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Abstract This work presents a methodology to extract coherent structures from high-speed schlieren
images of turbulent twin jets which are more physically interpretable than those obtained with cur-
rently existing techniques. Recently, Prasad & Gaitonde [44] introduced an approach which employs
the momentum potential theory of Doak [15,28] to compute potential (acoustic and thermal) energy
fluctuations from the schlieren images by solving a Poisson equation, and combines it with spectral
proper orthogonal decomposition (SPOD) to educe coherent structures from the momentum potential
field instead of the original schlieren field. While the latter field is dominated by a broad range of
vortical fluctuations in the turbulent mixing region of unheated high-speed jets, the momentum poten-
tial field is governed by fluctuations which are intimately related to acoustic emission, and its spatial
structure in the frequency domain is very organized. The proposed methodology in this paper improves
the technique of [44] in three new ways. First, the solution of the Poisson equation is carried out in
the frequency-wavenumber domain instead of the time-space domain, which simplifies and integrates
the solution of the Poisson equation within the SPOD framework based on momentum potential fluc-
tuations. Second, the issue of solving the Poisson equation on a finite domain with ad hoc boundary
conditions is explicitly addressed, identifying and removing those unphysical harmonic components
introduced in the solution process. Third, the solution of the SPOD problem in terms of momen-
tum potential fluctuations is used to reconstruct schlieren SPOD fields associated with each mode,
allowing the visualization of the obtained coherent structures also in terms of the density gradient.
The method is applied here to schlieren images of a twin-jet configuration with a small jet separation
at two supersonic operation conditions: a perfectly-expanded and an overexpanded one. The SPOD
modes based on momentum potential fluctuations retain the wavepacket structure including the direct
Mach-wave radiation, together with upstream- and downstream-traveling acoustic waves, similar to
SPOD modes based on the schlieren images. However, for the same dataset, they result in a lower-rank
decomposition than schlieren-based SPOD and provide an effective separation of twin-jet fluctuations
into independent toroidal and flapping oscillations that are recovered as different SPOD modes. These
coherent structures are more consistent with twin-jet wavepacket models available in the literature
than those originally obtained with direct schlieren-based SPOD, facilitating their interpretation and
comparison against theoretical analyses.
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1 Introduction

Noise pollution remains one of the major environmental health concerns associated with aviation, owing
to its significant impact on the activity of human and animal life. Jet-engine noise is one of the main
contributors to this problem, affecting both urban environments with civil aviation operations as well
as military environments such as launch centers or aircraft carriers. Supersonic multi-jet engines are
frequently encountered in the propulsion systems of rockets and modern high-speed aircraft. Among
these, twin-jet configurations are the most common. Closely-spaced jets are known to strongly interact
at the hydrodynamic and acoustic levels, giving rise to more complex flow structures than single round
jets and distinct noise radiation patterns [4,30].

The link between the far-field sound radiated by high-speed jets and the turbulent fluctuations
found in their core and mixing regions was soon recognized as a crucial point for the understanding of
sound-generation mechanisms, and has been the subject of considerable research [27]. Multiple studies
on single round jets have shown that the radiated sound is highly directional for both subsonic and
perfectly-expanded supersonic jets [13,65,6], and that it is associated with large-scale, low-frequency
fluctuations found in the mixing region [29,8]. Such large-scale fluctuations, today known as coherent
structures, were first observed by Crow & Champagne [14]. These structures resemble the instability
waves that develop in harmonically-forced jets, prompting their modeling by means of linear stability
theory [12,36] and introducing the term “wavepackets” to refer to them.

During the last two decades, a successful modeling of wavepackets in isolated round jets was
achieved by means of linear stability calculations, and their relevance in the coherent dynamics was
further demonstrated through experimental comparisons and high-fidelity simulations [64,25,7]. Vor-
tex sheet/finite thickness models [66], parabolized stability equations (PSE) [43,47,50,58] and, more
recently, one-way Navier-Stokes equations [68] and resolvent analysis [23,26,54] have been established
as valid wavepacket modeling strategies. These studies have led to big advancements in the under-
standing of sound generation mechanisms through the modeling of Kelvin-Helmholtz instabilities and
of acoustic resonances involving duct modes and shock-cell interactions in supersonic jets [67,18].

Analogous wavepacket models for subsonic and supersonic twin jets have only been developed in
the last few years, as they pose additional challenges in terms of complexity and computational cost
compared to single round jets: the azimuthal Fourier decomposition of the flow field is no longer pos-
sible due to the loss of axial symmetry of the flow structure of each jet, thus requiring the use of
three-dimensional techniques. Studies based on local cross-plane linear stability theory with two inho-
mogeneous directions [49,40,51], along with plane-marching PSE [48,42] and twin-jet vortex sheet/fi-
nite thickness models [57,38,16,63] have been used to characterize the instabilities that govern the
twin-jet system and model the corresponding wavepackets.

Despite the achieved progress, current wavepacket models are not yet able to provide a complete
description of the mechanics of sound generation in twin-jet systems. Linear models present limitations
when mechanisms involving multiple interacting waves or coupling between the fluctuations of each
jet are present. The interpretation of results is further complicated in configurations with small jet
separation as the wavepackets become heavily deformed, departing from axial symmetry and compli-
cating the identification of the oscillation modes. Therefore, hand-in-hand experimental investigations
are necessary to validate the models as well as to characterize and provide physical understanding on
mechanisms that have not yet been described computationally.

With the increasing ability to record and process high-resolution, high-speed experimental measure-
ments, data-driven techniques introduced some decades ago have recently evolved and gained attention
due to their potential to extract information from experimental data. In particular, the spectral proper
orthogonal decomposition (SPOD) [3,11,69] offers a powerful framework to extract coherent structures
from time-resolved experimental visualizations, such as those obtained from high-speed schlieren imag-
ing. Recent investigations have employed this technique to study the screech resonance mechanism in
single round jets with very satisfactory results [18,34]. For twin-jet configurations, the application of
SPOD to experimental schlieren datasets has also been successful to describe screech resonances [20,
39,45,73,41], where the associated coherent structures are composed of waves which, within each jet,
feature a spatial structure analogous to a single azimuthal mode in the equivalent isolated jet. Con-
versely, at other frequencies where mixing-layer noise is the dominant mechanism, SPOD based on
schlieren images is not well suited for separating the toroidal and flapping modes of oscillation of the
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Fig. 1 Twin jet geometry and associated parameters.

twin-jet system. As will be shown in this study, both types of oscillation are not clearly distinguishable
in the structure of the leading SPOD modes corresponding to mixing-noise frequencies.

In a recent work, Prasad & Gaitonde [44] presented an approach to extract coherent structures from
high-speed schlieren images using a quantity derived from the momentum potential theory formulation
of Doak [15]. Jordan et al. [28] were the first to apply the momentum potential formulation to a
complex model flow problem, consisting of a wavepacket with solenoidal and irrotational components,
to investigate the source and flux terms involved in Doak’s fluctuation-energy balance and their role
in the generation of sound radiation. Later on, Unnikrishnan et al. [71,72] applied the technique to a
supersonic cold jet flow field obtained by means of large-eddy simulation, while Prasad & Morris [46]
used it to study the performance of fluid inserts for the control of heated supersonic jets. In the
approach of [44], the Helmholtz decomposition of the momentum density is used to derive a Poisson
equation relating the schlieren fluctuation field with the streamwise gradient of the momentum potential
fluctuation field integrated along the line of sight. By applying SPOD to the derived momentum
potential fluctuations, coherent structures representing the acoustic and thermal energy components
of the flow may be obtained. In [44], this technique is applied to schlieren visualizations of single round
jets and twin rectangular jets, educing coherent structures associated with sound generation and with
the waves responsible for resonant feedback loops. Nevertheless, the performance and limitations of
this approach compared to the direct use of schlieren images to extract coherent information have
not yet been characterized. In particular, the impact of imposing ad hoc boundary conditions for the
solution of the Poisson equation in a truncated domain where the flow field at the boundaries is not
purely irrotational remains unclear [55,56].

