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Abstract

We propose a local, past-oriented fragment of propositional dynamic logic to reason
about concurrent scenarios modelled as Mazurkiewicz traces, and prove it to be expressively
complete with respect to regular trace languages. Because of locality, specifications in this
logic are efficiently translated into asynchronous automata, in a way that reflects the struc-
ture of formulas. In particular, we obtain a new proof of Zielonka’s fundamental theorem
and we prove that any regular trace language can be implemented by a cascade product of
localized asynchronous automata, which essentially operate on a single process.

These results refine earlier results by Adsul et al. which involved a larger fragment of
past propositional dynamic logic and used Mukund and Sohoni’s gossip automaton. Our
new results avoid using this automaton, or Zielonka’s timestamping mechanism and, in
particular, they show how to implement a gossip automaton as a cascade product.

Keywords — Mazurkiewicz traces, propositional dynamic logic, regular trace languages,
expressive completeness, asynchronous automata, cascade product, Krohn Rhodes theorem,
Zielonka’s theorem, Gossip automaton

1 Introduction

Mazurkiewicz traces [16] (just called traces in this paper) are a well-established model of con-
current behaviours. Each specifies a partial order on events of a scenario in which a fixed set
of processes, organized along a distributed architecture, interact with each other via shared
actions. Traces have been extensively studied, with a particular attention to the class of reg-
ular trace languages [9, 8]. The significance of that class arises from its expressivity, which is
equivalent to Monadic-Second-Order (MSO) logic definability [20, 10, 13], and from the fact
that regular trace languages can be implemented by asynchronous automata (also known as
Zielonka automata) [21]. Asynchronous automata yield implementations which fully exploit the
distributed architecture of the processes.
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Our main result establishes that a local, past-oriented fragment of Propositional Dynamic
Logic (PDL) for traces, called LocPastPDL, is expressively complete with respect to regular
trace languages. Let us first comment on the significance of this logic.

PDL was introduced in [11] to reason about arbitrary programs. LDL, a purely future-
oriented version of PDL, was developed in [7] to reason about properties of finite words, and was
shown to be expressively complete with respect to regular word languages. A more recent work
[12] studied a purely past-oriented version of LDL and showed that it is expressively complete
and admits a singly exponential translation into deterministic finite-state automata which is
an exponential improvement over LDL. PDL has also been applied to message sequence charts
(MSC) and related systems in [6, 17]. More recently, a star-free version of PDL interpreted
over MSC was shown to be expressively complete with respect to first-order logic [5]. These
prior works have successfully demonstrated that PDL is a suitable logical formalism for writing
specifications in a variety of contexts. On the one hand, it naturally extends linear temporal
logics by permitting richer path formulas to express regular specification patterns easily. On the
other hand, it supports efficient translations into automata-theoretic models, which are central
to the resolution of many verification or synthesis problems.

The logic LocPastPDL admits three types of local and past-oriented formulas: trace formulas,
event formulas and path formulas. A trace formula is a boolean combination of basic trace
formulas of the form EMi ϕ asserting that the last event of process i satisfies the event formula
ϕ. It is local and past in the sense that its satisfaction depends only on the past information
available to process i.

The event formulas reason about the causal past of events. They are boolean combinations
of (a) atomic checks of letters (or actions), (b) formulas of the form 〈π〉 claiming the existence
of a path π starting at the current event. The path formula π, necessarily localized at a process,
allows to march along the sequence of past events in which that process participates, checking
for regular patterns interspersed with local tests of other event formulas.

A typical event formula contains inside it several localized path formulas which in turn
contain other event formulas through embedded tests. This natural hierarchical structure of
LocPastPDL formulas renders them easier to design and to understand.

It turns out that our logic LocPastPDL is essentially a fragment of LocPastPDL[Y, L] which
was introduced in [3] and shown to be expressively complete. The logic LocPastPDL[Y, L] also
supports additional constant event/trace formulas to compare the leading events for each pro-
cess. The expressive completeness result for LocPastPDL[Y, L] crucially exploits the presence of
these additional constant formulas. Keeping track of the ordering information between leading
process events is a fundamental and very difficult problem in concurrency theory. Its solu-
tion as an asynchronous automaton, called a gossip automaton [21, 18], is a key distributed
time-stamping mechanism and a crucial ingredient in many asynchronous automata-theoretic
constructions [21, 14].

The central result of this work is that LocPastPDL is itself expressively complete. This is
done by eliminating constant formulas in LocPastPDL[Y, L] using entirely new techniques.

