.1 Construction of Ideal CMM

The ideal matching between the respective Ising-like critical limits of the MR and the
CMM crossover functions follows in a similar manner as in Ref. [18]. Indeed, the res-
caling of their two theoretical scaling fields can be written

t=0, 47" (42)

Fa

h=¥,4p (43)

introducing thus the two scale factors ©, and ¥, which characterize the so-called
ideal CMM to be conform with the universal estimates of the Ising-like critical limit
from the MR scheme. A universal quantity with subscript m refers to ideal CMM.
Accordingly. the rescaling of their order parameter density field Ap = pﬁ — lis,

c

m =Y 1Ap (44)

The MR description of a simple fluid belonging to the one-component fluid subclass
(labeled by the superscript { 1f'} in Ref. [33]) assumes that the physical lengths are
1

T\ 3 L
measured in unit of the (single) length scale a, = ("‘;—T)‘ = (vo) * and then related

to the single MR wavelength scale g, through the follc;wing non-dimensional length
LIV} = 25.585 (see Eqs. 50, 93, and 94 of Ref. [33])

goa, = LIV} (45)

Hence, the application of the ideal CMM can be extended to all the simple fluid sub-
class by assuming the identity

L =0, (46)

where L, is now the single dimensionless length scale introduced in the ideal CMM.
Consequently, the three universal parameters @, 'Y . and L, characterize the MR
universal forms (see below) of the ideal CMM applied to simple fluids. These forms
are then calculated in quantitative conformity with the Ising-like two-scale-factor
universality predicted by the MR scheme [7].
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In order to suppress the non-universal character of the ideal CMM crossover
functions, the preliminary step needs to introduce the following fixed values of
physical parameters for CMM

my =1 (47)
lom =1 (48)
g4 (1-m,) =1 (49)
which induce the identities
T 15ing (Mo.ms lom) =1 (50)
f;,’CC (A, g, 1,) =1 (51)

1 ~ 3
Using my = m{,gﬁ_f and [y = lggﬁa_i in the angular functions involved in the calcula-

. - l, .. ~ ~ —_ A
tion of Py leads to the rescaled quantities f, (g.0) =fh (g mo.1L)

f;,lsing(mo.lo), where x, , is the corresponding exponent infered by the

= g—"g.P X
{1} combination in £, (#y.1,) (see for example Eq. 20 for the specific heat
case). As expected from the CPM construction of the crossover function Y of Eq. 4,
the classical asymptotic behavior of CMM is only normed by g. which acts as an
effective Ginzburg number to define the validity range of the mean-field limit.
Therefore, under the constraint f‘[",,[smg(mg’m. lo.m) = 1. itis straightforward to obtain

fﬁ’,mf(gm’ My m» l[l.m) = (gm.)xg..D (52)

Therefore, a convenient choice

u, =0 (54)

corresponds to the infinite-cutoff approximation A — oo, with # — 0, so that the
product #A remains finite. Indeed, in the infinite-cutoff approximation, the crosso-
ver behavior along the renormalized (rajectory is controlled by a single crossover
parameter associated to the lowest universal value of the confluent exponent A, that
is precisely the case in the MR scheme.

The physical set {mo_m =l =8n=1liu,= 0} closes the construction of the MR
universal forms of the ideal CMM crossover functions. For instance, along the critical
isochore, the universal limiting forms of the ideal CMM crossover functions are thus
written as follows
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(147°]) = P% |47 |*”P[1+P§U|,:tr*|A (55)

m.I:.mg

(JA7]) = P= | Ac*|%nt (56)

m mf

where the amplitudes Pio. Pi P and Pio, are now universal quantities such as

Pi.{l :3;)( x 1 (57)
1+

P =3M% x 1 (58)

Prin.n = i_X x 1 (59)

According to the fact that the MR mean crossover functions are restricted to non-
dimensional P! = {Cv- ;(,m} properties along the critical isochore, the next step
needs to compare the universal crossover functions Pi(ﬂr*) for the ideal CMM case
to the universal crossover functions Fﬁm (t) for the MR case, using the equations
+ _ vzt g

PE(|AT7|) =Y ([I_ 0,.v ) PMR( ml.ﬂr”l) (60)
In Egs. 60, Y;( L O W) are the normed combinations of the three universal
parameters which result for the energy and length dimensions of the physical vari-
ables, while the two MR limiting behaviors of F};MR(I) are given as follows

F.:’_MR Ismg(lrl) =Zgltl_ﬁp[l +Z.:3¢|I|A] (61)
Fp (1) = Z 1777 (62)

The term to term comparisons of Egs. 55 and 56 with Egs. 61 and 62 using addi-
tional conditions of Eqs. 57, 58, and 59, induce the following results

- Z+ X Yr: JIsing ([Lm ®m* l]Jm) (@m)fﬁP (63)
3 =2 x (0,)" (64)
g P Z; Y;:; mf ( ﬂ_m' ®m‘ le) (®m ) e (65)

The corresponding results now extended to the complete set of 26 amplitudes
selected in Table 1 are reported in column 5 of Table 5.

A refined analysis of the Ising-like limit shows that the readily independent
leading prefactors are 3* . and 3% (as « and y are the corresponding independ-
ent exponents), while the MR umversal form of ideal CMM uses 31 -+ as the entry
data to start the MR versus CMM exact matching. Indeed, the MR unwelsal form of
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ideal CMM is defined in a unequivocal manner by considering the restricted two-
term master forms of the Ising-like singular behaviors of the specific heat above and
below T, and the isothermal susceptibility above T, i.e..

Cﬁqm(dr*) = Sf]_c(df*)_a ['l + Srlr;i(dr*)‘ﬁ] (66)

£ (A7) = 3L (477 |1+ 30 (a2 (67)

As demonstrated in Appendix A, we can then successively calculate in four steps
(labelled (ei), with i = {1,4}) the four following quantities knowing the MR Ising-
like critical limit:
(el) MR universal ratio 2—1 = 1.20386 fixes the value b* = 2.4472625381 for intrin-
1

: At . .
sic CMM, when —- was used as entry data in the equation
1

AT Bme 3¢ A
T == () (68)
1 8m,c‘ 3@

where 3é:+and 31C’_ are explicited from CMM angular functions (see lines 11(el+)
and 12(e1-) in Table 6);

(e2) MR confluent amplitude Zl{-* = 8.56347 fixes the value © , = 0.003199934 for
ideal CMM, when 3“;* = 2(y — 1) was used as entry data (see line 13(e2) in Table 6)
in the equation

A
Z;*(0,)" =3 =20 — 1) = 0479187 69)

However, this (e2) step also reveal one irreducible difference between ideal and
intrinsic CMM noted previously

(e3) MR leading amplitude Z; = 1.719788 fixes the value w, = —0.327011 for
intrinsic CMM, when Zz was used as entry data (see line In(e3n(+)) in Table (6)) in
the term to term matching equation

