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Abstract

This study assesses various subgrid-scale models within the framework of
Large Eddy Simulation (LES) using a remeshed Vortex method (RVM). RVM
is a semi-Lagrangian method discretizing the vorticity-velocity Navier-Stokes
equations that has proven to be a stable and less dissipative alternative to
more classical Eulerian methods. The subgrid-scale models are first tested
on the well-known Taylor-Green Vortex case at Re = 5000. Notably, the
Variational Multiscale (VMS) variant of the Smagorinsky model and the
Spectral Vanishing Viscosity (SVV) approaches emerge as the best-suited
to the RVM, as they add diffusion to only the smallest resolved vorticity
scales. Then, a stochastic uncertainty quantification analysis is conducted for
both selected models, and the model coefficients are calibrated against direct
numerical simulation. These coefficients are then applied to additional cases
(different regimes, grid resolutions and test cases), showing the robustness of
the calibration within the RVM-LES framework.
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1. Introduction

Vortex methods [1, 2] are particle methods based on the vorticity-velocity
(w — u) formulation of the Navier-Stokes equations. They discretize the vor-
ticity field on numerical particles following the flow dynamics in a Lagrangian
way. In this work, we focus on remeshed Vortex methods (RVM), which can
be seen as the semi-Lagrangian, or hybrid, variant of these approaches. In
RVM, particles are repositioned or "remeshed” on a fixed grid after being
advected [3]. This remeshing step enables the introduction of Eulerian meth-
ods in an initially Lagrangian algorithm, which allows to tackle the diffusion
step and the Poisson equation in a more efficient way than in the purely
Lagrangian approach [4]. In particular, Cartesian grids allow the use of a
Fourier-based Poisson solver, reducing the computational cost compared to
direct summation, despite the challenging treatment of boundary conditions
inherent to such approaches.

Among the advantages of this type of approach one can first cite the
absence of a CFL condition constraining the advection time step to the grid
size, thanks to the Lagrangian transport of vorticity, then the low dispersivity
and diffusivity when compared with non-spectral Eulerian methods (see [5]
for a detailed comparison with the Lattice Boltzmann Method) and a similar
accuracy to pseudo-spectral methods [6, 7]. This method thus demonstrates
the advantage of hybridization between Lagrangian and Eulerian schemes,
and because of its low diffusivity property, represents a good candidate to
perform large eddy simulations (LES). Furthermore, RVM has the advantage
of using vorticity as the principal variable instead of velocity. Indeed, vorticity
dynamics plays a crucial role in turbulence; hence, having direct access to this
field provides an advantage over the classical velocity-pressure formulation.
For instance, by using the vorticity-velocity formulation in a purely Fulerian
context, Tenaud et al. [8] and, more recently, Whitehouse et al. [9] emphasize
the benefit of the direct access to vorticity in turbulent flow modeling and the
improved performance for low resolution compared to the traditional u — p
formulation. On the other hand, RVM are currently limited to Cartesian
grids, which can be a disadvantage when considering complex geometries
but facilitates the implementation of high order grid-based methods and
parallelization.

The issue of closure modeling in LES with RVM has been significantly less
explored compared to classical velocity-based formulations. Before delving
into the specifics of subgrid-scale modeling for RVM, it is pertinent to provide



a general introduction to subgrid-scale modelling in general. Subgrid-scale
(SGS) models are classically sorted into two families [10]. Functional models,
as, e.g., the widely used Smagorinsky model [11], aim to model the role
of the missing small scales in the flow by introducing an artificial viscosity
term. Their effect is purely dissipative and these models do not account for
backscatter, which is usually considered negligible compared to the transfer of
energy from large to small scales [12]. Common variants of the Smagorinsky
model include the dynamic Smagorinsky model [13] and Variational Multiscale
Approaches (VMS) [14], both relying on explicit filtering to optimize the
artificial viscosity term provided by the Smagorinsky model. Structural
models, on the other hand, aim to model directly the subgrid-scale tensor by
approximating the effects of the filtering applied to the equations, through, e.g.,
Taylor expansions. One of the most well-known models from this family is the
gradient model [15]. It is to be noted that although these models are the most
accurate in a priori tests, they are usually not dissipative enough and require
modifications (coupling with a functional model [16], clipping [17-20]...). For
this reason, the classification into these two families is often arbitrary as most
models are a combination of both approaches. For example, the well-known
and widely used dynamic version of the Smagorinsky model [13, 21] is often
classified as functional since it is a variation of the Smagorinsky model but
uses structural assumptions for its parameter computation procedure.
Approaches such as implicit Large eddy simulation (ILES) and regu-
larization techniques like Spectral Vanishing Viscosity (SVV) [22-29] are
becoming more and more popular as alternatives to classical modeling (see
recent comparisons in [30, 31]). Some authors [32] argue that regularization
is all one needs when it comes to correcting under-resolved simulations of
turbulence. Regularization techniques are based on the introduction of nu-
merical viscosity into the smallest of the resolved scales; this can be done
directly in Fourier space (SVV) or by modifying a finite difference operator to
introduce numerical dissipation [33, 34]. The simplicity of these techniques
makes them less expensive and easier to implement than classical LES models.

As previously said, works on subgrid-scale models in the vorticity-velocity
formulation are rare, particularly when using a semi-Lagrangian numerical
method like the present one. In the context of purely Lagrangian methods,
Winckelmans et al. [35, 36] and Mansfield et al. [37, 38] have adapted the
dynamic Smagorinsky model [13, 21, 39] for the vorticity-velocity Navier-
Stokes equations. Another approach is the one from Cottet et al. [40, 41]
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introducing a structural model in two dimensions by analyzing the truncation
error that stems from the approximation of vorticity and velocity fields by the
Vortex method. This model can be linked to the family of gradient models
[15, 16, 42] and has been used in the context of "two-level” simulations of
the Navier-Stokes equations in w — u formulation [43] where the velocity and
vorticity are discretized at different grid sizes, coarser for velocity and finer
for vorticity. This model is anisotropic and less diffusive than usual functional
models. Recently Alvarez et al. [44] adapted this model to develop a dynamic
subgrid-scale model of stretching effects in a purely Lagrangian approach.

Hybrid approaches using Lagrangian discretization for the small scales of
the flow fields and Eulerian discretization for the large scales were explored
and applied to decaying homogeneous isotropic turbulence and free jet flows
by Kornev and Samarbakhsh [45-47]. In the same spirit, Stock et al. [48]
performed large eddy simulations of rotorcraft wakes using a Lagrangian
discretization in the wake region and an Eulerian discretization for the near-
body region. The LES model used in the Lagrangian regions was the one
proposed by Cottet [40].

In the context of a remeshed Vortex method, Cocle et al. [49] focused
on SGS models from the Variational Multi-Scale (VMS) [14] family. These
models aim to address the excessive dissipation of the largest scales observed
in classical artificial viscosity models. This is achieved by applying artificial
viscosity exclusively to the smallest of the resolved scales, necessitating an
additional explicit small-scale filtering. This approach was recently used for
high-fidelity LES of challenging flows [50].

