
HAL Id: hal-04581677
https://hal.science/hal-04581677

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Studying the end-to-end performance, energy
consumption and carbon footprint of fog applications

Clément Courageux-Sudan, Anne-Cécile Orgerie, Martin Quinson

To cite this version:
Clément Courageux-Sudan, Anne-Cécile Orgerie, Martin Quinson. Studying the end-to-end perfor-
mance, energy consumption and carbon footprint of fog applications. ISCC 2024 - 29th IEEE Sym-
posium on Computers and Communications, Jun 2024, Paris, France. pp.1-7. �hal-04581677�

https://hal.science/hal-04581677
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Studying the end-to-end performance, energy
consumption and carbon footprint of fog

applications
Clément Courageux-Sudan∗, Anne-Cécile Orgerie∗, Martin Quinson∗

∗Univ. Rennes, Inria, CNRS, IRISA, France
Email: {clement.courageux-sudan, anne-cecile.orgerie, martin.quinson}@irisa.fr

Abstract—The deployment of applications closer to end-users
through fog computing has shown promise in improving net-
work communication times and reducing contention. However,
the use of fog applications such as microservices necessitates
intricate network interactions among heterogeneous devices.
Consequently, understanding the impact of different application
and infrastructure parameters on performance becomes crucial.
Current literature either offers end-to-end models that lack
granularity and validation or fine-grained models that only
consider a portion of the infrastructure. Our research first
compares experimentally the accuracy of the existing integrated
frameworks. We then combine one of these tools with a collection
of validated models to obtain comprehensive metrics regarding
microservice applications operating in the fog. Through a use-
case, we demonstrate the effectiveness of our approach in inves-
tigating fog environments, from examining application latencies
to greenhouse gas emissions.

Index Terms—Modeling and simulation, Fog-computing, Mi-
croservice, Performance evaluation, Energy consumption

I. INTRODUCTION

Cloud computing consists in centralizing the computations
of distributed systems into large datacenters to reduce the
costs through improved operational efficiency. Fog computing
adapts this approach by moving some application components
closer to the end-user to reduce the network congestion and
delays that are hindering pure cloud architectures. To that
extent, fog platforms add a layer of micro-datacenters with less
efficient, geographically distributed resources. Such platforms
prevent the use of monolithic applications, which must instead
be split into multiple components. Under the microservices
software architecture, the applications consist of lightweight
interconnected services processing and exchanging data to
fulfill requests [23]. Latency-sensitive services can be placed
in the fog while CPU-intensive processes can be placed in the
cloud to optimize their performance.

Regardless of its potential, fog performance can be jeopar-
dized by threats that are unknown in traditional clouds. The
platform heterogeneity along with the application complexity
lead to intricate placement decisions [17], further complicated
by the geographical distribution of nodes resulting in a tradeoff
between communication delays and performance gains en-
abled by powerful nodes located in the cloud, potentially far
from the user. In addition, the changing platform conditions
and workload call for automatic adaptation of the application
through the migration, replication or consolidation of services.

Finally, microservice applications can be evaluated under
several loosely related metrics, such as response time, resource
occupation, energy consumption, or greenhouse gas emissions.

It is thus crucial to analyze the benefits and drawbacks of
the deployment and operation strategies of fog applications.
The intrinsic constraints of real experiments hinder their ap-
plicability to this context, since back-to-back experiments can
lead to different results depending on the platform conditions.
Another approach is to transpose applications into models to
be used in simulations for better scalability and control. De-
spite the potential of simulation to understand fog applications’
performance, existing tools and models make it very difficult
to globally assess fog performance from the users’ devices up
to the Cloud servers along with all networking components
according to several metrics and criteria of interest.

Different models are proposed in the literature to analyze
individual aspects of the fog such as network, computing
nodes, or energy. This focus restrains their usage to specific
applications or metrics, due to the difficulty of combining
different simulation frameworks. In addition, the models’
granularity does not always enable simulating large infrastruc-
tures without prohibitively long simulations. Other frameworks
propose to simulate entire fog infrastructures from end-users to
cloud servers [23], [21], [2], but the experimental validation
of their models is often very partial at best. There is thus
a need for a unified tool to analyze fog applications using
validated models in a single framework to allow the simulation
of different network and application architectures.

