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Abstract

We consider stochastic optimization problems where the objective depends on some parameter, as
commonly found in hyperparameter optimization for instance. We investigate the behavior of the deriva-
tives of the iterates of Stochastic Gradient Descent (SGD) with respect to that parameter and show
that they are driven by an inexact SGD recursion on a different objective function, perturbed by the
convergence of the original SGD. This enables us to establish that the derivatives of SGD converge to the
derivative of the solution mapping in terms of mean squared error whenever the objective is strongly con-
vex. Specifically, we demonstrate that with constant step-sizes, these derivatives stabilize within a noise
ball centered at the solution derivative, and that with vanishing step-sizes they exhibit O(log(k)2/k)
convergence rates. Additionally, we prove exponential convergence in the interpolation regime. Our
theoretical findings are illustrated by numerical experiments on synthetic tasks.

1 Introduction
The differentiation of iterative algorithms has been a subject of research since the 1990s (Gilbert, 1992;
Christianson, 1994; Beck, 1994), and was succinctly described as “piggyback differentiation” by Griewank
and Faure (2003). This idea has gained renewed interest within the machine learning community, particularly
for applications such as hyperparameter optimization (Maclaurin et al., 2015; Franceschi et al., 2017), meta-
learning (Finn et al., 2017; Rajeswaran et al., 2019), and learning discretization of total variation (Chambolle
and Pock, 2021; Bogensperger et al., 2022). When applied to an optimization problem, an important theo-
retical concern is the convergence of the derivatives of iterates to the derivatives of the solution. Traditional
guarantees focus on asymptotic convergence to the solution derivative, as described by the implicit function
theorem (Gilbert, 1992; Christianson, 1994; Beck, 1994). This issue has inspired recent works for smooth
optimization algorithms (Mehmood and Ochs, 2020, 2022), generic nonsmooth iterations (Bolte et al., 2022),
and second-order methods (Bolte et al., 2023).

Convergence analysis of iterative processes have predominantly focused on deterministic algorithms such
as the gradient descent. In this work, we extend these results in the context of strongly convex parametric
optimization by studying the iterative differentiation of the Stochastic Gradient Descent (SGD) algorithm.
Since the seminal work of Robbins and Monro (1951), SGD has been a workhorse of stochastic optimization
and is extensively employed in training various machine learning models (Bottou et al., 2018; Gower et al.,
2019). A critical aspect of our work is based on the fact that the sequence of iterative derivatives in this
stochastic setting is itself a stochastic gradient sequence.

The goal of this work is to answer the following question:

What is the dynamics of the derivatives of the iterates of stochastic gradient descent in the context
of minimization of parametric strongly convex functions?
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Our motivation for studying this question is twofold. First, while iterative differentiation through SGD
sequences is possibly not the most efficient way to differentiate solutions of convex programs, it is a very
natural in the context of differentiable programming and has already been explored by practitioners. Sec-
ond, existing attempts to provide stochastic approximation based solutions to differentiate through convex
programming solutions require more intricate algorithmic schemes than the conceptually simple iterative
differentiation of SGD. Despite its conceptual simplicity, the answer to this question is not direct in the first
place due to the joint effect of noise on the iterate sequence and its derivatives.

Contributions. The strongly convex setting ensures that the solution mapping is single valued and differ-
entiable under appropriate smoothness assumptions. In this setting, we prove in Theorem 2.2 the conver-
gence of the derivatives of the SGD recursion toward the derivative of the solution mapping,
in the sense of mean squared errors:
• We first provide a general result for non-increasing step-sizes converging to some η ≥ 0 (covering constant
step-sizes schedules), for which we prove that the derivatives of SGD eventually fluctuate in a ball centered
at the solution derivative, of size proportional to √

η.
• With vanishing steps, this result implies that the derivatives of SGD converge toward the solution deriva-
tives, and we obtain O(log(k)2/k) convergence rates for O(1/k) step-size decay schedules.
• We also study the interpolation regime, for which we show that the derivatives converge exponentially fast
toward the derivative of the solution mapping.
All these results suggest that derivatives of SGD sequences behave qualitatively similarly as the original SGD
sequence under typical step size regimes.

The key insight in proving these results is to interpret the recursion describing the derivatives of SGD
as a perturbed SGD sequence, or SGD with errors, related to a quadratic parametric optimization
problem involving the second order derivatives at the solution of the original problem. We perform a general
abstract analysis of inexact SGD recursions, that is, SGD with an additional error term which is not required
to have zero mean. This constitutes a result of independent interest, which we apply to the sequence of SGD
derivatives in order to prove their convergence toward the derivative of the solution mapping. The developed
theory is illustrated with numerical experiments on synthetic tasks. We believe our work paves the way to a
better understanding of stochastic hyperparameter optimization, and more generally stochastic meta-learning
strategies.

Related works. Differentiating through algorithms is closely associated with the broader concept of auto-
matic differentiation (Griewank, 1989). In practice, it is implemented using either the forward mode (Wengert,
1964), or the more common reverse mode (Rumelhart et al., 1986) known as backpropagation. For detailed
surveys, see (Griewank et al., 1993) or (Griewank and Walther, 2008; Baydin et al., 2018). Modern machine
learning is intrinsically linked to this idea through the use of Python frameworks like Tensorflow (Abadi et al.,
2015), PyTorch (Paszke et al., 2019), and JAX (Bradbury et al., 2018; Blondel et al., 2022). When using
the reverse mode, a limitation of this method is the need to retain every iteration of the inner optimization
process in memory, although this challenge can be mitigated by employing checkpointing, invertible opti-
mization algorithms (Maclaurin et al., 2015), by utilizing truncated backpropagation (Shaban et al., 2019),
Jacobian-free backpropagation (Fung et al., 2022) or one-step differentiation (Bolte et al., 2023).

Along with iterative differentiation (ITD), (approximate) implicit differentiation (AID) plays an increas-
ing important role, sometimes under the name implicit deep learning. El Ghaoui et al. (2021) highlights the
utility of fixed-point equations in defining hidden features, and (Bai et al., 2019) proposes equilibrium points
for sequence models, reducing memory consumption significantly. Further, (Bertrand et al., 2020; Agrawal
et al., 2019) expands implicit differentiation’s applications to high-dimensional, non-smooth problems and
convex programs. Ablin et al. (2020) emphasizes the computational benefits of automatic differentiation,
particularly in min-min optimization. In particular, OptNet (Amos and Kolter, 2017) and Deep Equilibrium
Models (DEQ) (Bai et al., 2019) are examples of relevant applications.