In this work, the idea introduced by Prasad & Gaitonde [44] is adopted to extract coherent struc-
tures from high-speed schlieren measurements in twin supersonic jets with an enhanced interpretability.
A new methodology is proposed to advance the technique of [44] in three aspects: (i) integrating the
calculation of the streamwise gradient of the momentum potential field within the SPOD algorithm by
solving the Poisson equation in the spectral (frequency-wavenumber) domain; (ii) paying special atten-
tion to the influence of the ad hoc boundary conditions imposed on the Poisson equation, providing a
filtering strategy to eliminate unphysical harmonic waves introduced in the process; (iii) reconstructing
schlieren SPOD modes using the eigeninformation of the momentum potential SPOD problem. The
newly obtained coherent structures are then compared against the SPOD structures provided by the
direct use of schlieren images, allowing a quantification of the benefits attained from the use of the
derived momentum potential fluctuations for this problem.

The remainder of the paper is organized as follows. Section 2 presents the experimental twin-jet
setup employed to obtain schlieren visualizations. Section 3 describes the methodology used for the
calculation of coherent structures, outlining the derivation of the Poisson equation relating schlieren
and momentum potential fluctuations, the SPOD algorithm and the integration of the calculation of the
momentum potential field within it. Section 4 presents SPOD results for two different twin-jet operating
conditions and highlights the differences between the coherent information obtained from momentum
potential fluctuations against schlieren fluctuations. Finally, concluding remarks are provided in § 5.
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Fig. 2 Experimental setup: (left) overall view of the twin-jet system; (middle) close-up view of the twin nozzles;
(right) some elements of the schlieren system: flat mirror, knife edge, lens and camera.

2 Experimental setup

The studied twin-jet configuration is represented in figure 1. The jets are generated by two identical
round convergent-divergent nozzles. The nozzle geometry has been designed at Institut Pprime (CNRS-
Université de Poitiers-ISAE-ENSMA), and follows a truncated ideal contour (TIC) profile with an exit
diameter of D = 0.025 m and an exit-to-throat area ratio of Ae/At = 1.225. The center of each of the
nozzles is located along the y-axis (z = 0) and the exit of each of them is located at x = 0. The spacing
between the axis of each nozzle is denoted by s.

The experimental schlieren visualizations have been performed at the PROMÉTÉE platform of
Institut Pprime (CNRS-Université de Poitiers-ISAE-ENSMA). The facility employed is the T200 com-
pressible wind tunnel, which is powered by a 200 bar compressed air network and can reach operational
conditions up to an isentropic Mach number Mj = 2 for the employed nozzle geometry. A heating sys-
tem based on a series of tanks with heated nickel balls is used to increase and maintain the total
temperature of the air arriving to the nozzles. The first and second pictures shown in figure 2 display
the twin-jet experimental system built in the facility, which is placed inside a semi-anechoic room. The
jet spacing considered for this study is s/D = 1.76, which is the minimum possible nozzle spacing
according to the outer surface dimensions of the designed nozzles.

The jets are subject to different nozzle pressure ratios (NPR) with a fixed total temperature of
Tt0 = 300 K. The pressure ratio considered, i.e. the ratio of the total pressure in the reservoir pt0 to the
ambient pressure p∞ is defined in terms of the isentropic jet Mach number Mj through the isentropic

relation pt0/p∞ = (1 + 0.5(γ − 1)M2
j )

(γ−1)/γ . Since the jets are not heated, the flow acceleration
within the nozzle results in jet static temperatures lower than the ambient temperature. The operation
condition closest to the perfectly-expanded regime that could be achieved in practice is obtained
at Mj = 1.54, calibrated experimentally by means of flow visualization. In this work, two different
operating conditions are considered, namely Mj = 1.54 and Mj = 1.26, the latter corresponding to an
overexpanded regime. The corresponding Reynolds number based on the nozzle exit diameter and the
jet exit flow conditions for Mj = 1.54 is Re = 1.40× 106.

The optical system consists of a classical Z-type schlieren setup. Some of its elements are shown in
the third picture of figure 2. A continuous light source is provided by a 60 W LED, which goes through
an aperture that prevents any light from the source to directly enter the test section. Two parabolic
mirrors with a diameter of 30 cm and a focal length of 3 m are used to produce a collimated light
beam which, through two circular apertures, traverses the test section along the z direction according
to the reference frame shown in figure 1. Two additional flat mirrors with a diameter of 12 cm each
are used to accommodate the optical path of the system into a Z shape, allowing for a more compact
experimental setup. A vertical knife edge is placed at the focal length of the second parabolic mirror; in
consequence, the light intensity field in the recovered schlieren images is proportional to the streamwise
density gradients in the flow (∂ρ/∂x).

The camera employed to record the images at high-speed is a Phantom v2640. For each operating
condition, 30,000 snapshots are recorded at a sampling frequency of fs = 68 kHz with a spatial
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Fig. 3 Schlieren visualizations of the twin jet at Mj = 1.26 (overexpanded regime): (left) sample instantaneous
snapshot; (right) mean field obtained by averaging 30,000 snapshots.

resolution of 352 × 512 pixels. An exposure time 0.8 µs is used, which is small enough to freeze the
convected flow disturbances while ensuring enough contrast in the image. The recorded images consist
of an array of pixel intensity values ranging between 0 and 4095 (12-bit color depth).

The image’s spatial window approximately comprises an area of 3D away from each nozzle axis
along the y direction and 10D downstream of the nozzle exit along the x direction. This size was found
to offer a good compromise between spatial resolution and window size for the current setup, resulting
in a pixel size of 0.02D. Figure 3 displays an instantaneous schlieren snapshot obtained at Mj = 1.26,
as well as the corresponding mean field obtained by averaging all 30,000 snapshots.

3 Methodology

In the following, instantaneous flow quantities q are split into a time-stationary mean component and
a time-dependent fluctuating component: q(x, y, z, t) = q̄(x, y, z) + q′(x, y, z, t).

3.1 Doak’s momentum potential theory

The momentum potential formulation proposed by Doak [15] is based on a Helmholtz decomposition
of the form:

ρui = Bi −
∂ψ

∂xi
, (1)

where ρui denotes the momentum density of the flow (density ρ times velocity ui), Bi is the solenoidal
momentum component (∂Bi/∂xi = 0) and ψ denotes the scalar potential associated with the irrota-
tional momentum component (∇× ∂ψ/∂xi = 0).

Introducing the decomposition (1) into the continuity equation

∂ρ

∂t
+
∂ (ρui)

∂xi
= 0, (2)

assuming a statistically time-stationary flow (∂ρ̄/∂t = 0), and noting that ρ(xi, t) = ρ̄(xi) + ρ′(xi, t)
and ψ(xi, t) = ψ̄(xi) + ψ′(xi, t), yields, on one hand:

∂2ψ′

∂x2i
=
∂ρ′

∂t
, (3)
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which is a Poisson equation relating the two scalar fluctuation fields ρ′ and ψ′, and, on the other hand:

∂2ψ̄

∂x2i
= 0, (4)

which implies that the scalar potential field has zero mean, i.e. ψ(xi, t) = ψ′(xi, t) (see [15]).
Helmholtz’s decomposition theorem expressed in the form of equation (1) holds for vector fields

that decay to zero sufficiently fast at infinity [2,62]. This requirement is usually not satisfied in the
finite domains employed for the numerical simulation or experimental visualization of flow fields of
practical interest, such as the twin-jet configuration under study. Certainly, the momentum density of
the twin-jet flow field does not vanish at the boundaries of the domain shown in figure 3. In these cases,
the truncation of the domain introduces a third component in the decomposition which corresponds
to an harmonic solution component (see Theorem 2 in [56]):

ρui = Bi −
∂ψ

∂xi
−Hi. (5)

The harmonic component, denoted by−Hi, is both solenoidal and irrotational [2]. As a result, it also has
an associated scalar potential Hi = ∂ψh/∂xi that satisfies Laplace’s equation (∇·Hi = ∂2ψh/∂x

2
i = 0)

in the domain of analysis. This component represents the impact of the truncation of the domain on the
Helmholtz decomposition [55,56]. Consequently, as the schlieren images are contained in a truncated
domain with boundaries at which the flow momentum does not vanish, Hi will also be recovered as
part of the solution of equation (3). In those cases where ad hoc boundary conditions are enforced in
the solution of the Poisson equation, it is crucial to pay attention to the impact that the harmonic
field has on the physically-relevant part of the solution, as discussed in section 3.4.