The main contributions of this paper are:
• Reviewing energy and performance models for fog in-

frastructures: devices, communications, and data centers;
• Comparing the predictions from four simulation frame-

works against real-world network measurements.
• Combining validated models to simulate fog applications

with performance, energy, and GHG metrics in order to
compare microservices deployment strategies;

• Simulating an application under different deployment and
infrastructure configurations in an end-to-end manner.
This use-case illustrates the effectiveness of our approach
for studying trade-offs between energy and performance,
communication delays and computing capabilities.

The rest of this paper is structured as follows. Section II
proposes an overview of simulation tools for the study of fog



TABLE I: Comparison of state-of-the-art simulation models

Simulator Network Computing Energy Applications Scalability
Wired Wi-Fi CPU Memory Network Computing

ns-3 - Packet-level
OMNET++ - Packet-level

CloudSim Plus Cloud Packet-level
DISSECT-CF Cloud Provider/Consumer

µqsim Microservices Queue-based
YAFS Microservices Queue-based

IFogSim Microservices CloudSim-based
SimGrid Microservices/Other Flow-level

infrastructures. In Section III, we compare the accuracy of four
simulation frameworks to real-world measurements. Based on
this comparison, Section IV presents validated models to study
end-to-end fog infrastructures and applications. Section V
proposes an overview of the metrics available using our
approach through a use-case. Section VI concludes this work.

II. STATE OF THE ART

Extensive literature is available on the simulation of fog
applications. The existing works fall into two categories: mod-
els intended to study a single part of fog infrastructures and
frameworks enabling end-to-end analysis of fog applications.

A. Single component models

Models exist to study various parts of fog infrastructures
and applications. Network simulators such as ns-3 [24] and
OMNET++ [31] provide validated models for many communi-
cation technologies such as Wi-Fi or Ethernet, and can be used
to study for example the impact of the network configuration
on applications’ latency. Other models focus on the simulation
of processing infrastructures used to execute applications. For
example, CloudSim Plus [28] makes it possible to simulate
cloud datacenters. It can reproduce complex cloud scenarios,
but lacks wireless network models used in the fog. Application
models such as µqsim for microservices [35] evaluate the
application’s use of resources. But µqsim is based on simple
network models not reflecting the complexity of fog networks.
Estimating the energy consumption of fog applications is also
important since it induces most of the operational costs [20].
DISSECT-CF [19] proposes a framework to study the energy
consumption of Infrastructure-as-a-Service clouds.

These models can provide metrics for different parts of fog
infrastructures. However, the models’ implementation within
separate frameworks complicates the study of their interde-
pendencies and requires running multiple simulations for the
end-to-end analysis of a single scenario [12]. Separate tools
also do not allow capturing the interdependencies between all
models. Other models are specific to one type of application,
like smart-health applications [16], and thus difficult to extend
to other scenarios.

B. End-to-end fog models

Since models are created to study well-defined scientific
questions [30], some simulation frameworks focus on the

study of fog infrastructures. The IFogSim and IFogSim2 [13],
[23] simulators aim to simulate end-to-end fog infrastructures
running microservices. The many models available in IFogSim
enable simulations considering mobility, scheduling, and en-
ergy usage. Despite the capability of this framework, some
works show validity limitations of the underlying CloudSim
execution and network models [26], [33]. Frameworks such
as IoTSim-Osmosis [2] or YAFS [21] have similar features to
study end-to-end fogs, but their coarse-grained models have
not been validated. Their communication models do not permit
defining shared communication channels, very common in the
fog with Wi-Fi. Their cost per usage energy models also lack
validation, despite the importance of understanding models’
validity limitations to avoid biased results [32].

Distributed systems simulators such as SimGrid do not
target fog infrastructures but propose validated models for the
technologies used in the fog. Table I summarizes the models
available in the frameworks introduced in this section.

