
HAL Id: hal-04581637
https://hal.science/hal-04581637

Preprint submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharp analysis on the joint distribution of the number of
descents and inverse descents in a random permutation

Luis Fredes, Bernard Bercu, Michel Bonnefont, Adrien Richou

To cite this version:
Luis Fredes, Bernard Bercu, Michel Bonnefont, Adrien Richou. Sharp analysis on the joint distribution
of the number of descents and inverse descents in a random permutation. 2024. �hal-04581637�

https://hal.science/hal-04581637
https://hal.archives-ouvertes.fr


SHARP ANALYSIS ON THE JOINT DISTRIBUTION OF THE
NUMBER OF DESCENTS AND INVERSE DESCENTS IN A

RANDOM PERMUTATION

BERNARD BERCU, MICHEL BONNEFONT, LUIS FREDES, AND ADRIEN RICHOU

Abstract. Chatteerjee and Diaconis have recently shown the asymptotic nor-
mality for the joint distribution of the number of descents and inverse descents in
a random permutation. A noteworthy point of their results is that the asymptotic
variance of the normal distribution is diagonal, which means that the number of
descents and inverse descents are asymptotically uncorrelated. The goal of this
paper is to go further in this analysis by proving a large deviation principle for the
joint distribution. We shall show that the rate function of the joint distribution
is the sum of the rate functions of the marginal distributions, which also means
that the number of descents and inverse descents are asymptotically independent
at the large deviation level. However, we are going to prove that they are finely
dependent at the sharp large deviation level.

1. Introduction

Let Sn be the symmetric group of permutations on the set of integers {1, . . . , n}
where n ≥ 1. A permutation πn ∈ Sn has a descent at position k ∈ {1, . . . , n− 1} if
πn(k) > πn(k + 1). Let Dn = Dn(πn) be the random variable counting the number
of descents of a permutation πn chosen uniformly at random from Sn and denote by
D′

n = Dn(π
−1
n ) the number of descents of the inverse π−1

n of πn. We clearly have for
all n ≥ 2,

(1.1) Dn =
n−1∑
k=1

I{πn(k)>πn(k+1)} and D′
n =

n−1∑
k=1

I{π−1
n (k)>π−1

n (k+1)}.

A wide range of literature is available on the asymptotic behavior of the marginal
distribution (Dn). It is well-known [12], [13], [19] that

(1.2) lim
n→∞

Dn

n
=

1

2
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2 DESCENTS AND INVERSE DESCENTS IN A RANDOM PERMUTATION

and

(1.3)
√
n

(
Dn

n
− 1

2

)
L−→

n→+∞
N
(
0,

1

12

)
.

Moreover, Bryc, Minda and Sethuraman [4] have shown that (Dn/n) satisfies a large
deviation principle (LDP) with good rate function given, for all x ∈ R, by

(1.4) I(x) = sup
t∈R

{
xt− L(t)

}
where

(1.5) L(t) = log

(
exp(t)− 1

t

)
.

Surprisingly, to the best of our knowledge, very few result are available on the as-
ymptotic behavior of the joint distribution (Dn, D

′
n), except the recent contribution

of Chatteerjee and Diaconis [7]. By using a normal approximation method due to
Chatterjee [6], it is shown in [7] that

(1.6)
√
n

(
Dn

n
− 1

2
,
D′

n

n
− 1

2

)
L−→

n→+∞
N
(
0,Γ
)
,

where Γ stands for the diagonal matrix

Γ =
1

12

(
1 0
0 1

)
.

It clearly means that Dn and D′
n are asymptotically uncorrelated. One can observe

that the almost sure convergence of the couple (Dn/n,D
′
n/n) to (1/2, 1/2) can be

obtained from Remark 3.2 in [3]. As suggested in Section 3 of [7], it is possible to go
deeper into the analysis of the joint distribution (Dn, D

′
n) by proving that the couple

(Dn/n,D
′
n/n) satisfies an LDP with good rate function I defined, for all x, y ∈ R,

by

(1.7) I(x, y) = I(x) + I(y).

It also implies that, at the large deviation level, Dn and D′
n are asymptotically

independent. Moreever, it was recently proven in [3] that the sequence (Dn) satisfies
a sharp large deviation principle (SLDP). We are going to improve this result by
showing that the couple (Dn, D

′
n) satisfies a SLDP which will highlight the very fine

dependence between Dn and D′
n at the sharp large deviation level.

The paper is organized as follows. Section 2 deals with an explicit construction of the
probability space on which we will be working. Section 3 is devoted to our martingale
approach which allows us to find again a direct proof of the asymptotic normality
(1.6) and to propose new standard results for the joint distribution (Dn, D

′
n) such

as a functional central limit theorem. The main results of the paper are given in
Section 4 where we establish the large deviation properties of the couple (Dn, D

′
n). A

short conclusion is given in Section 5. All technical proofs are postponed to Sections
6 to 8.
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2. The probability space

Before investigating the joint distribution of (Dn, D
′
n), it is necessary to provide

an explicit construction of the probability space on which we will be working. For
that purpose, we are going to study how a permutation πn+1 of size n + 1 adds
descents when it is created from a permutation πn of size n. We will do this by
means of a graphical representation as explained below. We start by presenting a
permutation πn as the set of all points GR(πn) inside [0, 1]2 where

πn(i) = j =⇒
( i

n+ 1
,

j

n+ 1

)
∈ GR(πn).

One can observe that the image of this transformation has the property of having
exactly one point in each line and column of type i/(n+1) for i ∈ {1, . . . , n} and to
send all the points inside [0, 1]2. We call GRn the set of all points with this property.
It is easy to see that the sets Sn and GRn are in bijection since the points in each
element of GRn defines the map of a bijective function. We define the cell Cn(i, j)
to be the region inside [0, 1]2 defined, for all (i, j) ∈ {1, . . . , n+ 1}2, by

Cn(i, j) =
] i− 1

n+ 1
,

i

n+ 1

[
×
] j − 1

n+ 1
,

j

n+ 1

[
.

