
HAL Id: hal-04581890
https://hal.science/hal-04581890

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static-Dynamic analysis for Performance and Accuracy
of Data Race Detection in MPI One-Sided Programs

Radjasouria Vinayagame, Van Man Nguyen, Marc Sergent, Samuel Thibault,
Emmanuelle Saillard

To cite this version:
Radjasouria Vinayagame, Van Man Nguyen, Marc Sergent, Samuel Thibault, Emmanuelle Saillard.
Static-Dynamic analysis for Performance and Accuracy of Data Race Detection in MPI One-Sided
Programs. C3PO 2024 - Compiler-assisted Correctness Checking and Performance Optimization for
HPC, May 2024, Hambourg, Germany. �hal-04581890�

https://hal.science/hal-04581890
https://hal.archives-ouvertes.fr

Static-Dynamic analysis for Performance and Accuracy of
Data Race Detection in MPI One-Sided Programs

Radjasouria Vinayagame1, Van Man Nguyen1, Marc Sergent1, Samuel Thibault2, and
Emmanuelle Saillard3

1 Eviden, Echirolles, France
2 University of Bordeaux, Bordeaux, France

3 Inria, Bordeaux, France

Abstract. To take advantage of asynchronous communication mechanisms provided by the
recent platforms, the Message Passing Interface (MPI) proposes operations based on one-
sided communications. These operations enable a better overlap of communications with
computations. However, programmers must manage data consistency and synchronization to
avoid data races, which may be a daunting task. In this paper, we propose three solutions
to improve the performance and the accuracy of the data race detection in MPI one-sided
programs. First, we extend the node-merging algorithm presented in [10] that keeps track of
memory accesses during execution to take into account non-adjacent memory accesses. Then,
we use an alias analysis to reduce the number of load/store instrumented. Finally, we extend
our analyses to manage synchronization routines. Our solutions have been implemented in
PARCOACH, a MPI verification tool. Experiments on real-life applications show that our
contributions lead to a better accuracy, a reduction of the memory usage by a factor up to 4
of the dynamic analysis and a reduction of the overhead at runtime at larger scale.

Keywords: MPI One-Sided Communications, Verification, Data Race, Non-adjacent Mem-
ory Accesses.

1 Introduction

The Message Passing Interface (MPI) standard provides one-sided communications, also known
as Remote Memory Access (RMA). It enables a rank to remotely access and manipulate memory
located on a target rank without requiring an explicit coordination from the latter. In compari-
son to traditional MPI point-to-point two-sided communication, such as MPI_Send and MPI_Recv,
one-sided communications decouple data transfers and synchronizations. Therefore, MPI one-sided
communications have shown good performance in several applications like in [2] where Ghosh et
al. compare the performance of a program that implements an approximate weighted graph match-
ing algorithm when using one-sided and two-sided communications. As one-sided communications
enable direct memory access and reduce communication overhead, their use can improve the per-
formance of applications, especially those with irregular communication pattern.

Nonetheless, developers still use two-sided communications in their programs because one-sided
communications are difficult to use. Indeed, with one-sided communications, developers are exposed
to data races if they do not ensure memory consistency, which can be a challenging task. Some
approaches exist to detect data races in MPI one-sided applications and help developers write correct
and efficient programs. However, these approaches come with restrictions (they do not consider all
the features presented in the MPI standard) and most of them imply a significant overhead at

2 Vinayagame et al.

runtime. This paper proposes new methods to improve the performance and the accuracy of the
data race detection in PARCOACH. We improve the work presented in [10] with the following
contributions:

– A new algorithm to merge non-adjacent accesses in the Binary Search Tree (BST) during the
execution of programs

– The use of an alias analysis to reduce load/store instrumentations at compile time
– Considering flush synchronizations in the data race detection algorithm to avoid false positives

The paper is organized as follows: Section 2 provides background elements, the key concepts
this work relies on and related work. Section 3 describes our contributions to enhance the existing
PARCOACH static and on-the-fly data race detection analyses in order to improve the accuracy,
and reduce the memory usage during execution. Section 4 shows results on two applications and
compares our contributions against the previous version of PARCOACH and MUST-RMA, the only
other active state-of-the-art tool that can detect data races in MPI one-sided programs. Finally,
Section 5 concludes this work.