III. EXPERIMENTAL COMPARISON OF FOG SIMULATION
FRAMEWORKS

In this section, we compare real-world measurements of
task executions and network communications to the pre-
dictions of four state-of-the-art simulation frameworks: ns-
3 [24], SimGrid [32], YAFS [21], and IFogSim [13], [23].
As shown in Table I, YAFS and IFogSim are simulation
frameworks tailored for fog infrastructure studies. SimGrid is
more versatile, incorporating network models, execution, and
application models. ns-3 is limited to the study of network
communications, but the accuracy of its results makes it a
popular framework. Other simulators exist but we consider the
present selection because of their popularity in their research
fields, and their representativity of the different models’ gran-
ularity (flow-, packet-, and queue-based simulation).

A. Methodology

We describe the setup used to measure real and simu-
lated network and task durations. We use the latest versions
of IFogSim (2.0.0) and YAFS, ns-3 (v3.39), and SimGrid
(v3.32). We compare simulators to results of two servers
from the Grid’5000 testbed [3] with 2xIntel Xeon E5-2630
v3 CPUs and 2 x 10Gbps Ethernet interfaces. Information
with reproducible experiments and results are available online:
https://github.com/klementc/end-to-end-fog-reproducibility

https://github.com/klementc/end-to-end-fog-reproducibility


TABLE II: Comparing the execution and network models of different network simulators against real-world values.
Comparison of communication and execution durations between simulation frameworks
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1) Network flows: We limit the bandwidth between the
testbed servers to 50Mbps using the network emulation feature
of EnosLib [4]. The latency between nodes is negligible in this
setup, below 0.2ms from our measurements, which is much
lower than the data transmission duration. We create between
1 and 10 TCP flows of equal size starting simultaneously
from the first node towards the second node using iperf [29].
Simulators are calibrated to match this setup with two nodes,
a 50Mbps Ethernet link between the nodes, and a 0ms latency.
We compare the start and finish timestamps of each flow.

2) Task executions duration: A script runs on testbed
servers to execute a fixed amount of CPU work. Between
one and ten executions of this script start simultaneously. We
measure each task’s beginning and termination timestamps.
Simulations are calibrated by setting the capacity of the nodes
to 1 GFlops with the same cost of tasks as in the real-world
results. Real-world and SimGrid scenarios are executed either
on a single core or across two cores. We did not manage to
use IFogSim to perform multi-core executions, while YAFS
models do not permit it. ns-3 has no execution model and is
only used to measure network durations.

B. Observations

Table II summarizes the results. We use Gantt charts to illus-
trate the start and termination timestamps of communications
and executions. We classify the results into two groups.

1) Resource sharing models: As shown in Table II, ns-
3 and SimGrid network models share the bandwidth of the
network links between active flows. SimGrid flows start and
terminate at the same time given the use of a fair bandwidth
allocation model. ns-3 results are similar, with small varia-
tions due to more fine-grained packet-level bandwidth-sharing
models. Task executions use the same sharing approach in
SimGrid, where using two cores divides the execution time
of parallel tasks by two. These results are consistent with the
real-world measurements for both network and tasks.

2) Exclusive resource usage models: Table II shows vari-
ations between IFogSim [23], YAFS [21], and real-world re-
sults. Both simulators provide exclusive access to network and

execution resources: a communication or execution makes full
use of the resource until termination. Network communications
and executions starting simultaneously terminate at different
timestamps. Despite coherent overall communication duration,
single network and execution termination timestamps are very
different from real measurements.

C. Discussion

Based on these observations, YAFS [21] and IFogSim [23]
are limited to the study of scenarios with exclusive access to
resources. Otherwise, the estimations of these simulators can
greatly vary from real-world values. Also, their results are
limited to wired communications since YAFS and IFogSim
do not differentiate between Ethernet and Wi-Fi channels. This
can impact the results of fog studies since Wi-Fi channels are
popular at the edge of the network, especially in mobility sce-
narios. Our experiments using IFogSim also show unexplained
results highly impacted by undocumented parameters that can
not be adjusted without side effects (i.e. schedulingInterval).