Hypergradient estimation through iterative differentiation or implicit differentiation has a long story in
machine learning (Pedregosa, 2016; Lorraine et al., 2020). In the context of imaging, iterative differentiation
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was used to perform hyperparameter selection through the Stein’s unbiased risk estimator (Deledalle et al.,
2014), and also for refitting procedure (Deledalle et al., 2017). Model-agnostic Meta-learning (MAML) was
introduced by Finn et al. (2017) as a methodology to train neural architectures that adapt to new tasks
through iterative differentiation (meta-learning). It was later adapted to implicit differentiation (Rajeswaran
et al., 2019). These developments motivated further studies of the bilevel programming problem in a machine
learning context (Franceschi et al., 2018; Grazzi et al., 2020).

The literature on the stochastic iterative and implicit differentiation is more limited. In the stochastic
setting, Grazzi et al. (2021, 2023, 2024) considered implicit differentiation, mostly as a stochastic approxima-
tion to solve the implicit differentiation linear equation or use independent copies for the derivative part. In
general stochastic approaches for bilevel optimization sample different batches for the iterate and derivative
recursions. Here we jointly analyze both recursion with the same samples.

Closely related to the general issue of differentiating parametric optimization problems is solving bilevel
optimization, where the Jacobian of the inner problem is crucial to analyze. Chen et al. (2021) introduces
a method, demonstrating improved convergence rates for stochastic nested problems through a unified SGD
approach. In the same vein, Arbel and Mairal (2021) leverages inexact implicit differentiation and warm-
start strategies to match the computational efficiency of oracle methods, proving effective in hyperparameter
optimization. Additionally, the work (Ji et al., 2021) provides a thorough convergence analysis for AID and
ITD-based methods, proposing the novel stocBiO algorithm for enhanced sample complexity. Furthermore,
(Dagréou et al., 2022; Dagréou et al., 2024) introduce a novel framework allowing unbiased gradient estimates
and variance reduction methods for stochastic bilevel optimization.

Although this is not the initial focus of this work, the technical bulk of our arguments requires analyzing
perturbed, or inexact, SGD sequences, in other words, the robustness of the stochastic gradient algorithm
with non-centered noise, or non-vanishing deterministic errors. Such questioning around robustness to errors
have existed for decades in the stochastic approximation literature, see for example (Ermoliev, 1983; Chen
et al., 1987) and reference therein. Many existing results presented in the literature are qualitative and relate
to nonconvex optimization (Solodov and Zavriev, 1998; Borkar, 2009; Doucet and Tadic, 2017; Ramaswamy
and Bhatnagar, 2017; Dieuleveut et al., 2023). Let us also mention the smooth convex setting for which
inexact oracles have been studied by (Nedić and Bertsekas, 2010; Devolder et al., 2014). As a by-product of
our analysis, we provide a contribution to this literature, in the smooth, strongly convex setting, we provide
a general mean squared error analysis for a diversity of step size regimes.

2 The derivative of SGD is inexact SGD

2.1 Intuitive overview
We consider a parametric stochastic optimization problem of the form

x⋆(θ) = argminx∈Rd F (x, θ) := Eξ∼P[f(x, θ; ξ)] (Opt)

where F : Rd × Θ → R is smooth and strongly convex in x for a fixed θ. The stochastic gradient descent
algorithm, stochastic gradient descent (SGD), is defined by an initialization x0(θ), and for k ∈ N

xk+1(θ) = xk(θ)− ηk∇xf(xk(θ), θ; ξk+1) (SGD)

where (ηk)k∈N is a sequence of positive step-sizes and (ξk)k∈N is a sequence of independent random variables
with common distribution P. Precise assumptions on the problem and the algorithm will be given in
Section 2.2 to ensure convergence. We highlight here that both the objective f(x, θ, ξ) and the initialization
of the algorithm x0(θ) depend on some parameter θ ∈ Θ ⊂ Rm, and so do the iterates and optimal solution.

For any θ ∈ Θ and any k ≥ 0, under appropriate assumptions, the Jacobian of xk(θ) w.r.t. θ, denoted
by ∂θxk(θ) ∈ Rd×m, is well defined and obeys the following recursion from the chain rule of differentiation:

∂θxk+1(θ) = ∂θxk(θ)− ηk∇2
xxf(xk(θ), θ; ξk+1)∂θxk(θ)− ηk∇2

xθf(xk(θ), θ; ξk+1). (SGD’)
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The natural limit candidate for this recursion is the Jacobian of the solution, ∂θx
⋆(θ), which, from the

implicit function theorem, is the unique solution to the following linear system

∇2
xxF (x⋆(θ), θ)D +∇2

xθF (x⋆(θ), θ) = Eξ∼P

[
∇2

xxf(x
⋆(θ), θ; ξ)D +∇2

xθf(x
⋆(θ), θ; ξ)

]
= 0.

As noted in (Arbel and Mairal, 2021, Proposition 1), this is equivalently characterized as a solution to the
following stochastic minimization problem

∂θx
⋆(θ) = argminD∈Rd×m Eξ∼P

[〈
1

2
∇2

xxf(x
⋆(θ), θ; ξ)D +∇2

xθf(x
⋆(θ), θ; ξ), D

〉]
(Opt’)

where we use the standard Frobenius inner product over matrices. Our key insight is to formally understand
the recursion in (SGD’) as an inexact SGD sequence applied to problem (Opt’).

Intuition from the quadratic case. Consider two maps ξ 7→ Q(ξ) ∈ Rd×d and ξ 7→ B(ξ) ∈ Rd×m. Let
f(x, θ; ξ) = 1

2x
⊤Q(ξ)x+ x⊤B(ξ)θ, then the recursion in (SGD’) becomes

∂θxk+1(θ) = ∂θxk(θ)− ηk(Q(ξk+1)∂θxk(θ) +B(ξk+1)).

which is exactly a stochastic gradient descent sequence for problem (Opt’). Hence, choosing appropriate
step sizes ensures convergence. Beyond the quadratic setting, one needs to take into consideration the fact
that the second order derivatives of f are not constant, leading to our interpretation as perturbed stochastic
gradient iterates for the derivatives, as detailed below.

The general case. We rewrite the recursion (SGD’) as follows

∂θxk+1(θ) = ∂θxk(θ)− ηk∇2
xxf(x

⋆(θ), θ; ξk+1)∂θxk(θ)− ηk∇2
xθf(x

⋆(θ), θ; ξk+1) (1)

+ ηk
(
∇2

xxf(x
⋆(θ), θ; ξk+1)−∇2

xxf(xk(θ), θ; ξk+1)
)
∂θxk(θ)

+ ηk
(
∇2

xθf(x
⋆(θ), θ; ξk+1)−∇2

xθf(xk(θ), θ; ξk+1)
)
.