2 Background and Related Work

2.1 MPI-RMA

When using MPI one-sided communications, each process exposes a distributed shared memory
that can be accessed by all MPI processes. These memory regions are called windows. To perform
remote memory accesses to these windows, developers must define an epoch. Within an epoch,
MPI-RMA proposes several communication operations which involve two processes: origin and
target. Process origin issues the MPI-RMA communication while the target process window is
accessed via the communication. In this paper, we only consider programs that use MPI_Fence
and MPI_(un)lock_all to create an epoch. We support the two major one-sided communication
operations: MPI_Put and MPI_Get. Figure 1 shows examples of these operations. In both subfigures,
MPI_Put writes a value owned by the origin process R0 to the window of the target process R1,
and MPI_Get allows the origin process R2 to locally retrieve a value from the window of the target
process R1. It should be mentioned that a process can also access its own window through local
memory accesses (LOAD and STORE).

MPI-RMA programs expose memory through an abstraction that allows to read from and write
to distant memory at any time, which can lead to data races. In such programs, it is the developer’s
responsibility to ensure memory consistency to avoid data races. A data race occurs in a MPI-
RMA program if (1) two operations access the same data, (2) at least one operation is a one-sided
communication operation, and (3) at least one operation is a WRITE operation. Figure 1b shows an
example of a data race. Both processes R0 and R2 access the same memory space of R1 (in purple
on the figure) with one-sided operations including the Put operation that writes on the memory
space. The value read by the Get operation is thus undefined.

To avoid data races and ensure the completion of communications within an epoch, the MPI-3
standard proposes sychronization routines such as MPI_Win_flush and MPI_Win_flush_all that
can only be used with the passive target synchronization mode. According to the MPI standard,
MPI_Win_flush completes all outstanding RMA operations initiated by the calling process to the
target rank on the specified window. The operations are completed both at the origin and at the
target. An example of how the routine works is depicted in Figure 2. Given four ranks initiating

Static-Dynamic analysis for Performance and Accuracy of Data Race Detection 3

Window

P0 P1 P2

MPI_Put: R0=>R1
MPI_Get: R2=>R1

Load

Store

(a) Correct scenario

Window

P0 P1 P2

MPI_Put: R0=>R1
Data race

MPI_Get: R2=>R1

(b) Incorrect scenario

Fig. 1: Examples of correct and incorrect use of Put/Get operations with three MPI processes.
From the origin process perspective, plain lines represent WRITE operations and dashed lines
represent READ operations. Blue-thin and green-thick lines respectively represent remote and
local operations.

communications toward other ranks, when R1 calls MPI_Win_flush on R2, only communications
initiated by R1 and targeted to R2 are completed after the function returns. Completion of commu-
nications from R2 to R1 is however not guaranteed. It is crucial to consider these synchronizations
when looking for data races.

2.2 Related Work

Several approaches exist to detect data races in MPI one-sided programs. In [5], Park et al. developed
an approach that creates a mirror window that stores all one-sided communications. Upon execution
of a communication, the tool checks if a data race can occur with a previous communication in the
mirror window. This approach does not consider local memory accesses and can miss errors. MC-
CChecker [1] uses a post-mortem analysis based on the encoded vector clock to detect data races.
It is only compatible with the MPI-2 standard and thus does not support newer MPI one-sided
features such as the MPI_Win_lock_all/MPI_Win_unlock_all functions.

To the best of our knowledge, MUST-RMA [7] and PARCOACH [11, 6, 10] are the only two
active tools capable of detecting errors in MPI-RMA programs. MUST-RMA combines MUST [4],
a dynamic MPI verification tool and ThreadSanitizer, a shared-memory data race detector [8]. It
constructs concurrent regions based on the happens-before relation and forwards them to Thread-
Sanitizer that checks for data races.