3 = azt(L,)(0,) =35 = -2 - a)(1 —a)w, = 0.551122  (70)

using previous values of L, = 25.585 and ©, = 0.003199934 for ideal CMM. Simi-
larly, the MR-leading amplitude Z_=3.203771 fixes the value

Xy = ”—1) = —1.22565822 for intrinsic CMM. when Z_ was used as entry data (see
00
line 2n(e3(-)) in Table 6) in the term to term matching equation

q

3= aZz(L,) ! (0,) =32 = _CmoU =D 02667754 an

(b2 -1)""

More generally, as demonstrated in Appendix, the thermodynamic description using
intrinsic CMM above and below T, is closed at this 1i1) level, as the two independent
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universal parameters (b* and wy, or X,) are known. Then, all the 8 remaining univer-

sal parameters can be calculated, with especial attention to w; = 1.113948 which

result from the unique solution of the auxiliary quantity % considering the Ising like
]

and the mean-field like estimations of‘;('—(;]) = w, (see also Appendix). Finally,
140

-1
(¢4)  MR-leading  amplitude (z;) =3.709601 fixes the value

W = 3.781467 x 10~*for ideal CMM, when it was used as entry data (see line 3n(e4)
in Table 6) in the term to term matching equation

-1
3, = (Zﬁ) (L) (P,)(0,) 7 =35 = =2[2 = a)b>w, + w,| = 0.799025

e
(72)
After the (e4) step, the following set of universal values
L, =25.585
©,, =0.003199934 (73)

Y =3.781467 x 107*

closes the MR universal description of the Ising-like critical limit of the ideal CMM
whatever the line /, as expected in Ref. [34].

3.2 Intrinsic CMM Versus Ideal CMM

The results of the comparison between the 26 prefactor values of the intrinsic
CMM and ideal CMM for the 26 selected amplitudes were reported in column 3
and 5 of Table 5. The following table forms

7

Intrinsic CMM = [deal CMM
35 10Yes 3,
3, 2No&5Yes 3,
3, 9No o

summarizes the comparison where 10 Ising-like prefactors are identical, only 5
among the 7 confluent prefactors are identical, and 9 mean-field-like prefactors are
different.

3.2.1 Ising-Like Singular Limit

As expected, the Ising-like leading limit is perfectly accounted for both intrinsic
alnd ideal CMM. TWOV(SE andl 3;) among the tlen 3‘;, Prefacroys. are independept
since the other 8 prefactor ratios and combinations of Part (a) in Table 5 are in
agreement with the two-scale-factor universality (accounted for by our choice of
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a and y as independent exponents). 3;, = 3:“,,, for any P! and subscript m can be
suppressed for these Ising-like leading prefactors. The numerical values of these
ten 3;, prefactors are thus obtained fom the universal values of the two MR-inde-
pendent amplitudes (Z;)_] = 0.269571. Z% = 1.719788 [17. 33] (see Appendix
A)

We note that the CMM [sing-like leading amplitude
m = 30 -2-a)(l —a)w, = *(‘:J’ X X, = 0.551122 of the specific heat in the
homogeneous domain is only characterized by X, (or wy, equivalently, using Egs. 70
and/or 71). Therefore, X, or wy take scale factor nature similar to A involved in the

hyperscaling law agg(ajg) = Q". This result is to conform with our choice of
1

a, = (}“;—T)E as a single length unit of each selected simple fluid, introducing then

the single master value L (see Eq. 46) for the simple fluid universality subclass.
3.2.2 Ising-Like Confluent Corrections

The origin of the +3% difference for the two confluent amplitudes Slc'i from refer-

ence to 3 (see lines 11 and 12 in Table 5) is due to the irremediable default
plevmusly mentloned in intrinsic CMM where the calculated value of the univer-

AT
sal ratio E only depends on the critical exponent values (see Eq. 41). However,

the intrinsic entry prefactor 3'* = 2(y — 1) well remains the single independent
prefactor to characterize the first-order confluent corrections to scaling, as the
ideal entry prefactor 33{; 1s thus obtained only fom the universal value of the MR

independent amplitude Z,l;r = 8.56347.

For the critical limit AT* — 0, the ideal matching of the correlation functions
needs to perform the term to term comparison of the two following equations

y (z+) (L)7'(,)" = 068897 = 3! = \/a,ﬂ(—z[zbw{] +w,])
= 0.68897
(74)

-1 ?
3t =- (zgl*) (©,)" =0325459= 3% = nonavailable  (75)

If 3* =37 ; (see Eq. 74) as expected Just above for the leading amplitude, the
CMM value of the confluent amplitude 3 1s difficult to obtain analyncal]y due to
the complex functional forms of the Crossover Eq 12. The case of 3" e is similar.

L+

Therefore, the control of the universal MR ratio =L r+ = ;, = 0.679191 [17, 33] and

<
‘._,. I+

z;
the fixed ratio =L Z, = 1 in Column 5 of Table 3 are not checked here (see lines
& !

labeled 13(?) and 14(?) in column 3 of Table 3).
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We note that the perfect matching of the 2-term Ising-like singular behavior of
the isothermal susceptibility above and below T, in the intrinsic CMM case is one
of the noticeable confluent ameliorations from the CPM case.

3.2.3 Mean-Field-Like Classical Limit

The actual mean-field behavior resulting from the calculated crossover MR func-
tions of Ref. [17] leads to the amplitude values Z_; =1, Z_; =2, ZL = \/g with

the specific heat jump Z,o =7 .- Z5 - =6,79349 — 3.79004 = 3.00345

slightly different from Z_ = Z_ __— X = 6,79349 — 3.793494 = 3, which cor-

responds to the correct jump with the fixed value Z. = A7 = 0 (see column 6 of
Table 5). This specific jump difference results from the MR background constant
difference X, = —3.79829 # X._ = —3.79349 involved in the calculated crosso-
ver functions C* of the specific heat in the homogeneous and non-homogeneous
domains (see Tables I and II of Ref. [17]). The supplementary values between [ |
can be estimated using appropriate amplitude combinations of part (c) of Table 3.

The resulting mean-field prefactors of ideal CMM are given in column 5 of
Table 5, while the ones of intrinsic CMM are given in column 3 of same Table 5.