The objective of this article is thus twofold: 1) investigate and compare
various subgrid-scale models of different families on the same benchmark,
adapting them to the RVM. Although some comparative studies of SGS
models already exist for RVM [41, 49, 51], the present RVM algorithm differs
in the method used to solve the Poisson equation and the diffusion; moreover,
we consider models never investigated yet in this context, like the SVV
regularization technique. 2) Once the best models selected, we evaluate
the sensitivity to their parameters. Indeed, in LES, uncertainties arising
from SGS modeling can interact in a complex manner with those related
to the numerical discretization. Therefore, it is not guaranteed that model
parameters calibrated for the classical velocity-based framework are suitable
for the RVM as well. To evaluate the impact of model coefficients on the LES-
RVM results, we adopt a stochastic approach based on the polynomial chaos
expansion [52], that provides response surfaces of the LES output quantities
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in the parameter space requiring only a limited number of simulations. This
allows an affordable calibration of the model parameters against reference
DNS data. The SGS models calibration is conducted for the classical test case
of the Taylor-Green vortex [53]. The robustness of calibration to changes in
Reynolds number, grid resolution, and flow configuration (with the decaying
homogeneous isotropic turbulence test case) is finally investigated.

The paper is structured as follows: the RVM is described in section
2. The different subgrid-scale models under consideration in our study are
presented in section 3. The test cases considered herein are presented in
section 4. The comparison of the results given by the various SGS models for
the Taylor-Green Vortex (TGV) at Re = 5000 is presented in sections 4.3 and
4.4, allowing us to select the two most suitable models in terms of accuracy
and computational costs. The stochastic sensitivity procedure, together with
its application to the parameters of the two selected models, is described in
section 5. Finally, section 6 investigates on the robustness of the parameter
calibration by changing the flow Reynolds number and configuration, as well
as the LES grid resolution.

2. The remeshed Vortex method

2.1. Governing equations

From the vorticity field definition w := V X u, one obtains the vorticity-
velocity formulation of the incompressible Navier-Stokes equations by applying
the curl operator to the classical velocity-pressure formulation:

Oow 1
—Au=V X w (2.2)

completed with initial and boundary conditions, where u,w and Re denote
respectively the velocity, the vorticity and the Reynolds number. The term
(u- V)w denotes the advection of the vorticity field w by velocity u, and
(w - V)u represents the stretching term. The Poisson equation (2.2) allows
to recover the velocity field from the vorticity field derived according to the
relation V x w =V x V x u = V(V - u) — Au and the incompressibility
condition V -u = 0.



2.2. Vortex methods

Vortex methods [1], by their Lagrangian nature, offer a natural discretiza-
tion of the flow field governed by equations (2.1)-(2.2). More precisely, in
such methods, the vorticity field is discretized on numerical particles p located
at positions x,, and the vorticity value at a given point x of the domain and
a given time t is approximated as follows:

W' (x,t) = ant(x — xp(1)). (2.3)

where £ is a mollifier and sz is the local circulation, defined as Oé]; =
N whdx = w;}vp, with v, the volume of the particle. The advection step in
p

equation (2.1) is solved in a Lagrangian way, by updating particles position
x’; and local circulation a]}; through two ODEs:

dxh

0K .,
da;} B 0 (2.4)
at

Grid-free Vortex methods are by construction particularly adapted to model
advective effects. However, they show some difficulties in modeling diffusion
effects efficiently due to the necessity to control the spatial distribution of
the particles [2]. To alleviate this limitation, studies on spatial adaptation
procedures were developed for Vortex methods. In the present work, we
consider hybrid Vortex methods, where an underlying grid is introduced to
easily control the positions of the particles and thus to avoid the distortion of
the particle distribution.

2.8. Hybrid Vortex methods

These methods are characterized by the use of both Lagrangian and
Eulerian approaches to discretize the Navier-Stokes equations (2.1)-(2.2) (see
for example [6, 54, 55]). This approach allows us to keep the strengths from
both approaches.

The Lagrangian framework is used for the advection of the vorticity field,
as described above, and the Eulerian framework allows the use of finite
differences and spectral methods to tackle more efficiently the stretching, the
diffusion, and the Poisson equation. The use of a grid also facilitates the
implementation of boundary conditions and the coupling of Navier-Stokes
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with other equations in the context of multiphysics problems. As we will see
later, the implementation of spectral viscosity SGS models is particularly
easy within this approach.

In the present approach, the resolution of the Navier-Stokes equations
(2.1)-(2.2) is based on a fractional time-stepping algorithm. The latter consists
in performing substeps in which the convective, the stretching, the diffusive
effects as well as the Poisson equation are considered successively within one
time step. More precisely, the advection is handled in a Lagrangian way, on
particles, by solving the system of ODEs (2.4) and the other steps are solved
by an Eulerian method on a Cartesian grid. The keystone of the method is
the "remeshing” step, in other words, the regular distribution of the particles
on the underlying Cartesian grid. The remeshing step has a double function:
it prevents the distortion of the particle distribution, ensuring control of the
distance between particles, and serves as a bridge between the two approaches.
Indeed, the underlying grid on which the Lagrangian particles are interpolated
during the remeshing step is the same as the one used for the Eulerian steps.

2.4. Remeshing

During the remeshing step, the particles are projected on an underlying
mesh. This is done by using remeshing kernels, functions denoted A, that
satisfy several conditions [56]: they preserve p moments: ), , k*A(x — k) =
x*for 0 < a < pand z € R, they satisfy an interpolation property A(i) = 1;—o,
they have compact support [—S, S] with S € N, and they are of class €, with
r € N. We further restrict ourselves to a family of even piecewise polynomials
in the interval [i,7 + 1]. These conditions are enough to derive, given an order
p and a regularity r, our remeshing kernels A, ,.

In one dimension, the vorticity at a node i of the mesh is then obtained
from the vorticity carried by the neighboring particles p as follows:

wilz) = Y wy(x)A (I - ) . (2.5)

where h is the grid step. In the following we will work with the kernel A4 o of




compact support [—3, 3], also known as Mg, given by:

1= 32 = =P + Flal* — Blal 0< |z <1
huala) = | 4+ Tl — 21?4 Sl — Bl B 1< o] <2
207 18— 8o+ o - Wi + Ljaft = ol 2< faf < 3
0 3 < ||
(2.6)

Figure 1 depicts how the vorticity carried by a particle is redistributed on
the grid points located in the support of the remeshing kernel Ay, following
the weights-distribution given by (2.6).

2.5. Numerical algorithm and implementation

The present work employs the in-house and research open source HySoP
(HYbrid SimulatiOn with Particles) library!, dedicated to solving fluid related
problems using the RVM approach described previously. It is a Python
parallel solver, interfaced with compiled languages such as Fortran and C++
[7]. The algorithm adopted in HySoP for this study makes use of the particle
approach to solve advection and uses finite differences to solve the stretching
part and fast Fourier transform (with FFTW) to solve the diffusion and the
Poisson equations. The remeshing of the particles on the underlying Cartesian
grid is performed using the A4 remeshing kernel (2.6).

The operator splitting realized in the present fractional step algorithm is
further decomposed by using a so-called directional Strang splitting where 1D
advection-remeshing-stretching problems are successively solved, direction by
direction. This directional splitting allows to reduce the computational effort
compared to a tensorial approach since it reduces the multidimensional partial
differential equations to a sum of one-dimensional problems. In particular,
advection and remeshing are performed in the same step using a second-order
Strang splitting procedure (the reader is referred to [7] for more details).
Table 1 summarizes the different numerical methods used for each step of the
fractional step algorithm. Step 1) ”Solenoidal reprojection” allows ensuring
that the vorticity is a solenoidal field (ie. V x w = 0) by projecting w on the
space of divergence-free fields (see Appendix A).