For a point u ∈ [0, 1]2, we construct πn+1 as a function of u and πn as described
in Figure 1 below,

πn+1(i) =



πn(i) if u ∈ Cn(k, ℓ), i < k and πn(i) < ℓ

πn(i) + 1 if u ∈ Cn(k, ℓ), i < k and πn(i) ≥ ℓ

πn(i− 1) if u ∈ Cn(k, ℓ), i > k and πn(i) < ℓ

πn(i− 1) + 1 if u ∈ Cn(k, ℓ), i > k and πn(i) ≥ ℓ

ℓ if u ∈ Cn(k, ℓ), i = k

0

4/5

3/5

2/5

1/5

1/5 2/5 3/5 4/5
0 1/6 2/6 3/6 4/6 5/6

4/6

3/6

2/6

1/6

5/6

C4(1, 4)

Figure 1. Graphical representation of π4 = (2314) to the left. We
colored in light blue the cell C4(1, 4). We represent to the right-side the
resulting permutation π5 = (34215) when u ∈ C4(1, 4). We present the
point u and vertical and horizontal lines crossing it in green in order
to visually see the transformation.
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It is clear that our construction of πn+1 only depends on πn and on the choice
of the indexes (k, ℓ) of the cell where the point u lands. One can think of this
transformation as the result of adding, in the graphic representation of πn, new
horizontal and vertical lines crossing the point u and after rescaling these lines in
order to keep the relative order of points with spacing 1/(n + 2), we obtain the
graphical representation of πn+1.

Up to now, πn+1 is built in a deterministic way. In what follows, what will play
the role of u is a random variable Un+1 uniformly chosen in [0, 1]2 and independent
of the permutation πn. Since the boundary lines of cells have Lebesgue measure 0,
we suppose without loss of generality that Un+1 does not belong to the boundary
of any cell. It is simple to prove that if πn is chosen uniformly at random from Sn,
then πn+1 is a uniform permutation over Sn+1. From this construction, we can built
the sequence (Dn, D

′
n) on a unique probability space only depending on the whole

sequence (Un).

First of all, we start at the origin (D1, D
′
1) = (0, 0). Then, for all n ≥ 1, we denote by

∆Dn+1 and ∆D′
n+1 the increments ∆Dn+1 = Dn+1 −Dn and ∆D′

n+1 = D′
n+1 −D′

n.
Thanks to our representation, we can study the number of cells Cn(k, ℓ) that generate
prescribed increments ∆Dn+1 = a and ∆D′

n+1 = b, a, b ∈ {0, 1} for the permutation
πn and its inverse π−1

n when u ∈ Cn(k, ℓ). For a, b ∈ {0, 1}, let

Nn+1(a, b, πn) = Card
{
(k, ℓ) ∈ {1, . . . , n+1}2

/
∆Dn+1 = a,∆D′

n+1 = b, u ∈ Cn(k, ℓ)
}
.

Our first result shows that Nn+1(a, b, πn) depends only on Dn and D′
n as follows.

Theorem 2.1. For every permutation πn+1 chosen uniformly at random from Sn+1,
we have

Nn+1(a, b, πn) =


(n−Dn)(n−D′

n) + n if (a, b) = (1, 1),

(n−Dn)(D
′
n + 1)− n if (a, b) = (1, 0),

(Dn + 1)(n−D′
n)− n if (a, b) = (0, 1),

(Dn + 1)(D′
n + 1) + n if (a, b) = (0, 0).

Proof. The proof is given in Section 7. □

3. Our martingale approach

Let Vn be the two-dimensional random vector Vn = (Dn, D
′
n). Denote by Fn the

σ-algebra Fn = σ(D1, . . . , Dn, D
′
1, . . . , D

′
n). It follows from Theorem 2.1 that for all

n ≥ 1,

(3.1) Vn+1 = Vn + ξn+1
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where

P(ξn+1 = (a, b)|Fn) =



(n−Dn)(n−D′
n) + n

(n+ 1)2
if (a, b) = (1, 1),

(n−Dn)(D
′
n + 1)− n

(n+ 1)2
if (a, b) = (1, 0),

(Dn + 1)(n−D′
n)− n

(n+ 1)2
if (a, b) = (0, 1),

(Dn + 1)(D′
n + 1) + n

(n+ 1)2
if (a, b) = (0, 0).

It implies that the conditional distribution of the marginals of ξn+1 given Fn are the
correlated Bernoulli B(pn) and B(p′n) distributions where

(3.2) pn =
n−Dn

n+ 1
and p′n =

n−D′
n

n+ 1
.

Moreover, we also have

E[ξn+1ξ
T
n+1|Fn] =

(
pn pnp

′
n + rn

pnp
′
n + rn p′n

)
where

rn =
n

(n+ 1)2
.

Consequently, we obtain from (3.1) that

(3.3) E[Vn+1|Fn] = E[Vn + ξn+1|Fn] =

(
Dn + pn
D′

n + p′n

)
.

Let (Mn) be the sequence defined for all n ≥ 1 by

(3.4) Mn = n

(
Vn −

(n− 1)

2
v

)
where vT = (1, 1). It follows from (3.3) that (Mn) is a locally square integrable
martingale. One can easily see that its predictable quadratic variation reduces to

⟨M⟩n =
n−1∑
k=1

E[(Mk+1 −Mk)(Mk+1 −Mk)
T |Fk],

=
n−1∑
k=1

(
(k −Dk)(Dk + 1) k

k (k −D′
k)(D

′
k + 1)

)
.(3.5)

Our martingale decomposition (3.4) allows us to propose a straightforward proof
of the asymptotic normality (1.6) previously established via a more sophisticated
approach by Chatteerjee and Diaconis [7]. We can also establish new asymptotic
results such as a functional central limit theorem and a law of iterated logarithm as
follows.
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Proposition 3.1. Let D([0,∞[) be the Skorokhod space of right-continuous func-
tions with left-hand limits. We have the distributional convergence in D([0,+∞[),

(3.6)

(
√
n
(D⌊nt⌋

⌊nt⌋
− 1

2
,
D′

⌊nt⌋

⌊nt⌋
− 1

2

)
, t ≥ 0

)
=⇒ (Wt, t ≥ 0)

where (Wt) is a continuous two-dimensional centered Gaussian process starting from
the origin with covariance matrix given, for 0 < s ≤ t, by

E[WtW
T
s ] =

s

12t2

(
1 0
0 1

)
.

In particular, we find again the asymptotic normality (1.6).

Proposition 3.2. We have the quadratic strong law

(3.7) lim
n→∞

1

log n

n∑
k=1

(Dk

k
− 1

2
D′

k

k
− 1

2

)(Dk

k
− 1

2
D′

k

k
− 1

2

)T

=
1

12

(
1 0
0 1

)
a.s.

In particular,

(3.8) lim
n→∞

1

log n

n∑
k=1

(Dk

k
− 1

2

)2
+
(D′

k

k
− 1

2

)2
=

1

6
a.s.

Moreover, we also have the law of iterated logarithm

(3.9) lim sup
n→∞

n

2 log log n

((Dn

n
− 1

2

)2
+
(D′

n

n
− 1

2

)2)
=

1

6
a.s.

Proof. The proofs are postponed to Section 8 □

4. Main results

Our first result is the LDP for the couple (Dn/n,D
′
n/n) which extends the LDP

for (Dn/n) previously established by Bryc, Minda and Sethuraman [4].