3.2 Relation between schlieren fluctuations and scalar momentum potential fluctuations

According to the experimental set-up described in section 2, the recorded schlieren images represent
streamwise density gradients integrated along the line of sight (z axis), that is

σ(x, y) =

∫
∂ρ(x, y, z)

∂x
dz. (6)

Following Prasad & Gaitonde [44], equation (3), owing to its linear nature, can be differentiated
with respect to x to obtain:

∂2

∂x2i

(
∂ψ′

∂x

)
=

∂

∂t

(
∂ρ′

∂x

)
. (7)

If integrated along the schlieren line of sight, equation (7) directly relates the fluctuation of the schlieren
field with the streamwise derivative of the potential fluctuation field ψ′ integrated along the line of
sight, that is

∂2Θ′

∂x2i
=
∂σ′

∂t
, (8)

where σ′ =
∫
(∂ρ′/∂x) dz denotes the schlieren fluctuation field and Θ′ =

∫
(∂ψ′/∂x) dz.

As shown by Doak [15], the fluctuating potential ψ′ can be written as the sum of acoustic and
thermal components, ψ′ = ψ′

A + ψ′
T , which are directly related with the pressure and the entropy

fluctuation fields, respectively. This decomposition bears strong resemblance with the generalized po-
tential disturbance energy definition introduced by Chu [10], which consists of an acoustic component
associated with compression due to pressure fluctuations, and a thermal component associated with
heat exchange due to entropy spottiness. In this regard, ψ′, and by extension Θ′, can be interpreted as
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quantities describing the potential fluctuation energy in the system. Previous works [71,72,46] indicate
that the thermal component is non-radiating in cold supersonic turbulent jets. As a result, outside of
the jet core, Θ′ represents the acoustic energy present in such flows.

Equation (8) may be interpreted as a means to calculate Θ′ from experimental schlieren measure-
ments. However, for this statement to be rigorous, the boundary conditions imposed on equation (8)
must satisfy the irrotationality condition inherent in ∂ψ′/∂xi. In other words, the calculation of the
boundary values of Θ′ requires the integration of equation (1) along far-field boundaries at which the
momentum density of the flow is purely irrotational (ρui = −∂ψ′/∂xi). In general, this is not possible
when dealing with experimental datasets, as measurements of the momentum density are not available.
For numerical datasets, although the momentum density field is known, the domain boundaries rarely
contain a purely irrotational flow. In convective flow simulations, and particularly in jet calculations,
the shear layer usually exits the domain through the outflow boundary, where the flow field is by no
means irrotational. Therefore, the aforementioned condition can only be rigorously satisfied in certain
particular cases such as the solenoidal wavepacket investigated by Jordan et al. [28]. Despite this diffi-
culty, the solution of the Poisson equation can still be carried out in practice using an ad hoc treatment
at the domain boundaries, at the expense of introducing unphysical waves in the solution through the
harmonic component (see section 3.1). This is, to the best of the authors’ knowledge, the approach
adopted by [71,72,46,44,45].

In this work, the proposed methodology enables the identification of the harmonic solution compo-
nent that arises from the domain truncation and associated boundary conditions, and allows to remove
its influence from the physically-relevant solution component, as described in section 3.4.

3.3 Spectral proper orthogonal decomposition

The spectral proper orthogonal decomposition (SPOD) algorithm as described by Towne et al. [69] is
employed here to extract the spatio-temporal coherent structures from the time-resolved experimental
data. The algorithm employs Welch’s method to average the spectral information over multiple real-
izations of the flow and as a result obtain convergent estimates of the cross-spectral density tensor. In
this study, the number of realizations in use is much smaller than the number of grid points (image
pixels) of the schlieren datasets, and therefore, for a given frequency, the snapshot method [59] variant
of the SPOD eigenvalue problem is used:

Q̃H
k WQ̃kΦk = ΦkΛk, (9)

where Q̃k is the matrix whose columns contain the temporal discrete Fourier transform (DFT) of each
segment of the total time-series used in Welch’s averaging (considered as an independent realization)
at the kth frequency, W is the matrix that contains the weight and the numerical quadrature defining
the SPOD spatial inner product, Φk is a matrix whose columns contain the eigenvectors of the prob-
lem for the kth frequency and Λk = diag(λ1, λ2, . . . ) is a diagonal matrix containing the associated
eigenvalues for that particular frequency. The superscript H denotes the complex-conjugate transpose.
The eigenvalues found in Λk directly represent the power spectral density associated with each of the
SPOD modes. The SPOD modes for the kth frequency, denoted by Ψk, are obtained by means of the
following relation:

Ψk = Q̃kΦkΛ
−1/2
k . (10)

The assembly of the matrix Q̃k for each frequency requires prior calculation of the temporal DFT
of each realization of the flow. In this case, each realization consists of a data matrix (block) with a
segment of the time-series of schlieren fluctuation (σ′) or Θ′ snapshots of equal length. In this work, each
dataset consists of 30,000 instantaneous snapshots, which are divided into 57 blocks of 1024 snapshots
each with a 50% overlap. Each block is windowed using a Hamming window to reduce spectral leakage.

Given the nature of the experimental datasets (pixel intensities), the definition of an integral energy
norm is not meaningful. Instead, a weighted 2-norm based on a trapezoidal integration rule (see [53])
is employed to serve as a numerical quadrature for the SPOD inner product.
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This work focuses on those coherent structures that describe the spatio-temporal dynamics of the
twin jet system when both jets are coupled, that is, structures that involve both jets. For this purpose,
the symmetry of the system is exploited to generate symmetric and antisymmetric fluctuation fields.
When schlieren realizations are considered, each snapshot is split by the line at y = 0 to create two new
datasets, namely, a symmetric dataset σs = (σu + σl)/2 and an antisymmetric one σa = (σu − σl)/2,
with σu and σl respectively denoting the upper (y > 0) and lower (y < 0) halves of the original schlieren
images. The SPOD is then applied to both the symmetric and antisymmetric datasets separately.

In the results presented in this work, the SPOD problem (9) is solved both in terms of the cross-

spectral density of σ′ or in terms of the cross-spectral density of Θ′. This is done by constructing the Q̃k

matrix using either the temporal DFT of schlieren realizations or the temporal DFT of Θ′ realizations.
The DFT of schlieren realizations is straightforward to obtain by means of the fast Fourier transform
(FFT). The approach employed to obtain the DFT of Θ′ fields for each realization is described in the
following section.

3.4 Calculation of Θ′ and its integration within the SPOD framework

Poisson equation (8) can be solved directly in the space-time domain by employing discretizations of
the temporal and spatial derivatives and solving a linear system of equations, as done by e.g. Prasad
& Gaitonde [44]. In this work, an alternative procedure is employed which solves the equation in the
frequency-wavenumber domain by performing discrete Fourier transforms (DFT) in time and on the
Cartesian two-dimensional domain of the schlieren images. The reasons for this choice are elaborated
next.

First, solving for Θ′ in the wavenumber domain prevents discretizing the spatial derivatives of the
Laplacian operator and the consequent solution of a linear system of equations, in exchange of per-
forming the FFT along x and y. Second, working in the frequency domain simplifies the calculation of
the time derivative of the schlieren fluctuations with high accuracy [37]. In the time domain, accurate
time-derivative calculations require the use of very high-order differentiation schemes. As shown in Ap-
pendix B, computing the time derivative of σ′ by means of a low-order finite difference scheme results
in a significant damping of the high-frequency content present in the schlieren snapshots, which slowly
decreases as the order of the scheme increases. Standard central finite difference schemes, however,
have accuracy limitations when the order becomes very high, as the finite difference stencils become
ill-conditioned [52]. Therefore, more sophisticated high-order differentiation methods (e.g. Padé finite
difference schemes [37] or collocation methods [70]) are required for accurate time-derivative calcula-
tions in the temporal domain, which carry an associated increase in computational complexity. Third,
since the use of Θ′ realizations in the SPOD algorithm requires the temporal Fourier transform of the
Θ′ field to construct the Q̃k matrix (see section 3.3), obtaining Θ′ directly in the frequency domain
does not involve additional cost, as it only brings forward the necessary temporal DFT. Appendix C
provides a comparison of the computational cost of the SPOD solution when calculating Θ′ realizations
in the space-time domain, against the cost of the SPOD algorithm computing Θ′ realizations in the
frequency-wavenumber domain following the procedure detailed below.