Assuming that the second derivative of f is Lipschitz-continuous, the error term is of order ηk∥xk(θ) −
x⋆(θ)∥(1 + ∥∂θxk(θ)∥). Our main contribution is a careful analysis of a specific version of inexact SGD
which covers the above recursion. Under typical stochastic approximation assumptions, the convergence of
xk(θ) toward x⋆(θ) essentially entails the convergence of ∂θxk(θ) toward ∂θx

⋆(θ). This allows us to carry
out a joint convergence analysis of both sequences in (SGD) and (SGD’). We now describe the assumptions
required to make this intuition rigorous.

2.2 Main assumptions
We start with the stochastic objective, f in (Opt) and then specify assumptions on the underlying random
variable ξ.

Assumption 1. Let Θ be an open Euclidean subset of Rm and Ξ be a measure space. The function
f : Rd ×Θ× Ξ → R satisfies the following conditions:

(a) Differentiability: f(·, ·; ξ) is C2, with M -Lipschitz Hessian (in Frobenius norm), for all ξ ∈ Ξ.

(b) Smoothness: ∇xf(·, ·; ξ) is L-Lipschitz continuous jointly in (x, θ).

(c) Strong convexity: f(·, θ, ξ) is µ-strongly convex for all θ ∈ Θ and ξ ∈ Ξ.

Assumption 1(b) entails that ∇2
xxf and ∇2

xθf are uniformly bounded in operator norm. Assumption 1(c)
implies that F (·, θ) has a unique minimizer that we will denote by x⋆(θ); it also implies that ∇2

xxf is positive
definite.

As a consequence of Assumption 1, the derivative sequence in (SGD’) is almost surely bounded1. This is
proved in Appendix B.

1This does not depend on the randomness structure detailed in Assumption 2.
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Lemma 2.1. Under Assumption 1, setting κ = L
µ , assuming that ηk ≤ µ

L2 for all k, we have almost surely
∥∂θxk(θ)∥ ≤ max{∥∂θx0(θ)∥, 2

√
m(κ+ 1)2}.

We now specify the structure of the random variables (ξk)k∈N appearing in the recursions (SGD) and
(SGD’). In particular, we follow the classical approach of (Bottou et al., 2018; Gower et al., 2019) among a
rich literature for our variance condition.

Assumption 2. The observed noise sequence (ξk)k∈N is independent identically distributed with common
distribution P on Ξ. Furthermore,

(a) Variance control: there is σ ≥ 0 such that for all θ ∈ Θ,

E
[
∥∇xf(x

⋆(θ), θ; ξ)∥2
]
≤ σ2, E

[
∥∇2

xxf(x
⋆(θ), θ; ξ)∂θx

⋆(θ) +∇2
xθf(x

⋆(θ), θ; ξ)∥2
]
≤ σ2.

(b) Integrability: f(x, θ; ·) and ∇f(x, θ; ·) are integrable w.r.t. P for a certain fixed pair x ∈ Rd, θ ∈ Θ.

Note that we control the second moment only at the solution, which means that the case σ2 = 0 cor-
responds to the interpolation scenario but does not mean that the algorithm is noiseless. Furthermore, we
also control the second moment of the second derivative (in Frobenius norm). This is not typical in the
SGD literature but is required here to analyze the sequence of derivatives (this is illustrated in the simple
interpolation case of Fig. 1). Assumption 1(a) and (b) together with Assumption 2 imply that one can
permute expectation and derivative up to order 2, as detailed in Appendix A.

In this setting, we use the natural filtration (Fk)k∈N where for all k, Fk is defined as the σ-algebra gener-
ated by ξ0, . . . , ξk. Note that ξk+1 and thus ∇xf(xk(θ), θ; ξk+1) is not Fk-measurable but Fk+1-measurable.

2.3 Main result on the convergence of the derivatives of SGD
The following is the main result of this paper. Its proof is postponed to Section 3.2.

Theorem 2.2 (Convergence of the derivatives of SGD). Let Θ ⊂ Rm be open, Ξ be a measure space and
f : Rd×Θ×Ξ → R be as in Assumption 1. Set κ = L/µ, the condition number. Let (ξk)k∈N be a sequence of
independent variables on Ξ, as in Assumption 2. Let (ηk)k∈N be a positive, non-increasing, non-summable
sequence with η0 ≤ µ

4L2 = 1
µ

1
4κ2 and (xk(θ))k∈N be defined as in (SGD) with ∂θx0(θ) = 0. Then:

• General estimates: setting η = limk→∞ ηk, we have

lim supk→∞ E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
≤ 4σ2η

µ

(
1 +

3M(1 + 2
√
m(κ+ 1)2)

µ

)2

.

• Sublinear rate: if for all k, ηk = 1
µ

2
k+8κ2 , then

E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
= O

(
log(k + 8κ2)2

k + 8κ2

)
.

where the constants in the big O are polynomials in κ, ∥x0(θ) − x⋆(θ)∥2, ∥∂θx0(θ) − ∂θx
⋆(θ)∥2, σ2, 1

µ , M

and
√
m.

• Interpolation regime: if σ = 0 and ηk = µ
4L2 for all k ∈ N, then

E
[
∥∂θxk(θ)− ∂θx

⋆(θ)∥2
]
= O

(
k

(
1− 1

8κ2

)k
)
.

The first part of the result provides a general estimate which allows covering virtually all small step-size
cases. This includes: i) vanishing step-sizes, for which our result implies convergence of derivatives; and ii)
constant step-sizes η, for which we provide a bound on the distance to the true derivative that is proportional
to η. For the second part, using step-sizes decreasing as 1/k, which is a typical setup for the convergence
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of SGD on strongly convex objectives, our result shows that the derivatives converge as well, with a rate
that is asymptotically of the same order, up to log factors. Finally, the last part of the result relates to
the interpolation regime which has drawn a lot of attention in recent years because it captures some of
the features of deep neural network training. Note that the condition σ = 0 in Assumption 2 entails that
interpolation occurs for both problems (Opt) and (Opt’), and in this case we obtain exponential convergence
of both the iterates and their derivatives, with a constant stepsize, as in the deterministic setting (Mehmood
and Ochs, 2020).