In the rest of this paper, we chose to simulate fog infras-
tructures using models validated in the literature, matching our
real-world observations. Our choice is to use SimGrid since it
provides both network and execution models.

IV. END-TO-END MODELING OF A FOG INFRASTRUCTURE
AND ITS APPLICATIONS

We propose a methodology based on the validated SimGrid
models to accurately simulate computing devices, network
interfaces, and their energy consumption. We show how these
models can be combined to experiment with fog platforms.

A. Infrastructure model

All fog infrastructures have common components. We split
it into 1) end-users, 2) fog micro-datacenters, 3) cloud dat-
acenter. This infrastructure corresponds to a graph G(N,L)
where vertices n ∈ N are computing nodes, and edges l ∈ L
are network links (Ethernet or Wi-Fi) between pairs of nodes.

All machines in the fog infrastructure can execute tasks.
The optimal amount of concurrent tasks on a node depends



on its number of CPU cores Ncore. Each core has a processing
capacity Ccore expressed in floating-point operations per
second (flops), for a maximum capacity of Ncore∗Ccore flops.
Table III provides an example of calibration values for a server
from the experimental testbed Grid’5000 [3] and a Raspberry
Pi 4 model B [18]. To simulate task executions, we use the
execution model of SimGrid. Properly calibrated, it estimates
task execution durations for different types of applications,
including microservices [6].

The capacity of a network link depends on the link’s
bandwidth BWl in bits per second, and Latl latency in
milliseconds. Different technologies can be used for different
parts of fog networks. In this paper, we consider Ethernet
and Wi-Fi, but other technologies such as cellular, LoRa,
or Bluetooth networks could be considered. We use separate
models to simulate each communication technology. While
Ethernet links connect pairs of nodes, Wi-Fi channels are
shared between all stations (STA) connected to an access point
(AP), thus they use different protocols. In this work, we lever-
age already validated flow-based models to simulate Ethernet
links [32] and Wi-Fi channels [5] implemented in SimGrid
and validated by comparison with ns-3 results. Compared to
packet-level network models like ns-3, flow models offer better
scalability with sufficient accuracy for our purposes.

End-user devices are connected to APs using Wi-Fi. APs
are then connected to the fog using Ethernet links. The core
network consists of a set of core routers enabling nodes of the
fog layer to communicate with the cloud datacenter. Table III
gives realistic bandwidths values from the literature.

TABLE III: Models’ calibration values

Machines’ CPU capacity
Device Ncore Ccore

Grid’5000 Taurus [3] (Cloud) 32 4 GFLOPS
Raspberry Pi 4B [18] (Fog) 4 1 GFLOPS

Network interfaces capacity
Interface Bandwidth source

Intra-Cloud 10Gbps [15]
Core/Edge router 48x1Gbps (avgU=25%) [10]

Intra-Fog 1Gbps /
WLAN 44.23Mbps [5]

Devices Power consumption
Parameter Value source

[P cloud
idle , P cloud

max ] [94.75, 178.88]W [14]
[P fog

idle , P
fog
max] [2.28, 6.82]W [18]

[PEU
idle, P

EU
max] [2.28, 6.82]W /

[P eth
min, P

eth
max]corerouter [0,21.168]W [12], [10]

[P eth
min, P

eth
max]ETH1GBPS {0,0.441}W [12]

{Pidle, PTx, PRx, Psleep}WiFi {0.82:1.14:0.94:0.1}W [34]
P edgerouter
static 150 W [12], [10]

P corerouter
static 555 W [12], [10]
PAP
static 11 W [1]

PUEfog 1.7 [27]
PUEcloud 1.1 [9]

GHG emissions rates in different countries
Country gCO2e/kWh Source
France 56 [25]
Spain 141 [25]

Great-Britain 184 [25]
USA 388 [7]

B. Microservice application model

A microservice application is represented by a Directed
Acyclic Graph (DAG) [35], [23], [6], where nodes are services

and edges communications between services. When a service
receives a request, it executes the corresponding task before
forwarding the result to output services. As an example,
Figure 1 shows the DAG of an application with four services.