Performing the temporal DFT, equation (8) becomes:

∂2Θ̃′

∂x2i
= iωσ̃′, (11)

where ω = 2πf is the angular frequency and the tilde symbol denotes Fourier-transformed quantities
in time, e.g. q̃′(x, y, ω). Performing the DFT in both x and y, the resulting form of the equation in the
frequency-wavenumber domain is

−
(
k2x + k2y

)
Θ̂′ = iωσ̂′, or Θ̂′ = − iωσ̂′

k2x + k2y
, (12)

where kx and ky respectively denote the wavenumbers along x and y and the hat symbol refers to
Fourier-transformed quantities in time and space, q̂′(kx, ky, ω). Equation (12) provides an algebraic
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expression to directly compute Θ̂′ for each frequency and wavenumber pair. In order to obtain Θ̃′,
which is the quantity of interest for the SPOD algorithm, the inverse DFT of Θ̂′ in space is carried
out.

The aforementioned procedure imposes periodicity of the solutions at the boundaries of the schlieren
domain. In order to artificially place the periodic boundaries further away from the actual boundaries
dictated by the schlieren image size, the temporal Fourier-transformed schlieren fluctuation σ̃′ is zero-
padded along the x and y directions before transforming it to the wavenumber domain. To prevent
a discontinuous jump in σ̃′ when extending its spatial domain with zeros, a spatial window can be
applied to the σ̃′ field prior to zero padding, thus enforcing a smooth transition of the field towards
zero at the domain boundaries. Here, a Planck-taper window [35] is considered for that purpose, which
enables a rapid but smooth transition to zero at the domain boundaries without significantly altering
the interior values. The values of the window function w for a one-dimensional signal of N + 1 points
can be expressed as follows:


w0 = 0,

wj =
[
1 + exp

(
εN
j − εN

εN−j

)]−1

, if 1 ≤ j < εN

wj = 1, if εN ≤ j ≤ N/2

wj = wN−j , if N/2 < j ≤ N

(13)

where 0 < ε ≤ 0.5 is the so-called tapering parameter. To apply this bump window to the two-
dimensional σ̃′ fields, a two-dimensional Planck-taper window must be generated. This is achieved by
first generating two one-dimensional Planck-taper windows, one with Nx points and another with Ny

points, with Nx and Ny being the number of points of the original schlieren images along x and y,
respectively. Then, each of these functions are replicated Ny and Nx times, respectively, to generate two
two-dimensional functions which are multiplied together to obtain a two-dimensional bump function
that can be applied to each σ̃′ field directly. The sensitivity of the SPOD solution to the tapering
parameter ε is small for the analyzed datasets. It is found to be stronger for low frequencies, which are
associated with structures of larger spatial wavelength.

After computing Θ̂′ in the frequency-wavenumber domain and inverting the spatial DFT along x
and y to obtain Θ̃′, the spatial domain is reduced back to the original one by removing the spatial
points corresponding to the previously added zero padding.

As introduced before, the calculation of Θ̃′ from schlieren snapshots by means of the described
methodology introduces harmonic unphysical solution components in the obtained Θ̃′ fields due to
the violation of the irrotationality condition at the boundaries of the schlieren domain. The harmonic
unphysical component is associated with the imposition of ad hoc boundary conditions (in this case,
periodic boundary conditions) in the artificially truncated physical domain; it is found to be sensitive
to changes in the domain size and its energy to be concentrated in small streamwise wavenumbers, fea-
turing streamwise phase speeds cph = ω/kx that are highly supersonic and do not represent physically-
sound components of the twin-jet system. Appendix A illustrates the signatures of these unphysical
harmonic waves, and how they can be clearly distinguished from physically-meaningful components.
No unphysical energetic components have been observed in the y direction, which is attributed to
the fact that for this problem, the main rotational flow regions at the boundaries are found at the
streamwise boundaries (mainly the downstream boundary of the schlieren images).

In order to prevent these harmonic components from contaminating the SPOD modes to be com-
puted subsequently, the energy of those Θ̂′ components with a streamwise wavenumber kx that is
smaller than a given cut-off value is set to zero. Such cut-off value is frequency dependent, and is fixed
by specifying a supersonic streamwise phase speed cph,c threshold. This filtering procedure is applied

in the wavenumber domain, just before inverting the spatial DFT to obtain a Θ̃′ fluctuation field that
does not contain the energetic part of the unphysical harmonic component.

The proposed approach to construct the SPOD eigenvalue problem (9) based on Θ′ can be sum-
marized in the following steps:

1. Compute the temporal FFT of schlieren fluctuation snapshots (σ̃′) for each realization (block).
2. For each frequency and each block:
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(a) Add a zero-padding along x and y to the σ̃′ field. To prevent a discontinuous jump in σ̃′ when
padding, a spatial window should be applied beforehand. In this work, a Planck-taper window
with ε = 0.1 has been employed.

(b) Compute the spatial FFT of the zero-padded σ̃′ field along x and y.

(c) Calculate the Θ̂′ field using equation (12).
(d) Remove the most energetic unphysical harmonic waves by setting to zero the region of the

Θ̂′ field comprised between −ω/cph,c < kx < ω/cph,c, where cph,c is the chosen phase-speed
threshold. In this study, a value of cph,c = 1.2c∞ has been used, where c∞ denotes the freestream
speed of sound. The sensitivity of the SPOD results to the choice of cph,c is reported in Appendix
A.

(e) Compute the inverse spatial FFT of the filtered Θ̂′ field to obtain Θ̃′.

(f) Reduce the spatial window of the Θ̃′ field back to the original size of the schlieren snapshots.

(g) If desired, create symmetric and antisymmetric Θ̃′ fields as Θ̃′
s = (Θ̃′

u + Θ̃′
l)/2 and Θ̃′

a =

(Θ̃′
u − Θ̃′

l)/2.

3. For each frequency, build the Q̃k matrix using the computed Θ̃′ fields for all realizations.

3.5 Calculation of schlieren SPOD modes for the Θ′ cross-spectral density

The snapshot formulation of POD allows the computation of flow-field variables, corresponding to
the SPOD modes, that are not involved in the definition of the cross-spectral density matrix [21,5,
58,61,60,31,33,32]. In particular, it allows the computation of the schlieren fluctuation field σ′ (the
line-of-sight integrated ∂ρ′/∂x) associated with the SPOD modes corresponding to the cross-spectral
density of Θ′.

This is accomplished using the eigenvectors and eigenvalues of the Θ′ decomposition (Φk,Θ′ and
Λk,Θ′ , respectively) combined with the matrix of frequency-domain realizations for the schlieren fields

(Q̃k,σ′):

Ψk,σ′ = Q̃k,σ′Φk,Θ′Λ
−1/2
k,Θ′ . (14)

Note that this procedure is equivalent to solving an augmented SPOD eigenvalue problem consisting
of a Q̃k matrix containing both schlieren and Θ′ realizations, and then using a weight matrix that is
non-zero only for the Θ′ components.

4 Results

This section presents results obtained by applying the proposed methodology to the twin-jet schlieren
visualizations acquired for two different operating conditions:Mj = 1.54, corresponding approximately
to a perfectly-expanded jet condition, andMj = 1.26, corresponding to an over-expanded jet condition.
SPOD results for the two definitions of the cross-spectral density matrix are presented. SPOD results
based directly on the schlieren images (σ′) are denoted as Cσ′ , while those based on Θ′ are denoted
by CΘ′ .

4.1 Perfectly-expanded condition

Perfectly-expanded jets do not present strong shock waves and their acoustic signature is characterized
by broadband mixing-layer noise. In turn, schlieren images are expected to be dominated by a large
range of vortical fluctuations at all frequencies, making their direct spectral analysis by means of DFT
impractical. SPOD based on the schlieren images is nevertheless anticipated to recover the low-rank
dynamics associated with those highly-energetic coherent σ fluctuations in the mixing-noise frequency
band, which would manifest in the SPOD spectra as a bigger separation between the spectral density
λi of the leading SPOD modes and the spectral density of the rest of modes [54].
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Fig. 4 Comparison of the SPOD spectra for Mj = 1.54. (left) Cσ′ SPOD; (right) CΘ′ SPOD; (top) symmetric
case; (bottom) antisymmetric case. Each line corresponds to one SPOD mode. A grayscale is used to range
from the most energetic mode to the least energetic one. The orange line represents the sum of the energy of
all SPOD modes for each frequency.

Figure 4 displays the symmetric and antisymmetric SPOD spectra obtained for Mj = 1.54 when
using the correlations Cσ′ and CΘ′ . The spectra are represented as a function of the Strouhal number,
defined as St = fD/uj , where uj is the isentropic jet velocity derived from Mj and the isentropic
nozzle exit temperature. For each frequency, the SPOD modes are ranked by their spectral density and
are represented following a grayscale that ranges from the most relevant mode (mode 1, black) to the
least relevant one (mode 57, white). In addition, a line representing the sum of the spectral density of
all the SPOD modes (

∑
i λi) for each frequency is included in orange.