PARCOACH combines static and dynamic analyses to detect data races caused by one-sided
communications. The static analysis performs a traversal of the Control Flow Graph to report errors
at origin side and instrument memory accesses. The dynamic analysis builds a Binary Search Tree
(BST) of memory addresses during execution. A node in the BST is called an Access. It represents
one memory access and contains the following relevant information about it:

– An interval representing the limits of the memory access. All accessed addresses are contained
in this interval.

– The access type: local or remote and read or write operation. Note that a one-sided operation
implies two memory accesses: one for origin side and one for the targeted rank.

4 Vinayagame et al.

R0 R1 R2 R3

Put:R1->R0

Put:R1->R2

Put:R2->R1

R1.flush(R2)

Put:R3->R2

R0 R1 R2 R3

Put:R1->R0

Put:R2->R1

Put:R3->R2

Fig. 2: Behavior of the MPI_Win_flush routine. The coloured lines represent ongoing communica-
tions. The line type characterizes the target of the communication. The call to MPI_Win_flush by
R1 toward R2 completes all the communications initiated by R1 for which R2 is the target.

Algorithm 1 Insertion of a memory access in the BST
1: function insert_BST(NewAcc, BST)
2: HasError ← dataRaceDetection(NewAcc,BST) ▷ report an error in case of a data race
3: if !HasError then
4: InterAcc← get_intersecting_accesses(NewAcc,BST)
5: FragAcc← create_accesses(InterAcc,NewAcc)
6: MergedAcc← merge_accesses(FragAcc)
7: finish_insertion(InterAcc,MergedAcc,BST)

– Debug information for error reporting (e.g., line in the source code).

In the BST, nodes are ordered by the lower bound of the memory adresses.
In [10], Vinayagame et al. enhance this approach with a node-split algorithm that splits nodes

of the BST to ensure no intervals overlap and a node-merging algorithm that reduces the size of
the BST. The resulting algorithm that insert a node in the BST is presented in Algorithm 1. This
algorithm first checks if a new access NewAcc can lead to a data race with a previous memory access
by identifying the conflicting intersections of memory access intervals (line 2). If no data race is
possible, a BST node representing this new access is created. The algorithm identifies the intervals
intersecting with NewAcc (line 4). These intersections do not cause a data race because they have
compatible access types. Based on these intersections, new nodes are created, called fragments,
that are not overlapping (line 5). All of these nodes are then merged when possible and especially
when they represent adjacent addresses (line 6). Finally, the merged nodes replace the previous
nodes (line 7). Despite good results on different benchmarks, this approach has several limitations.
First, non-adjacent memory accesses are not considered in the node-merging algorithm. This limits
the speedup the analysis could achieve on such applications like MiniV ite [3] that are making
equidistant memory accesses. Additionally, PARCOACH does not consider synchronizations with
flush operations in its analyses. The tool can then report false positives. Indeed, in the CFD-
Proxy [9] application, PARCOACH returns an error because of an uncaught MPI_Win_flush.

In this paper, we propose an extension of the node-merging algorithm that takes into account
non-adjacent memory accesses to reduce the size of the BST. We also improve the memory accesses

Static-Dynamic analysis for Performance and Accuracy of Data Race Detection 5

struct data A {
char buffer1[MAX_BUFFER_SIZE];
char buffer2[MAX_BUFFER_SIZE];

}
struct data A[MAX_TAB_SIZE];
for(int i = 0; i < MAX_TAB_SIZE; i++)

MPI_Put(A[i].buffer2 , MAX_BUFFER_SIZE , 1, ...)

(a) Example of code with non-adjacent memory ac-
cesses.

Merge

Memory address Memory address

Size Distance

(b) Merging of equidistant memory accesses in the
BST.

Fig. 3: Example of a code making non-adjacent memory accesses and how the latter should be
represented in the BST.

instrumentation described in [6]. This also reduces the number of nodes in the BST. Finally, we ex-
tend the dynamic analysis presented in [10] to support flush synchronizations during the detection
of data races to avoid false positives.