Remark 2.3. The specific stepsize used to obtain the sublinear rate actually applies to any stepsize of the
form ηk = c/(k+ u) with c ≥ 2/µ and u ≥ 8κ2. One obtain the same result with µ, κ, L respectively replaced
in the expressions by µ′ := 2/c ≤ µ, κ′ :=

√
u/8 ≥ κ, L′ := µ′κ′ ≥ L. This corresponds to using a lower

estimate for the strong convexity constant and a higher estimate for the smoothness constant, which remain
valid. A similar remark holds for the interpolation regime where any stepsize η smaller than µ/(4L2) will
bring the same result with κ replaced by κ′ := 1/(4Lη) in the statement.

3 Proof of the main result
Our result relies on the interpretation of the recursion (SGD’) as an inexact SGD sequence for the problem
(Opt’). We start with a detailed analysis of inexact SGD under appropriate assumptions. This is an abstract
result which we formulate using an abstract function g different from the objective in problems (Opt) and
(Opt’) in order to avoid any possible confusion. In particular g is static (does not depend on external
parameters) and the obtained convergence result will be then applied to both sequences (SGD) and (SGD’).

3.1 Detour through an auxiliary result: convergence of inexact SGD
We provide here our template results for the convergence of inexact SGD. As template, we consider a
function G : Rq → R defined as

G(x) := Eξ∼P[g(x; ξ)] .

Our generic assumptions stand as follows.

Assumption 3. P is a probability distribution on the measure space Ξ, and the function g : Rd × Ξ → R
satisfies the following conditions:

(a) Smoothness: g(·; ξ) is C1 with L-Lipschitz gradient, i.e., there is L ≥ 0 such that

∥∇xg(x; ξ)−∇xg(x
′; ξ)∥ ≤ L∥x− x′∥

for all x, x′ ∈ Rq, and all ξ ∈ Ξ.

(b) Strong convexity: there is x⋆ ∈ Rq and µ > 0 such that ⟨x− x⋆,E[∇xg(x; ξ)]⟩ ≥ µ∥x− x⋆∥2 for all
x ∈ Rq.

(c) Variance control: there is 0 ≤ σ < +∞ such that E
[
∥∇xg(x

⋆; ξ)∥2
]
≤ σ2.

We remark that under Assumptions 1 and 2, Assumption 3 is satisfied for both problems (Opt) and
(Opt’). We will consider an inexact SGD recursion of the form

xk+1 = xk − ηk (∇xg(xk; ξk+1) + ek+1) (2)

where we will need the following assumption on noise and errors.

Assumption 4. The observed noise sequence (ξk)k∈N is independent and identically distributed with com-
mon distribution P on Ξ. Denote by (Fk)k∈N the natural filtration (i.e., for all k, Fk is the σ-algebra
generated by ξ0, . . . , ξk), the errors (ek)k∈N form a sequence of (Fk)k∈N-adapted random variables such that
E[∥ek+1∥2] ≤ B2

k where (Bk)k∈N is a deterministic non-increasing sequence.
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The following reduces the analysis of inexact SGD sequences to the study of a deterministic recursion,
its proof is given in Appendix B.

Proposition 3.1 (Convergence of inexact SGD). Let Assumption 3 and Assumption 4 hold. Consider the
iterates in (2) where (ηk)k∈N is a positive, non-increasing, non-summable sequence with η0 ≤ µ

4L2 . Setting
Dk =

√
E[∥xk − x⋆∥2], we have for all k ∈ N:

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk. (3)

Studying the deterministic recursion (3) leads to the following results by relying on different helper
lemmas laid out in Appendix C:

Lemma Stepsizes Errors Noise Result
Lemma C.1 ηk → η ≥ 0 Bk → B ∝ √

η σ2 ≥ 0 lim supk→∞ Dk ∝ √
η

Lemma C.2 ηk = 2µ
µ2k+8L2 Bk = 0 σ2 ≥ 0 D2

k = O
(

log(k+8κ2)
k+8κ2

)
Lemma C.3 ηk = 2µ

µ2k+8L2 B2
k = O

(
log(k+8κ2)

k+8κ2

)
σ2 ≥ 0 D2

k = O
(

log(k+8κ2)2

k+8κ2

)
Lemma C.4 ηk = η < 1

2µ B2
k = O

(
(1− µη

2 )k
)

σ2 = 0 D2
k = O

(
k(1− µη

2 )k
)

These results will be used to prove Theorem 2.2 in the coming section. They are of independent interest
regarding the convergence analysis of inexact SGD sequences. The first lemma allows to prove the first point
in Theorem 2.2, the second and third lemmas allow to treat the second point, and the last lemma allows to
treat the interpolation regime in the third point. See Appendix C for detailed statements.

3.2 Proof of the main result
We first show that Proposition 3.1 can be applied to the recursion (SGD’) in relation to (Opt’) and then
explicit its consequences using the lemmas of Appendix C.

Proof of Theorem 2.2. Following (1), we have that (∂θxk(θ))k∈N is an inexact SGD sequence for problem
(Opt’) as in (2), with an error term of the form

ek+1 =
(
∇2

xxf(x
⋆(θ), θ; ξk+1)−∇2

xxf(xk(θ), θ; ξk+1)
)
∂θxk(θ)

+
(
∇2

xθf(x
⋆(θ), θ; ξk+1)−∇2

xθf(xk(θ), θ; ξk+1)
)
.

Under Assumption 1 and Assumption 2, Problem (Opt’) satisfies Assumption 3, and we have the same values
for L, µ and σ for both problems (Opt) and (Opt’). Furthermore, the error term ek+1 satisfies Assumption 4,
and, thanks to Lemma 2.1 and Assumption 1 on Lipschitz continuity of the Hessian of f , we have almost
surely

∥ek+1∥ ≤ M∥xk(θ)− x⋆(θ)∥(1 + 2
√
m(κ+ 1)2). (4)

The various bounds are obtained by considering different regimes. We first estimate a bound on E
[
∥xk(θ)− x⋆(θ)∥2

]
using Proposition 3.1 with Bk = 0 for all k. This allows to obtain an estimate on E

[
∥ek+1∥2

]
using (4). We

conclude for the derivative sequence by applying Proposition 3.1 with its different corollaries. We treat all
these results separately.