'https://particle_methods.gricad-pages.univ-grenoble-alpes.fr/
hysop-doc/
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Fractional steps Time integration Space discretization

1) Solenoidal reprojection Aw=Aw*-V(V-w*) - spectral method (FFTW) (grid)
2) Poisson equation Au=-V xw - spectral method (FFTW) (grid)
1
3) Diffusion Ow = R—Aw implicit Euler spectral method (FFTW) (grid)
€
4) Strang splitting (directional)
et 0%, = ulx,(0)1) N
a) Advection O 0 RK2 Lagrangian (particles)
) =
b) Remeshing w(x) =32, wp(x)AKT) - Ay kernel (particles to grid)
5) Stretching (directional) Ow = (w-V)u RK3 4t order centered FD (grid)
6) Adaptive time step At(t) - 4% order centered FD (grid)

Table 1: Summary of the algorithm defining the different steps of the solution of Navier-
Stokes equations (2.1)-(2.2) in the present RVM approach.

Finally, step (6) concerns the computation of an adaptive time step At(¢).
Indeed, one important strength of Vortex methods is the absence of a CFL
condition constraining the advection time step depending on the grid size.
Instead, we have the so-called LCFL condition (where the ”L” stands for
Lagrangian) where the time step now depends on the infinity norm of the
velocity gradient:

Crorr

Vul|o’
and where the constant Crcpy, called the LCFL number, must be lower or
equal to 1 [56]. Under this condition, the remeshed Vortex method for the
incompressible Euler equation was shown to converge quadratically [56]. This
convergence order was observed numerically for the Navier-Stokes equations.
In practice, one also sometimes computes:

At < Alggyy = (2.7)

Crerr Crerr
Atgdno = W and  Atggp3 = W;
o0 oo

(2.8)

where S is the strain tensor. Concerning the stretching equation, the stability
of the time discretization is ensured by the condition [55]:

)

where Cireren i a constant depending on the time-integration scheme. The
diffusion, which is solved by a spectral method, does not constrain the time

Cst'retch

i\ 7|0z,

At < Atstretch = (29)
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step. The simulation time step At is thus adapted at each iteration k of the
overall algorithm as follows:

Atk = min(Atlzdv,D At’;dv,% At’;dv,?ﬂ At’;tretch) (210)

In practice, the advection stability is found to be the most restrictive and
thus the one driving the evolution of the time step. In this study, Cropy is
set to .

8

3. Subgrid-scale modeling

To perform large eddy simulations, we write the filtered Navier-Stokes
equations in their vorticity-velocity formulation:

o 1

a—j+v-(0®ﬁ—ﬁ®w):EAﬁ—V-R (3.1)

with @ and u the resolved (filtered) velocity and vorticity fields and with
R=(wRu-0@l)-U0w-10Qa) (3.2)

the subgrid-scale vorticity stress tensor to be modeled. As the vorticity-
velocity formulation has two non-linear terms, the SGS stress tensor is com-
posed of two terms, respectively the advection and the stretching ones. As
done in the majority of LES simulations, we do not explicitly apply filtering
to the governing equations, rather we assume that this is implicitly done by
the numerical discretization. In the following, the (implicitly) filtered fields
will be represented without the bar notation to simplify the notations.

In the present work, we assess artificial viscosity models (the standard
Smagorinsky model and its dynamic and variational multiscale variants), and
structural models with the Vreman’s gradient model [15]. We also consider
the Spectral Vanishing Viscosity approach which is especially well suited to
the present RVM algorithm. For all the SGS models implemented in HySoP
(except SVV), the differential operators implied in these models are discretized
on the Cartesian grid, with fourth-order finite differences.

3.1. Artificial viscosity models
In velocity-pressure formulation, artificial viscosity models usually write:

Tsas = vsas(Vu + (Vu)’) (3.3)
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where Tg5ags models the subgrid viscosity stress tensor 7 =u® u—ua®u. One
takes the rotational of the velocity-pressure Navier-Stokes equations with the
above artificial viscosity model, leading to:

Vx(V-Tsas) = Vx(V-(vsgs(Vu+ (Vu)T)))
= V x (VSGSv . (VU. + (VU)T)) (34)
+ V x (VVSGS . (Vll + (VU)T))

Smagorinsky model. The vorticity-velocity Smagorinsky model, used in [36,
37] consists in considering only the first term of (3.4), leading to an anti-
symmetric term vanishing in regions of zero vorticity, properties needed
to model accurately R [57]. One thus obtains the following expression for
g~V-R:

g = V X (VSGSv' (VU+(VU)T)) = VX (VSGSAU) =-VX (VSGSv xw) (35)
which is equivalent (see Appendix B) to:
g = V. (V505<Vw - (Vw)T)) (36)

Therefore:
RSGS = Vggs(vw — (VQJ)T) (37)

with vggg given by the classical Smagorinsky model, that is:
vsas = (CsA)?[S] (3.8)

where Cyg is a coefficient to be a-priori assigned, A the LES filter size,
S = 1(Vu+(Vu)?) and [S| = /2S;;S;; the magnitude of the strain tensor S.

Dynamic model. The most common variant of the Smagorinsky model is
the dynamic Smagorinsky model [13] that uses test-filtering to dynamically
adapt the model’s coefficient in time and space. The approach is based on
a scale-similarity assumption and solves a least-square problem to find an
optimal value of C's. This model has been used in the context of purely
Lagrangian Vortex methods [37, 38].

Following [37], we write

(= 00w, — w;00; — 00,0, + @;0,0; (3.9)
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and

m=V-M (3.10)
with o
M = A?|S|(Vo — (Vo)T) —a (3.11)
where A denotes the test filter size, S = s(Va+ (Va)') and
a = A%S|(Vw — (Vw)!) (3.12)
leading to
{tim;)
pu— -1
Cs o (3.13)

where the brackets represent an averaging over homogeneous directions.

Variational multiscale models. Another variant of the Smagorinsky model is
the variational multiscale (VMS) family of models. VMS models, introduced
by Hughes et al. [14] and first applied to RVM in [49] aim to circumvent
the excessive dissipation of the largest scales introduced by classical artificial
viscosity models. This is done by applying the artificial viscosity only to the
smallest of the resolved scales, thus requiring an additional explicit small-scale
filtering (see figure 2). In particular, we will focus on the ”complete-small”
variant of this approach where the SGS viscosity vggs is computed from the
complete range of scales of the velocity fields, as opposed to ”small-small” and
”small-complete” approaches where vggg is computed from the small scales
of the velocity field (the ”small-small” variant was tested in the present study
and was found to be more expensive as it required an additional explicit small-
scale filtering for both the w and the u fields while not improving significantly
the results). In the following, as there is no ambiguity with another VMS
approach, we will denote the selected ”complete-small” variant by ”VMS
Smagorinsky model” or ”VMS-Smag model”. Let f be some resolved field, we

define, in Fourier space, the largest resolved scales of f by f(k:) = @(k:) f(k)
where G is some test filter, and the smallest resolved scales fg by fs = f — f.
One therefore defines the VMS-Smag model by:

RSGS = ngs(va — (VwS)T) (3.14)

where wg denotes the small scales of the resolved vorticity field and where
the eddy viscosity vsgs is defined by eq. (3.8), from the complete range of
scales of the velocity fields.