3 Contributions

In this section, we present three contributions that aim at reducing the memory usage of the analysis
and at improving its accuracy. Section 3.1 explains how equidistant memory accesses can be merged
in the BST to reduce the number of nodes. Section 3.2 proposes a solution to reduce the number
of instrumentations to relieve the dynamic analysis. Finally, Section 3.3 presents a way to consider
synchronizations in the analysis of data races to increase its accuracy.

3.1 Merging Non-Adjacent Accesses in the BST

The goal of this section is to reduce the size of the BST by merging nodes in the BST that represent
equidistant memory accesses. Thus, as shown in Figure 3b, instead of storing three nodes in the
BST, only one, representing the three memory accesses, should be inserted. Thus, the BST induced
by the program presented in Figure 3a should contain one node instead of the number of iterations
as it was the case with PARCOACH.

In order to take into account non-adjacent memory accesses, we propose to have Access ob-
jects represent equidistant sub-intervals instead of a single interval. To this end, two new pieces of
information are added in the Access structure: a Size attribute representing the size of each sub-
interval, and a Distance attribute representing the constant distance of the sub-intervals. These
new attributes are represented in Figure 3b. Nonetheless, the analysis still has to ensure that no
sub-intervals are intersecting in the BST. Additionally, the analysis should represent the memory
access issued in a code such as the one presented in Figure 4a as two nodes represented in Fig-
ure 4b. As a consequence, the functions of the insertion algorithm presented in Algorithm 1 have
been amended to improve the analysis. These changes are explained in the following paragraphs.

get_intersecting_intervals The purpose of this function is to find all nodes intersecting with
NewAcc. It now considers two extra non-intersecting nodes on the right of the rightmost inserted
node, and two extra nodes on the left of the leftmost inserted node. These extra nodes may be

6 Vinayagame et al.

struct data {
char buffer1[MAX_BUFFER_SIZE];
char buffer2[MAX_BUFFER_SIZE];

}
struct data A[MAX_TAB_SIZE];
for(int i = 0; i < MAX_TAB_SIZE; i++)

MPI_Put(A[i].buffer1 , MAX_BUFFER_SIZE , 1, ...)
[some computations]
for(int i = 0; i < MAX_TAB_SIZE; i++)

MPI_Put(A[i].buffer2 , MAX_BUFFER_SIZE , 1, ...)

(a) Example of code with equidistant memory accesses
that are interlacing.

Memory address
(b) Merging the memory accesses into two nodes

Fig. 4: Example of desired representation of interlaced non-adjacent accesses.

Address space

Intersecting

Not returned

Included in

ExtraTwo

New memory access

Fig. 5: Determining which intervals are inter-
secting with the new access.

i

jElementA

ElementB

>

1

2

3

4

5

6

Fig. 6: Fragmentation process of two intersecting
intervals.

useful for the merging of the nodes in the case where they can be merged with the new created
node. Additionally, in order to not miss any intersecting interval, this function must check if the
nodes that contain the smallest and largest intervals inserted so far are intersecting with NewAcc.
An example of its execution is shown in Figure 5. We can distinguish four types of nodes with
get_intersecting_intervals:

– Nodes intersecting with NewAcc returned by the function during the traversal of the BST.
These nodes are represented in blue in the figure. These node are the only nodes reported by
the original get_intersecting_intervals of PARCOACH.

– Nodes that are not intersecting NewAcc but are returned because they might be mergeable.
These nodes are in violet in the figure.

– Nodes intersecting with NewAcc but not returned during the traversal because a non-intersecting
node separates them from the rest of the intersecting nodes. These nodes are in orange in the fig-
ure. These nodes (which can be arbitrarily far in the BST) will be reached from a returned node
through interval-inclusion pointers represented as vertical arrows (maintained hierarchically).