General estimate. From Proposition 3.1 with Bk = 0, we obtain, by considering g(x, ξ) = f(x, θ; ξ)

and Lemma C.1 that lim supk→∞ E
[
∥xk(θ)− x⋆(θ)∥2

]
≤ 4σ2η

µ . For the derivative sequence, combining this
first estimate with (4), we can consider a decreasing sequence of mean squared upper bounds (Bk)k∈N, such
that

lim
k→∞

Bk = B := 2σ

√
η

µ
M(1 + 2

√
m(κ+ 1)2).
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Figure 1: Numerical behavior of SGD iterates and their derivatives (Jacobians) in a linear regression problem
solved by ordinary least squares. The plots depict the convergence of the suboptimality f(xk(θ))− f(x⋆(θ)) and the
Frobenius norm of the derivative error ∥∂θxk(θ)−∂θx

⋆(θ)∥F across different experimental settings: constant step-size
(first column), decreasing step-size (second column), double interpolation (third column), and simple interpolation
(fourth column). The experiments utilize varying step-size strategies to illustrate general estimates, sublinear rates,
and the impacts of interpolation regimes, validating theoretical predictions of Theorem 2.2.

The upper bound given by Proposition 3.1 and Lemma C.1 is of the form

√
B2 + 2µη(B2 + 2σ2) +B

µ
≤

√
3
2B

2 + 4µησ2 +B

µ
≤ 2σ

√
η

µ
+

3B

µ
,

which corresponds to the claimed bound.
Convergence rate. From Proposition 3.1 with Bk = 0, we obtain, by considering g(x, ξ) = f(x, θ; ξ) and

Lemma C.2 that E
[
∥xk(θ)− x⋆(θ)∥2

]
= O

(
log(k+8κ2)

k+8κ2

)
as given in Lemma C.2. As a consequence, combining

this first estimate with (4), we may set Bk = O
(

log(k+8κ2)
k+8κ2

)
and the result follows from Lemma C.3.

Interpolation regime. Setting ρ = 1 − µη
2 = 1 − 1

8κ2 , for σ2 = 0 and Bk = 0 for all k ∈ N, it is clear
from (3) that E

[
∥xk(θ)− x⋆(θ)∥2

]
≤ ∥x0(θ)−x⋆(θ)∥2ρk for all k ∈ N. Using (4), we may choose Bk = O(ρk).

Plugging this estimate in (3), the result is then given by Lemma C.4.

4 Numerical illustration
In this section, we illustrate the results of Theorem 2.2 by examining the numerical behavior of the iterates
and their derivatives under various settings. Specifically, we provide insights into the behavior of classical
regularized methods, such as Ridge regression, logistic regression, Huber regression. Furthermore, we explore
potential extensions to the nonsmooth case by also considering the Hinge loss. All the experiments are
performed for the empirical risk minimization structure, i.e., the randomness ξ is drawn from the uniform
distribution over {1, . . . ,m}. All the experiments were performed in jax (Bradbury et al., 2018) on a
MacBook Pro M3 Max.

Ordinary least squares. We consider a simple linear regression problem solved by ordinary least-
squares as:

x⋆(θ) = argminx∈Rd F (x, θ) :=
1

2n
∥Ax− b(θ)∥2

The data X ∈ Rm×d here is a unitary random matrix with d < m. We consider three generative models for
θ 7→ b(θ):
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Figure 2: Numerical behavior of the objective function and its derivatives with respect to θ for ridge regression,
logistic regression, Huber regression, and Support Vector Machines (SVM) regression using a constant learning rate.
We report the suboptimality f(xk(θ)) − f(x⋆(θ)) for the SGD iterates, along (bottom) with the norm of derivatives
errors ∥∂θxk(θ)− ∂θx

⋆(θ)∥F for different constant step-size. Each line corresponds to a different step-size.

1. Standard setting: θ ∼ N (0, Im) is drawn from a normal distribution on Rm and b(θ) = θ.

2. Simple interpolation setting: ζ ∼ N (0, Id) is drawn from a normal distribution from Rd and b(θ) = θ
where θ = Aζ.

3. Double interpolation setting: θ ∼ N (0, Id) is drawn from a normal distribution from Rd and b(θ) = Aθ.

Note the the difference between setting 2. and 3. are that we are not differentiating through the linear
map A in setting 2. Figure 1 illustrates the behavior of (SGD) and (SGD’). More precisely, we monitor
the convergence of the suboptimality f(xk(θ))− f(x⋆(θ)) and of the derivatives error measured in Frobenius
norm ∥∂θxk(θ)− ∂θx

⋆(θ)∥F . The experiments are run for constant step sizes for settings 1., 2. and 3., and
also with decreasing step sizes for setting 1. We set η0 = µ

4L2 for all experiments. This allow us to clearly
identify the three regimes of Theorem 2.2:

• Constant stepsize: in setting 1., employing a constant step-size, we observe convergence of both the
iterates (consistent with classical SGD theory) and their derivatives toward a noise ball.

• Decreasing stepsize: in setting 1., employing a step-size proportional to 1
k , we observe a sublinear decay

of both the iterates and their derivatives. The convergence is difficult to observe since the decay leads
to very small updates.

• Double Interpolation regime: in setting 3., employing a constant step-size, we observe both iterates
and derivatives linear decays.

• Simple Interpolation regime: in setting 2., Assumption 2(a) is satisfied only for the iterates, but not
for the derivatives, we observe linear convergence of the iterates, but the derivatives converge towards
a noise ball.

Ridge, Logistic, Huber and SVM regression. In addition to the previous illustration of Theorem 2.2,
we provide numerical experiments for constant learning rate for four different models: ridge regression, logistic
regression, Huber regression and Support Vector Machines (SVM) regression. All of them are written as

x⋆(θ) = argminx∈Rd F (x, θ) :=
1

n

m∑
ξ=1

f(x, θ; ξ) + µ∥x∥22,
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where f(x, θ; ξ) = 1
2 (a

⊤
ξ w−θξ)

2 for ridge regression, f(x, θ; ξ) = log(1+exp(−θξa
⊤
ξ x)) for logistic regression,

f(x, θ; ξ) =

{
1
2 (θξ − a⊤ξ x)

2 if |θξ − a⊤ξ x| ≤ δ

δ
(
|θξ − a⊤ξ x| − 1

2δ
)

otherwise,

for Huber regression for some δ > 0 (here δ = 0.1), and f(x, θ; ξ) = max(0, 1 − θξa
⊤
ξ x) for SVM regression

(hinge loss). All experiences are performed with m, d = 100, 10 and µ = 0.05. In Figure 2, we show
the convergence of the objective function and the derivatives with respect to θ for the four models with a
constant learning rate. Note that the SVM loss is not differentiable. We refer to (Bolte et al., 2022) for a
formal treatment of nonsmooth iterative differentiation, but one could expect similar results for conservative
Jacobians.