The SPOD spectra illustrate the expected broadband increase in spectral density (St ≈ 0.1 to 1)
associated with the coherent wavepackets that grow in the shear layers of the jets, and which, for the
current case, dominate for an antisymmetric coupling of the jets. Both the schlieren and the Θ′-based
SPOD spectra show this trend, featuring the maximum spectral density at the same Strouhal numbers,
St = 0.3 to 0.4. Nevertheless, two important differences between both spectra stand out:

(i) The sum of the spectral density for all modes (orange line) in the CΘ′ spectra is substantially
reduced outside of the frequency range typical of mixing noise, in contrast to the Cσ′ spectra, where the
total spectral density only decreases mildly outside of the mixing-noise range, featuring a broader band
behaviour. This is consistent with the interpretation of Θ′ as related to potential-energy fluctuations,
and illustrates their dominance at the range of frequencies associated with mixing noise.

(ii) The CΘ′ SPOD results exhibit a lower-rank behavior than the schlieren-based counterpart, as
indicated by the small difference between the orange line and the line corresponding to the leading
SPOD mode (mode 1). Therefore, most of the spectral density for CΘ′ is accounted for by the leading
SPOD mode.

The SPOD modes for both the Cσ′ and the CΘ′ SPOD solutions are illustrated in figures 5 and 6
for two different frequencies, respectively. Each figure shows the first (left column) and second (right
column) SPOD modes in three different versions: (i) the schlieren field obtained from the schlieren
SPOD (Cσ′) (first row); (ii) the Θ′ field obtained from the Θ′ SPOD problem (CΘ′) (second row); and
(iii) the schlieren field reconstructed from the Θ′ SPOD problem (CΘ′) as outlined in section 3.5 (third
row). Due to the fact that the symmetric or antisymmetric fields are considered, only one of the two
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Fig. 5 Contours of the real part of the antisymmetric SPOD modes for Mj = 1.54 at St = 0.37: (top) σ′ field,
Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD; (bottom) σ′ field, CΘ′ SPOD. (left) mode 1; (right) mode
2. The grey regions represent the exterior nozzle surface and the part of the mirror support structure that is
contained within the schlieren window. The black dashed lines depict the inner and outer nozzle lip lines for
each jet.

jets is shown in each contour plot. The quantity λ1/λ2 denotes the ratio between the energy of the
first and the second SPOD modes, while λ1/

∑
i λi is the portion of the total energy contained in the

first mode (and similarly for λ2/λ3 and λ2/
∑

i λi).

Figure 5 shows the modes at the peak frequency of the broadband region for the antisymmetric
coupling, located at St = 0.37. In agreement with previous investigations, the coherent structures
resemble Kelvin-Helmholtz instability wavepackets that manifest as toroidal or flapping deformations
of each jet column and present a noticeable downstream Mach wave radiation. Toroidal twin-jet modes
are analogous to m = 0 modes in isolated round jets in the sense that they feature an axisymmetric
amplitude function within each jet. Similarly, when a coupling exists between the oscillations of twin
jets, it favors flapping motions over the m = 1 helical modes typical of single round jets [51]. The
nature of the schlieren visualization prevents recovering oscillations that are anti-symmetric about the
jet-containing plane; only symmetric (i.e. sinuous) or anti-symmetric (varicose) flapping motions can
be observed. These oscillation modes are characterized by their vanishing amplitude along the axis of
each jet.

However, owing to the mean flow interaction between both jets when they are closely spaced (such
as in the configuration under study), the inner and outer shear layers of each jet have different thickness
and shear magnitudes [24,42]. As a result, the wavepackets no longer have a perfectly axisymmetric
character, especially for lower frequencies which are associated with longer wavelengths, and the iden-
tification of the oscillation modes as m = 0 and m = 1 becomes less straightforward than for larger
jet spacing [42]. In addition, the structures that characterize schlieren-based SPOD modes in twin jets
may contain signatures of m = 0 and m = 1 waves mixed in the same mode [41]. This is the case of the
schlieren SPOD modes shown in the top row of figure 5, where the supported coherent structures have
an oblique orientation with respect to the jet axis and it is not evident whether their spatial structure
corresponds to a toroidal or a flapping oscillation.
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Fig. 6 Contours of the real part of the antisymmetric SPOD modes for Mj = 1.54 at St = 0.61: (top) σ′ field,
Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD; (bottom) σ′ field, CΘ′ SPOD; (left) mode 1; (right) mode
2.

Looking at the second row of figure 5, it can be observed that the structure of the CΘ′ SPOD modes
also captures the Kelvin-Helmholtz waves and their associated acoustic radiation. Moreover, it reveals
that the CΘ′ SPOD performs very well at separating the toroidal and the flapping structures into
the first and second SPOD modes, respectively. This illustrates a key advantage of the methodology,
namely that the CΘ′ SPOD can provide a more robust extraction of coherent information in the system
than that based on Cσ′ . Furthermore, note that λ1 contains 74% of the total spectral density of the
CΘ′ decomposition, while it only represents 20% of the total for Cσ′ , which reflects the lower-rank
behavior of the CΘ′ decomposition described before.

The effectiveness of the CΘ′ SPOD problem in separating and ranking the different coherent struc-
tures can then be brought to the schlieren field by reconstructing the schlieren modes corresponding
to the CΘ′ SPOD modes, as presented in the third row of figure 5. The reconstructed schlieren field
for the second SPOD mode shows a much clearer m = 1 structure than the original schlieren mode.

Figure 6 depicts the antisymmetric SPOD modes at a higher frequency (St = 0.61). In this case,
it is more evident that m = 0 and m = 1 wavepackets are mixed in the original Cσ′ SPOD modes.
The CΘ′ SPOD decomposition is found to effectively separate the structures into toroidal and flapping
fluctuations in the first and second SPOD modes. The reconstructed schlieren SPOD fields represent
an improved description of the coherent structures associated with sound generation in the twin-jet
system.

4.2 Overexpanded condition

Next, an isentropic Mach number at which the jets are significantly overexpanded is considered (Mj =
1.26). For this condition, shock cells are present in the core of the jets (see figure 3), and the spectra is
expected to be dominated by the screech resonance mechanism (see [17]) together with mixing noise.

Figure 7 shows the symmetric and antisymmetric SPOD spectra for this case, obtained solving both
the Cσ′ and the CΘ′ SPOD problems. The highest energy in the spectra is now encountered in the
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Fig. 7 Comparison of the SPOD spectra for Mj = 1.26. (left) Cσ′ SPOD; (right) CΘ′ SPOD; (top) symmetric
case; (bottom) antisymmetric case.

strong tonal peaks associated with the screech resonance. Three tonal peaks are visible, corresponding
to the fundamental screech frequency (St = 0.56) and two of its harmonics. The tones are much more
energetic for the symmetric spectra, indicating that the screech resonance for the condition under study
favors a symmetric twin-jet coupling. Besides screech, the broadband signature associated with mixing
noise can also be identified, once again showing higher spectral density for antisymmetric fluctuations.
Except for the fundamental screech frequency, where both the Cσ′ and the CΘ′ spectra contain almost
all of the energy in the first SPOD mode, the CΘ′ SPOD features a much lower-rank behavior also for
this Mj along the entire broadband region.

The SPOD modes for the over-expanded jet condition are presented in figures 8 to 12. First, the
symmetric leading SPOD mode corresponding to the fundamental screech frequency (St = 0.56) is
analyzed, illustrated in figure 8. As in the previous section, three different fields are represented:
the schlieren field corresponding to Cσ′ , the Θ′ field corresponding to CΘ′ , and the schlieren field
corresponding to CΘ′ .

The Cσ′ SPOD mode shows structures that correspond to toroidal wavepackets modulated by the
shock cells, together with downstream and upstream acoustic radiation. Due to the strong resonance
that originates the screech, in this case there is no difficulty in identifying the m = 0 structure in the
amplitude function (λ1 represents nearly 98% of the total energy). The CΘ′ SPOD mode structure
also contains most of these features. Nonetheless, note that no signature of the shock-cell modulation
is visible in the Θ′ field, which illustrates how, within the frame of momentum potential theory, shock
cells do not contribute directly to the irrotational fluctuation components.