– Nodes that are not returned by the function, which are represented in black in the figure.

create_accesses Consider a set X of Access objects, that are now composed of several sub-
intervals, and the memory access NewAcc that is being inserted in the BST. If NewAcc intersects

Static-Dynamic analysis for Performance and Accuracy of Data Race Detection 7

with a sub-interval of any element of X, then this function creates new Access objects representing
disjoint memory accesses. For each memory access m ∈ X, if NewAcc is intersecting with at least
one sub-interval of m, then both m and NewAcc are divided into fragments. An example of how the
fragments are computed is depicted in Figure 6. Given nodes ElementA ∈ X and ElementB ∈ X
such as there is a sub-interval of ElementA that intersects with a sub-interval of ElementB, step
1○ gets the two aforementioned sub-intervals. Step 2○ then creates a node representing the first
sub-intervals that are not intersecting with the sub-intervals of the other node. Steps 3○, 4○, and
5○ create disjoint fragment nodes until the function reaches the end of one of the nodes. Finally,
step 6○ tries to create a node representing the remaining sub-intervals.

merge_accesses Given a set of ordered and disjoint memory accesses, this function merges the
elements of this set when possible. It looks per batch of three nodes if they can be merged. They
have to be equidistant, with the same debug information, and have the same access type and size.
If the batch of three nodes can be merged, the function looks for the next nodes in the set and
adds them in the merged node. If the three nodes cannot be merged, the function creates one or
two nodes depending on whether the first two nodes can be merged.

3.2 Reducing Memory Accesses Instrumentations for the Dynamic Analysis

The original dynamic analysis is implemented by instrumenting, at compile time, all memory ac-
cesses within an epoch, whether they are local or remote accesses. This is concerning since the
instrumentation of those instructions adds an overhead to the execution time of the analysis, which
slows down the execution of the whole application.

The goal of this section is to reduce the number of instrumentations for the dynamic analysis
by removing at compile time the instrumentation of operations that are not subject to data races.

Table 1 summarizes all the possible combinations of operations, with the colored cells repre-
senting the ones subject to data races. Depending on which ranks are initiating the operations and
toward which rank, we discern three types of data race:

– Local-Local data races, also known as local concurrency errors, involve two operations that are
called by the same rank. Table 1a presents combinations of operations that can lead to this
type of data race and Figure 7a presents an example of this type of data race.

– Remote-Local data races may occur when an origin rank initiates a communication toward
a target rank while the latter also makes an operation. Table 1b describes these cases and
Figure 7b presents one of them.

– Remote-Remote data races are induced by two origin ranks operating a remote access toward
the same target rank. Table 1b depicts these cases and Figure 7c highlights one of them.

The static analysis presented by Saillard et al. [6] enables the detection of local concurrency
errors. Thus, the analysis can detect the data races presented in blue and green cells in Table 1a.
Remote-Local data races can only occur in the window of a rank: an origin performs a remote access
to the window of the target rank while the latter also accesses its own window. Remote-Remote data
races cannot be predicted at compile time, especially when the target of the communication is not
known at compile time, which is the case in most applications. That is why all remote operations
have to be instrumented.

By combining these three observations, we present a new instrumentation algorithm that in-
struments operations in three cases:

8 Vinayagame et al.

Get Put Load Store
Get
Put x
Load x x x x
Store x x x x

(a) Local-Local table: an origin
rank first calls an instruction given
in row and a second instruction
given in column.

Get Put Load Store
Get x
Put
Load x x x
Store x x

(b) Remote-Local table: an origin
rank calls an instruction given in
row and a target calls an instruc-
tion given in column.

Get Put
Get
Put

(c) Remote-Remote table: two
origin ranks are remotely ac-
cessing the window of the same
target rank.

Table 1: Pair of instructions that are instrumented. X cells are not instrumented because they are
not subject to data race. Blue cells are instrumented because they involve two remote operations.
Green cells are instrumented if a data race is reported by the static analysis. Orange cells are
instrumented if the local memory access accesses the window of a rank.

– MPI One-Sided Communications. This is done by instrumenting all MPI_Put and MPI_Get
instructions.

– Local concurrency errors. This is done by first performing the static analysis proposed in [6]
and then instrumenting the instructions flagged by the static analysis.

– Load/Store instructions that access the window. To that end, an alias analysis is used to check
if a Load/Store operation is accessing a part of the window.