5 Conclusion
In conclusion, our study of stochastic optimization problems where the objective depends on a parameter
reveals insights into the behavior of SGD derivatives. We demonstrated that these derivatives follow an
inexact SGD recursion, converging to the solution mapping’s derivative under strong convexity, with constant
step-sizes leading to stabilization and vanishing step-sizes achieving O(log(k)2/k) rates. Future research
could refine the analysis by comparing stochastic implicit and iterative differentiation, develop a minibatch
version, and explore outcomes in non-strongly convex or nonsmooth settings. Additionally, the feasibility of
stochastic iterative differentiation warrants further investigation, given its potential benefits and challenges
in such scenarios.
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A Justification of the permutation of integrals and derivatives
We may assume without loss of generality that both f(0, 0; ξ) and ∇(x,θ)f(0, 0; ξ) are integrable thanks to
Assumption 2(b). Concatenate the variables x and θ, such that z = (x, θ) and consider the function

g : (z; ξ) 7→ f(z; ξ)

∥z∥2 + 1
.

Since the gradient of f is L-Lipschitz in z by Assumption 1(b), we have using the descent lemma (Nesterov,
2013, Lemma 1.2.3)

|f(z; ξ)− f(0; ξ)| ≤ ∥∇zf(0; ξ)∥∥z∥+
L

2
∥z∥2

so that g is upper bounded by an integrable function uniformly in z as

|g(z; ξ)| ≤ |f(0; ξ)|+ ∥∇zf(0; ξ)∥+
L

2
. (5)

We also have

∇zg(z; ξ) = ∇zf(z; ξ)
1

∥z∥2 + 1
− z

2f(z; ξ)

(∥z∥2 + 1)2
= ∇zf(z; ξ)

1

∥z∥2 + 1
− z

2g(z; ξ)

∥z∥2 + 1

= ∇zf(0; ξ)
1

∥z∥2 + 1
+ (∇zf(z; ξ)−∇zf(0; ξ))

1

∥z∥2 + 1
− z

2g(z; ξ)

∥z∥2 + 1

Using again Lipschitz continuity of the gradient of f , ∇zg(z; ξ) is upper bounded by an integrable function,
uniformly in z, as

∥∇zg(z; ξ)∥ ≤ ∥∇zf(0; ξ)∥+ L+ 2g(z; ξ) (6)
≤ 3∥∇zf(0; ξ)∥+ 2L+ 2|f(0; ξ)|.

Hence, we have that i) ∇zg(z; ξ) exists for all z (as f is C1) and ii) both ξ 7→ g(z; ξ) and ξ 7→ ∇zg(z; ξ)
are bounded by functions in L1(P) uniformly in z thanks to (5) and (6) since |f(0; ξ)| and ∥∇zf(0; ξ)∥ belong
to L1(P). Hence, we have the appropriate domination assumptions to differentiate under the integral for the
function g so that for all z, the function G : z 7→ E[g(z; ξ)] is differentiable and ∇zG(z) = E[∇zg(z; ξ)] (see
e.g., (Folland, 1999, Th. 2.27)).

Now, turning back to f , since for all z, f(z; ξ) = g(z; ξ)(∥z∥2 + 1), F (z) = G(z)(∥z∥2 + 1) and thus
∇zF (z) = ∇zG(z)(∥z∥2 + 1) + 2zG(z). Also, for all z

∇zf(z; ξ) = ∇zg(z; ξ)(∥z∥2 + 1) + 2zg(z; ξ)

whose right hand side is integrable as shown above. This enables us to conclude that for all z,

E[∇zf(z; ξ)] = E[∇zg(z; ξ)](∥z∥2 + 1) + 2zE[g(z; ξ)]
= ∇zG(z)(∥z∥2 + 1) + 2zG(z) = ∇zF (z) .

As for the second derivative, ∇zf(z; ξ) is C1 with uniformly bounded derivatives so that we may apply
differentiation under the integral once again to obtain that the Hessian of the expectation is the expectation
of the Hessian.

B Proofs from the main text

B.1 Proof of Lemma 2.1
Proof of Lemma 2.1. We set for all k ∈ N, Dk ∈ R(d+m)×m such that the first d rows correspond to
∂θxk(θ) and the remaining m rows correspond to the identity matrix of size m × m. We also set for
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each k ∈ N, Jk ∈ R(d+m)×(d+m) the square matrix whose first d rows correspond to the Jacobian matrix of
∇xf(xk(θ), θ; ξk+1) (itself made of two blocks, the first one being ∇2

xxf(xk(θ), θ; ξk+1) and the second one
being ∇2

xθf(xk(θ), θ; ξk+1)), the remaining coefficients being null. In block format, the recursion (SGD’) can
be written as follows(

∂θxk+1(θ)
I

)
=

(
∂θxk(θ)

I

)
− ηk

(
∇2

xxf(xk(θ), θ; ξk+1) ∇2
xθf(xk(θ), θ; ξk+1)

0 0

)(
∂θxk(θ)

I

)
Or in other words, Dk+1 = Dk − ηkJkDk.

Endowing the space of real (d+m)×m matrices with the Frobenius inner product and associated norm,
we have the identity ∥D + A∥2 − ∥D∥2 = 2 ⟨D,A⟩ + ∥A∥2. We will repeatedly use the inequality ∥AB∥ ≤
∥A∥op∥B∥ for matrices (where ∥ ·∥op is the operator norm induced by the Euclidean norm in suitable spaces,
which corresponds to the spectral norm). We have that ∥JkDk∥2 ≤ L2∥Dk∥2, because the operator norm of
Jk is at most L by Assumption 1(b), and

∥Dk+1∥2 − ∥Dk∥2 = −2ηk ⟨Dk, JkDk⟩+ η2k∥JkDk∥2

≤ −2ηk ⟨Dk, JkDk⟩+ η2kL
2∥Dk∥2

≤ −2ηk ⟨Dk, JkDk⟩+ ηkµ∥Dk∥2 (7)

where we used our condition on the step-sizes (ηk ≤ µ
L2 ).