Theorem 4.1. The couple (Dn/n,D
′
n/n) satisfies an LDP with good rate function

I given by (1.7).

Our second result is the SLDP for the sequence (Dn, D
′
n) which nicely improves

the SLDP recently established for (Dn) in Theorem 3.1 of [3]. For any positive
real number x and n ∈ N∗, denote {xn} = nx − ⌈(n − 1)x⌉. Let us remark that
{xn} ∈ [x − 1, x] for any n ∈ N∗. Instead of dividing (Dn, D

′
n) by n, it is more

natural to divide them by n− 1 for the following reason. Let An be the number of
ascents of πn ∈ Sn. Then, it is clear that Dn + An = n − 1. Moreover, Dn and An

share the same distribution. Consequently, Dn/(n− 1) is symmetric with respect to
1/2. The same applies for D′

n.

Theorem 4.2. For any x and y in ]1/2, 1[, we have

(4.1) P
( Dn

n− 1
≥ x,

D′
n

n− 1
≥ y
)
=

exp(−nI(x, y) + φn(x, y))

2πnσxtxσyty

[
1 + o(1)

]
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where the value tx is the unique solution of L′(tx) = x, σ2
x = L′′(tx) and

(4.2) φn(x, y) = {xn}tx + {yn}ty +
1

2
txty.

In the same spirit, we have for any x and y in ]1/2, 1[,

(4.3) P
( Dn

n− 1
≤ 1− x,

D′
n

n− 1
≤ 1− y

)
=

exp(−nI(x, y) + φn(x, y))

2πnσxtxσyty

[
1 + o(1)

]
.

Moreover, we also have for any x and y in ]1/2, 1[,

(4.4) P
( Dn

n− 1
≤ 1− x,

D′
n

n− 1
≥ y
)
=

exp(−nI(x, y) + ϕn(x, y))

2πnσxtxσyty

[
1 + o(1)

]
,

and

(4.5) P
( Dn

n− 1
≥ x,

D′
n

n− 1
≤ 1− y

)
=

exp(−nI(x, y) + ϕn(x, y))

2πnσxtxσyty

[
1 + o(1)

]
where

(4.6) ϕn(x, y) = {xn}tx + {yn}ty −
1

2
txty.

By using a direct modification in the proof of Theorem 3.1 in [3], we obtain that for
any x in ]1/2, 1[,

P
( Dn

n− 1
≥ x

)
= P

( D′
n

n− 1
≥ x

)
=

exp(−nI(x) + {xn}tx)
σxtx

√
2πn

[
1 + o(1)

]
.

Moreover, we have by symmetry that

P
( Dn

n− 1
≥ x

)
= P

( Dn

n− 1
≤ 1− x

)
.

Therefore, an immediately consequence of Theorem 4.2 is as follows.

Corollary 4.1. For all x, y ∈]1/2, 1[, we have

P
( Dn

n− 1
≥ x,

D′
n

n− 1
≥ y
)
= P

( Dn

n− 1
≥ x

)
P
( D′

n

n− 1
≥ y
)
exp

(
txty
2

)[
1 + o(1)

]
,

P
( Dn

n− 1
≤ 1− x,

D′
n

n− 1
≤ 1− y

)
= P

( Dn

n− 1
≤ 1− x

)
P
( D′

n

n− 1
≤ 1− y

)
exp

(
txty
2

)[
1 + o(1)

]
,

P
( Dn

n− 1
≤ 1− x,

D′
n

n− 1
≥ y
)
= P

( Dn

n− 1
≤ 1− x

)
P
( D′

n

n− 1
≥ y
)
exp

(
−txty

2

)[
1 + o(1)

]
,

P
( Dn

n− 1
≥ x,

D′
n

n− 1
≤ 1− y

)
= P

( Dn

n− 1
≥ x

)
P
( D′

n

n− 1
≤ 1− y

)
exp

(
−txty

2

)[
1 + o(1)

]
.

Remark 4.1. Corollary 4.1 highlights the very fine dependence between Dn and D′
n

at the sharp large deviation level.

Chatteerjee and Diaconis found challenging to study the asymptotic behavior of

Tn = Dn +D′
n.
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They proved in Theorem 1.1 of [7] that

(4.7)
√
n

(
Tn

n
− 1

)
L−→

n→+∞
N
(
0,

1

6

)
.

We immediately deduce from Theorem 4.1 together with the contraction principle
[8] that (Tn/n) satisfies an LDP as follows.

Corollary 4.2. The sequence (Tn/n) satisfies an LDP with good rate function J
defined, for all y ∈ R, by

(4.8) J(y) = inf
{
I(x) + I(y − x), x ∈ R

}
.

5. Conclusion

Our strategy of proof may be extended to some of other well-known statistics on
random permutations. More precisely, if we are interested in the major index [16],
a central limit theorem for the joint distribution of the major index and the major
index of the inverse has been obtained in [1, 23]. However, the LDP is available only
for the marginal distribution [17]. The LDP for the joint distribution, or even for
the quadruplet distribution adding the couple (Dn, D

′
n) is still an open problem and

may be tackled using some old results concerning their Laplace transform [14, 21],
see also the link with inversions in [11]. These questions are left for future work.

6. Proofs of the large deviation results

6.1. Some preliminary results. Denote by mn the Laplace transform of the cou-
ple (Dn, D

′
n) defined, for all t, s ∈ R, by

mn(t, s) = E
[
exp(tDn + sD′

n)
]
.

One can notice that mn(t, s) is always finite for all t, s ∈ R since Dn and D′
n are

bounded by n. We shall make use of the unsigned Stirling numbers of the first
kind, which are defined algebraically as the coefficients of the rising factorial via the
identity given for all x ∈ R and n ∈ N,

(6.1) (x)(n) = x(x+ 1) · · · (x+ n− 1) =
n∑

k=0

[
n

k

]
xk.

Lemma 6.1. For all t, s ∈ R∗, we have

(6.2) mn(t, s) =

(
et − 1

t

)n(
es − 1

s

)n(
1− e−t

t

)(
1− e−s

s

)
S1
n(t, s)

where for a ∈ {0, 1},

Sa
n(t, s) =

n−1∑
k=0

[
n

n− k

](
(n− k)!

n!

)2

(st)k
(
1 + arn−k(t)

)(
1 + arn−k(s)

)
and

rn(t) =
∑
ℓ∈Z∗

(
1 +

2iπℓ

t

)−(n+1)

.
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Let us remark that the notation S0
n is not useful for the moment but it will be used

in the proof of Theorem 4.2.

Proof. It follows from Section 7 in [5], see also Theorem 2 in [20] or more recently
Section 3 in [7], that for all p, q ∈ (−1, 1),

(6.3) E
[
pDnqD

′
n
]
=

(1− p)n+1(1− q)n+1

pqn!