It should be mentioned that in the cases that are in the scope of the static analysis, there is
no false negative. Indeed, the pointer analysis used in the approach is conservative, and flags any
undecidable situations as a danger that has to be checked at runtime. As a consequence, we are not
missing any instrumentation of operations that might lead to a data race.

Thereby, the new instrumentation algorithm instruments all the relevant instructions for the
dynamic data race analysis while ensuring to not instrument instructions marked as X in Table 1
that represent safe memory accesses.

3.3 Considering Synchronizations in the Analysis

In this section, we present a solution to support synchronization routines such as MPI_Win_flush
and MPI_Win_flush_all. Being able to properly analyse the behavior of codes using these calls
improves the accuracy of data race detection tools.

MPI one-sided programs decouple data movements and synchronizations. Indeed, to allow
a process the reuse of data involved in a remote operation, synchronization functions such as
MPI_Win_flush can be called to ensure that a remote operation is completed. For example, to
resolve the data race depicted in Figure 7a, a MPI_Win_flush can be inserted between the two
accesses to buf as shown in Figure 7d. This synchronization ensures that the buf variable can be
reused by the second access, since it waits for the completion of the communication.

To instrument the MPI_Win_flush routine, in addition to the BST of Access objects, a 2D
communication array is created for each MPI process to store all the communications in which it is
involved. This implies that each time a remote operation is initiated, the target MPI process is also
notified so the latter can update its communication array. Thus, when MPI_Win_flush is called by

Static-Dynamic analysis for Performance and Accuracy of Data Race Detection 9

R0 (Origin) R1 (Target)

Win_lock_all Win_lock_all
Get(buf , 1,X)
printf(buf)
Win_unlock_all Win_unlock_all

(a) Local concurrency errors detected by the
static analysis.

R0 (Origin) R1 (Target)

Win_lock_all Win_lock_all
Put(buf , 1,X) X = 0
Win_unlock_all Win_unlock_all

(b) target rank accesses its window while a
communication has been initiated at it.

R0 (Origin 1) R1 (Target) R2 (Origin 2)

Win_lock_all Win_lock_all Win_lock_all
Put(buf , 1,X) Put(buf , 1,X)
Win_unlock_all Win_unlock_all Win_unlock_all

(c) Two ranks are making a remote access toward
the same target rank.

R0 (Origin) R1 (Target)

Win_lock_all Win_lock_all
Get(buf , 1,X)
Flush(1)
printf(buf)
Win_unlock_all Win_unlock_all

(d) Flush makes the operations safe.

Fig. 7: Examples of the different types of data races. X represents the window of R1.

a rank A for a rank B, A looks in its communication array for communications for which A is the
origin and where B is the target. The nodes in its BST that are associated with this communication,
which are the related memory accesses, are then removed. The same process is made for rank B. As
a consequence, any new memory access that would have been conflicting with a node in the BST,
without the MPI_Win_flush operation, will not raise a data race since the aforementioned node is
not in the BST anymore.

4 Experimental Results

In this section, we compare the impact of the different contributions presented in this paper to
the two state-the-art approaches that are MUST-RMA [7] and PARCOACH [10]. We compare
these approaches on two-real life applications: CFD-Proxy [9] and Mini-Vite [3]. We performed
our experiments on an Eviden cluster that belongs to the Eviden R&D department, located at
Echirolles, France. Each node has 2 x AMD ome 24 core (AMD EPYC 7402) with 128GB of RAM.
The nodes are connected using the InfiniBand HDR interconnection. All the nodes run an RHEL 8.8
system. Our software stack is built with LLVM-15 and we used an Eviden OpenMPI implementation
of MPI, built in its 4.1.6 version.

4.1 Implementation Details

Our contributions have been implemented on top of the analyses of PARCOACH, which is itself
based on the LLVM compiler. Relevant instructions are instrumented at compile time. The BST is
implemented using the multiset containers provided by the C++ standard.

In the following, in addition to the base version of the applications which is running without
any analysis (referred as None), we compare the performance of five combinations:

– PARCOACH is the base version of the application using the algorithm presented in [10].