Another important contribution is an efficient translation of LocPastPDL formulas into local
cascade products of localized asynchronous automata (this, without any claim about efficiency,
was already implicit in [3]). In asynchronous automata, each process runs a finite local-state
device and these devices synchronize with each other on shared actions. As in [18, 1, 2], one
can use asynchronous automata to also locally compute relabelling functions on input traces,
similar in spirit to the sequential letter-to-letter transducers on words.

The local cascade product of asynchronous automata (or transducers) from [4, 1, 2] is a
natural generalization of cascade product in the sequential setting and, like in the word case
[19], it corresponds to compositions of related relabelling functions. Note that, in a cascade
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Figure 1: Cascade Product

product, the information flow is unidirectional and hierarchical.
The natural hierarchical structure of LocPastPDL formulas makes it possible to translate

them in a modular way into a local cascade product of asynchronous automata. The locality
of LocPastPDL is also an asset: each level in the cascade product implementing a formula is a
localized asynchronous automaton, that is, one where all actions take place on a single process,
and the other processes do nothing at all. In other words, these automata are essentially
classical automata, operating on a single process, and this is much simpler to understand and
verify. The past orientation of LocPastPDL makes our implementation deterministic. Finally,
a LocPastPDL formula can be computed by a local cascade product of localized asynchronous
transducers/automata whose global-state space is singly exponential in the size of the formula.

The construction described above, coupled with the expressive completeness of LocPastPDL
has some striking applications. It easily provides a new proof of Zielonka’s theorem. Another
important application is a distributed Krohn-Rhodes theorem. The classical Krohn-Rhodes
theorem [15] implies that every regular word language can be accepted by a cascade product of
simple automata, namely, two-state reset automata and permutation automata. Our distributed
version states that every regular trace language can be accepted by a local cascade product
of localized two-state asynchronous reset automata and localized asynchronous permutation
automata.

Additionally, we show that a gossip automaton/transducer can be implemented as a local
cascade product of localized asynchronous automata/transducers. It is important to note that
the previously known implementations of gossip as an asynchronous transducer were intrinsically
non-local and non-hierarchical. They rely on a delicate reuse of (boundedly many) time-stamps.
A process assigning the time-stamps also needs to collect the information about which of its
earlier time-stamps are in use by other processes. Given the ‘circular/self-referential’ nature
of this information flow, it appeared rather counter-intuitive that a gossip transducer could
be implemented as a local cascade product (which is unidirectional in nature) of localized
asynchronous automata (in which only one process is active).

We prove that LocPastPDL is expressively complete by showing that the constant formulas
in LocPastPDL[Y, L] can be defined in LocPastPDL itself. To do so, we develop an apparatus of
special deterministic path formulas, called sd-path formulas, which suffice to address the leading
events of processes in a bounded fashion. Then we reduce the problem of checking the causal
ordering of these leading events to the problem of checking the causal ordering of the events
addressed by sd-path formulas. We next show that the causal ordering of events addressed by
sd-path formulas can be reduced to equality of such events, for possibly different and longer
sd-path formulas. Finally, the equality formulas are constructed with the help of separating
formulas. Given a non-trivial sd-path formula π, we construct a finite set Ξ(π) of separating
formulas which separate every event e from π(e), the event referred from e via address π. The
construction of these formulas, while intricate, is entirely novel and constitutes the technical
core of this work.

We now describe the organization of the paper. In Section 2, we present the logics of
interest, in particular LocPastPDL, after setting up basic preliminary notation. Section 3 carries
out the sophisticated task of expressing constant formulas in LocPastPDL. The next Section 4
develops the efficient translation into local cascade product of asynchronous devices and provides
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the aforementioned applications of our expressive completeness result. We finally conclude in
Section 5.

2 Local Past Propositional Dynamic Logic

2.1 Basic notions about traces

Let P be a finite, non-empty set of processses. A distributed alphabet over P is a family
Σ̃ = {Σi}i∈P of finite non-empty sets which may have non-empty intersection. The elements
of Σi are called the letters, or actions, that process i participates in. Let Σ =

⋃
i∈P Σi. Letters

a, b ∈ Σ are said to be dependent if some process participates in both of them (∃i ∈P, a, b ∈ Σi);
otherwise they are independent.

A poset is a pair (E,≤) where E is a set and ≤ is a partial order on E. For e, e′ ∈ E, e′

is an immediate successor of e (denoted by e < ·e′ ) if e < e′ and there is no g ∈ E such that
e < g < e′. A (Mazurkiewicz ) trace t over Σ̃ is a triple t = (E,≤, λ), where (E,≤) is a finite
poset, whose elements are referred to as events, and λ : E → Σ is a labelling function which
assigns a letter from Σ to each event, such that

1. for e, e′ ∈ E, if e < ·e′, then λ(e) and λ(e′) are dependent;

2. for e, e′ ∈ E, if λ(e) and λ(e′) are dependent, then either e ≤ e′ or e′ ≤ e.