∑
k,ℓ≥0

(
kℓ+ n− 1

n

)
pkqℓ.

Let us start by assuming that t < 0 and s < 0. By using (6.3) with p = et < 1 and
q = es < 1, we obtain that

mn(t, s) =
(1− et)n+1(1− es)n+1

etesn!

∑
k,ℓ≥0

(
kℓ+ n− 1

n

)
etkesℓ,

=
(et − 1)n+1(es − 1)n+1

etes(n!)2

∑
k,ℓ≥0

(kℓ)(n)etkesℓ

where the rising factorial (kl)(n) was previously defined in (6.1). Hence, we obtain
from (6.1) that for all n ≥ 1,

mn(t, s) =
(et − 1)n+1(es − 1)n+1

etes(n!)2

n∑
j=1

[
n

j

]∑
k≥0

kjetk
∑
ℓ≥0

ljesℓ.

It follows from the series representation of the polylogarithm function given e.g. by
formula (13.1) in [15, 24] that for all n ≥ 1,

mn(t, s) =
(et − 1)n+1(es − 1)n+1

etes(n!)2

n∑
j=1

[
n

j

]
(j!)2

(ts)j+1

∑
k∈Z

1(
1 + 2iπk

t

)j+1

∑
ℓ∈Z

1(
1 + 2iπℓ

s

)j+1

=
(et − 1)n+1(es − 1)n+1

etes(st)n+1

n−1∑
j=0

[
n

n− j

](
(n− j)!

n!

)2

(st)jRn−j(t, s)

where
Rn−j(t, s) =

(
1 + rn−j(t)

)(
1 + rn−j(s)

)
,

which is exactly what we wanted to prove. From now on, we can remark that mn

is clearly an holomorphic function with respect to t, resp. s, on C. Moreover, the
right hand-side of (6.2) is also an analytical function with respect to t, resp. s, at
least on C \ 2iπZ, which means that (6.2) holds true on (R∗)2. □

Remark 6.1. One can observe that for all t ∈ R∗,

mn(t, 0) = mn(0, t) =

(
et − 1

t

)n(
1− e−t

t

)∑
ℓ∈Z

(
1 +

2iπℓ

t

)−(n+1)

.

This formula can be used to simplify several computations done in [3].

We have seen in the proof of Lemma 6.1 that for all n ≥ 1, rn is an analytical
function on C \ (2iπZ). Then, Sn is defined on C2 \ (2iπZ)2, which implies that mn

is defined on C2.
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The next lemma recalls some useful known properties of unsigned Stirling numbers.

Lemma 6.2. We have for all k ≤ n,[
n

n− k

](
(n− k)!

n!

)2

≤ 1

k!
.

Moreover,

lim
n→+∞

[
n

n− k

](
(n− k)!

n!

)2

=
1

2kk!
.

Proof. For the first property, we use Definition 26.8.3 in [18] of the unsigned Stirling
numbers of first kind. The inequality follows by bounding the factors inside the sum
by the maximum element (n− 1)!/(n− k− 1)! and by noticing that there are

(
n−1
k

)
elements in the sum. The second property follows from formula 26.8.43 in [18] and
the Stirling approximation. □

The last lemma gives an upper-bound for the functions rn.

Lemma 6.3. For all n ≥ 1 and for all t ∈ R+, there exists a constants Ct such that
for any v ∈ [−π, π],

|rn(t+ iv)| ≤ Ct

∣∣∣∣ t+ iv

t+ i(2π − |v|)

∣∣∣∣n+1

≤ Ct.

Proof. We have for any v ∈ [−π, π],

|rn(t+ iv)|
∣∣∣∣t+ i(2π − |v|)

t+ iv

∣∣∣∣n+1

≤
∑
ℓ∈Z∗

∣∣∣∣t2 + (2π − |v|)2

t2 + (v + 2πℓ)2

∣∣∣∣n+1
2

.

Hereafter, assuming that v ∈ [−π, 0], we have∑
ℓ∈Z∗

∣∣∣∣t2 + (2π − |v|)2

t2 + (v + 2πℓ)2

∣∣∣∣n+1
2

= 1 +
∑
ℓ≥2

∣∣∣∣t2 + (2π − |v|)2

t2 + (v + 2πℓ)2

∣∣∣∣n+1
2

+
∑
ℓ≤−1

∣∣∣∣t2 + (2π − |v|)2

t2 + (v + 2πℓ)2

∣∣∣∣n+1
2

≤ 1 +
∑
ℓ≥2

∣∣∣∣ t2 + π2

t2 + 4π2(ℓ− 1)2

∣∣∣∣n+1
2

+
∑
ℓ≤−1

∣∣∣∣ t2 + π2

t2 + 4π2ℓ2

∣∣∣∣n+1
2

= 1 + 2
∑
ℓ∈N∗

∣∣∣∣ t2 + π2

t2 + 4π2ℓ2

∣∣∣∣n+1
2

< +∞,

since we have assumed that n + 1 ≥ 2. By symmetry the previous upper-bound
stays true for v ∈ [0, π], which gives us the announced result. □

6.2. Proof of Theorem 4.1. For all t, s ∈ R, denote by Ln the normalized cumu-
lant generating function

Ln(t, s) =
1

n
logmn(t, s).
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It follows from Lemma 6.1 that for all t, s ∈ R,

(6.4) lim
n→∞

Ln(t, s) = L(t, s) = log

((exp(t)− 1

t

)(exp(s)− 1

s

))
= L(t) + L(s)

where

L(t) = log

(
exp(t)− 1

t

)
.

The function L is finite and differentiable on all the real line. Then, we deduce
from the Gärtner-Ellis theorem, see e.g. Theorem 2.3.6 in [8], that the couple
(Dn/n,D

′
n/n) satisfies an LDP with good rate function I given by (1.7).

6.3. Proof of Theorem 4.2. Our goal is to establish, for all x and y in ]1/2, 1[, a
sharp asymptotic expansion of the probability

(6.5) P
( Dn

n− 1
≥ x,

D′
n

n− 1
≥ y
)
=

n−1∑
k=⌈(n−1)x⌉

n−1∑
k′=⌈(n−1)y⌉

P(Dn = k,D′
n = k′).

For all t, v, s, w ∈ R, we have

mn(t+ iv, s+ iw) =
n−1∑
k=0

n−1∑
k′=0

e(t+iv)k+(s+iw)k′P(Dn = k,D′
n = k′).

Therefore, for all 0 ≤ k, k′ ≤ n− 1 and in fact for all k, k′ ∈ Z, we obtain that

P(Dn = k,D′
n = k′) = e−tk−sk′ 1

(2π)2

∫
[−π,π]2

mn(t+ iv, s+ iw)e−ikv−ik′wdvdw.