10 Vinayagame et al.

Load/Store instr. (/total)

PARCOACH 20(/102)
PARCOACH+Merge 20(/102)
PARCOACH+Instr 10(/59)
PARCOACH+Both 10(/59)

Table 2: Number of Load/Store instrumentations
for Mini-Vite

Number of procs 32 64 128 256

PARCOACH 176,460 96,762 51,691 28,671
PARCOACH+Merge 40,531 23,006 12,081 7,041
PARCOACH+Instr 176,460 96,523 51,247 27,785
PARCOACH+Both 40,503 22,815 11,993 6,980

Table 3: Number of nodes in the BST when
running on MiniVite with a problem size of
1,280,000, depending on the number of pro-
cesses(in column)

– PARCOACH+Merge represents the implementation of the new node-merging algorithm pre-
sented in Section 3.1.

– PARCOACH+Instr is the implementation of the reduction of instrumentations solution pre-
sented in Section 3.2.

– PARCOACH+Both gathers the two previous implementations.
– PARCOACH+Flush is the implementation considering the synchronizations as presented in

Section 3.3.
– MUST-RMA is the state-of-the-art approach for data race detection in MPI-RMA programs

presented in Section 2.2.

4.2 Method Validation

We added 18 test codes using MPI_Win_flush to the PARCOACH test suite in order to illustrate the
accuracy of our approach. This new test suite includes the code presented in 7d. PARCOACH+Flush
does not report a data race anymore while the previous version of PARCOACH reports a false
positive.

We run the different approaches on CFD-Proxy [9] a proxy-application for computational fluid
dynamics. In the application, each rank operates two MPI_Put communications that are separated
by a MPI_Win_flush synchronization. The application is correct and PARCOACH+Flush is the
only approach that does not detect a data race between the two MPI_Put operations.

4.3 Performance Analysis

To evaluate the overhead introduced by the different approches, this section presents a performance
analysis on MiniVite [3] which is a proxy-application that implements a single phase of Louvain
method for graph community detection.

Table 2 summarizes the number of LOAD/STORE instructions instrumented. As expected, the
PARCOACH+Instr and PARCOACH+Both approaches reduce the number of instrumentations by
a factor up to 2. It is noteworthy that the approach instruments less files because it considers that
the instructions in some files are not relevant for instrumentation, because it was able to ascertain
that no data race is possible.

Table 3 gives the number of nodes in the BST when running the different PARCOACH ap-
proaches on Mini-Vite with a problem size of 1,280,000. On the one hand, the number of nodes is

Static-Dynamic analysis for Performance and Accuracy of Data Race Detection 11

0

10000

20000

30000

40000

32 64 128 256
Number of MPI processes

E
xe

cu
tio

n
tim

e
(m

s)

Version:
None
PARCOACH
PARCOACH+Instr
PARCOACH+Merge
PARCOACH+Both
MUST−RMA

Fig. 8: Execution time of MiniVite with a problem size of 1,280,000, depending on the number of
processes and the approach used.

reduced by the PARCOACH-Instr approach since it instruments less memory accesses. The reduc-
tion of nodes is small because the reduction of instructions did not remove instructions called several
times and also because the alias analysis used for the approach is conservative and wrongly consid-
ers that a lot of memory accesses are aliasing the window. On the other hand, PARCOACH-Merge
considerably reduces the number of nodes by a factor up to 4. This is thanks to the equidistant
memory accesses that are merged into one node in the BST. Finally, PARCOACH-Both is the best
approach in terms of memory usage since it reduces the number of instrumentations and merges
the remaining memory accesses.

Figure 8 presents a comparison of the time spent in epochs when running MiniVite from 32
processes on 2 nodes to 256 processes on 16 nodes. When comparing PARCOACH to the approaches
presented in this paper, PARCOACH-Instr slightly reduces the runtime overhead. This is due
to the reduction of instrumentations which implies that fewer instructions are analyzed by our
approach. This speedup is small for the same reason as why the number of nodes is not reduced
by the approach. PARCOACH-Merge requires more operations when inserting a new node which
has a cost. This cost is not compensated by the reduction of the size of the BST. For the same
reason, PARCOACH-Both has more overhead than PARCOACH because of the cost of the merging
algorithm. These two approaches have better performance when running at larger scale as the
number of analyzed instructions is reduced and so is the cost of the insertion algorithm.