Furthermore, we may use the fact that ∇2
xxf(xk(θ), θ; ξk+1) ⪰ µI (from the strong convexity, Assump-

tion 1(c)) and ∥∇2
xθf(xk(θ), θ; ξk+1)∥ ≤ √

m∥∇2
xθf(xk(θ), θ; ξk+1)∥op ≤ √

mL to obtain

⟨Dk, JkDk⟩ =
〈
∂θxk(θ),∇2

xxf(xk(θ), θ; ξk+1)∂θxk(θ)
〉
+
〈
∂θxk(θ),∇2

xθf(xk(θ), θ; ξk+1)
〉

≥ µ∥∂θxk(θ)∥2 − L
√
m∥∂θxk(θ)∥

= µ(∥Dk∥2 −m)−√
mL
√
∥Dk∥2 −m

=
µ

2
∥Dk∥2 +

µ

2

(
∥Dk∥2 − 2m− 2

√
mL∥Dk∥
µ

√
1− m

∥Dk∥2
)

≥ µ

2
∥Dk∥2 +

µ

2

(
∥Dk∥2 − 2m− 2

√
mL∥Dk∥
µ

)
. (8)

Setting κ = L
µ , the largest root of D 7→ D2 − 2

√
mκD − 2m is

√
mκ+

√
mκ2 + 2m ≤ √

m((κ+ 1) +
√

κ2 + 2κ+ 1) = 2
√
m(κ+ 1) := δ.

So we have that if Dk ≥ δ, the right hand side in (8) is greater than µ
2 ∥Dk∥2 and combining with (7)

∥Dk+1∥2 ≤ ∥Dk∥2.
Let us show by induction that ∥Dk∥2 ≤ max{∥D0∥2, δ2(1 + κ)2}. This is obviously true at iteration

k = 0. Assume that the hypothesis holds true at iteration k. If ∥Dk∥ ≥ δ, then ∥Dk+1∥2 ≤ ∥Dk∥2 ≤
max{∥D0∥2, δ2(1 + κ)}. Otherwise,

∥Dk+1∥ ≤ ∥Dk∥+ ηk∥JkDk∥ ≤ ∥Dk∥(1 + Lηk) ≤ δ(1 + κ),

and the induction runs through. The result follows because ∥Dk∥2 = ∥∂θxk(θ)∥2 +m.

B.2 Proof of Proposition 3.1
Proof of Proposition 3.1. First, we recall that the expected norm of a stochastic gradient can be controlled
for any k ∈ N as

E
[
∥∇xg(xk; ξk+1)∥2|Fk

]
≤ 2E

[
∥∇xg(x

⋆; ξk+1)∥2|Fk

]
+ 2E

[
∥∇xg(xk; ξk+1)−∇xg(x

⋆; ξk+1)∥2|Fk

]
≤ 2σ2 + 2L2∥xk − x⋆∥2 (9)
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where we used Assumption 3(a) and (c) in the second inequality.
By definition of (2), we have for all k ∈ N

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 + η2k∥∇xg(xk; ξk+1) + ek+1∥2 − 2ηk⟨xk − x⋆,∇xg(xk; ξk+1) + ek+1⟩
≤ ∥xk − x⋆∥2 + 2η2k

(
∥∇xg(xk; ξk+1)∥2 + ∥ek+1∥2

)
− 2ηk⟨xk − x⋆,∇xg(xk; ξk+1)⟩

+ 2ηk∥xk − x⋆∥∥ek+1∥.

Taking the expectation conditioned on Fk, we get with our assumption on the errors that

E
[
∥xk+1 − x⋆∥2|Fk

]
≤ ∥xk − x⋆∥2 + η2k

(
4L2∥xk − x⋆∥2 + 4σ2 + 2E

[
∥ek+1∥2|Fk

])
− 2ηk⟨xk − x⋆,E[∇xg(xk; ξk+1)|Fk]⟩
+ 2ηk∥xk − x⋆∥E[∥ek+1∥|Fk]

≤
(
1− 2ηkµ+ 4η2kL

2
)
∥xk − x⋆∥2 + η2k

(
4σ2 + 2E

[
∥ek+1∥2|Fk

])
+ 2ηk∥xk − x⋆∥E[∥ek+1∥|Fk] (10)

where we used successively Eq. (9) and Assumption 3(b). Now using Jensen’s inequality and the Cauchy-
Schwartz inequality: E[XY ] ≤

√
E[X2]E[Y 2] for square integrable random variables, we have the following

bound on the full expectation of the last product,

E[∥xk − x⋆∥E[∥ek+1∥|Fk]] ≤
√

E[∥xk − x⋆∥2]E
[
E[∥ek+1∥|Fk]

2
]

≤
√

E[∥xk − x⋆∥2]
√
E[E[∥ek+1∥2|Fk]]

=
√

E[∥xk − x⋆∥2]
√
E[∥ek+1∥2]

Now, our condition on the stepsize parameters implies that −2ηkµ + 4η2kL
2 ≤ −ηkµ. By taking full

expectation on both sides of (10), we obtain that

E
[
∥xk+1 − x⋆∥2

]
≤ (1− ηkµ)E

[
∥xk − x⋆∥2

]
+ η2k

(
4σ2 + 2B2

k

)
+ 2ηk

√
E[∥xk − x⋆∥2]Bk

We set Dk =
√

E[∥xk − x⋆∥2] so that we have the following deterministic recursion:

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk.

C Technical Lemmas
Lemma C.1. Let (ηk)k∈N and (Bk)k∈N be non-negative and non-increasing. Assume that (ηk)k∈N is non-
summable and that 0 < ηk ≤ 1

µ for all k. Let (Dk)k∈N be a non-negative sequence satisfying for all k

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk . (11)

Consider the quantity

δk =

√
4η2kB

2
k + 8µη3k(B

2
k + 2σ2) + 2Bkηk

2µηk
=

√
B2

k + 2µηk(B2
k + 2σ2) +Bk

µ
.

Then, (δk)k∈N is positive, non-increasing, and for any δ > limk→∞ δk

lim supk→∞ Dk ≤ δ.
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Proof. Set for each k ∈ N, Fk : R+ → R+, with Fk(t) = (1− µηk) t + 2ηkBk

√
t + 2η2k(B

2
k + 2σ2). We have

that Fk is increasing, concave, and Fk(δ
2
k) = δ2k. By assumption, for all k sufficiently large, we have δk < δ

so that Fk(δ
2) ≤ δ2 as t 7→ Fk(t

2)− t2 is negative for t ≥ δk.
Plugging this into (11), we obtain

D2
k+1 − δ2 ≤ (1− µηk)D

2
k + 2ηkBkDk + 2η2k(B

2
k + 2σ2)− Fk(δ

2)

= (1− µηk) (D
2
k − δ2) + 2ηkBk(Dk − δ) .

Using the fact that µηk ≤ 1, we deduce that if Dk ≤ δ, then Dk+i ≤ δ for all i ∈ N and the result follows.
We continue assuming that Dk > δ for all k ∈ N.

Using the concavity of the square root, we have Dk − δ =
√
D2

k −
√
δ2 ≤ 1

2
√
δ2
(D2

k − δ2). We deduce that

D2
k+1 − δ2 ≤

(
1− µηk +

ηkBk

δ

)
(D2

k − δ2).