In order to separate the upstream- and downstream-propagating wave components present in the
SPOD mode associated to the fundamental screech frequency, the spatial DFT of the SPOD mode
is calculated along x to obtain its spatial structure as a function of the streamwise wavenumber kx.
This enables the separation of those energetic components with kx > 0, i.e. positive phase speed,
from those components with kx < 0, i.e. negative phase speed. The spatial Fourier transform of the
SPOD mode is then inverted by keeping only the kx > 0 or the kx < 0 components, resulting in the
structures represented in figure 9. The right column shows waves that propagate downstream within
the screech mode, consisting of a Kelvin-Helmholtz wavepacket and its associated acoustic radiation.
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Fig. 8 Real part of the leading (mode 1) symmetric SPOD mode for Mj = 1.26 at St = 0.56, corresponding to
the fundamental screech frequency: (top) σ′ field, Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD; (bottom)
σ′ field, CΘ′ SPOD.

The left column contains mostly waves that propagate upstream, and which take the form of acoustic
waves with spatial support that extends into the freestream, the jet shear layers and in the subsonic
regions of the jet core [19,34]. It is important to note that the actual direction of propagation of energy
in the flow is dictated by the sign of the group velocity (cg = ∂ω/∂kx), rather than that of the phase
velocity. Although most waves with negative phase speed also feature negative group velocity and
thus propagate upstream (and vice-versa), there are also certain waves with negative phase speed that
have a positive group velocity and move downstream, such as acoustic waves that travel within the
supersonic jet core region.

The CΘ′ SPOD solution is successful in recovering both the negative and the positive phase-speed
potential components of the screech resonance. In this case, the irrotational structures found in the Θ′

mode follow a very similar spatial organization to the original schlieren SPOD mode, and as a result
the reconstructed schlieren SPOD field is almost identical to the original one. Because its spatially
organized structures are already well resolved in the original schlieren SPOD mode, the reconstructed
field does not bring any advantage in terms of the interpretability of the coherent structures associated
with the screech resonance.

The second frequency analyzed for this operating condition corresponds to the maximum spectral
density in the mixing-noise broadband region, namely, St = 0.36, which is higher for the antisymmetric
case. Figure 10 depicts the respective SPOD modes for this frequency. Similarly to the previous section,
both the first (left column) and second (right column) SPOD modes are shown. In this case, the Cσ′

SPOD modes show apparently a combination of three structures with two different wavenumbers: one
of them non-radiating and mainly confined within the jet core, featuring the larger wavenumber, and
the other two consisting of toroidal and flapping Kelvin-Helmholtz signatures of identical wavelength
and their associated downstream acoustic radiation, similarly to the modes discussed in the previous
section.

The separation into kx < 0 and kx > 0 components, crucial in this case to understand the structure
of the modes, is shown in figures 11 and 12 for the first and second SPOD modes, respectively. The
splitting reveals a positive phase-speed component consisting of mixed m = 0 and m = 1 wavepacket
structures, together with a negative phase-speed component formed by an m = 1 trapped acoustic
wave with support within the supersonic jet-core region. Such acoustic wave, which strongly resembles
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Fig. 9 Contours of the real part of the leading symmetric SPOD mode for Mj = 1.26 at St = 0.56: (left)
kx < 0 component; (right) kx > 0 component; (top) σ′ field, Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD;
(bottom) σ′ field, CΘ′ SPOD.

Fig. 10 Contours of the real part of the antisymmetric SPOD modes for Mj = 1.26 at St = 0.36: (top) σ′

field, Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD; (bottom) σ′ field, CΘ′ SPOD; (left) mode 1; (right)
mode 2.

the so-called duct modes [67,19], is in this case an example of a downstream-propagating wave with
negative phase velocity. Its positive group velocity can be estimated by performing the DFT along
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Fig. 11 Contours of the real part of the antisymmetric SPOD mode 1 for Mj = 1.26 at St = 0.36: (left)
kx < 0 component; (right) kx > 0 component; (top) σ′ field, Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD;
(bottom) σ′ field, CΘ′ SPOD.

Fig. 12 Contours of the real part of the antisymmetric SPOD mode 2 for Mj = 1.26 at St = 0.36: (left)
kx < 0 component; (right) kx > 0 component; (top) σ′ field, Cσ′ SPOD problem; (middle) Θ′ field, CΘ′ SPOD;
(bottom) σ′ field, CΘ′ SPOD.

x and tracking the evolution of its dominant streamwise wavenumber as a function of frequency, as
illustrated in the St-kx maps found in [41].

The second and third rows of figures 10 to 12 show the performance of CΘ′ SPOD in separating the
different coherent structures found at this frequency. The first CΘ′ SPOD mode comprises the toroidal
wavepacket structure, together with a weak signature of the trapped acoustic wave. In turn, the second
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CΘ′ SPOD mode consists of the flapping wavepacket together with a much stronger signature of the
m = 1 acoustic wave. These observations are further reflected on the reconstructed schlieren fields of
the CΘ′ SPOD modes. Whereas the Cσ′ SPOD mixes all three m = 0 and m = 1 waves in the first
and second modes, the CΘ′ SPOD tends to separate them effectively into different SPOD modes. The
m = 0 wave is recovered in the first SPOD mode, while the two m = 1 waves are mainly found in the
second SPOD mode, and are distinguished by the phase-speed splitting. Although the separation is
not perfect, the latter behavior is more advantageous for the visualization and physical interpretation
of the different type of oscillations undergone by the jets.

5 Conclusions

A methodology to extract coherent information from high-speed schlieren images of twin jets with
enhanced interpretability has been presented. Following Prasad & Gaitonde [44], the proposed approach
makes use of the momentum decomposition introduced by Doak [15], originally applied to a complex
model problem by Jordan et al. [28], to derive a Poisson equation relating the schlieren fluctuation
field with the streamwise gradient of the momentum potential fluctuations integrated along the line
of sight, hereby denoted by Θ′. As opposed to schlieren images, which are dominated in the turbulent
mixing region by vortical fluctuations of a broad range of length scales, Θ′ provides a representation
of the potential (acoustic and thermal) energy embedded in the fluctuations, whose spatial structure
in the frequency domain is very organized. By integrating Θ′ within the spectral proper orthogonal
decomposition (SPOD) framework, coherent structures associated with the dynamics of the momentum
potential fluctuation field can be obtained. With respect to the technique of Prasad & Gaitonde [44],
three aspects of the proposed methodology are novel:

– The Poisson equation is solved in the spectral (frequency-wavenumber) domain by means of the
discrete Fourier transform, instead of the space-time domain. This simplifies the calculation of an
accurate time derivative of the schlieren fluctuations, leveraging the necessity to transform the
schlieren data to the frequency domain for the purpose of performing SPOD, and reduces the
computational cost of solving the Poisson equation by exchanging the solution of a linear system
of equations by fast Fourier transforms in each spatial direction.

– The impact of solving the Poisson equation in a truncated domain with ad hoc boundary conditions
is assessed, illustrating that, in practice, unphysical harmonic waves are artificially introduced in
the domain which contaminate the solution. A procedure is proposed to remove these spurious
components in the spectral domain.

– The solution of the SPOD eigenvalue problem based on the cross-spectral density of Θ′ is used to
reconstruct schlieren SPOD modes, therefore obtaining coherent structures of the density gradient
fluctuation field that obey the low-order dynamics of the momentum potential field instead of those
of the schlieren field.

The methodology has been applied to schlieren visualizations of supersonic twin jets at perfectly-
expanded and overexpanded conditions. When the SPOD is performed using Θ′ realizations, coherent
structures of the twin-jet field are obtained which follow a lower-rank classification than those obtained
when the SPOD problem is based on schlieren images alone. The SPOD modes calculated when Θ′

is used to construct the cross-spectral density tensor retain the coherent structure and the acoustic
radiation associated with Kelvin-Helmholtz wavepackets and the screech resonance mechanism, but
are substantially more effective in separating the toroidal (m = 0) and flapping (m = 1) fluctuations
coexisting in coupled twin jets, which are recovered as independent SPOD modes. In addition, as
the modal decomposition is based on a variable which represents potential-energy fluctuations, the
extracted coherent structures are more closely related to the sound-generating mechanisms of the
system and facilitate a more detailed analysis of the underlying physics. The comparison between Cσ′

SPOD modes and reconstructed CΘ′ schlieren SPOD modes demonstrates the higher interpretability
of the latter structures in favor of physical understanding of jet noise mechanisms.
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Appendix A Unphysical harmonic waves in Θ′ and the impact of the filtering process
used to remove them

As discussed in §3.4, the solution of the Poisson equation (8) to compute Θ′ fields from schlieren
fluctuations would require impractically large domains to reach boundaries at which the flow is irro-
tational, or appropriate boundary conditions for Θ′. Due to the fact that, in general, it is not possible
to determine the boundary values that would provide an irrotational potential field at the boundaries
of the domain, an unphysical harmonic component is introduced in the solution when other bound-
ary conditions (such as homogeneous Dirichlet or periodic conditions) are enforced. The solution of
the Poisson problem in the spectral domain allows the identification of such harmonic component as
spurious waves in the solution, and to filter them out based on their unphysical phase velocities.