12



Filtering. In the following we will filter the large resolved scale using the filter
presented in [58]. It is based on the stencil:

@ = [(1 = (=02/4)") (T = (=65/4)") (I = (=02/4)")]w  (3.15)

where 02 f; ;1 = fiv1jk — 2fijk + fi—1%- In Fourier space, the filtered field is
then

0 (k) = GM(k)u(k) = &7 (k)" (kyhy) 9" (kb )u(k)  (3.16)
with A the grid step and
g"(k) = (1 —sin® (k/2)) . (3.17)
The small scales are then obtained as follows:
ul” = u(k) — 1™ (k) = (1 — G*(k))u(k). (3.18)

Figure 3 shows the evolution of 1 — " with the wavenumber k for different
values of n. In this work we performed all filtering operations in the Fourier
space, taking advantage of the interfacing of the Hysop library with the
Fortran FFTW library, already used to solve the diffusion and the Poisson
equations (see Table 1). It has to be noticed that this type of filtering has the
property of being also applicable in the physical space, under the condition of
taking integer values of n, as done in [49] for a variant of the hybrid Vortex
method.

3.2. A structural model: the clipped gradient model

Among structural models, which aim to directly model the subgrid-scale
tensor, we explore the gradient model [15] based on a Taylor series expansion.

It writes: )

A
Rg(Z,j) = E(ﬁkwlaku] — akwjﬁkul) (319)

This model is well known for its good a-priori performances and its low cost,
but we observed that it tends to overestimate back-scatter effects and leads
to unstable simulations. We therefore propose to add the following clipping
procedure:

2

, A
R;hp(i,j) = E(c‘)kwﬁkuj — akwjakui) X {

1 if Rg(Z,j>Q” <0

—1 otherwise

(3.20)
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where €);; = %(@-wi — O;w;). In this clipping approach, we focus on the
directions where the model leads to an energy transfer from the small to the
large scales, inverting the sign of the model in those specific directions. In the
velocity-pressure formulation, it corresponds to the directions where 7;;S;; >
0 [59]. In our vorticity-velocity formulation, we consider the enstrophy-
producing directions.

3.3. Spectral vanishing viscosity

Spectral vanishing viscosity (SVV) models were first introduced by [22-24]
to regularize hyperbolic problems solved by spectral methods. They were
then used for LES of Navier-Stokes [25-29]. Spectral vanishing viscosity
approaches are a type of regulation of spectral methods that consists in
adding progressively viscosity to the end of the spectrum, where non-physical
oscillations may occur. The coarser scales remain untouched, which makes
them similar to the VMS model presented previously. To further the analogy,
we choose to use the same small-scale filtering for both VMS-Smag and SVV
models (i.e. eq. (3.18)).

The two methods differ however in that the VMS-Smag model viscosity
is computed from the whole resolved velocity field (cf eq. (3.8)) whereas in
SVV, as detailed below, the viscosity is simply taken to be proportional to
the cutoff scale. Furthermore, from a computational point of view, the SVV
is directly integrated in the Fourier part of our solver whereas the VMS-Smag
model (3.14) requires a new discretization operator (performed with finite
differences in the present case).

In Fourier space, the modified diffusion operator writes:

0w = —(k2(1/Re+vs(ky))+ k(1) Re+vs(ky))+kZ(1/Re+vs(k.)))w (3.21)
with the spectral viscosity vg given by the expression introduced by [24]:

0 if k <k,

(k) = 2 3.22
vs(k) l/()eXp|:—(M>:| if k,, <k<k,. ( )

km—k

where k. is the wavenumber at the cutoff scale. The SVV technique depends
then on two parameters: the artificial viscosity intensity vy and the cutoff
wavenumber k,, from which the artificial viscosity is added.

In the present formulation, the SVV operator (3.21) is anisotropic. In
our study, we consider mostly homogeneous and isotropic flows and we
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Model Small scale filter
Smag none
VMS-Smag gr
classical SVV Qsvy
present SVV Qsyy x&"

Table 2: Summary of the different filters considered in the present study

found very little variation in the results between the present formulation
and an isotropic operator (i.e. one that introduces the same viscosity for
each direction). However, we believe that having a flexible operator with the
ability to introduce a different viscosity amplitude at a different rate in each
direction can be a useful feature for more complex flow configurations. As
argued in [32], anisotropy can also be an asset to correct anisotropic errors
due to numerical differentiation in the physical space.

As previously said, instead of using a cutoff at k,,, and to simplify the
comparison with the other models and the following uncertainty quantification
study, the filter used for the SVV operator is chosen to be the same as the
one used for the VMS-Smag model:

vs(k,h) = vyexp

_ (’f - ’f) ] (1 — " (kh)) = vo@svv (k)(1 — E"(kh))

km — k

(3.23)
with A the grid step. The evolution of vg with the wavenumber k is shown in
figure 4 and compared to the one of the classical formulation (3.22). Table 2
presents a summary of the different filters presented above, showing the link
between the VMS and SVV approaches. Indeed, the SVV approach can be
seen as an anisotropic variant of the VMS-Smag model, with a different filter
and a constant viscosity.

The SVV approach requires the definition of two parameters, namely
km (or, in the present study, the order n of the explicit filter (3.23)) and
vp. In the literature, a scaling of the SVV viscosity vy by 1/k. (meaning
that the SVV viscosity becomes negligible as the resolution increases) has
been studied by [29] in the context of a LES of the turbulent wake around a
cylinder. Other approaches consist in scaling the viscosity with the velocity
field [26], the ratio of the Kolmogorov scale to the resolved scale [33] or using
the artificial viscosity given by the Smagorinsky model [60]. In our context,
since we are applying the SVV operator directly in the Fourier space, it is not
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appropriate to scale the artificial viscosity with a quantity varying in space.
In the following, we therefore study viscosities v of the form:

vy = CZVV (3.24)

where Cgyy is a coefficient to be set.

4. Test cases

4.1. Taylor-Green Vortex

The Taylor-Green vortex (TGV) [53] is an analytical periodic solution
of the Navier-Stokes equations in a cubic box of length L = 27 with initial
vorticity given by:

—Uy cos(x) sin(y) sin(z)
w(z,y,z,t =0) = | —Ussin(z) cos(y) sin(z) (4.1)
2U, sin(x) sin(y) cos(z)

All fields are discretized on a cubic grid with N points in each direction. The
TGV is a common benchmark to test SGS models since it is representative of
the phenomenon of large vortex breaking into smaller structures under the
influence of vortex stretching. In this study, we consider the transitional and
turbulent cases at Re = 1600, Re = 3000, Re = 5000, where the Reynolds
number is defined as Re = Uy L/v, with v the kinematic viscosity of the fluid.
The case Re = 1600 is the most widely studied in the literature, however
we found that in our RVM approach, no-model LES is enough to provide a
good approximation of the flow, even at low resolution. Conversely, recent
literature [33, 61, 62] has employed a Reynolds number of 5000. Notably, at
such Re number and for the low resolutions we are considering, the simulation
is unstable without a SGS model.