We notice that for all k, 2Bk

µ ≤ δk so that for k large enough, 2Bk

µ ≤ δ, and ηkBk

δ ≤ µηk

2 , and we obtain

D2
k+1 − δ2 ≤

(
1− µηk

2

)
(D2

k − δ2).

So there is an index k0 such that for all k ≥ k0, we have D2
k − δ2 ≤∏k

i=k0

(
1− µηi

2

)
(D2

k0
− δ2) and the right

hand side decreases to 0 as k → ∞ because ηk is non-summable. This concludes the proof.

Lemma C.2. Let ηk = 2µ
µ2k+8L2 for all k ∈ N and (Dk)k∈N be a non-negative sequence satisfying, for all k,

D2
k+1 ≤ (1− µηk)D

2
k + 4η2kσ

2.

Then we have, for all k ∈ N,

D2
k+1 ≤ 1

k + 8κ2

(
8κ2D2

0 +
2σ2

L2
+

16σ2

µ2
log

(
1 +

k

8κ2

))
.

Proof. From the recursion, we obtain

D2
k+1 ≤

(
1− 2µ2

µ2k + 8L2

)
D2

k +
16µ2σ2

(µ2k + 8L2)2

(µ2k + 8L2)D2
k+1 ≤

(
µ2k + 8L2 − 2µ2

)
D2

k +
16µ2σ2

(µ2k + 8L2)

≤
(
µ2(k − 1) + 8L2

)
D2

k +
16µ2σ2

(µ2k + 8L2)

from which we deduce that

(µ2k + 8L2)D2
k+1 ≤

(
8L2 − µ2

)
D2

0 +

k∑
i=0

16µ2σ2

(µ2i+ 8L2)

≤ 8L2D2
0 + 16σ2

k∑
i=0

1

(i+ 8L2

µ2 )

≤ 8L2D2
0 + 16σ2

(
µ2

8L2
+ log

(
1 +

kµ2

8L2

))
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where the last inequality is by integral series comparison. All in all, we obtain

D2
k+1 ≤ 8L2D2

0

µ2k + 8L2
+

16σ2

µ2k + 8L2

(
µ2

8L2
+ log

(
1 +

kµ2

8L2

))

=
8κ2D2

0

8κ2 + k
+

2σ2

L2(k + 8κ2)
+

16σ2 log
(
1 + kµ2

8L2

)
µ2(k + 8κ2)

=
1

k + 8κ2

(
8κ2D2

0 +
2σ2

L2
+

16σ2

µ2
log

(
1 +

k

8κ2

))
.

Lemma C.3. Let ηk = 2µ
µ2k+8L2 , for all k ∈ N, κ = L

µ , and (Dk)k∈N be a non-negative sequence satisfying,
for all k,

D2
k+1 ≤ (1− µηk)D

2
k + 2η2k(B

2
k + 2σ2) + 2ηkBkDk .

where there are constants A,B > 0 such that, for all k ∈ N,

B2
k ≤ A+B log

(
k + 8κ2

)
k + 8κ2

.

Then, we have

D2
k+1 ≤ 8κ2D2

0

k + 8κ2
+

1

µ2

(
5(B +A) + 8σ2

)
log(k + 8κ2)2

k + 8κ2

Proof. We first rework the recursion, we use the fact that

2ηkBkDk = 2ηk

(√
2Bk√
µ

)(√
µ√
2
Dk

)
≤ ηk

(
2B2

k

µ
+

µ

2
D2

k

)
=

2ηkB
2
k

µ
+ ηk

µ

2
D2

k .

The new recursion becomes

D2
k+1 ≤

(
1− µηk

2

)
D2

k + 2η2k(B
2
k + 2σ2) +

2ηkB
2
k

µ
. (12)

From this recursion, we obtain by expanding all terms

D2
k+1 ≤

(
1− µ2

µ2k + 8L2

)
D2

k +
8µ2

(µ2k + 8L2)2

(
2σ2 +

A+B log
(
k + 4κ2

)
k + 4κ2

)

+
2µ

(µ2k + 8L2)

2(A+B log
(
k + 8κ2

)
)

µ(k + 8κ2)

(µ2k + 8L2)D2
k+1 ≤

(
µ2k + 8L2 − µ2

)
D2

k +
8

(k + 8κ2)

(
2σ2 +

(A+B log
(
k + 8κ2

)
)

(k + 8κ2)

)

+
4(A+B log

(
k + 8κ2

)
)

(k + 8κ2)

≤
(
µ2(k − 1) + 8L2

)
D2

k +
log
(
k + 8κ2

)
k + 8κ2

(
5(B +A) + 16σ2

)
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where we use the fact that k ≥ 0 and κ ≥ 1 so that log
(
k + 8κ2

)
≥ log (8) > 1. We deduce that

(µ2k + 8L2)D2
k+1 ≤

(
8L2 − µ2

)
D2

0 +
(
5(B +A) + 16σ2

) k∑
i=0

log(i+ 8κ2)

(i+ 8κ2)

≤ 8L2D2
0 +

(
5(B +A) + 16σ2

)
log(k + 8κ2)2

where the last inequality is by integral series comparison, using the fact that t 7→ log(t)/t is decreasing for
t ≥ exp(1), we have

k∑
i=0

log(i+ 8κ2)

(i+ 8κ2)
≤ log(8κ2)

8κ2
+ log(k + 8κ2)2 − log(8κ2)2 ≤ log(k + 8κ2)2.

Lemma C.4. Let ηk = η < 1
2µ for all k ∈ N, κ = L

µ , and (Dk)k∈N be a non-negative sequence satisfying for
all k

D2
k+1 ≤ (1− µηk)D

2
k + 2η2kB

2
k + 2ηkBkDk .

where, there is a constant A > 0, with ρ = 1− µη
2 such that, for all k ∈ N,

B2
k ≤ Aρk .

Then, we have

D2
k ≤ ρk

(
D2

0 +
kA

ρ

(
2η2 + 2

η

µ

))
.

Proof. We proceed similarly as in (12) and obtain

D2
k+1 ≤

(
1− µηk

2

)
D2

k + 2η2kB
2
k +

2ηkB
2
k

µ
≤ ρD2

k +Aρk
(
2η2 + 2

η

µ

)
.

We rewrite and use an induction to obtain

D2
k+1

ρk+1
≤ D2

k

ρk
+

A

ρ

(
2η2 + 2

η

µ

)
≤ D2

0 +
kA

ρ

(
2η2 + 2

η

µ

)
which is the desired result.
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