We use the microservice model proposed in [6], imple-
mented in SimGrid, where microservices are modeled as a
three-step pipeline: 1) storing received requests in a queue; 2)
executing requests on the host’s resources; 3) forwarding the
result to output services. Requests are characterized by their
CPU cost Creq (in flops) and their network size sizereq (in
bits). We note the ratio between the received request’s size
and the size of the result sent to the output services ratioI/O.

This model can be fed with traces from real application
executions. Implemented in SimGrid, it has been validated
against the DeathStarBench microservice benchmark [8].

MOTION
DETECT

OBJECT
TRACKER

USER
INTERFACE

OBJECT
DETECT

Fig. 1: DAG of the application, inspired from the surveillance camera use-
case of [13]. The critical path is in red (used to measure end-to-end request
latency).

C. Energy and gas emission models

Based on the infrastructure and application performance
models, we estimate the energy consumption of an application.
It corresponds to the sum of the energy of the computing
nodes, the network interfaces, and the rest of the infrastructure
(cooling, lighting). We estimate the power consumed by a
device as the sum of a) the static power consumption (the
minimum power to operate the device) and b) the dynamic
power consumption (depending on the device’s activity).

The static power consumption corresponds to the power
used by the server when idle, noted Pnode

idle . When processing
some requests, the dynamic power depends on the number
of active CPU cores. The device power at maximum use is
Pnode
max . If not used at full capacity, its power consumption is

extrapolated between Pnode
idle and Pnode

max using linear regression
as in [14]. The energy consumption of core network routers is
proportional to the ratio between the data sent by the executing
applications over the total data that could be sent over the
router, as used in previous works [12], [22]. We use the energy
model for servers from [14] implemented in SimGrid and
validated against real-world measurements.

The power consumption of a network interface depends on
its communication technology. We note P eth

min the power of an
Ethernet interface when idle, and P eth

max at maximum use. Its
power usage is proportional to the average utilization of the
device u ∈ [0, 1]. Wi-Fi interfaces switch between states, each
state having a different power usage. Power usage is Pidle

when idle, PRx when receiving data, PTx when sending data,
and Psleep in sleep mode. We estimate the energy of network
interfaces using the wired power model of [11] and Wi-Fi
power model from [5] both validated against ns-3, calibrated
with the values of Table III.



The Power Usage Effectiveness indicator (PUE) is employed
to estimate the additional consumption to operate cloud and
fog infrastructures such as cooling or lighting. The PUE value
depends on the location and scale of datacenters [27] and is
multiplied by the power consumption of datacenters’ machines
to estimate total power consumption. We use PUE values
from the literature: 1.1 for high-end cloud datacenters, and
1.7 for fog micro-datacenters, as summarized in Table III.
Energy consumption values allow to estimate GHG emissions.
Table III provides CO2e emissions per kWh in different
countries that depend on the energy sources. We multiply
energy results by this factor to estimate GHG emissions.

V. USE-CASE

Based on our fog infrastructure model we evaluate the per-
formance, energy usage, and GHG emissions of an application.

A. Setup and methodology

This study uses an application loosely inspired from [13].
This application uses four services to detect movements by
processing data from video cameras. Figure 1 shows the DAG
of this application, and Table IV the request processing cost
for each service in MFLOPS. Experimental scenarios can be
tuned to be more or less compute-intensive using different
values of the computing ratio ρ: ρ ∈ {0.1, 0.5, 1}, and data-
intensive by modifying the size of network requests: sizereq ∈
{80kb, 1Mb}. We provide results for simulations considering
TCP communications. We compare two application placement
policies. a) cloud only: deployment of services in the cloud
datacenter, b) fog only: deployment of services using fog
nodes, each micro-datacenter having a copy of the application.

The application runs in an infrastructure composed of one
cloud datacenter with 64 servers and 14 fog micro-datacenters.
Each micro-datacenter hosts 64 Raspberry Pi model 4B. Four
802.11n access points are connected to each micro-datacenter
and used by four clients to send requests to the application.