To illustrate the impact of the unphysical harmonic waves on the calculated SPOD modes when
they are not removed, figure 13 depicts the amplitude function of the first symmetric SPOD mode
obtained for Mj = 1.26 at the fundamental screech frequency (St = 0.56). The left column shows the
schlieren SPOD mode obtained from the schlieren-based SPOD problem, originally presented in figure
8 but repeated here for convenience, while the right column shows the Θ′ SPOD mode obtained without
filtering the unphysical energetic component. In contrast to the Θ′ amplitude function shown in figure
8, when the energetic harmonic waves are not filtered from Θ̃′, the Θ′ SPOD mode is contaminated
with small wavenumber (large wavelength) unphysical structures, as shown in the top right contour
plot of figure 13. The energetic signature of these waves can be easily identified by performing the
Fourier transform of the SPOD mode along x, as shown in the bottom right plot of the figure. For
comparison, the energy distribution of the original schlieren mode is also displayed in the bottom
left picture. As expected, the energy signature of this mode mainly consists of the Kelvin-Helmholtz
energy band, located at positive kx slightly larger than the acoustic wavenumber, and an acoustic
energy band resulting from the upstream- and downstream-traveling acoustic waves excited in the
screech resonance, mainly located at negative wavenumbers below the acoustic one.

By comparison with the energy distribution of the original schlieren mode, the unfiltered Θ′ mode
contains an additional strong energetic signature centered at kx = 0, which is not visible in the schlieren
map. This energetic band is purely due to the artificial harmonic waves introduced in the numerical
solution of the Poisson equation. Note that its signature can be distinguished from the physical energy
components described above, and that it is composed of structures that travel at unphysical, high-
supersonic speeds. This result explains the origin of the filtering procedure described in §3.4.

By removing the energetic components with wavenumbers below a chosen phase-speed threshold,
in this case cph,c = 1.2c∞, the screech SPOD modes based on CΘ′ presented in figure 8 are obtained.
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Fig. 13 Symmetric SPOD mode 1 for Mj = 1.26 at St = 0.56: (left) results from the schlieren-based SPOD
problem; (right) results from the Θ′-based SPOD problem without filtering unphysical harmonic waves; (top)
contours of the real part of the mode amplitude function; (bottom) Fourier transform of the SPOD mode
along x, represented as contours of the logarithm of the energy magnitude. The red dash-dot lines denote the
acoustic wavenumber associated to the frequency under investigation, given by the value at which the phase
speed equals the freestream speed of sound. The white dashes lines represent the nozzle lip lines.

Fig. 14 Contours of the streamwise Fourier transform of the first symmetric SPOD mode for Mj = 1.26 at
St = 0.56, obtained from the Θ′-based SPOD problem with filtered unphysical harmonic waves (see figure 8):
(left) logarithm of the energy magnitude of the Θ′ SPOD mode; (right) logarithm of the energy magnitude of
the schlieren mode reconstructed from the Θ′-based SPOD solution.

The energy signature of those modes is shown in figure 14. Note that, now, the energy of the Θ′ mode
only shows the signatures of the physical waves playing a role in the screech resonance. In addition,
the reconstructed schlieren mode has an energy distribution that is practically identical to the original
schlieren SPOD mode, which demonstrates the effectiveness of the filtering approach and that it does
not impact the energy of the physical information of interest.

Another case is also reported to justify the need to identify and control the unphysical harmonic
waves introduced by the ad hoc imposition of boundary conditions in the Poisson equation. Figure 15
shows the unfiltered antisymmetric Θ′ SPOD results for Mj = 1.54 at St = 0.61, in direct compari-
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Fig. 15 Antisymmetric SPODmodes forMj = 1.54 at St = 0.61 obtained from the Θ′-based SPOD calculation
without filtering unphysical harmonic waves: (left) first SPOD mode; (right) second SPOD mode; (top) contours
of the real part of the mode amplitude function; (bottom) Fourier transform of the SPOD mode along x,
represented as contours of the logarithm of the energy magnitude.

son with the filtered results already presented in figure 6. Both the first and second SPOD modes are
depicted in the top row, once again showing the impact of the unphysical waves on the amplitude func-
tions, which is more significant for the first mode in this case. This is corroborated by the distribution
of the energy magnitude over the streamwise wavenumbers, illustrated in the bottom row. Two main
energy bands are visible for each mode, the one associated with the Kelvin-Helmholtz waves, located
very close to the acoustic wavenumber, and the one associated with the harmonic unphysical energy
components, which is stronger for the first mode. Note that in this case no physical energy components
are present at negative wavenumbers, which reflects the fact that the mixing noise associated with
Kelvin-Helmholtz instabilities is the dominant mechanism in the perfectly-expanded regime.

The corresponding energy signatures for the filtered modes are shown in figure 16 for comparison,
including the schlieren modes from the Cσ′ SPOD and the CΘ′ SPOD results. The removal of the
unphysical harmonic waves from the CΘ′ SPOD problem yields modes whose energetic structure is
consistent with that of the original schlieren modes, providing evidence that the applied filtering
procedure is suitable for the problem under study.

A.1 Effect of the phase-speed threshold employed for filtering the most energetic unphysical
harmonic waves

The choice of the phase-speed threshold employed to remove the most energetic harmonic waves can
have an impact on the SPOD eigenvalue problem. To assess the sensitivity of the SPOD results with
respect to cph,c, three different threshold values are considered, namely cph,c = 1.2c∞, 1.5c∞ and 2c∞.

Figure 17 presents a comparison of the antisymmetric SPOD spectra (Mj = 1.26) for the first and
second SPOD modes obtained using the different filtering thresholds. The unfiltered SPOD spectra are
also included for comparison. Two different important observations can be made. On the one hand,
the comparison between filtered and unfiltered results shows that the unphysical energy components
have a stronger influence at higher frequencies. On the other hand, the filtered results are not very
sensitive to the selected phase-speed threshold. Their sensitivity is higher for lower frequencies because
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Fig. 16 Contours of the streamwise Fourier transform of the symmetric SPOD modes for Mj = 1.54 at
St = 0.61, presented as the logarithm of the energy magnitude: (left) first SPOD mode; (right) second SPOD
mode; (top) schlieren SPOD mode obtained from the schlieren-based SPOD problem; (middle) Θ′ SPOD mode
obtained from the Θ′-based SPOD problem with filtered unphysical harmonic waves; (bottom) schlieren mode
reconstructed from the Θ′-based SPOD solution with filtered unphysical harmonic waves. The contour plots
in this figure have a one-to-one correspondence with the amplitude functions displayed in figure 6.

the acoustic wavenumber decreases with frequency. For very low frequencies, the unphysical harmonic
energy band and the physical energy bands become very close together. Therefore, small values of cph,c
can impact the physical energy bands as well, which explains the small effect shown in the spectra.
In particular, at low frequencies, small phase-speed thresholds can have a non-negligible effect on the
growth of the coherent structures (wavepackets), which is governed by small wavenumbers dictated by
the wavepacket envelope shape. For high frequencies, however, the range of wavenumbers contaminated
by the artificial harmonic components is far form the acoustic wavenumber where the physical energy
is generally concentrated. As a result, the spectra are very insensitive to the filter width in this regime.

For the results presented in this work, the influence of the employed phase-speed threshold (1.2c∞)
is negligible. Figures 18 and 19 illustrate this by respectively comparing the first and second SPOD
modes at St = 0.36 (the lowest frequency analyzed in the results section) for the three different
filtering thresholds under consideration. The impact of the filter width on the amplitude function and
the corresponding energy signature is very small; only the growth rate of the coherent structures of
the second SPOD mode shows small deviations with different filter width. For the analysis of lower-
frequency coherent structures, however, larger values of cph,c are recommended.
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Fig. 17 Comparison of antisymmetric Θ′ SPOD spectra for Mj = 1.26 using different phase-speed thresholds
for removing unphysical harmonic waves: (left) first SPOD mode; (right) second SPOD mode. The unfiltered
case is also added for comparison.