As Dn and D′
n are smaller than n, we clearly have |mn(t + iv, s + iw)| ≤ e|t|n+|s|n.

Hence, it follows from (6.5) together with Fubini’s theorem that for all t, s > 0,

(6.6) P
( Dn

n− 1
≥ x,

D′
n

n− 1
≥ y
)
=

1

(2π)2

∫
[−π,π]2

mn(t+iv, s+iw)Σn(t+iv, s+iw)dvdw

where

Σn(t+ iv, s+ iw) =
+∞∑

k=⌈(n−1)x⌉

+∞∑
k′=⌈(n−1)y⌉

e−k(t+iv)−k′(s+iw)

=
(e−⌈(n−1)x⌉(t+iv)

1− e−(t+iv)

)(e−⌈(n−1)y⌉(s+iw)

1− e−(s+iw)

)
.

In the following, we choose t = tx and s = ty. One can observe that tx and ty are
both positive since x, y > 1/2. Consequently, we deduce from Lemma 6.1 and (6.6),
together with the fact that I(x) = xtx − L(tx) and {xn} = nx− ⌈(n− 1)x⌉, that

(6.7) P
( Dn

n− 1
≥ x,

D′
n

n− 1
≥ y
)
=
(e−nI(x)−tx{xn}

2π

)(e−nI(y)−ty{yn}

2π

)
In

where

In =

∫
[−π,π]2

e−nφx(v)−nφy(w)f 1
n(v, w)dvdw,
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with

φx(v) = −(L(tx + iv)− L(tx)− ixv)

and, for a ∈ {0, 1},

(6.8) fa
n(v, w) =

( ei{xn}v

tx + iv

)( ei{yn}w

ty + iw

)
Sa
n(tx + iv, ty + iw).

By using Lemmas 6.2 and 6.3, we easily obtain that

(6.9)
∣∣fa

n(v, w)
∣∣ ≤ etxty

txty
(1 + aCtx)(1 + aCty).

Hereafter, we split the integral In into two parts, In = Jn +Kn where

Jn =

∫
[−π/2,π/2]2

e−nφx(v)−nφy(w)f 1
n(v, w)dvdw,

Kn =

∫
[−π,π]2\[−π/2,π/2]2

e−nφx(v)−nφy(w)f 1
n(v, w)dvdw.

It follows from the last part of Lemma 5.1 in [3] that for all v ∈ R such that |v| ≤ π,

(6.10) −ℜ(φx(v)) = ℜ(L(tx + iv)− L(tx)) ≤ −λx
|v|2

2

where

λx =
t2xσ

2
x

t2x + π2
.

Then, by symmetry, we obtain from (6.9) and (6.10) that

|Kn| ≤ etxty

txty
(1 + Ctx)(1 + Cty)

∫
[−π,π]2\[−π/2,π/2]2

e−nℜ(φx(v)+φy(w))dvdw,

≤ 4etxty

txty
(1 + Ctx)(1 + Cty)

(
K1

n +K2
n +K3

n

)
(6.11)

where, via standard Gaussian calculations, K1
n, K

2
n and K3

n are such that

K1
n =

∫ π

π/2

exp
(
−nλxv

2

2

)
dv

∫ π

π/2

exp
(
−nλyw

2

2

)
dw ≤ 4

n2π2λxλy

exp
(
−nπ2

8

(
λx + λy

))
,

K2
n =

∫ π/2

0

exp
(
−nλxv

2

2

)
dv

∫ π

π/2

exp
(
−nλyw

2

2

)
dw ≤

√
2

nλy

√
nπλx

exp
(
−nπ2

8
λy

)
,

K3
n =

∫ π

π/2

exp
(
−nλxv

2

2

)
dv

∫ π/2

0

exp
(
−nλyw

2

2

)
dw ≤

√
2

nλx

√
nπλy

exp
(
−nπ2

8
λx

)
.
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Consequently, we clearly deduce from (6.11) that Kn goes exponentially fast to zero.
It only remains to study the integral Jn through the following three quantities,

Jn =

∫
[−π/2,π/2]2

e−nφx(v)−nφy(w)(f 1
n(v, w)− f 0

n(v, w))dvdw

+

∫
[−π/2,π/2]2

e−nφx(v)−nφy(w)(f 0
n(v, w)− f 0

n(0, 0))dvdw

+ f 0
n(0, 0)

∫
[−π/2,π/2]2

e−nφx(v)−nφy(w)dvdw = J1
n + J2

n + J3
n.

On the one hand, we have from (6.3) that

f 0
n(0, 0) =

1

txty

n−1∑
k=0

an,k where an,k =

[
n

n− k

](
(n− k)!

n!

)2

(txty)
k.

We obtain from Lemma 6.2 that

lim
n→+∞

an,k =
tkxt

k
y

2kk!
and 0 ≤ an,k ≤

tkxt
k
y

k!
.

Therefore, we can apply the dominated convergence theorem to get that

lim
n→+∞

f 0
n(0, 0) =

e
txty
2

txty
.

On the other hand, recalling (6.10) and using a slight extension of the usual Laplace
method given by Lemma 5.2 in [3], we obtain that∫

[−π/2,π/2]2
e−nφx(v)−nφy(w)dvdw =

2π

nσxσy

(1 + o(1)),

which ensures that

(6.12) J3
n =

2π

nσxσy

e
txty
2

txty
(1 + o(1)).

Furthermore, one can observe that S0
n(tx+iv, ty+iw) is a bounded Lipschitz function

on [−π/2, π/2]2, uniformly in n. Indeed, by using Lemma 6.2, we have∣∣∣S0
n(tx + iv, ty + iw)

∣∣∣ ≤ n−1∑
k=0

1

k!

(
tx + |v|

)k(
ty + |w|

)k ≤ exp
((

tx +
π

2

)(
ty +

π

2

))
,

and ∣∣∣∂S0
n(tx + iv, ty + iw)

∂v

∣∣∣ ≤ n−1∑
k=1

k(tx + |v|
)k−1(

ty + |w|
)k

k!
,

≤
(
ty +

π

2

)
exp
((

tx +
π

2

)(
ty +

π

2

))
.

Since S0
n(tx+ iv, ty+ iw) = S0

n(ty+ iw, tx+ iv), it implies that there exists a positive
constant C which does not depend on n, such that

|f 0
n(v, w)− f 0

n(0, 0)| ≤ C(|v|+ |w|).
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Applying this bound, inequality (6.10) and the usual Laplace method, we obtain

(6.13) |J2
n| ≤ C

∫
[−π/2,π/2]2

e−nℜ(φx(v)+φy(w))(|v|+ |w|)dvdw.