All these mean-field prefactors are different since 3_5, F 3;]“[, for any P! (see text
and table forms just above), with related (small or large) residuals

i

r% = 100 x I == — l] reported in column 4 of Table 5. Especially considering the
8ﬂ1,P

susceptibility case along the critical isochore, the residuals reach 30% and 50%

above and below T, mainly due to the fact that the a: ;:(E value cannot be
accounted for in the construction of intrinsic CMM (see Appoendix A). Despite
the large uncorrected value (167% discrepancy) of this Fz ratio, all the remaining
5 classical amplitude combinations and ratios of Table 3 remain accounted for
exactly in this construction. An essential result for a better understanding of the
number of fluid dependent parameters is introduced in the parametric crossover

model to characterize the classical limit.
Similarly, the prefactor 33 = SZL (see Eq. 17) related to the analytic back-
or {l]
ground constant of intrinsic CMM differs from the resulting prefactor of ideal

CMM calculated as follows:

Sm,BN = 3m.ACV = 3;16‘ = ZZC (u—m)d(®m)2 (76)

v

with the use of the scale factors of Eq. 73. Here, the residuals is small (0.356 %), as

the MR mean-field amplitude Z;_mf = 3,79829 of the MR function C* of the spe-

cific heat in the homogeneous domain is quasi-corrected by the background con-
stant Xp = —3.79004 to generate a mean-field limit Z. = Z/ .+ Xc. = 0.00825
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Residuals X (CMM/MR-1) [%]

Leading factors (CMM / MR)
Iy =0.799031/0.799029 (Ising-like)
Ty = 0973230/ 0.748372 (MF-like)

— - CMM (T>T.)
— MR (T>T,)

CMM parameters (Table IV)
Au=1A—ow, u— 0)
lp=1

m[) T l

._
S)
ETTTTTTTTTTTTITITTITTITTITI

10" 10° 10 10" 107 10" 100° 100 10° 10° 10"

AT

Fig.1 Comparison of the isothermal susceptibility y* in the homogeneous domain calculated from
intrinsic CMM (blue curve labelled CMM) and ideal CMM (red curve labelled MR), the latter being
obtained (see text) from the corresponding MR crossover function y* (see Table I of Ref. [17]). The

. cor 21(CMM)
residuals, XT% = 100 x l TR

- lJ are shown in the top part plot

not exactly conform with the CMM fixed value A_; = 0. Accordingly,
35 =-0.00141479 # 0.

3.2.4 Complete Crossover Behavior

The comparison between the results obtained from intrinsic CMM and ideal
CMM is made through the Figs. | to 15.

For ideal CMM case. the results (see red curves) are obtained from the scale
dilatation of the MR mean crossover functions defined in Table I and II of Ref.
[17], using then the master scale factors L, © ., and ¥, (see Eq. 73).

m?*
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S
z
=
=
=
o
%
b
E
=
&
Leading factors (CMM / MR)
10" B I,=0.166883 /0.166873 (Ising-like)
10° o= 0.182254/0.374189 (MF-like)
10° [
10°
10°
Lr 0 - | _GMNL(T<T.)
102 |- CMM parameters (Table IV) — MR (T<T;)
10 1]
10° -
10° -
10" &
10" 10 10° 10" 107 100 100 100 10° 100 10°
|Av|

Fig.2 Same as Fig. 1 for the isothermal susceptibility y* in the non homogeneous domain (tireted
curves) calculated from intrinsic CMM (black curve) and ideal CMM (red curve), the latter being

obtained (see text) from the corresponding MR crossover function y* (see Table 1 of Ref. [17]). The
Xy (CMM)

£ (MR)

residuals, y;% = 100 x [ — 1| are shown in the top part plot

The related residuals rP' of each crossover function P’ is illustrated on the top
e p CMM

part of each figure. We note that rz, % = 100 X [ — l] for all the properties

Te. P MR
except for the specific heat where the absolute difference

oCy, = 1000 x [CV’CMM — C'V_MR].seems more appropriate for such a low diver-
gence with significant background contribution. In the first four Figs. I to 4 are
reported the corresponding crossover functions y** and C** in the homogeneous
domain and y*~ and C*~ in the non-homogeneous domain, respectively.

In the Fig. 1, the inverse susceptibility in the homogeneous domain reads

[IisealCMM(Ar*)]_l = (f;;m)_] = ("—m)_d(qjm)_z [Z*(Qmﬂf*)]_l (77
where 1/ y*(r) is defined from Eqs. (5) and (6) of Ref. [17], with the related param-

eters of column 4 in Table I (accounting for the modifications noted on Ref. [40])
and r = © A7*. From Eq. 78, the pure leading singular behavior for A7* — 0 reads
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z
=
3
=
2
3
E
&
6 Leading prefactors ( CMM / MR Table V)
Y fig=0.55]1217/0.551]217(lsing—like)
s Ay =0.000000 / -0.00141479 (MF-like)
4 -
c, —— ¢ (CMM)
3 — C,J (MR) CMM parameters (Table IV)
5l Ai=1(A—w, i— 0)
10 = l
-1
1 ™o
o1 1 1 T S R S N
10 10° 10° 10° 107 10 100 10" 10° 100 10"

jAv]

Fig.3 Same as Fig | for the heat capacity case C* in the homogeneous domain, except the absolute dif-
ference 6C* = 1000 X [C**(CMM) — C**(MR)| shown in the top part plot

-1

_ - -1
(Hideaiermt) a0 = (Lm) d(le) Z(ZI)(Qm)Y(AT*)y - (3;) (Ar™)" (78)

while the pure leading classical behavior for A7* — oo reads

=1 —d -2 % N | N
(Zigealcwm)mumz (Lm)  (P) (Z;mf)@nldr = (8;1) A5 (79)

The equivalent Fig. 3 for specific heat in the homogeneous domain needs a
particular attention to the role of the additive constant X-.. Indeed the above
equivalent results for C* read

wn] — vk d 2 "
[C?d—ealCMM(AT )] = CM-]:\ = (ﬂ_m)d(@m) C (C';)mdr )_u , )
C;‘l;lealCMM.ﬂT*—DO = CNiﬁ.AT'—)U = (ILITI) (ZZ") (G)m)“(@m) |AT* I_a + (ﬂ_m) (G)m) XC+
= 3714777 - 0.651368
oy d 2 AT
Ci-’c_lealCMM.dt*—»oo = CM;AT*—»QO = ("—m) (G)m) (Zz'.mf + XC"L) = 3? g 0

(80)
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where  the  significant  contribution of the  background  constant
\d \2 : . L .
(L) (©n) Xc+ = —0.651368 is explicited in the second equation.
In the last equation, the CMM constraint A7 = 0 is not exactly satisfied since

CiJ:iea]CMM,At*—»co = 3. =-0.00141479 # 0. due to the quoted non-zero value of

Z; o +Xc, =—0.00824 (see above). These effects are illustrated on this figure
by the small non-zero value of 6C, = 1000 X [Cy cypy — Cy g | at both limits.
The formulation of the corresponding equations for the non-homogeneous

domain is similar, noting that the background term for the specific heat for ideal

CMM takes the value ([Lm)"'((amfxc_ = —0.650545, leading to the related mean-
field-like limit

— _ pvE—
Cidea]CMM.A‘c*—»oo - CMR.AJT*—)DO 5 _
= (L) (On) (ZE?mF+XC_) = 3. = 1165014 — 0.650545
= 0.414469
(81)

10—

=4

=

= 20

2

U 30

2 40+

o

Leading factors (CMM / MR Table V)
Ay=1.02667754 / 1.02667754 (Ising-like)
10 — Ay=0.516299 / 0.514470 (MF-like)

CV
CMM parameters (Table IV)
Au=1A—>w, u— 0)
Ih=1
my=1
] SSS S je m s own —

A

Fig.4 Same as Fig 2 for the heat capacity case C~ in the non homogeneous domain, except the absolute
difference 6C* = 1000 x [C*~(CMM) — C*~(MR)] shown in the top part plot
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A

Fig.5 Universal amplitude ratio U, calculated from intrinsic CMM (blue curve labelled CMM) and ideal
CMM (red curve labelled MR), the latter being obtained (see text) from the corresponding MR crossover
functions

As a result, in Figs. 5 and 6 are illustrated their corresponding universal ratios
Uy = S and U, = £°

The Ising limit U, = 0.5368012 (see Table 3) is not reached at Az* = 1071
(where U,, = 0.511408), certainly due to the large confluent+background effects
observed on each specific heat property calculated from the MR crossover functions
above and below T..