Let t = (E,≤, λ) be a trace over Σ̃. Let i, j ∈ P be processes. Events in which process i
participates (that is: whose label is in Σi), are called i-events and the set of such i-events is
denoted by Ei. Ei is clearly totally ordered by ≤. We define the location of an event e ∈ E to
be the set loc(e) of processes that participate in e, that is, loc(e) = {i ∈ P | λ(e) ∈ Σi}. We
slightly abuse notation to define location for letters as well: loc(a) = {i ∈P | a ∈ Σi}. The set
of events in the past of e is written ↓e = {f ∈ E | f ≤ e} and the set of events in the strict past
of e is written ⇓e = {f ∈ E | f < e}. If Ei ∩ ⇓e 6= ∅, we denote by Yi(e) the maximum i-event
in the strict past of e. We denote by Yi,j(e) the event Yj(Yi(e)), if it exists. If Ei 6= ∅, we
denote by Li(t) the maximum (that is, last) i-event. If in addition Ej ∩ ↓ Li(t) 6= ∅, we denote
by Li,j(t) the maximum j-event in the past of the maximum i-event.

A set of traces over Σ̃ is called a trace language. Regular trace languages admit several
characterizations, in particular in terms of MSO logic [20] or of asynchronous (or Zielonka)
automata [21].

Example 2.1. Fig. 2 represents a trace with 11 events over 4 processes. The process set is
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Figure 2: Process trace diagram with labelled events.

P = {1, 2, 3, 4} and the event set is E = {e1, . . . , e11}. Each process is indicated by a horizontal
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line and time flows rightward. Each event is represented by a vertical box. Events are either
local to a process, or they are non-local. Dots in the non-local events, indicate the participating
processes. Each event is labelled by a letter in Σ = {a1, a2, a3, a4, b, c, d, e}. The distributed
alphabet Σ̃ = {Σi}i∈P , is clear from the diagram, for example Σ4 = {b, e, a4}. It is easy to
infer causality relation (≤) looking at the diagram, for example, e4 < e5 < e6 < e9. We can
also infer which events are concurrent (not related by ≤): for example, event e7 is concurrent
to events e5, e6, e8, while the pairs of events e5, e6 and e5, e8 are causally ordered by process 3
and process 2, respectively.

Taking a look at the maximum events of each process, we observe that L1(t) = e10, L2(t) =
e10, L3(t) = e9 and L4(t) = e11. The maximum event for a process need not be a maximal event
in the trace: for instance L3(t) = e9 < e11 = L4(t). By definition, if Li(t) is a j-event, then
Li,j(t) = Li(t), as in the case of L1,1(t) = L1,2(t) = L1(t) = e10. If Li(t) is not a j-event, then
Li,j(t) = Yj(Li(t)) < Li(t): for instance L1,3(t) = Y3(L1(t)) = e5 and L1,4(t) = Y4(L1(t)) = e7.

Events of the form Yi(e) and Yi,j(e) are also directly visible, e.g. Y4(e6) = e3, Y3(e8) = e5

and Y3,4(e8) = Y4(Y3(e8)) = Y4(e5) = e3. Note that Yi(e) may not exist for every event, for
instance Y4(e4) does not exist. ut

2.2 Syntax and Semantics of LocPastPDL

We first introduce the past propositional dynamic logic PastPDL with the following syntax:

Φ ::= EMi ϕ | Φ ∨ Φ | ¬Φ

ϕ ::= a | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ
π ::=←i | ϕ? | π + π | π · π | π∗

Trace formulas (of the form Φ) are evaluated over traces, hence they define trace languages.
Event formulas (of the form ϕ) are evaluated at an event in a given trace and path formulas (of
the form π) are evaluated at a pair of events in a given trace.

The semantics of PastPDL is as follows (ommitting the classical boolean connectives): For
a trace t = (E,≤, λ), events e, f ∈ E and process i ∈P, we let

t |= EMi ϕ if Ei 6= ∅, and t, Li(t) |= ϕ,

t, e |= a if λ(e) = a,

t, e |= 〈π〉ϕ if there exists an event f such that

t, e, f |= π and t, f |= ϕ,

t, e, f |=←i if e and f are i-events and

e is the immediate successor of f on process i,

t, e, f |= ϕ? if e = f and t, e |= ϕ,

t, e, f |= π1 + π2 if t, e, f |= π1 or t, e, f |= π2

t, e, f |= π1 · π2 if there exists an event g such that

t, e, g |= π1 and t, g, f |= π2

t, e, f |= π∗ if there exist events e = e0, e1, . . . , en = f

(n ≥ 0) and t, ei, ei+1 |= π for each 0 ≤ i < n.