Clients send between 1 and 5 requests per second for 230
seconds. The distance between the fog and cloud datacenters
varies by the number of intermediate core routers in {2, 5, 7},
each adding 5ms of latency. The latency between micro-
datacenter nodes of the same cluster varies between 2 and
5 ms and is fixed to 0.5 ms between cloud servers.

At the start of the simulation, each service has one instance.
Every 5 seconds, an autoscaler deploys additional service
instances if the average CPU usage of the nodes hosting a
service exceeds 70%. Idle nodes are initially powered off and
turned on by the autoscaler when needed.

The code, and notebooks used to generate the fig-
ures are available online: https://github.com/klementc/end-
to-end-fog-reproducibility. The remaining of this section
details representative results obtained using the visu-
alization interface: https://klementc.github.io/end-to-end-fog-
reproducibility/energy analysis/visualize/.

TABLE IV: CPU cost of executing a request in each service. ρ ∈ {0.1, 0.5, 1}
is used to modify processing intensity.

Service Creq (MFLOPS)
MOTION DETECT ρ ∗ 500
OBJECT DETECT ρ ∗ 250

OBJECT TRACKER ρ ∗ 500
USER INTERFACE ρ ∗ 250

B. End-to-end latency of requests

We study a processing-intensive scenario: high CPU usage
and relatively small network requests. The size of each request
is 80 kbit. There are seven hops between the cloud and the
fog datacenters, 2ms of latency between fog nodes, and 0.5ms
between cloud nodes. The CPU execution ratio is ρ = 1, and
ratioI/O = 1. Figure 2 shows the evolution of end-to-end
request execution times and the number of service instances.

At the beginning of the simulation, the end-to-end latency
rapidly increases in both cases because of the time taken to
scale the application to the workload. The cloud deployment
can manage the load with 16 service instances after 20
seconds. Since fog nodes are less powerful, more than 550
service instances are used over all micro-datacenters. This
scaling thus takes longer in the fog because the autoscaler
adds one replica of each service per trigger.

Once the number of replicas is stable, we observe more
variations between the end-to-end latency of fog requests
compared to cloud ones. A large number of service replicas
increases the number of possible execution paths. Here, exe-
cution times dominate communication times. Lower ρ values
can invert this trend, decreasing execution times and leading
to faster fog end-to-end latency.

C. Impacts of network configuration

Table V compares output metrics between different network
configurations. In all scenarios, ρ = 0.1, and sizereq = 1Mb,
which corresponds to a network-intensive application.
Comfirst is the average communication time between end-

users and the first service. Comother is the average service-to-
service communication duration. When the distance between
the end-user and the cloud increases from 2 to 7 core hops,
we observe a significant 198% increase of Comfirst. It does
not affect Comother since the latency between cloud nodes
does not change. In the fog, modifying the latency between
fog nodes from 2 to 5 ms does not impact significantly
Comfirst but increases by 200% the latency between services.
Regarding service executions, the average execution time of
requests Dexec is higher for the fog application since fog
micro-datacenter nodes have fewer CPU resources.

The network configuration has little impact on energy
consumption: the energy used by network interfaces Enetdev

and core routers Erouters do not significantly change between
scenarios. Erouters in the cloud increases when adding more
network hops (i.e. core routers), while no core routers are
necessary in the fog. Since the workload is the same, Ehosts

does not significantly vary with modified network parameters.

https://github.com/klementc/end-to-end-fog-reproducibility
https://github.com/klementc/end-to-end-fog-reproducibility
https://klementc.github.io/end-to-end-fog-reproducibility/energy_analysis/visualize/
https://klementc.github.io/end-to-end-fog-reproducibility/energy_analysis/visualize/
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Fig. 2: Simulating the execution time of requests under different deployment policies

TABLE V: Impact of network configuration on application metrics in the
network-intensive scenario. Energy results do not consider power usage
effectiveness.