Hence, as for Kn, J
2
n goes exponentially fast to zero. Hereafter, we just have to

study the last term J1
n in order to conclude. By using Lemma 6.3, we have, for all

v ∈ [−π/2, π/2] and for all n ≥ 1,

|rn(tx + iv)| ≤ Ctx(qx)
n+1 where qx =

(
t2x + (π/2)2

t2x + (3π/2)2

)1/2

.

One can observe that 0 < qx < 1, which means that rn(tx + iv) goes exponentially
fast to zero. Then, by using once again Lemma 6.2, we obtain from (6.3) that for
all (v, w) ∈ [−π/2, π/2]2,∣∣f 1

n(v, w)− f 0
n(v, w)

∣∣ ≤ 1

txty

n−1∑
k=0

(tx + |v|)k(ty + |w|)k

k!

∣∣Rn−k(tx + v, ty + iw)− 1
∣∣,

≤ Ctx(qx)
n+1

txty
exp
( 1

qx

(
tx +

π

2

)(
ty +

π

2

))
+

Cty(qy)
n+1

txty
exp
( 1

qy

(
tx +

π

2

)(
ty +

π

2

))
+

CtxCty(qxqy)
n+1

txty
exp
( 1

qxqy

(
tx +

π

2

)(
ty +

π

2

))
.

Consequently, we deduce from inequality (6.10) that J1
n goes exponentially fast to

zero. Finally, the only contribution for the integral In is given by (6.12) and (6.7)
clearly leads to (4.1). From now on, we shall carry out the proof of (4.3). Equation
(6.6) becomes, for all t, s < 0,

P
( Dn

n− 1
≤ 1−x,

D′
n

n− 1
≤ 1−y

)
=

1

(2π)2

∫
[−π,π]2

mn(t+iv, s+iw)Σn(t+iv, s+iw)dvdw

where

Σn(t+ iv, s+ iw) =

⌊(n−1)(1−x)⌋∑
k=−∞

⌊(n−1)(1−y)⌋∑
k′=−∞

e−k(t+iv)−k′(s+iw)

=
(e−(⌊(n−1)(1−x)⌋+1)(t+iv)

e−(t+iv) − 1

)(e−(⌊(n−1)(1−y)⌋+1)(s+iw)

e−(s+iw) − 1

)
.

In the following, we choose t = t1−x and s = t1−y. In contrast with the previous
case, we have t1−x = −tx < 0, t1−y = −ty < 0 and I(1− x) = I(x), I(1− y) = I(y).
Moreover, a simple computation shows that for any z ∈ R,

n(1− z)− ⌊(n− 1)(1− z)⌋ − 1 = −(nz − ⌈(n− 1)z⌉).
Then, via the same arguments as in the proof of (6.7), we find that

P
( Dn

n− 1
≤ 1− x,

D′
n

n− 1
≤ 1− y

)
=
(e−nI(1−x)−t1−x{xn}

2π

)(e−nI(1−y)−t1−y{yn}

2π

)
In,

=
(e−nI(x)+tx{xn}

2π

)(e−nI(y)+ty{yn}

2π

)
In
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where

In =

∫
[−π,π]2

e−nφ1−x(v)−nφ1−y(w)f 1
n(v, w)dvdw,

with

φ1−x(v) = −(L(−tx + iv)− L(−tx)− i(1− x)v)

and, for a ∈ {0, 1},

fa
n(v, w) =

(e−i{xn}v

tx − iv

)(e−i{yn}w

ty − iw

)
Sa
n(−tx + iv,−ty + iw).

Therefore, we just have to make use of the same calculations as previously done to
show (4.3). Finally, we establish (4.4) and (4.5) using the same lines, which com-
pletes the proof of Theorem 4.2.

7. Proof of the construction of the probability space

Recall the construction made in Section 2. We call fiber and we denote by Fn(ℓ)
the set of cells

{
Cn(k, ℓ)

/
k ∈ {1, 2, . . . , n+ 1}

}
for ℓ ∈ {1, 2, . . . , n+ 1}.

0

4/5

3/5

2/5

1/5

1/5 2/5 3/5 4/5

C4(1, 4)

F4(4)

Figure 2. Graphical representation of π4 = (2314) to the left. We
colored in light blue the cell C4(1, 4) and in light red the cells belonging
to the fiber F4(4).

The following lemma states that the number of cells in each fiber with ∆Dn+1 = +1
depends only on the number of descent of πn and has a closed formula.

Lemma 7.1. For each ℓ ∈ {1, 2, . . . , n + 1}, the fiber Fn(ℓ) in the graphical repre-
sentation has n−Dn cells with increment +1 and Dn+1 with increment 0. In other
words, Card

{
k
/
∆Dn+1(k, ℓ) = 1

}
= n−Dn, Card

{
k
/
∆Dn+1(k, ℓ) = 0

}
= Dn + 1.

Proof. For each point p = (k/(n+1), ℓ/(n+1)) in GR(πn), we color in red the cells
that are adjacent to the left of the line k/(n+ 1)× [0, 1] and that are bigger than p
and we color in blue the cells adjacent to the right of the line k/(n+ 1)× [0, 1] and
that are smaller than the point p.
Let Rn(k, ℓ) = 1 if the cell Cn(k, ℓ) is colored red and 0 otherwise, and let Bn(k, ℓ) = 1
if the cell Cn(k, ℓ) is colored blue and 0 otherwise. With our representation, note
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Figure 3. Coloring of the graphical representation associated to
π4 = (2314).

that every point induce exactly one cell colored in each fiber, that is for all (k, ℓ) in
{1, . . . , n+ 1}2,

(7.1) Rn(k, ℓ) +Bn(k + 1, ℓ) = 1.

This property can be easily checked in Figure 4 A). Let ℓ ∈ {1, 2, . . . , n+ 1} be the
fiber under study. A deeper analysis shows that there are four cases for each cell.

L) The cell belongs to the left boundary, i.e. Cn(1, ℓ) . In this case, it cannot be
colored blue and it has an increment +1 if the cell is colored red, otherwise
the increment is 0, see Figure 4 B). The function Rn(1, ℓ) is equal to the
indicator function of the cell having increment +1.

R) The cell belongs to the right boundary, i.e. Cn(n + 1, ℓ). In ths case, it
cannot be colored red and it has an increment +1 if the cell is colored blue,
otherwise the increment is 0, see Figure 4 B). The function Bn(n + 1, ℓ) is
equal to the indicator function of the cell having increment +1.

I) The cell belongs to the inner columns, i.e. Cn(k, ℓ) for k ∈ {2, 3, . . . , n}. In
this case, it depends on whether or not there is a descent at k − 1 for πn.

I0) If πn(k− 1) < πn(k), then the cell adds an increment +1 if it is colored only
red or only blue, and in this case it cannot be simultaneously colored blue
and red, see Figure 4 B). The indicator function of the cell having increment
+1 can be written as Rn(k, ℓ) +Bn(k, ℓ).