We observe that path formulas π can be seen as regular expressions over the (infinite)
alphabet consisting of the left moves←i (i ∈P) and the test formulas of the form ϕ?. The left
moves in this regular expression are called the top-level moves of π. We say that π is i-local for
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some process i ∈P if all its top-level moves are of the form ←i.
1 We then define LocPastPDL

to be the local fragment of PastPDL where every path formula is local — that is, i-local for
some i (see [3, Section 3]).

Example 2.2. The trace in Fig. 2 satisfies the following trace formula in LocPastPDL:

EM1(〈←1 · (d ∨ 〈←4〉>)? · ←1〉c)︸ ︷︷ ︸
ϕ1

∨EM3(〈←4〉b)︸ ︷︷ ︸
ϕ2

.

ϕ2 evaluates to ⊥ since if we move one event in the past on the process 4 line from event
L3(t) = e9, we encounter event e7 which is not labelled b. Now we examine ϕ1. If we move
one event in the past on the process 1 line, from event L1(t) = e10, we are at event e7. At
e7 we check that backward movement is possible on process 4 line, since e3 exists. Hence the
embedded test formula succeeds, and we move back again on process 1 line from event e7, to
see that we reach event e4, which is labelled c. This shows that ϕ1 evaluates to > which in turn
means the whole formula evaluates to >. ut

The main result of this paper (Theorem 3.1 below) is the expresssive completeness of
LocPastPDL with respect to regular trace languages. The proof uses the expressive completeness
[3] of another variant of PastPDL. First we consider the variant PastPDL[Y, L], built on PastPDL
using some additional constants, defined by the following syntax and semantics.

Φ ::= EMϕ | Li ≤ Lj | Li,j ≤ Lk | Φ ∨ Φ | ¬Φ

ϕ ::= a | Yi ≤ Yj | Yi,j ≤ Yk | ϕ ∨ ϕ | ¬ϕ | 〈π〉
π ::=←i | ϕ? | π + π | π · π | π∗

t |= EMϕ if t, e |= ϕ for some maximal event e in t,

t |= Li ≤ Lj if Li(t), Lj(t) exist and Li(t) ≤ Lj(t),

t |= Li,j ≤ Lk if Li,j(t), Lk(t) exist and Li,j(t) ≤ Lk(t).

t, e |= Yi ≤ Yj if Yi(e), Yj(e) exist and Yi(e) ≤ Yj(e)

t, e |= Yi,j ≤ Yk if Yi,j(e),Yk(e) exist and Yi,j(e) ≤ Yk(e)

t, e |= 〈π〉 if there exists an event f such that t, e, f |= π

Finally, we let LocPastPDL[Y, L] be the local fragment of PastPDL[Y, L]. Notice that, apart from
the modalities EMi ϕ and 〈π〉ϕ, LocPastPDL is a fragment of LocPastPDL[Y, L].

Example 2.3. Consider again the trace t from Fig. 2. It satisfies the following trace formulas
in LocPastPDL[Y, L]:

• L3 ≤ L4 since e9 ≤ e11

• ¬(L2 ≤ L3) since e10 is concurrent to e9

• L2,3 ≤ L4 since L2,3(t) = Y3(L2(t)) = Y3(e10) = e5 which is below L4(t) = e11

• EM(〈←4〉) since there is a maximal event e11 from which a back move is possible on process
4.

1Note that left moves ←j (j 6= i) may be used in the full description of an i-local path formula π, if they
occur in other path formulas which are used in event formulas ϕ that are tested with ϕ? in the regular expression
defining π.
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The trace t does not satisfy the formula EM b as there is no maximal event labelled b (the only
maximal events in t are e10 and e11). The event e8 in trace t, satisfies the following event
formulas in LocPastPDL[Y, L]:

• Y4 ≤ Y3 since Y4(e8) = e3 < e5 = Y3(e8)

• Y2,3 ≤ Y4 since Y2,3(e8) = e3 = Y4(e8).

ut

3 Expressive Completeness of LocPastPDL

The main result of this section is the following.

Theorem 3.1. A trace language is regular if and only if it can be defined by a LocPastPDL
sentence.