Cloud (#Hops) Fog (lat)
2 5 7 2ms 5ms

Comfirst 331ms 526ms 657ms 162ms 197ms
Comother 16ms 16ms 16ms 74ms 148ms
Dexec 9ms 9ms 9ms 148ms 149ms
Enetdev 66.0kJ 66.7kJ 72.8kJ 70.2kJ 70.8kJ
Erouters 3.7kJ 9.2kJ 12.8kJ 0kJ 0kJ
Ehosts 425.1kJ 425.0kJ 425.1kJ 368.5kJ 368.5kJ

TABLE VI: Estimated energy consumption in infrastructure

Scenario Total Cloud / Edge End-users Network
Cloud 944.6 kJ 576.4 kJ 304.6 kJ 63.6 kJ
Fog 958.0 kJ 587.0 kJ 304.6 kJ 66.4 kJ

D. Energy consumption and GHG emissions

Table VI shows the energy consumption of different parts
of the infrastructure with the CPU-intensive scenario of Sec-
tion V-B. The energy of the end-users is the sum of the
energy of the camera nodes and the Wi-Fi APs. Network
energy is the sum of the energy of the Wi-Fi interfaces, the
links between datacenters nodes, and the application’s use
of core routers. Network communications consume less than
10% of the overall energy. Fog nodes individually consume
less power than cloud nodes, but their restricted processing
capacity necessitates deploying more replicas for each service,
partially offsetting their energy efficiency. This leads to higher
fog energy consumption due to a high number of service repli-
cas and less efficient PUE. This shows that efficient energy
management in the fog is crucial. Data-intensive applications
with low CPU usage would decrease the number of service
replicas in the fog, leading to lower energy values.

Table VII shows estimated GHG emissions to run the ap-
plication in the same scenario. The emissions are extrapolated
for a year using the GHG emission rates in different countries
from Table III.

TABLE VII: GHG emissions of the fog and cloud datacenters

Emissions (tCO2e) by country
Scenario France Spain Great-Britain USA

Cloud 1.05 2.64 3.44 7.25
Fog 1.07 2.69 3.50 7.39

Running a fog application in the USA, where the end-users
and processing nodes are in the same neighborhood leads
to more than 7 tCO2e. Switching to a cloud placement in
a French datacenter, GHG emissions drop to approximately
1.05 tCO2e. We observe that the difference between emis-
sions of a fog and a cloud application in the same country
is very small since they have similar energy usage. While
local execution in fogs sometimes improves performance and
latency, datacenters’ location can lead to increased GHG
emissions. Traveling long distances to clusters using clean
energy production methods can be more efficient from a GHG
emissions point-of-view.

VI. CONCLUSION AND FUTURE WORK

Despite its potential, fog computing remains challenging to
use efficiently. Developers must tune their applications while
infrastructure operators need to constantly adapt to dynamic
conditions. Reducing the GHG emissions of an infrastructure
without hindering the applicative performance is nearly im-
possible without proper evaluation tools and methodologies.

In this paper, we compare classical fog simulators through
direct evidence obtained by comparing their predictions to
data measured on a real platform. We discard ns-3 despite its
accuracy because it lacks computations modeling. We discard
iFogSim and YAFS because they only offer a one-port model
e.g. at most one computation/communication per resource at
a given time. SimGrid predictions are consistent with reality.

We then leverage SimGrid to propose an end-to-end model-
ing of fog infrastructures and their applications. We show how
the existing validated models for each part of the infrastructure
can be instantiated with values from the literature. Then we
study a typical use case with this framework to evaluate



an application’s performance, energy consumption, and GHG
emissions of the underlying infrastructure in the use phase.

The experimental results on this use case show that appli-
cation placement, workload, and network configuration have
significant impacts. Considering and improving the PUE of
fogs could allow consequent energy gains. Finally, fog com-
puting can be negatively impacted in terms of GHG emissions
depending on the location of fog clusters.

In the future, this approach could be leveraged for thorough
studies of resource placement algorithms and operation strate-
gies for fog applications. Understanding the trade-offs at stake
through what-if scenarios before real deployments could help
optimize the performance and consumption of real systems.
Integrating life-cycle assessment values into our methodology
would also help in understanding the complete environmental
costs of the numerous fog nodes.
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