I1) If πn(k − 1) > πn(k), then the cell adds an increment +1 if it is colored red
and blue, otherwise the increment is 0. Notice that when Dn(k − 1) = 1, all
the cells in {Cn(k, ℓ)

/
ℓ ∈ {1, 2, . . . , n+ 1}} are colored by at least one color,

see Figure 4 B). It can easily be checked that the indicator function of the
cell having increment +1 can be written as Rn(k, ℓ) +Bn(k, ℓ)− 1.

For each ℓ ∈ {1, 2, . . . , n+1} and for the fiber Fn(ℓ), we obtain that the sum of cells
with increment +1 is given by Σ1

n + Σ2
n + Σ3

n where Σ1
n = Rn(1, ℓ) +Bn(n+ 1, ℓ),

Σ2
n =

∑
k∈{2,...,n}

πn(k−1)<πn(k)

(Rn(k, ℓ) +Bn(k, ℓ)),

Σ3
n =

∑
k∈{2,...,n}

πn(k−1)>πn(k)

(Rn(k, ℓ) +Bn(k, ℓ)− 1).
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(a) (b)

Figure 4. Figure A): In each fiber, there is exactly one red or blue
cell induced by each point of the permutation, as stated by (7.1).
Figure B): From left to right, we show the cases in R), L), I0) and I1),
respectively.

Finally, we deduce from (1.1) and (7.1) that

Σ1
n + Σ2

n + Σ3
n =

n∑
k=1

(Rn(k, ℓ) +Bn(k + 1, ℓ))−Dn = n−Dn.

Moreover, as the cells can have either increments +1 or 0, we find that the sum of
cells with increment 0 is given by n+ 1− n+Dn = Dn + 1. □

Corollary 7.1. For every permutation πn ∈ Sn, out of the (n + 1)2 cells in our
graphical representation, there are exactly (n+ 1)(n−Dn) cells with increment +1.

We are now in the position to prove Theorem 2.1.

Proof of Theorem 2.1. We claim that it is enough to show that

(7.2) Nn+1(1, 1, πn) = (n−Dn)(n−D′
n) + n.

As a matter of fact, for a permutation πn ∈ Sn, denote π̄n = n−πn. The permutation
π̄n is a bijective involution, which exchanges the descents (resp. ascents) of πn into
ascents (resp. descents) of π̄n and it does the same for π−1

n and π̄−1
n . Since in total

the ascents and descents sum up to n−1, we have that the descents for π̄n are equal
to Dn + 1 and the descents for π̄−1

n are equal to D′
n + 1. Therefore, we have

Nn+1(0, 0, πn) = Nn+1(1, 1, π̄n) = (Dn + 1)(D′
n + 1) + n.

Moreover, for Nn+1(1, 0, πn), it follows from to Corollary 7.1 that

Nn+1(1, 0, πn) +Nn+1(1, 1, πn) = (n+ 1)(n−Dn),

which clearly leads via (7.2) to

Nn+1(1, 0, πn) = (n+ 1)(n−Dn)− (n−Dn)(n−D′
n)− n,

= (n−Dn)(D
′
n + 1)− n.

Consequently, as

Nn+1(1, 1, πn) +Nn+1(1, 0, πn) +Nn+1(0, 1, πn) +Nn+1(0, 0, πn) = (n+ 1)2,
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we find that

Nn+1(0, 1, πn) = (Dn + 1)(n−D′
n)− n.

Hereafter, we focus our attention on the proof of (7.2) by induction on the size of
the permutation.

The base case n = 1 is easy to check since there is only one possible permutation,
the identity for 1 element, which is equal to its inverse. Consequently, we have
N2(1, 1, π1) = 2 = (1−D1)(1−D′

1) + 1 where D1 = D′
1 = 0.

For the induction step, suppose that (7.2) holds true for n ≥ 1 and let πn+1 be
a permutation of size Sn+1. We define πn as the permutation induced by πn+1

when one takes out πn+1(n + 1), see Figure 5 below. More precisely, we see πn as
the permutation (πn+1(k)

/
k ∈ {1, . . . , n}) with respect to the relative order of the

images present in this vector from left to right.

C∗

Figure 5. Permutation π3 = (213) (to the right) induced from π4 =
(2143) (to the left) when taking out π4(4) = 3. We keep track of the
increment behavior of the red cell during the induction.

We denote by C∗ the cell in πn where the point u belongs to create the whole
permutation πn+1. It is important to note that if the cell C∗ = Cn(n + 1, ℓ) where
ℓ ∈ {1, . . . , n + 1}, then the increment behavior of this cell fixes the relative order
of πn(n) and the values of the inverse for ℓ and ℓ− 1, that is π−1

n (ℓ) and π−1
n (ℓ− 1),

this are the three points we plot in each case of what follows. It is also important to
observe that the increment behavior of the gray cells in Figure 5 remain invariant
by this transformation. There are four possible cases depending on u ∈ C∗.

1) ∆Dn+1 = 1 and ∆D′
n+1 = 1. In this case, the relative order of πn(n), π

−1
n (ℓ)

and π−1
n (ℓ− 1) is given in Figure 6.

In this case, as Dn+1 = Dn + 1 and D′
n+1 = D′

n + 1, we have from (7.2) that

Nn+2(1, 1, πn+1) = Nn+1(1, 1, πn)− 1 + 2,

= (n−Dn)(n−D′
n) + n+ 1

= (n+ 1−Dn+1)(n+ 1−D′
n+1) + n+ 1,

where the first equality follows since the only cell which is simultaneously
red and blue becomes two cells that are simultaneously red and blue.

2) ∆Dn+1 = 1 and ∆D′
n+1 = 0. In this case, the relative order of πn(n), π

−1
n (ℓ)

and π−1
n (ℓ− 1) is given in Figure 7.
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Figure 6. Relative order of πn(n), π
−1
n (ℓ) and π−1

n (ℓ− 1) in case 1).
The blue cells are cells with ∆Dn+1 = 1 and the red cells are cells
with ∆D′

n+1 = 1.

Figure 7. Relative order of πn(n), π
−1
n (ℓ) and π−1

n (ℓ− 1) in case 2).
The blue cells are cells with ∆Dn+1 = 1 and the red cells are cells
with ∆D′

n+1 = 1.