MUST-RMA has a notable overhead compared to the PARCOACH approaches. The reason is
that ThreadSanitizer instruments all the memory accesses of the application.

12 Vinayagame et al.

5 Conclusion

This paper proposes an extension of PARCOACH analyses to take advantage of the static analysis
to reduce the number of memory accessses instrumentation, reduce the overhead of the analysis
at runtime, and support synchronizations in the data race detection and avoid false positives.
Experiments have shown that these contributions lead to a better accuracy and a reduction of
the overhead at larger scale. We leave for future work an in-depth study on the behaviour of our
contributions on applications with different memory access patterns. We also plan to propose an
other way to promote the use of MPI one-sided communications with a code transformation solution
that finds regions in the code where one-sided communication may be beneficial, and transforms
MPI two-sided communications into one-sided communications.

References

1. Diep, T.D., Fürlinger, K., Thoai, N.: MC-CChecker: A Clock-Based Approach to Detect Memory Con-
sistency Errors in MPI One-Sided Applications. In: Proceedings of the 25th European MPI Users’
Group Meeting. EuroMPI’18, Association for Computing Machinery, New York, NY, USA (2018)

2. Ghosh, S., Halappanavar, M., Kalyanaraman, A., Khan, A., Gebremedhin, A.H.: Exploring mpi commu-
nication models for graph applications using graph matching as a case study. In: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 761–770 (2019)

3. Ghosh, S., Halappanavar, M., Tumeo, A., Kalyanaraman, A., Lu, H., Chavarrià-Miranda, D., Khan,
A., Gebremedhin, A.: Distributed louvain algorithm for graph community detection. In: 2018 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). pp. 885–895 (2018)

4. Hilbrich, T., Schulz, M., de Supinski, B.R., Müller, M.S.: MUST: A Scalable Approach to Runtime
Error Detection in MPI Programs. In: Tools for High Performance Computing 2009. pp. 53–66 (2010)

5. Park, M.Y., Chung, S.H.: Detecting Race Conditions in One-Sided Communication of MPI Programs.
In: 2009 Eighth IEEE/ACIS International Conference on Computer and Information Science (2009)

6. Saillard, E., Sergent, M., Aitkaci, T.C., Barthou, D.: Static Local Concurrency Errors Detection in
MPI-RMA Programs. In: Correctness 2022 - Sixth International Workshop on Software Correctness for
HPC Applications. Dallas, United States (Nov 2022), https://hal.inria.fr/hal-03882459

7. Schwitanski, S., Jenke, J., Tomski, F., Terboven, C., Müller, M.S.: On-the-Fly Data Race Detection
for MPI RMA Programs with MUST. In: 2022 IEEE/ACM Sixth International Workshop on Software
Correctness for HPC Applications (Correctness). pp. 27–36 (2022)

8. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic Race Detection with LLVM
Compiler. In: Khurshid, S., Sen, K. (eds.) Runtime Verification. pp. 110–114 (2012)

9. Simmendinger, C.: Pgas community benchmarks cfd-proxy version 1.0.1. https://github.com/PGAS-
community-benchmarks/CFD-Proxy (2014)

10. Vinayagame, R., Saillard, E., Thibault, S., Nguyen, V.M., Sergent, M.: Rethinking Data Race Detection
in MPI-RMA Programs. In: Proceedings of the SC ’23 Workshops of The International Conference on
High Performance Computing, Network, Storage, and Analysis. SC-W ’23 (2023)

11. Virouleau, P., Saillard, E., Sergent, M., Lemarinier, P.: Highlighting PARCOACH Improvements on
MBI. In: Workshops of The International Conference on High Performance Computing, Network, Stor-
age, and Analysis. SC-W 2023 (2023)