The situation is distinct for the U, ratio due to the uncontrolled intrinsic mean-
field limit U, qyn = 5.34037, which differs significantly from the MR calculated

value U, yg = 2.

The analysis of the crossover effects of such uncontrolled mean-field limits will
be made in a future work.

In the two Figs. 7 and 8 are reported the corresponding crossover functions &+
in the homogeneous domain and m*(MRG7) in the non-homogeneous domain, with
their associated residuals, respectively.

For the m* case, the equivalent equations to Egs. 80 for the order parameter den-
sity (coexistence curve) read




[(Aﬁlv)idea]CMM(AT*)]

(4p LV) idealCMM Az* =0

(Aﬁ Lv ) ideal CMM,AT* — co
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— PPy %
T 2. T MR
= (H—m) (lpm) mMR67(®m|AT ‘)
= m;m,ﬂryo . | ,
= (H—m) (qjm) (ZM)(G)m) |AT*|ﬁ 22
= 3y lae ) (82)
= mﬂl’:ﬂ[R,dr*—»oo .
1 |
= (lnl)d(q’m)z(zM,mf) (®m) ’ |AT*|5

1
= 3} ylar|:

where m;mm(r) is defined from Eqgs. (5) and (6) of Ref. [17], with the related param-
eters of column 4 in Table II (accounting for the modifications noted on Ref. [40])
and r = O |Ar"|. The thermodynamic derivation of the symetrized order parameter

6
5.33996
4
s 4.78798
-
i \
U, —— CMM \
MR \
\
3_
2— o
P T T T O O O
10" 10° 10* 10* 107 10" 100 100 10° 100 10"

AT

Fig. 6 Universal amplitude ratio U, calculated from intrinsic CMM (blue curve labelled CMM) and ideal
CMM (red curve labelled MR), the latter being obtained (see text) from the corresponding MR crossover

functions
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Leading prefactors (CMM / MR)
10° B &= 0.688972/0.688972 (Ising-like)
10° Eg=0.688972 / 0.690932 (MF-like)
10"
10° CMM parameters (Table IV)
2
10 AT=IA S0, 70
E 10I lU = I
10° my=1
10"
10°
10°
4
10" 10° 10° 10t 107 10" 100 10" 10° 10 10"
AT

Fig.7 Same as Fig | for the correlation length case % in the homogeneous domain

Ap,y = ‘"Z;‘”‘” (where p; and p,, are the liquid and vapor density of the two coexisting
phases) from Ap can be found in Refs. [18, 22] for example.

An essential complementary result is given by the Fig. 9 where are illustrated

the complete behavior of the universal combination Q% = a(At*)*Ct (&*"‘ )d, which
confirms the correct account for common critical scaling between thermodynamics
and correlation properties (see text and Egs. A12 and (A13) in Appendix A).

As in Fig. 5, the Ising limit Q7 = 0.01961673 (see Table 3) is not reached at
Ar* = 1071 (where QF = 0.01777), certainly due to the similar large confluent
effect observed on the combination between the correlation length and specific heat
properties calculated from the MR crossover functions above T,.

As a main common observation on each related figure for y*, C*, &%, =, C~, and
m, the exact agreement between intrinsic CMM and ideal CMM for the asymptotic
Ising limit |A7*| < | with Ising universal exponents y, a, v, and f as a slope, and
prefactor 3}, 3 3;, 3;, 3+ and 3, as an amplitude, respectively, is clearly evi-
denced by the zero value limit of the residuals. In a similar manner, the intrinsic non
matching of the two models for the mean-field limit |A7*| > 1, is illustrated by
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Leading prefactors (CMM / MR)
B,=0.913721/0.913723 (Ising-like)

4
10 o
B, =1.00247 / 0.877456 (MF-like)

10’
10°
Ap 10"
10’ CMM parameters (Table TV)
10" Ai=1A—w, i— 0)
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A

Fig.8 Same as Fig 2 for the order parameter case m* = Ap* in the non-homogeneous domain and refer-
ence to Table II of Ref. [17]

distinct mean-field prefactor amplitudes 3% # 3% . 35# 35 3F # 3me
3; # 3;‘1, 3¢ F Jme: and 3y # 3y and associated finite limit value of each
residual.

Complementary comparisons can be observed from the bottom part of Figs. 10,
11, 12, 13, 14, 15, where are illustrated the corresponding behavior of each related

dln P!
dInAdr*

choice to make positive the exponent value (as in Table 2). In the top part of each

effective exponent z, p = sign( ) [41] as a function of Az*. sign means the +

figure are illustrated the related residuals rz, ;% = 100 x [M - l] for all the
’ Te.P MR

exponents, except for a« where the absolute difference 6a, = 1000 X [ae’CMM - aeMR]
is more appropriate to the values of this effective exponent. Such residuals behaviors
appear in conformity with the infinite-cutoff approximation, for both Ising-like and
classical asymptotic limits. In the case of susceptibility effective exponent y, in the
homogeneous domain, in Fig. 10, the comparison with CPM model is also shown.
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2]
2.0x10 o 0.01961673 (Ising-like limit)

10" 10° 10° 1wt 1w 10" 10 1wt 10° 10° 10
AT

Fig.9 Universal amplitude ratio Q™ calculated from intrinsic CMM (blue curve labelled CMM) and ideal
CMM (red curve labelled MR), the latter being obtained (see text) from the corresponding MR crossover
functions

Finally, the largest temperature range, typically 10719 < Az* < 10'° is conven-
ient to show the exact agreement of intrinsic CMM with the Ising-like asymptotic
behavior of the MR crossover functions for Az~ — 0 and to magnify the corre-
sponding residuals for, either the non matching amplitude differences, or the per-
fect exponent matching in the classical limit A" — co.