4.2. Decay of homogeneous isotropic turbulence

We consider another classical test case: the decay of homogeneous isotropic
turbulence (HIT). The initial velocity and vorticity fields are obtained using
the procedure described by Rogallo [63] in a cubic box of size 2% with a 5123
grid resolution from the initial spectrum given by:

Ean(|k],0) = 16+/2/7k;°[K|*e 2KI/k0)* (4.2)
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where here k; = 3. The turbulence is then forced in Fourier space [64] with:

Lyi<iy]

"2y B(k)”

|k|<kj

0,6 (4.3)

Once a statistically steady flow has been reached, the turbulent state is
interpolated on a coarser grid, used as the initial state for the LES. Two
cases with different viscosities are explored. The Reynolds numbers based
on the Taylor microscale and considered in the following are Re), = 140 and
Rey = 210.

4.8. Comparison of model performances

The different models are first compared in the context of the TGV test
case, at Re = 5000. The results are compared against those of a DNS
conducted with the present RVM and a 768 grid resolution. For the purpose
of comparison, the DNS enstrophy data are filtered on the same grid used for
LES using a sharp cutoff filter. For the specific quantity of dissipation, the
results are compared against available reference DNS at a higher resolution
of 1280% from [33]. We start by comparing the LES results obtained with
our RVM approach with those of a LES conducted with a purely Eulerian
method. Figure 5 presents a comparison of the dimensionless-time history
of kinetic energy dissipation of a 723 LES simulation with RVM and the
standard Smagorinsky model with that obtained by Chapelier et al. [61],
using high-order finite differences with the Smagorinsky model as well. The
model coefficient for both simulations is C's = 0.172. We observe in both cases
a shift in the time evolution of kinetic energy dissipation but our method seems
to better represent the peak of dissipation, demonstrating its low-diffusivity.

In figure 6, the time history of the kinetic energy Ej (a), the kinetic energy
dissipation —dEj/dt (b), the enstrophy (w - w) (¢), and the energy spectrum
at non-dimensional time t = 8.5 (d) are used to evaluate the different models
by comparison to the non-filtered DNS results from [33] for the dissipation
(b) and to the present DNS results for the other quantities (a, ¢, d).

The LES simulations are performed with Nypgg = 96. The model coeffi-
cients used are the classical C's = 0.16 for Smagorinsky and coefficients close
to the ones suggested in [51] for VMS-Smag and in [29] for SVV (Cs = 0.245
and n = 3 and Cgyy = 0.25 and n = 5 respectively).

As can be seen, the no-model simulation (i.e. under-resolved simulation
with no SGS model) is characterized by the classical pile up of energy at
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the small scales and is unstable. In all cases, the introduction of a SGS
model leads to stable simulations. The standard Smagorinsky seems to damp
excessively the large scales, while energy pile up is still present at the smallest
resolved scales (figure 6(d)). Moreover, the peak in dissipation occurs earlier
than in DNS, and, consequently, the kinetic energy decay is more rapid in
the first phase of the evolution. The gradient model gives results very similar
to those obtained with the Smagorinsky model. In has to be noticed that
the dynamic Smagorinsky model also behaves similarly to the Smagorinsky
model, as shown in figure 7(a). This may be due to the considered test case.
Indeed, in the absence of walls or strong inhomogeneities in the flow, the
advantage of adapting the model coefficient in space is less visible. When
observing the evolution of the dynamic coefficient in time (figure 7(b)), we
find that it quickly stabilises to a constant coefficient close to the one used for
the standard Smagorinsky model, namely C's = 0.16. Finally, the SVV and
VMS-Smag models give a kinetic energy spectrum in good agreement with the
one obtained in DNS (figure 6(d)), thus confirming the benefit of introducing
SGS viscosity only at the smallest resolved scales of the flow without adding
dissipation to the largest scales. The SVV gives the best global agreement
with DNS; in particular for the kinetic energy decay (figure 6(a)) and the
energy spectrum (figure 6(d)).

4.4. Comparison of computational times

Table 3 compares the CPU-time per iteration for various models. This
study was performed on sequential (non-parallel) runs of the TGV test case
at Re = 1600 and Npgps = 64 over 2000 iterations, in order to have a
stable baseline simulation with no SGS model. Indeed, the simulation of the
TGV test case at Re = 1600 and Npgpg = 64, with the RVM approach and
without any SGS model, is stable and does not blow up.s All simulations were
performed on the same hardware (Xeon E5-2650L v3 1.8GHz). The CPU
times are normalized by the no-model runtime.

As anticipated, all models imply an increase in computational time com-
pared to the baseline simulation without any model. However, the impact is
almost negligible when adopting the SVV approach, given that it does not re-
quire the introduction of a new term to be discretized but only a modification
of the existing Fourier-based diffusion operator. The VMS Smagorinsky model
requires a higher computational cost than the standard Smagorinsky due to
the explicit filtering operation needed to separate the smallest resolved scales
from the largest ones. However, the additional increase in computational time
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Model normalised averaged time per iteration
Smag 1.14
Dynamical Smag 1.81
VMS Smag 1.2
Gradient 1.19
SVV 1.02

Table 3: Time per iteration for LES simulations of TGV at Re = 1600 and Npggs = 64
normalised by the time per iteration for a no-model simulation.

is relatively minor, especially when considering the enhanced performance
achieved compared with the standard Smagorinsky model (see figure 6). The
dynamic Smagorinsky model is the least efficient in terms of computational
costs. This can be attributed to the numerous filtering and derivative opera-
tions required by equations (3.9)-(3.13), particularly within the context of the
vorticity-velocity formulation. Therefore, while our current implementation
of the dynamic Smagorinsky model may benefit from optimization, we do
not expect to be able to reduce the computational costs at the same level of
that of the other considered models, due to the inherent required number of
filtering operations and additional differential terms to be discretized.

Based on the simulation results and computational cost comparison, the
VMS-Smag and the SVV models come out as the most adapted models in
our framework. However, both SGS models involve a set of parameters that
can or must be assigned a priori. The main ones are the model coefficients,
Cs and Cgsyy, which directly regulate the amount of SGS viscosity, and the
order n of the filter in equations (3.17) and (3.23), which determines the
range of the smallest resolved scales in which the SGS viscosity is introduced.
While testing different values of these parameters in LES of the TGV case, we
observed significant changes in the results even with a slight variation in the
parameter values. To systematically study the sensitivity of both models to
their parameters while keeping the number of needed simulations reasonable,
an uncertainty quantification procedure is performed and presented in the
following section.
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5. Parameter sensitivity analysis

5.1. Uncertainty quantification procedure

We perform an uncertainty quantification study using the Polynomial
Chaos Expansion (PCE) [52] to study the stochastic sensitivity of the results
given by the VMS-Smag and the SVV models to their main parameters.