Fig. 18 Comparison of the first antisymmetric Θ′ SPOD mode for Mj = 1.26, St = 0.36 using different
phase-speed thresholds for removing unphysical harmonic waves: (left) cph,c = 1.2c∞; (middle) cph,c = 1.5c∞;
(right) cph,c = 2c∞; (top) real part of the SPOD mode amplitude function; (bottom) logarithm of the energy
magnitude from the streamwise Fourier transform of the SPOD mode. The light blue dash-dot lines denote the
wavenumber associated with the chosen phase-speed threshold for each case.

Appendix B Comparison of alternative approaches to construct the Θ′ SPOD
eigenvalue problem

Different approaches can be considered to construct the SPOD eigenvalue problem based on the cross-
spectral density of Θ′. Besides the methodology outlined in section 3.4, where the Poisson equation is
solved in the frequency-wavenumber domain, two other procedures have also been tested, which are
summarized below.
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Fig. 19 Comparison of the second antisymmetric Θ′ SPOD mode for Mj = 1.26, St = 0.36 using different
phase-speed thresholds for removing unphysical harmonic waves: (left) cph,c = 1.2c∞; (middle) cph,c = 1.5c∞;
(right) cph,c = 2c∞; (top) real part of the SPOD mode amplitude function; (bottom) logarithm of the energy
magnitude from the streamwise Fourier transform of the SPOD mode.

Fig. 20 Comparison of the symmetric Θ′ SPOD spectra for Mj = 1.26 obtained with different approaches:
(top-left) using Θ′ snapshots computed in the space-time domain; (top-right) using Θ′ computed in the space-
frequency domain; (bottom-left) using Θ′ computed in the wavenumber-frequency domain; (bottom-right)
comparison of the sum of the spectral density of all the SPOD modes for the different approaches.

B.1 Calculation of Θ′ snapshots in the space-time domain

In this approach, Θ′ snapshots are directly computed in the space-time domain through the numerical
solution of equation (8). The time derivative of schlieren fluctuations (source term of the Poisson
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equation) is in this case computed by means of a central finite difference scheme, for which different
orders of accuracy have been tested. Similarly, the Laplacian operator is discretized using a second-order
central finite-difference scheme for a uniform grid. Regarding the boundary conditions, an homogeneous
Dirichlet condition is imposed. This results in a linear system of equations which is solved by means of
sparse Cholesky factorization using the CHOLMOD package [9]. The SPOD algorithm is then applied

directly on Θ′ snapshots. Once the realizations of Θ′ are Fourier-transformed in time, the FFT of Θ̃′

along x is calculated and the most energetic harmonic components are removed in the same way as
introduced before.

The symmetric SPOD spectrum resulting from this approach is represented in the top left plot of
figure 20 forMj = 1.26, obtained using a second-order scheme for computing the time derivative of the
schlieren fluctuations. Although the broadband mixing noise region and the screech resonance tones
are well predicted, this method leads to a very fast decay of the SPOD energy for high frequencies.
The reason for this lies on the low-order of the scheme employed for the calculation of the time
derivative of the schlieren fluctuations, which attenuates the high-frequency content present in the
original snapshots. In order to preserve the energy at high frequencies, the time derivative should be
computed by means of a high-order discretization scheme in the time domain. To illustrate this, the
total spectral density obtained with fourth and eighth-order schemes for the time derivative are also
shown in the bottom right plot of figure 20. As expected, higher-order time derivative calculations
preserve a larger portion of the high frequency content, although an order significantly higher than
8 would be required to correctly approximate the energy of the highest frequencies. In the limit in
which a spectral discretization scheme (order equal to the number of instantaneous snapshots) is
considered, the time-domain calculation of Θ′ would theoretically recover the same SPOD spectrum
as the frequency-domain approach.

In practice, standard central finite-difference schemes have accuracy limitations when the order be-
comes very high for a given point spacing, owing to the fact that the stencils become ill-conditioned [52].
To achieve very high-order differentiation in the time domain, the use of more elaborate discretiza-
tion techniques is required, such as Padé finite difference schemes, complex-variable differentiation or
Chebyshev spectral collocation methods [37,70]. These techniques, however, increase the computa-
tional complexity and the implementation complexity of the algorithm. For this reason, the calculation
of the time derivative in the frequency domain is argued to be more convenient for the methodology
presented in this study.

The application of homogeneous Dirichlet boundary conditions in this approach may be combined
with the use of a sponge layer to force the schlieren fluctuations to decay to zero towards the boundaries
and avoid discontinuities (as done in [44,45]). Here, the use of a Planck-taper spatial window has been
tested for that purpose. In all the cases investigated, using tapering parameter values of ε = 0.1, 0.15
and 0.2, no significant reduction of the unphysical harmonic energetic components introduced in the
solution could be achieved. Therefore, the filtering process is still required to obtain meaningful coherent
structures.

As shown in Appendix C, the computational cost of this approach is higher than the SPOD method-
ology presented in this work, which computes Θ′ realizations in the wavenumber-frequency domain.

B.2 Calculation of Θ̃′ in the space-frequency domain

In this case, snapshots ofΘ′ are not obtained in the time domain. Instead, the calculation of Θ̃′ is carried
out by solving the Poisson equation in the space-frequency domain. This is achieved by computing
the time derivative of schlieren fluctuations in the frequency domain, but solving the resulting Poisson
equation (11) in the x, y spatial domain using a second-order finite-difference scheme, as in the previous
approach.

The spectrum obtained via this method is displayed in the top right plot of figure 20. With this ap-
proach, the obtained spectrum is almost identical to the one obtained solving for Θ′ in the wavenumber-
frequency domain. However, note that this procedure also requires the solution of a linear system of
equations for each Θ′ field and its posterior spatial Fourier transform along x to remove the unphysical
harmonic waves. Therefore, the computational cost of this approach is very similar to the space-time
domain variant presented in the previous section. Its advantage over the previous one is the recovery
of the high frequency content thanks to the spectral calculation of the time derivative.
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Fig. 21 Comparison of the computation time τ between different approaches as a function of the number of
snapshots: (left) total computation time in minutes; (right) computation time of the two CΘ′ methods relative
to the computation time of Cσ′ .

Appendix C Computational cost comparison between the space-time and the
wavenumber-frequency domain approaches for the Θ′ SPOD problem

To provide a quantitative comparison between the computational cost of the space-time (x, y, t) and
the wavenumber-frequency (kx, ky, ω) domain approaches for solving the SPOD problem based on Θ′,
figure 21 reports the computation time (τ) resulting from both approaches as a function of the number
of snapshots. The computation time of the schlieren SPOD problem (Cσ′) is also added for reference.
The computation time is reduced by a factor of 2.5 when the Poisson equation is solved in the spectral
domain instead of the space-time domain. With respect to the SPOD based on schlieren snapshots, the
CΘ′ (kx, ky, ω) approach increases the computation time by 1.5, while the CΘ′ (x, y, t) method increases
it by 3.8.

The SPOD calculations have been performed using MATLAB R2021b on a 64-bit Linux system
with a AMD Ryzen 5 5600X CPU. The MATLAB built-in functions for computing the FFT are used,
which employ the FFTW [22] library. Similarly, the built-in functions for solving the eigenvalue problem
are also employed, which use LAPACK [1] routines. In the space-time approach, the linear system of
equations resulting from the spatial discretization of the Poisson equation is solved by means of sparse
Cholesky factorization via the CHOLMOD [9] library. For the studied cases, this solution method was
found to be faster than the different MATLAB built-in implementations of the conjugate gradient
iterative method.

The following aspects have also been considered for the comparison:

– In the space-time Θ′-SPOD algorithm, the overlap between blocks is taken into account to avoid
computing the same Θ′ realizations more than one time.

– In the space-time Θ′-SPOD algorithm, second-order finite difference discretizations are employed
both in space and time.

– In the wavenumber-frequency Θ′-SPOD algorithm, the original schlieren domain (352×512 points)
is zero-padded to 1024× 1024 points.

The computational performance reported in this appendix is subject to change depending on the
implementation details and optimization of each algorithm. However, the significant speedup obtained
in the (kx, ky, ω) approach justifies the advantage of solving the Poisson equation in the spectral domain
for SPOD purposes.
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