The essential practical interest results in the straightforward determination of
the Ising-like applicability range of intrinsic CMM. Indeed, the temperature-like
range of the PAD where the three-scaling-factor universality of Ising-like systems

is accounted for by the MR crossover functions reads ¢t < £~ 1.9 x 10-6

PADMR —
[17]. The equivalent Az* range for CMM writes
Ising
* Ising _ _PADMR _4
AT S CPAD.CMM = @— fand 6 X 10 (83)

Then, for any one component fluid, the practical order of magnitude for the extended

Lsing ~ 5% 1072 can be estimated for CMM from the

M *
asymplolic range At* < L AD.CMM =
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Fig. 10 Comparison of susceptibility effective exponent y, in the homogeneous domain calculated from
intrinsic CMM (blue curve labelled CMM), CPM (green curve labelled CPM), and ideal CMM (red
curve labelled MR), the latter being obtained (see text) from the corresponding MR crossover function
¥ (see Table I of Ref. [17]). The Ising value y = 1.2395935 (see line) is given in Table 2. The respec-

r(CMM) - _ r.(CMM) .
1. (MR) 1] (solid line) and = 100 x [M(CPM) 1] (dashed line) are

tive residuals, yr % = 100 x [
shown in the top part plot

well defined MR applicability range observed in [22], on the basis of the xenon case
[18] used as a reference simple fluid.

4 Conclusion

A new extended set of parametric equations to describe the crossover master
model (CMM) of the equation of state and the correlation length of any simple
fluid near its liquid—gas critical point was defined. The intrinsic parametric form
of CMM involves 10 universal thermodynamic parameters and 6 universal corre-
lation parameters unequivocally estimated from 16 universal amplitude ratios and
amplitude combinations. Among these 16 parameters, only the values of b* and

w,. obtained from j—i (see Eqs. 37 and 68) and ZE (see Eqgs. 35 and 70) respec-
1
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Fig. 11 Same as Fig 10 (except for CPM comparison) for the non homogeneous domain. The Ising value
y = 1.2395935 (see line) is given in Table 2

tively, are readily independent. The actual amplitude checking concerns a set of
26 selected amplitudes given in Table 1. The corresponding set of 26 universal
prefactors is made of 10 Ising-like leading prefactors, 7 first-order confluent cor-
rection prefactors, and 9 mean-field-like prefactors, related by 20 universal ampli-
tude ratios and amplitude combinations.

Therefore, two Ising-like leading prefactors, ( 3; and 3%). and one first-order

confluent correction prefactor, (3}*), are really independent on CMM, leading to
the mean-field description characterized by only two related mean-field-like prefac-

tors, (3_; and 3_5), when the value 37 = AJ = 0is postulated.

The construction of the ideal parametric form of CMM using these 16 universal
parameters and the three additional master scaling factors L, ® . and ¥, reveals
the quasi-perfect matching of the Ising-like critical limit, including the first-order
of the confluent corrections to scaling. Indeed. the estimations of 10 master Ising-
like leading amplitudes match exactly their corresponding master MR values, in
conformity with the Ising-like universal features of the MR scheme. The ampli-
tude and the extension of the non-perfect matching at the first-order confluent
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Fig. 12 Same as Fig 10 (except for CPM comparison) for the heat capacity exponent case «, in the homo-
geneous domain, except the absolute difference da, = 1000 X [a:(CMM) - a:(MR)] shown in the top
part plot. The Ising value @ = 0.1088375 (see line) is given in Table 2

corrections-to-scaling are well defined when they occur only in the restricted case
of the heat capacity at constant volume above and below T.. In addition, among
the estimations of 7 master confluent amplitudes, only 3 match exactly with their
master MR values. The residuals for the non-exact intrinsic confluent amplitudes
are in the 3% range.

The resulting construction of the mean-field classical limit of the intrinsic CMM
distinguishes from the one of the ideal CMM. Indeed, the estimations of 9 master
mean-ficld leading amplitudes depart from their corresponding values obtained from
the classical limit of the MR crossover functions, especially in the case of the iso-
thermal susceptibility. However, 5 among the 6 mean-field features of the corre-
sponding amplitude combinations are exactly recovered (with %: I fixed). and

then only one (Fz) departs from its mean-field value. Despite this single main dif-
ference, it is then essential to note that the number of physical independent
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Fig. 13 Same as Fig 12 for the heat capacity exponent case a, in the non homogeneous domain. The
Ising value @ = 0.1088375 (see line) is given in Table 2

parameters remains well controlled. The mean-field classical limit results in con-
formity with the basic three-term Landau expansion (adding then one postulated

constraint AT = 0 for the specific heat case above 7, and consequently two addi-
. . L= AY — d
tional amplitude combinations U, = A:‘j =0and Q+ = A;(ég”') =0).

0

As a main conclusive remark, the present work, added to the ones of Refs. [18, 22,
34], gives a complete analysis of the expected singular description of any simple flu-
ids. Reference [18] starts from the xenon case to define the needed master constants of
the simple fluid subclass [18]. Then, Ref. [22] illustrates the uniqueness nature of the
Ising-like crossover parameter within a well-defined finite asymptotic range. Reference
[34] provides the equivalence between any Ising-like crossover descriptions using three
fluid dependent parameters. Finally, the present determinations of the ideal and intrin-
sic CMM close the parametric description of the complete e.o.s. in conformity with
the analytic one of the MR crossover functions [17] calculated for the O(1) universal-
ity class defined by {d = 3,n = 1}. As a more interesting practical result, the singular



Residuals v, (CMM/MR-1) [%]

0.65 — ’0.630386

0.60

0.55

0.50

At

Fig. 14 Same as Fig 10 (except for CPM comparison) for the correlation length exponent case v, in the
homogeneous domain. The Ising value v = 0.6303875 (see line) is given in Table 2

description of any simple fluid can then be made in a well defined finite asymptotic
domain whatever the considered three parameters crossover model only using the four
generalized critical coordinates of its liquid—gas critical point, as initially suggested in
Refs. [14, 42, 43].

Appendix A: MR-Like Characteristic Parameters of the CMM

The main objective of this Appendix A is to provide an unambiguous analytical deter-
mination of the 16 universal parameters of Table 4 involved by the CMM parametric
forms of the e.o.s.. Despite the irreducible defaults of the resulting intrinsic CMM, this
closed determination then permits to use, for such a similar determination. any theo-
retical crossover behavior calculated along the renormalized trajectory of the O(1) sym-

metric (CD2) field theory [4]. The first Section of this Appendix A provides the needed
normed quantities that are defined in conformity with the use of X, as a dimensionless
energy density reference (see previous section 2.2.). The second Section provides the
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Residuals 8, (CMM/MR-1)[%]

0.50 —
0.48 —
0.46 —
0.44 —
A 042 —
0.40 —
038 —
0.36 —

034 —

10" 10° 10° 10t 107 10" 100 10" 10° 100 10
AT |

Fig. 15 Same as Fig 10 (except for CPM comparison) for the order parameter exponent case f in the
non-homogeneous domain

76 successive steps of the unequivocal process to determine these 16 normed universal
parameters reported in column 5 of Table 4.