Uncertainty quantification is based on considering the model parameters as
uncertain random variables. By assuming their PDFs; one can propagate those
uncertainties and evaluate the sensitivity of the results to the variation of the
parameters. PCE is based on modeling the response surface as a combination
of polynomials in the considered variables. We choose a polynomial basis ¥,
and write the response surface u as a function of the parameters y :

=D ui¥ily) (5.1)

the coefficients u; are computed by

i = / u(y) W (y)dy (5.2)

To practically obtain the response surface, it is necessary to truncate the sum
in equation (5.1). This finite limit L is here determined as follows:

L=]]P+1) -1 (5.3)

where M is the number of uncertain variables considered in the problem and
Py is the highest polynomial order selected for the variable of index k.
Once the coefficients %; computed, the mean value and the variance of u can

be computed as:
Elu] = 4o (5.4)

Varlu Z a? — 02 (5.5)
The partial sensitivities, i.e. the Contrlbutlon of each parameter (or com-

bination of them) to the total variance, are evaluated through the partial
variances [65]:

Suis = [ sl = Y 0 50
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n 1.8332 | 3.0000 | 4.5223 | 5.6891
Cys 0.23 | 0.3617 | 0.5335 | 0.6652
Csyy | 0.0187 | 0.0887 | 0.18 0.25

Table 4: Quadrature points used for the uncertainty quantification study performed for the
VMS-Smag model (with parameters n and Cg) and for the SVV model (with parameters
n and Cgyvy ).

In the present work, the uncertain parameters of the numerical simulations
are the following: model coefficient Cs (eqs. (3.14) and (3.8)) and filter
order n (eq. (3.17)) for the VMS-Smag model and model coefficient Cgyy
(eq. (3.24)) and filter order n for the SVV approach (eq. (3.23)). We
consider the following ranges of variation of the parameters C's € [0.1949,0.7],
Csyy € [0,0.2685] and n € [1.5223, 6] and uniform input PDF within these
ranges. These intervals were determined as follows: we started from the values
recommended in the literature and we first checked whether the introduced
SGS viscosity could be decreased while maintaining a stable simulation. For
SVV, also for very low values of Csyy the simulations were stable and, thus,
the value proposed in the literature, C'syyy = 0.25, is the largest quadrature
point in the considered interval. Conversely, for the VMS-Smag model,
LES simulations became unstable for values of Cyg slightly lower than the
value recommended in the literature, C's = 0.23; therefore, we also included
significantly larger values in the Cg variation range. In the above intervals, a
constant probability density function (PDF) is postulated because, among the
traditionally employed distributions, it is the least informative, exhibiting the
highest variance within specified intervals. We choose the Legendre polynomial
family for the gPC expansion, which is the optimal one when dealing with
uniform PDF distributions. For all the uncertainty parameters, the expansion
in equation (5.1) is truncated to the third order (P = 3 for all k). Thus, four
quadrature points are needed for each parameter, as summarized in table 4.
Since we consider two parameters for each model (M = 2), we have L = 15
which corresponds to 16 simulations to be performed for each model. The
polynomial chaos expansion was performed using the Dakota library?.
Figure 8 shows the average absolute value of the polynomial coefficients
obtained for the PCE in the case of the SVV and VMS-Smag models for

’https://dakota.sandia.gov/
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each order of polynomial. As one can see, the average absolute values for
coefficients associated to polynomial with order > 3 are about an order of
magnitude smaller than the coefficients associated with polynomials of order
3. This justifies our choice in the truncation order.

5.2. Sensitivity to parameters for the VMS-Smagorinsky model

Figure 9 and 10 present the sensitivity analysis of the VMS-Smag model
for the TGV test case at Re = 5000 with Nypgpg = 96. The impact of the
two parameters is studied for three quantities of interest: kinetic energy
dissipation (figures 9(a)(c)), enstrophy (figures 9(b)(d)) and kinetic energy
spectrum at ¢t = 8.5 (figure 10). In both figures 9 and 10, the probability
density functions (PDFs) of each quantity are shown and compared with the
DNS from [33] for dissipation and present DNS with Npyg = 768 for the other
quantities. The PDFs for the quantities of interest are visually represented
through a color gradient, where each segment of the plot is shaded following
the likelihood of the quantity falling within that specific range. Hence, the
darkest part of the plot identifies where the analyzed quantities show the
lowest variation. One observes a strong variability at the peak of enstrophy
(figure 9(b)) and at the tail of the spectrum (figure 10(a)), where the model
is the most active. In figures 9(c)-(d) and 10(b), the partial variances are
plotted as a function of time for enstrophy and dissipation (figure 9) and
of wavenumber for the spectrum (figure 10). They represent the relative
sensitivity to each of the two parameters and to the interaction between those
parameters. The impact of the interaction is always quite low, showing the
independence of the two parameters. The model seems to be sensitive to
both parameters and in regions of high variability, the coefficient C's is the
dominant one.

Figure 11 represents the computed polynomial chaos expansion inter-
polation of the relative £2-error for enstrophy and kinetic energy spectrum
obtained in LES compared with the 7683 DNS. The error is represented as a
function of coefficients C's and n. The minima for the reconstructed response
surfaces of the error for the energy spectrum and the enstrophy being close to
each another, we identified the optimal values by taking their average. This
led ton =6 and Cg = 0.41.

5.3. Sensitivity to parameters for the SVV model

In a similar way, the PDFs and partial variances for kinetic energy dissi-
pation, enstrophy (fig. 12), and kinetic energy spectrum at ¢ = 8.5 (fig. 13)
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are shown for the SVV model. The quantities of interest given by the LES
with the SVV model show a lower variability than for the VMS-Smag model.
The agreement with the reference DNS is generally good, i.e., except for the
peaks of dissipation for which the DNS value stands lightly outside of the
PDF. When considering the partial variances, we observe that the model is
much more sensitive to the coefficient Csy/y than to the filter order n. This
is also observed in figure 14, showing the relative ¢?-error for enstrophy and
kinetic energy spectrum compared with the DNS. The error does not vary
much along the n axis. The two quantities show a local minimum in the same
region, around Cgyy = 0.1 favoring small values of viscosity as observed in
[27, 66]. Since the order of the filter was observed to be minor compared to
that of the coefficient value and since the optimal value of the filter order is
not clear, for further comparisons with VMS-Smag, we chose n = 6.

6. Simulations with calibrated coefficients

6.1. Taylor-Green Vortex

The uncertainty quantification conducted on the TGV test case at Re =
5000 with a resolution of Nygs = 96 revealed specific regions in the space of
the parameters involved in the VMS-Smag and SVV models, corresponding
to low errors in the quantities of interest compared with DNS. This allowed
us to identify two "optimal” couples of parameters (Cs,n) = (0.41,6) and
(Csyv,n) = (0.1,6) for the two SGS models. To evaluate the robustness of
this calibration, we assess the results obtained in LES with the two SGS
models and the calibrated parameters, for various resolutions and Reynolds
numbers.

Figure 15 shows the kinetic energy spectra for Re = 1600, 3000 and 5000
(along rows) and Npgps = 64, 96 and 128 (along columns). We recall that
the calibration was performed for the Re = 5000 and Npgs = 96 case (figure
15(h)). A comparison with DNS is shown (with Npys = 512 at Re = 1600
and Npyg = 768 otherwise). For every configuration, the no-model case
overestimates the energy in the small scales and over-dissipates the large
scales. The VMS-Smag and SVV models with the ”optimal” parameters show
a very good agreement with the reference spectra until the cutoff.

Figure 16 shows the time history of the enstrophy in the following three
configurations: (Re = 1600, N gs = 64), (Re = 3000, N gs = 64) and
(Re = 5000, Ny gs = 96). A comparison with filtered DNS is shown (with
Npns = 512 at Re = 1600 and Npgg = 768 otherwise). The same conclusions
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as before hold, with a slightly better performance in the peak and the decay
of turbulence for SVV, the maximum value of enstrophy for SVV having a
relative error with the peak of enstrophy for the filtered DNS of 5%, 2% and
0.9% for Re = 1600, 3000 and 5000 respectively (although the peak is shifted
for Re = 5000).