What remains is to count the number of cells in the delimited green box in
the right of Figure 7 that are also colored in blue. We do this bijectively
from the left. The quantity of cells in the delimited green box to the right
having ∆Dn+2 = 1 are in bijection with the ones having ∆Dn+1 = 1 in the
green box to the left. One has from Lemma 7.1 applied to πn that there
are n − Dn − 1 cells in the delimited green part, the −1 coming from the
cell C∗, which is colored blue, meaning that ∆Dn+1 = 1. Consequently, as
Dn = Dn+1 + 1 and D′

n = D′
n+1, we have from (7.2) that

Nn+2(1, 1, πn+1) = Nn+1(1, 1, πn) + n−Dn − 1 + 2

= (n−Dn)(n−D′
n) + n+ 1 + (n−Dn)

= (n−Dn)(n+ 1−D′
n) + n+ 1

= (n+ 1−Dn+1)(n+ 1−D′
n+1) + n+ 1.

3) ∆Dn+1 = 0 and ∆D′
n+1 = 1. It follows from a similar argument as in case

2) using Lemma 7.1 applied to π−1
n .

4) ∆Dn+1 = 0 and ∆D′
n+1 = 0. It follows by joining the argument in cases 2)

and 3) using once again Lemma 7.1 applied to πn and π−1
n simultaneously.

□
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8. Proof of the martingale results

Finally, we shall proceed with the proof of the martingale results concerning the
couple(Dn, D

′
n) such as the functional central limit theorem, the quadratic strong

law and the law of iterated logarithm.

Proof of Proposition 3.1. We already saw from (3.5) that the predictable quadratic
variation ⟨M⟩n of the locally square integrable martingale (Mn) is given by

⟨M⟩n =
n−1∑
k=1

(
(k −Dk)(Dk + 1) k

k (k −D′
k)(D

′
k + 1)

)
.

It follows from the almost sure convergences

(8.1) lim
n→∞

Dn

n
=

1

2
and lim

n→∞

D′
n

n
=

1

2

together with the classical Toeplitz lemma that

(8.2) lim
n→∞

1

n3
⟨M⟩n =

1

12

(
1 0
0 1

)
a.s.

Consequently, we immediately obtain from (8.2) that for all t ≥ 0,

(8.3) lim
n→∞

1

n3
⟨M⟩⌊nt⌋ =

t3

12

(
1 0
0 1

)
a.s.

It is not hard to see that (Mn) satisfies Lindeberg’s condition since for all n ≥ 1, the
increments ||∆Mn|| ≤ 2n. Therefore, we deduce from the functional central limit
theorem for martingales given e.g. in Theorem 2.5 of [10] that

(8.4)
( 1√

n3
M⌊nt⌋, t ≥ 0

)
=⇒

(
Bt, t ≥ 0

)
where

(
Bt, t ≥ 0

)
is a continuous two-dimensional centered Gaussian process starting

from the origin with covariance matrix given, for all 0 < s ≤ t, by

E[BsB
T
t ] =

s3

12

(
1 0
0 1

)
.

Finally, (3.4) and (8.4) lead to (3.6) where Wt = Bt/t
2, which completes the proof

of Proposition 3.1. □

Proof of Proposition 3.2. We shall make use of the quadratic strong law for scalar
martingales given e.g. by Theorem 3 in [2]. For any vector u of R2, denote Mn(u) =
⟨u,Mn⟩. It follows from (3.4) that

(8.5) Mn(u) = n

(
⟨u, Vn⟩ −

(n− 1)

2
⟨u, v⟩

)
.

We obtain from (3.1) and (8.5) that Mn(u) can be rewritten in the additive form

(8.6) Mn(u) =
n∑

k=1

k εk(u)
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where εn+1(u) = ⟨u, ξn+1 − πn⟩ and πn is the vector of R2 given by πn = (pn, p
′
n)

T .
One can observe that (Mn(u)) is a locally square integrable scalar martingale. Since
for any vector u of R2,

E
[(
Mn+1(u)−Mn(u)

)2|Fn

]
= uTE

[
(Mn+1 −Mn)(Mn+1 −Mn)

T |Fn

]
u,

= uT (⟨M⟩n+1 − ⟨M⟩n)u,
we deduce from (3.5) and (8.6) that

E
[
ε2n+1(u)|Fn

]
=

1

(n+ 1)2
uT

(
(n−Dn)(Dn + 1) n

n (n−D′
n)(D

′
n + 1)

)
u.

Consequently, we obtain from (8.1) that

(8.7) lim
n→∞

E
[
ε2n+1(u)|Fn

]
=

1

4
||u||2 a.s.

Moreover, we already saw that for all n ≥ 1, the increments ||∆Mn|| ≤ 2n which
implies that |εn(u)| ≤ 2||u||, leading to

sup
n≥0

E
[
ε4n+1(u)|Fn

]
< ∞ a.s.

Therefore, it follows from the quadratic strong law for scalar martingales that

(8.8) lim
n→∞

1

log sn

n∑
k=1

fk

(M2
k (u)

sk

)
=

1

4
||u||2 a.s.

where

fn =
n2

sn
and sn =

n∑
k=1

k2.

We clearly have that nfn converges to 3 which immediately implies that fn goes to
zero. Consequently, the quadratic strong law (8.8) reduces to

(8.9) lim
n→∞

1

log n

n∑
k=1

M2
k (u)

k4
=

1

12
||u||2 a.s.

Therefore, we deduce from (8.5) and (8.9) that for any vector u of R2,

(8.10) lim
n→∞

1

log n

n∑
k=1

1

k2
uT

(Dk

k
− 1

2
D′

k

k
− 1

2

)(Dk

k
− 1

2
D′

k

k
− 1

2

)T

u =
1

12
||u||2 a.s.

By virtue of the second part of Proposition 4.2.8 in [9], we obtain from (8.10) that

(8.11) lim
n→∞

1

log n

n∑
k=1

1

k2

(Dk

k
− 1

2
D′

k

k
− 1

2

)(Dk

k
− 1

2
D′

k

k
− 1

2

)T

=
1

12

(
1 0
0 1

)
a.s.

Furthermore, we obviously obtain (3.8) by taking the trace on both sides of (8.11).
It only remains to prove the law of iterated logarithm (3.9). We clearly have

∞∑
n=1

f 2
n < ∞.
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Hence, it follows from the law of iterated logarithm for martingales due to Stout
[22], see also Corollary 6.4.25 in [9], that for any vector u of R2,

lim sup
n→∞

( 1

2n3 log log n

)1/2
Mn(u) = − lim inf

n→∞

( 1

2n3 log log n

)1/2
Mn(u)

=
1√
12

||u|| a.s.(8.12)

Therefore, we obtain from (8.12) that for any vector u of R2,

lim sup
n→∞

1

2n3 log log n
⟨u,Mn⟩2 =

1

12
||u||2 a.s.

which leads to

(8.13) lim sup
n→∞

1

2n3 log log n
||Mn||2 =

1

6
a.s.

Finally, we deduce (3.9) from (8.13), which achieves the proof of Propostion 3.2. □
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