Normed Universal Prefactors for the Universal Thermodynamic and Correlation
Properties

The CMM construction only considers normed quantities using as dimensionless
1
references, X, for the thermodynamics functions. (X,) * for the correlation func-

L3
tions (to be in conformity with the Q% universality), and consequently, (ZO) 3 for
the correlation angular functions. The non-universal nature of the physical system is
then suppressed using the following four universal parametric equations

k@) =1- b6, (Al)
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10 4
NOE (x_) -9
0 ly (A2)
=60(1-6%)(1+d6*+eb* +£06°)
W) = O _ o)
moloZy  glyZy (A3)

= (WS + WTHZ + w;94 + wgf)ﬁ + WZHS + w;f?m)

alor)=—N) __ d0h)
(mo) ™ (1) (2075 () () (5 (AD)

= (a,0+a, 0"+ a0 )Y, + (a, + a,0° +a50%) (1 - 1))

All the 16 unknown parameters can be distinguished in a set {b2 d,ef } of 4 param-
eters independent of X, and a set {w a,.a } (withi = {0,5}and j = {0,2}), of 12
normed parameters with reference to LO. An,cmdmgly, the 5 normed and 2 reduced
quantities of practical interest read as follows

L_wO) 1w

wo = =—
0 m[]l Z{] Z{] (AS)

L w0 1w
wh = — =

2 iogly Zo o (A6)
z 3
3= =21 (A7)
2 J=0
)
== —221(2;— Dw} (A8)
):[] j=0
. S =5 J
Si=5 =2 () (A9)
J’(l) l’(l)
L'=- =l+d+e+ Al0
0 2[0 230 f ( )
f=Ly—1—-d-e (A1)

When b7 is used as entry data in Eq. Al, the knowledge of wy (Eq. AS) and wi
(Eg. A6) close the normed description of respectively the heat capacity above and



Page |43

below T and the isothermal susceptibility above T, (see Eqs. 33 to 36 and Eqgs. 39,
40). The parameter set {w’g. wi, X5 = 1,27, 27, SS} of Egs. A5 to A9 closes the uni-
versal parametric form of Eq. A3. In addition, Lj of Eq. A10 provides access to one
parameter among {d, e.f }, as for example fof Eq. All. The parameter set {a’, e, Lg}
is then equivalent to the {d,e.f} set and finally closes the estimation of universal
parametric Eq. Al.

Similarly, Egs. 30, 31 and 32 can be now rescaled to induce the following nor-
med prefactors

[ np
Pg (L) — EN (Alf))
f.’i.lsing (m(]‘ IU) ZO i }
}? 1 p
% (E) =3, (A13)
- P.mf(mﬂ’ lﬂ) 0

where np = 1 for the thermodynamic properties and np = —L for the correlation
lengths. The normed prefactors are labeled with the added superscript . They are
related to Eqs. A5 to A1l through the different values of the normed angular func-

tions for J = {0, 1, |H} (also labeled with the added superscript = ). They are

obtained from the corresponding angular functions given in Appendix A of Ref.
[24]. We note that the X, dependence in the angular correction-to-scaling functions
disappears introducing the normed parameters.The values of the first-order conflu-
ent correction prefactors of Egs. 31 are then unchanged.

Analysis of Ref. [24] is complemented by 26 universal normed prefactors defined
in column 2 of Table 6, where, as previously in Table 5, part (a) corresponds to the
[sing-like leading prefactors (using Egs. A(18) to A(23) of Ref. [24]), part (b) cor-
responds (o the first-order confluent prefactors obtained from Eqs. A(45) to A(49) of
Ref. [24] and part (c) corresponds to the mean-field leading prefactors (using Egs.
(4.45) to (4.49) of Ref. [24]).

The normed equation number (with added label n) corresponds to the equation
number given in Ref. [24] (see column 3). In column 2, some universal prefactors
are given explicitly when they appear in simple forms of exponent combinations (as
in lines 11(*) and 13(¢2)), or parameters % and W’S of Eq. A5 (as in lines In(e3(+),
2n(e3(-), and 12). More complex implicit forms express their functional dependence
in some auxiliary universal quantities of Eqs (A7) to (A11). In the {d, e, f}-depend-
ent case, the prefactors are given in the functional forms illustrating their Lj depend-
ence in place of f dependence. Therefore, when the universal values of the exponent
are fixed to their MR and MF values (see Table 2). the hierarchical calculations of
these universal parameters can be performed using the MR-Ising-like and mean-
field-like ratios and combinations of Table 3.

A special mention concerns the ordering case of a,; and a:j involved in Eq. A4.

We recall first Egs. (5.168) and (5. 169) of the Agayan’s dissertation,



Page |44

i} : e (%) ¢ (g ("w)

. B R T S
) 1 . . e (%) ¢ () ¢ (m)

0L W1 =) (2 + o+ ;Ehm\, = €= ug
T?.d Tﬁiw_-?i

It St i ug
u 0 _ P _ o7 ﬂlh:_&&t

8¢ o (€)7=0n€=7 T uL
e s0o e ABusTO o | HA _ AR q _Ha _ o %)%, (W)

is uezv) [(ereira)™ i)t = [([7]) ] ([5]) 0= "8 = =7 "
0 7 -1 I W Iz D

8 u(zv) )| - a1 ) =l (1- ) = e =T 5 ug
o Oy ) FUSTT cal # roo_ 'z (D)0

96 _.—ANN_/NQ _AW P w\% mﬁ_: m..N AMA_:‘_AN .m&__lnwm‘ HA—VWW\%— |mﬁ_: = Inxm‘H 4 hv._ u4
Ope N1 0 I x oz (0) 0

LT EA—N_{v : sl .mﬁ____v M + m,.ﬁ.mﬁ___ﬁﬁ |NU_N| = hcumv = +,xm = ﬂ h,_ A.VMV_.—MH
- - g Oy

] u(g1v) Amm____u W.WTG| :ﬁ5|Num|&ﬁ_ |mm____v|”A:m®n_ﬁ— |mn.___v = Imm‘” T % (—¢aug
- 3,N 0y 0y,

[ u(gv) = D@ -9)-= O = 7€ =4 (+ga)u]

saoyoejaad pawrou I[-SuIsy (®)

8 2IqeL
Jraqunu dajs-aur [+2] 1equmu uonenbyg ¢ 9[qe L 1aquinu U1

((1x9) pue ¢ 9qe ], 225) J1010eja1d pauLIou B 0} SI9J31 U [e] pappe)
Jaquinu SULIOPIO ] uwnjo)) “Iojorpard pauLou yoed jo uoneuruLdep [eaoambaun oy pouuoprad st aroym v xrpuaddy ur uead § o[qe Jo sequunu days-aul] i uwnjo)) [+7]
‘Joy ut uaa1 (u [ege| pappe yiim) uonenba pawou Surpuodsario) ¢ uwnjo)) s101oujaid ayi-pey-ueaw g (9) ‘s1010ejard jusnguod tapro-isiy £ (q) ‘stojoejard Surpes) a1
-3uIsy 01 (®) ' 2[qey, ut pajodar sennuenb [earsAyd gz Jo UONBUILLIAIAP Ay} UT PAAJOAUT (1X2) 23s) s1010rjald [esI9AIUN pauliou ay) JO UONIULp JLIWRIR (7 UWN[0) 9 3|gel