Figure 17 shows the time history of kinetic energy dissipation in the
configuration for Re = 1600, 3000 and 5000 (along rows) and Npgg = 64, 96
and 128 (along columns). A comparison with non-filtered DNS is shown (with
Npns = 512 for Re = 1600 and Nygg = 768 for Re = 3000 and the reference
DNS from [33] for Re = 5000). It has to be noticed that this quantity was not
included in our optimization procedure. Interestingly, the same conclusions
as for enstrophy and kinetic energy spectra hold for the dissipation: the
VMS-Smag is slightly more dissipative in the coarser resolutions, however,
contrary to enstrophy, it shows a better agreement with the DNS in the higher
resolutions. The ”double bump” observed near the peak of dissipation has
already been observed for intermediate resolutions in other DNS performed
with RVM (see for example Figure 9 of [5]) and is certainly a feature due to
the remeshing kernel order as shown in [7] (section 3.2.8). In summary, these
results indicate that the calibrated parameter values for both the VMS-Smag
and SVV SGS models perform well even for Reynolds numbers, grid resolutions
and physical quantities different from those they were initially optimized for.
Finally, figure 18 depicts the qualitative performance of the VMS-Smag and
SVV models for the TGV test case at Re = 5000 with Ny g = 128. The
flow structures drawn by the streamwise velocity component u, at the slice
x = m/8 are compared with the DNS structures with Npyg = 768. The
no-model case is under-resolved and although it manages to capture the macro
scales of the flow, it exhibits spurious oscillations. The structures for the
VMS-Smag and SVV models confirm the previous results by showing a good
qualitative agreement with DNS, with the VMS-Smag model being slightly
more diffusive.

6.2. Decay of homogeneous isotropic turbulence (HIT)

The SVV and VMS-Smag models together with their "optimal” parameter
values are then tested for a different test case. First, we aim to assess whether
the model coefficients calibrated for the TGV case yield accurate results
for a different flow configuration as well. As in the case of the TGV, we
also investigate whether the parameter calibration is robust to changes in
numerical resolution or Reynolds number. To these aims, we considered
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another classical test case: the decay of homogeneous isotropic turbulence
(HIT), previously described in section 4.

The VMS-Smag model with the coefficients calibrated for the TGV case,
namely (Cg,n) = (0.41,6), was found to give satisfactory results also for
HIT without any adaptation, and the results will be compared against DNS
in the following. Conversely, we found that the SVV SGS model with the
previously calibrated parameters does not provide enough dissipation, yielding
inaccurate results for all Reynolds numbers and resolutions studied. A new
sensitivity analysis was then conducted with SVV for the case Re) = 210 and
Npes = 64. Figure 19 shows the response surfaces in the parameter space of
the error compared with DNS with Npyg = 256 for enstrophy and kinetic
energy spectrum. It can be seen that the minimum of the error is around
Csyy = 0.3 independently of n. The results obtained with the new calibrated
value (Cgyy,n) = (0.3,6) are shown in figure 20 together with those given
by the VMS-Smag model with the parameters calibrated for TGV and a
reference DNS performed on a 256% grid. The figure shows the time history
of enstrophy normalized with initial enstrophy at Re), = 140 and 210 and
for three different resolutions, Nyggs = 16,32 and 96. As for the TGV case,
the no-model simulations overestimate the enstrophy, except for the highest
resolution and the lowest Reynolds number considered, where the cutoff scale
is closer to Kolmogorov scale. Both models give results in good agreement
with the DNS for all Re and resolutions, with VMS-Smag being slightly more
diffusive. Figure 21 compares the kinetic energy spectra obtained at ¢t = 1 for
the different Re and LES resolutions considered. The no-model simulation
is characterized by energy pile-up at the smallest resolved scales, while the
energy content of the largest ones is underestimated. This observation holds
true in all cases except for the lowest Reynolds number and finer resolution,
consistent with what was previously noted for enstrophy. The VMS-Smag and
SVV SGS models with calibrated coefficients give spectra in good agreement
with DNS up to the cut-off for all the considered Reynolds numbers and
resolutions. Thus, as already observed for the TGV case, the model coefficient
calibration is robust to changes in Reynolds number and resolution. However,
the SVV model requires a further tuning of Cgyy for the HIT case. This
can be explained with the method of computing artificial viscosity: in the
VMS-Smag model, it is computed using the velocity field whereas in the SVV
model, it depends solely on the cutoff scale.
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7. Concluding remarks

An extensive study of various subgrid-scale models in large-eddy simula-
tions using a remeshed Vortex method was conducted. The considered SGS
models cover different types of modeling approaches, including classical mod-
els like the Smagorinsky one, structural modeling and spectral regularization
modeling. This study was motivated by the fact that the impact of closure
modeling in LES with RVM has been much less explored than for classical
velocity-based formulations. Furthermore, a key advantage of RVM is its low
diffusivity, facilitated by the Lagrangian treatment of the advection step. It
is crucial that the adopted subgrid-scale model does not compromise this
feature.

We first evaluated various subgrid scale models for the TGV benchmark
at Re = 5000. We first considered the standard and dynamic Smagorinsky
models as well as a clipped gradient model. They were found to be over-
dissipative in the small scales and not enough in the large scales. In contrast,
the VMS approach, which introduces the SGS viscosity only in the smallest
scales of the resolved field, turned out to be well adapted to the present RVM
method employing vorticity as the main variable. Finally, we appraised the
SVV model, which, to the author’s knowledge has never been explored within
RVM. It was also found to be well suited, thanks to its multiscale nature as
well as its easy integration in a fractional step algorithm already including
spectral operators, making it a very low-cost approach.

Then, based on accuracy and computational cost considerations, the VMS-
Smag and SVV models were selected for a further study of their sensitivity to
parameters that must be a-priori assigned, i.e. model coefficients regulating
the amount of introduced SGS viscosity, C's and Cgy v, and filter order. This
analysis was conducted again for TGV at Re = 5000 by using polynomial
chaos expansion, that gives continuous response surfaces for the quantities
of interest in the parameter space with a limited number of simulations. A
remarkable variability of the results was observed, with Cs and Cgyy having
the greatest impact, while the sensitivity to the filter used being relatively less
important. Thanks to the response surfaces of the error respect to reference
DNS data, "optimal” values of the parameters, in particular of C's and Cgyy,
could be identified for each SGS model. The so calibrated coefficients were
then tested in LES of TGV and of decaying HIT, for different Reynolds
numbers and grid resolutions. For the VMS-Smag model, the value of Cg
calibrated for the TGV case yielded accurate results also for decaying HIT,
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while recalibration of Cgyv was needed for the SVV model in LES of the
decaying HIT. For both SGS models and flow configurations, the parameter
calibration is robust to changes in the flow regime (Reynolds number) and
LES grid resolution.