Page |45

(0 [ © -1 Yy _ A 'z
Y= — . - . qg)="1¢=>2—"—
0¢ (9t t) Rl i _ A=) = Ul = (1= 2d) ' uig
T ()i gl 7o = ()b(1 - .q) =
o o _? )i ()3 k_-.m (151 -24) Wz
07 q) 4+ % gzlz— = ()b =
6C u( Ly ) : T b NN_N E| ugl
..m A1) ( _ O _ :A O Ot
sl u(6tt) TTomem= ks Ty ug|
s1oporjard pauriou ayi-p[atj-ura (2)
] - P e L
€9 Amv+._*m| €= Ll
Y fa_ e _ (n-D)wd
9 Amvt:m e Tk 91
Y2 (4-1)- 0=z~ M=) e (D)
LI (L¥V) AA L= Ni _ AT~ ve+de- __ " _E_Ni‘ml =€ = g ql
o [(n"eve+ -2z (1-4) =
—AW pP’ 14 1«3. A n:? X4 = :I_vdu
SS (6tv) - _Mw | 14!
_ _ ' _ _ (n=1)se-5
z (8FV) (1=Az=(""bvz+(1 -z = 4 ﬂm 1 (T
(0=7Hw=1) _ I'z _ > :|~ -
L (9hV) “wein V __am (1=2q) =[(D"Pvz o] (1-29) = 7€="7" (—12)71
p-(p-1) PR _ oo _ (5-1)swsd
_ (stV) _ w-vo VT __5N =@TPvet+or= € ="y (+12)11
si0jorjaid SulRas-0)-UOHIALI0D JUINPYUOD) (Q)
8 AIqeL
Jaquinu dajs-aur] [+2] tequinu uonenby ¢ 9Iqe, Jaquinu au

(panunuod) 9 3jqey



Page |46

v T4 14 M X _
A|«E+4«t+«tvh_.w -

LL : booerd2 ugg
e £-(2) ¢ (1)
9L s e ugg
€ upg
19 ugg
FINPY § A0 « H
2P q) TS ,Q_ £ =
09 u(Q't) _m <) ¢ - uzg
8 9[qeL
Jaqunu days-aurg [+2] Toquinu uonenbg ¢ 9[qe], Iaquinu aul|

(ponunuod) 9 ajqel



Page |47

Table 7 Column 2: Normed functional forms of auxiliary parameters. Column 3: line-step number of
Tables 8 in Appendix A where is performed the unequivocal determination of the normed auxiliary
parameter

auxiliary parameters and their functional forms with Xf = 1 Line-step
number
35 = 2w 13
’ ot = [L] ; 24
q v(l—-a)(2—a)
3 2 16
Ew(b2)= ;b 2 a— 2aA .
1 p-1 (B TH3 (B-1)" 1+
4 w (O)ocullsm [RC’bQ’ZT(b2)’La] 21
(0 & Wy g [ R 82, 25 (82). 5 | 21
6 Ly =Ly (b w;. 27) 20
: o *® 2
S = Sosne [Ry- 0% 27 (%) d. ] 47
8 : c B2 v (B2 47
Sy = Sy U0 Z(b)de]
9 55 = 2] e U2 05 25 (97). 15, d, €] 46
10 I3 =35 (T /T)). 02 ZH(82). L d. ] 46
]1 ® __ * 77 1.2 * v * 48
53 = e | U002, 55 (). L d |
12 =3 33
zr=>w
i} jgl j
13 K = (0,/02) (- 1)" 63
14 1) o 2 66
K={m@hl )] } 0]
15 — — 71
K, = ( ) U, # 1
16 — = 72
&= (5/a) (/) =1

nv

+\2 \2 o) v
& 5
A ) E NP ') ’

02
o)l (7)
— = — =al |~ I |-
Iy Iy g b b
complemented by the similar equations from the mean-field classical limit,

& ., @

rs Lo Iy

This special mention refers to the control of Q*, U,, and Q, for the Ising-like critical

— 2 S
limit (Y, — 1). or. U: (with (US,) = U,) and Q, for the mean-field-like classical
limit (Y, — 0).
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Ising-Like Limit

X . . S O 3
The parameter g, can be estimated from q, = g](o)[aqz(o)] (see Eq. 5.173(n).

Agayan thesis), which then leads to the values of a,, and 3?+in agreement with
Q*. Simultaneously, we note that our CMM value c; = 0.3330078 (line (2) in
Table 7), obtained from the MR results, differs from the CPM one c; =0.3286
(see Eq. 5.191, Agayan thesis). Subsequently, in the Agayan dissertation, the
parameter @; was calculated to recover only the universal combination U,. In our
present extended Eq. A4, the a,,a,, pair increases the control to the U,, Q, pair.

Indeed, it is now possible to calculate the two quantities K; = % X W and
- 5
o) | L : . — P
K = |49 |Q,| . that induce the values of a,,. a,,. 3. . and 3;°. Finally.

C wf 1
tﬂ‘(;)
the complete Ising-like triad {a”-} induces the unequivocal control of the Ising-
like combinations triad {Q*, U:. Qz}. However, as already noted by Agayan, the
universal combination U, can be never explicitly controlled through K. Such a
result confirms a needed alternative way to account for the MR value of U, (see
below).

Mean-Field-Like Limit

The estimation of the mean-field-like triad a;. follows in a similar manner. The

parameter a”; can be estimated from the normed Eq. 5.186(n) of the Agayan’s thesis.

. __ . * _ S . . &, —
using now ¢ = I, and noting that 8Bcr = —2wj. Subsequent estimation of 35

occurs also in similar agreement. From the Agayan’s CPM, the non-zero value of a*)
only provides the control of U, and gives thus a measure of the non-exact mean-field

— —\2 —
value of U, since a*; only vanishes when (Uf) = U,, identically. However, we note

that the mean-field like universal combination @ (see line 20(e) in Table (3)) plays
a similar role to @, when the {a:v“:z} pair is accounted for in the classical limit

0
0T

— _ 1-1 —
I3 =4, (éO) X [f(%O)] * to validate the relation I = —L . show that the
(%)’

—\2—
-2 -
e = [ r; — c\ It e .
two quantitieskK| = (UE) X r:‘j and K, = (%) 1_:“ (equal to unity for the ideal
’ 0 =0 i

mean-field behavior), can be wused to obtain the two equations
£

= a5 X % and @, =a’ X (K_c_l)b:__b(f_l_l)bz (which

(Y, = 0) of Eq. 12. Consequently, the estimations of ITE: and

replace
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Eq. 5.187(n) of Agayan thesis). Adding the practical simplification where
0, = | = K_ finally provides the values of ar,a%, 3", and 3’;'“.
Therefore, the classical triad {a:} induces the unequivocal control of the Ising-

like triad {c; U:. 0, } Nevertheless, the non-zero values of @, and a”, are measur-

ing the non-exact mean-field value of Fz since K_l differs from the unity only if

Fz S # 2 (that is precisely the case in intrinsic CMM as in the Agayan’s CPM).