Summarizing, the Variational Multi-Scale Smagorinsky and the Spectral
Vanishing Viscosity SGS models appear well-suited for LES with the remeshed
Vortex method. This is attributed to their low computational cost and the
fact that SGS viscosity is introduced only in the smallest resolved scales of
the vorticity. As for the sensitivity to model parameters, it is dominated by
the value of the coefficient regulating the amount of introduced SGS viscosity.
This, together with the stochastic polynomial chaos expansion approach, sim-
plifies the parameter calibration against DNS reference data. This calibration
is robust to changes in Reynolds numbers and LES grid resolution, and, for
the VMS-Smag model, also for a different flow configuration.

Future works will focus on the application of the present RVM approach to
LES simulations of wall-bounded flows. It will be interesting to check whether
the conclusions of the present SGS modeling assessment and calibration hold
in presence of solid walls.
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Figure 1: 1D particle remeshing with kernel A4 2 (see eq. (2.6)).
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Figure 2: Filtering the smallest of the resolved scales in the VMS approach.
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Figure 3: Explicit filtering. Plot of (1 — &™) with respect to k for different values of n.
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Figure 4: Evolution of the spectral artificial viscosity with respect to the wavenumber (egs.
(3.22) and (3.23)).
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Figure 5: Comparison of standard Smagorinsky simulation from the present RVM approach
with a standard Smagorinsky simulation from [61]: time history of kinetic energy dissipation
for TGV at Re = 5000 and Ny gg = 72, comparison with filtered 7683 DNS.
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Figure 6: Time history of (a) kinetic energy, (b) kinetic energy dissipation, (c) enstrophy
and (d) kinetic energy spectrum at ¢t = 8.5 for the TGV with Re = 5000 and Nygs = 96.
Comparison with 7682 DNS for (a), (c) and (d) (filtered for (a) and (c)), and with non-
filtered reference 1280% DNS from [33] for (b).
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comparison with filtered 7682 DNS, (b) time history of dynamical Smagorinsky coefficient,
comparison with constant standard Smagorinsky coefficient.
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Figure 9: Sensitivity analysis of the VMS-Smag model for the TGV test case at Re = 5000
with Npgs = 96. (a)-(b) Probability density functions and (c)-(d) partial variances (for
Cs, n, and their interaction) for time history of (left) kinetic energy dissipation and (right)
enstrophy. Comparison with a reference DNS (solid black curve): (a) non-filtered 12803
DNS from [33], (b) filtered 7682 DNS.

32



0.10/
10_2 —o— C
. 0.4 408 n
9 —e— inter.
Q.63 0.3 ]
S 10 0.06
O
k5 0.2 0.04
E10™*
~ 0.1 0.02
10-5 0.00 :
10! 0 10 20 30 40
k k
(a) (b)

Figure 10: (a) Probability density functions and (b) partial variances (for Cg, n, and their
interaction) for kinetic energy spectrum at ¢ = 8.5 for VMS-Smag simulations of TGV with
Re = 5000 and Nzgs = 96. Comparison with the present reference 7682 DNS (solid black
curve).
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Figure 11: Surface response for the ¢2-error for time history of (left) enstrophy and (right)
kinetic energy spectrum at ¢ = 8.5 for VMS-Smag simulations of TGV with Re = 5000
and NLES = 96.
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Figure 12: Sensitivity analysis of the SVV model on the TGV test case at Re = 5000 with
Nrgs = 96. (a)-(b) Probability density functions and (c)-(d) partial variances (for Csy v,
n, and their interaction) for time history of (left) kinetic energy dissipation and (right)
enstrophy. Comparison with a reference DNS (solid black curve): (a) non-filtered 12803
DNS from [33], (b) filtered 7683 DNS.
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Figure 13: (a) Probability density functions and (b) partial variances (for Csyy, n, and
their interaction) for kinetic energy spectrum at ¢t = 8.5 for SVV simulations of TGV with
Re = 5000 and Nzgs = 96. Comparison with the present reference 7682 DNS (solid black

curve).
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Figure 14: Surface response for the £2-error for time history of (left) enstrophy and (right)
kinetic energy spectrum at ¢ = 8.5 for SVV simulations of TGV with Re = 5000 and

Nrgs = 96.
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Figure 15: Kinetic energy spectrum at ¢ = 8.5 for TGV, comparison with (a)-(c) 5123
DNS, (d)-(i) 7683 DNS. Uncertainty quantification was performed on case (h).
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Figure 16: Time history of enstrophy for TGV at (a) Re = 1600, (b) Re = 3000 and (c)
Re = 5000, comparison with filtered (a) 5123 DNS, (b) and (c) 768 DNS. Uncertainty
quantification was performed on case (c).
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Figure 17: Time history of kinetic energy dissipation for TGV, comparison with (a)-(c)
5123 DNS, (d)-(f) 7682 DNS, and (g)-(i) reference 1280% DNS from [33]. Uncertainty
quantification was performed on case (h).
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Figure 18: Qualitative comparison of the performance of the models on the flow structure
depicted by the u, velocity component at the slice = 7/8 for TGV at Re = 5000 and
at ¢ = 8.5. The no-model case, the SVV and the VMS-Smag results obtained with a
Npgs = 128 resolution are compared to the DNS result with Npyg = 768.
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Figure 19: Surface response for the £2-error for (left) time history of enstrophy (right) and
kinetic energy spectrum at ¢t = 1 for SVV simulation of decaying HIT.
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Figure 20: Time history of normalized enstrophy for the decay of HIT, comparison with
filtered 2563 DNS. Uncertainty quantification was performed on case (e).
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Figure 21: Kinetic energy spectrum at ¢ = 1 for the decay of HIT, comparison with 2563
DNS. Uncertainty quantification was performed on case (e).
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A. Solenoidal projection

The solenoidal reprojection step is here to ensure we always have V - w = 0. Indeed,
numerical errors can accumulate and to prevent that, we correct the vorticity regularly. Let
us recall that any vector field can be expressed as the sum of a solenoidal (divergence-free)
and an irrotational (curl-free) field. The irrotational component can be written as the
gradient of a scalar potential e. Let w™ be the vorticity to be corrected and w its solenoidal
part, thus the correction we seek. We write then

w"=w+ Ve (A1)
then
V-w'=V-w+V-Ve (A.2)
and since V - w = 0,
Ae=V w* (A.3)
and by applying the Laplacian operator to (A.1) we get
Aw* = Aw + VAe (A4)
which means w is solution to
Aw = Aw" -V (V- w") (A.5)

which is a Poisson equation that can easily be solved in the Fourier space.

B. Proof of equivalence of (3.5) and (3.6) for incompressible fluids

Starting from

g = -V x (VSGSv X w)) (Bl)
developing the expression:
g = —Vs@sVXVXw—VVSGSx(VXw)
= —Us(;sv(v . CU) +vsasAw — Viggs X V X w (BQ)

= I/SgsAw — VVSGS XV X w.
Using Einstein’s notation, summing over j # i :

g = vsas0;wi + vsas0iwi — Ojvsas(Oiw; — 0jwi)
= vggsOiw; + 0;(VsasOjw;) — OjvsasOiw; — 0j(vsasOiw;)

B.
+y5GS8i6jwj + 6jl/sgsajwi ( 3)
= vsasOiwi + 9;(vsasijwi) — 9;(vsasOiw;) + Vsasdi0jw;
and since vggs0iw; + vsas0i0jw; = vsasdi(V - w) =0
g, = @-(uscs@jwi) — 8j(VSGSaiQJj) = 8j (I/SGS(ajwi — &-wj)) (B.4)

which is precisely the g; given by (3.6).
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