=
0 R

We also note that the classical U,-value is never controlled from the classical triad

{a;. } a similar situation to the unchecked U,-value from the Ising-like triad {a”-}.

Closed Estimation of the Normed Universal Prefactors

Ordering estimation of the quantities involved in our unequivocal process are listed
in columns 6 and 7 from successive line-steps 1 to 77 of Tables 8. Columns 1, 2,
and 3 give the ordering account for the normed prefactors (see Table 6), their corre-
sponding universal ratios or combinations (from Table 3), and the resulting univer-
sal normed parameters (from Table 5). respectively. Column 4 reports the references
used to support the estimation or the functional condition controlled at this step.
The series of equations start from our initial choices of the three first-order
confluent amplitudes A]i and FT to define previous Eqs. 68 to 72. The prefactors

1+ 1. . : .
c 3; and their ratio, are only dependent on the a, y, A exponent values and

definitively departs from their MR value. Selecting then the MR condition

i—‘_ = 1.20386 (see line 9(e)-(el) in Table 3) leads to b* = 2.44726. Here is elimi-

1 -

nated an alternative way where another selected MR ratio value ?—+ = (.782374
1

(see line %{i) in Table 3) can produce a different value bQCx = 2.36. However the
impact of this latter value remains on the same order of magnitude (~ 3%) for
intrinsic versus ideal CMM. Moreover, the uncertainties in the determination of
the first-order confluent amplitudes along the critical isochore remain larger than

3% (see the ]—T(E al;*) case as typical example reported in Table 4 of Ref. [18]).

The most essential point remains that only one among the 7 first-order conflu-
ent amplitudes is independent in intrinsic CMM accordingly to the MR results,
while 5 among the 7 take same ideal CMM value. De facto, when b* = 2.44726
(line-step 4), all the quantities of line-steps 5 to 17 (with Zg = 1), which are
either a, y. A-dependent or {d, e. f } non-dependent, can be estimated. In particular,

that includes 37 (line-step 13) and 3:‘;7 (line-step 15).
At the line step 17. we note that the unequivocal determination of the three

(with 2 normed) parameters b, wy, 27 of Table 4 complies with the MR values of

) . AT B . .
the three universal ratios A—'_. U,. r_|+ At the opposite, the values of three universal
1 1
. AT AT A7 L , .
ratios =, 2-, 2= depart intrinsically from their corresponding MR value.
1 | 1
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The line-steps from 18 to 32 provide the additional estimations of Lj and w7,
starting from the selected condition W»(0)ig,, = W(0)yr between the auxiliary
functional forms reported in lines 2 and 3 of Table 7. Accounting in addition
for the MR value of Q% and for fixed value % = 1 (as in CPM), all the prefactors
defined in line-steps 26 to 32 are then back obtained.

The final approach consists in introducing in line-step 33 a function f(x,y) of
the two variables x and y, which replace the two parameters d and e, respectively,
and to then write all the remaining unknown quantities in terms of x and y. The
needed first closure equation Cl(x,y) is thus provided considering in line-step 36
the identity S;;I"Sing = Syup between Ising and mean-field auxiliary functional
forms (see lines 5 and 6 of Table 7), which then account for two additional nor-
med amplitude combinations Rx and U°¢ = E (see lines 4(e) and 17(e) of
Table 3). This analytical process provides two respective values of the same
parameter Sj. whose equality involves a single solution y(x) = y(S{‘]“) (see line-step
36 in Table 8). In a similar manner, the needed second closure equation is based
on the identity between two respective values of the same functional (Ising-like,
confluent, and mean-field like) parameters X7, only dependent on x, y. This sec-
ond closure equation is not unique since the three different functional forms of 27
(see lines 7, 8, and 9 of Table 7) account for three universal normed combinations

U,. % and Fz (see lines 2(e), 11(e), and 15(i) in Table 3), respectively. The cor-

responding results are not compatible with a single common solution for y(Z;)
as illustrated by the equations reported in column 6 line-steps 40 to 42, and
labelled C2a(x,y), C2b(x,y), C2c(x,y) in column 7 of Table 8. To maintain asymp-
totic Ising-like coherence in the construction process the selected second equa-
L . . T

tion is then Eq. C2a(x.y), which accounts for U, and 1_—'_ simultaneously. Such a

1
choice provides the needed alternative way mentioned just above (section “Ising-

Like Limit™) to account for U,. However the alternative choice that maintains the

. 1 D . . . . . .

control of U, in place of r_l- will be estimated in a forthcoming work for compari-
1

son on the crossover effect. The common single solution x, of the condition
Cl(x,y) = C2a(x.y) (see line-step 43) provides the estimation of d = x,, e = y(xo)

. e 4 . o . .
and then in return f=L5—1—x,—,. Ez_zz.lsingmcc(xﬂ‘yﬂ) and

- . . . B .o
SEJSmgm_w (xU,yO), We mention the resulting difference ZZ,MF(d’ e) # 22 of ~ 5.6%

(line step 48). The parameter set {w; W3 Wi w;} (lines steps 49 to 52) involved in

¥
3
Eq. 15 results from the parameter set {WTE*Z;SE} leading to the successive
knowledge of the complete remaining line-steps until 77, except the ones where
parametric formulation from CPM, or related MR values, are here not available.
We note that the construction of Eq. A4 is now fully achieved.

Obviously, the complete identification between the MR crossover functions
and intrinsic CMM needs to reintroduce the reference sum 2, throughout, either

Wy = % = 0.266804 combined to Eq. 70, or b* = 2.44726 combined to Eq. 71. As
0

mentioned previously, w; and b? are both universal independent parameters in
Table 8, as well as w, and b? are both universal independent parameters in
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Table 4, indicated by the label ¢. As previously expected. w,, or X,. defines the
single energy density reference of dimensionless CMM., above or below T...

The final important remark concerning the above unequivocal process is its
possible use whatever the exact numerical results of the universal exponents and
universal combinations provided by any theoretical crossover functions calculated
for the N = I-vector model of three-dimensional (3D) Ising like systems and/or

the O(1) symmetric (th32)2 Field Theory (FT) framework [4]. We also note a recent
work by Dohm [44] suggesting that the Ising universality class includes not only
isotropic fluids but also weakly anisotropic ®* model. This equation-of-state
modeling effort could also apply to such weakly anisotropic magnetic systems
provided that the isotropic correlation length is replaced by the mean correlation
length of the anisotropic system. In such a case, the model could be tested with
numerical simulations of isotropic Ising models in an external magnetic field.
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