The proof relies in part on the following statement [3].

Theorem 3.2. A trace language is regular if and only if it can be defined by a sentence in
LocPastPDL[Y, L].

Proof of Theorem 3.1. First, as in [3, Proposition 1], it is easy to see that for all LocPastPDL
sentence Φ we can construct an equivalent MSO sentence Φ. Hence, LocPastPDL sentences
define regular trace languages. For the converse, by Theorem 3.2, we only need to prove that
the additional formulas in LocPastPDL[Y, L] are definable in LocPastPDL. First observe that
the modality EMϕ is equivalent to

∨
i∈P

EMi ϕ ∧ ¬

∨
j∈P

Li < Lj

 ,

where Li < Lj = (Li ≤ Lj)∧¬(Lj ≤ Li). Similarly, formula 〈π〉 is equivalent to formula 〈π〉>. As
a result, we only need to show that the constant formulas of LocPastPDL[Y, L] can be expressed
in LocPastPDL, and this is the objective of the rest of this section. The constant event formulas
Yi ≤ Yj and Yi,j ≤ Yk are dealt with in Theorem 3.8, and the constant trace formulas Li ≤ Lj
and Li,j ≤ Lk are dealt with in Theorem 3.18.

Towards completing the proof and establishing Theorems 3.8 and 3.18, we introduce the class
of sd-path formulas. These are particular path formulas which uniquely identify certain past
events, such as those of the form Yi(e) (Proposition 3.6). The constants Yi ≤ Yj and Yi,j ≤ Yk
can then be expressed by formulas involving inequalities of sd-path formulas (Corollaries 3.10
and 3.11). These inequalities are then expressed by formulas involving equalities of sd-path
formulas (Section 3.2.1), and finally by LocPastPDL-formulas (Section 3.2.2).

The last step uses what we call separating LocPastPDL event formulas. The construction
of these formulas (Section 3.2.3), while technical, is entirely novel and it replaces the use of
timestamping (as in Zielonka’s theorem [21]) or the gossip automaton (in Mukund and Sohoni’s
work [18]).

The constants Li ≤ Lj and Li,j ≤ Lk are expressed as LocPastPDL trace formulas in a similar
fashion, see Section 3.3.

If P is a singleton, P = {`}, then Y` ≤ Y` is equivalent to 〈←`〉> and Y`,` ≤ Y` is
equivalent to 〈←` · ←`〉>. Further both L` ≤ L` and L`,` ≤ L` are equivalent to EM`>. Therefore
LocPastPDL and LocPastPDL[Y, L] are clearly equally expressive. In the remainder of this
section, we assume that |P| > 1.
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3.1 Deterministic Path Formulas and their Properties

Let us first set some notation and definitions. A disjunction
∨
a∈Γ a of letters from some Γ ⊆ Σ

is called an atomic event formula. Note that Boolean combinations of atomic event formulas
are (equivalent to) atomic event formulas. In particular, > and ⊥ are atomic event formulas:
> =

∨
a∈Σ a and ⊥ =

∨
a∈∅ a. Also, if i ∈ P, then oni =

∨
a∈Σi

a is an atomic event formula,
which tests whether an event is on process i.

If ϕ is an event formula, we let previ(ϕ) be the path formula ←i · (¬ϕ? · ←i)
∗ · ϕ?. Then

t, e, f |= previ(ϕ) if e is an i-event and f is the maximum i-event in the strict past of e which
satisfies ϕ. For instance, previ(oni) is equivalent to ←i.

Finally, we say that a path formula π is deterministic if, for each trace t and each event e
in t, there exists at most one event f in t such that t, e, f |= π. We write π(e) = f when such
an event f exists. It is easily verified that any path formula of the form ϕ?, ←i or previ(ϕ) is
deterministic, and that, if π and π′ are deterministic, then so is π · π′.

We now introduce the class of simple deterministic path formulas (sd-path formulas), whose
syntax is the following:

π ::= ϕ? | previ(ϕ) | π · π,

where ϕ is an atomic event formula and i ∈ P. By definition, an sd-path formula π can be
seen as a word on the (finite) alphabet consisting of tests ϕ? and local path formulas previ(ϕ),
where ϕ is atomic. We then define the length of π to be the number ‖π‖ of “letters” of the form
previ(ϕ) in π. More formally, we let ‖ϕ?‖ = 0, ‖previ(ϕ)‖ = 1 and ‖π · π′‖ = ‖π‖+ ‖π′‖.

We record several important properties of sd-path formulas in the following lemma.

Lemma 3.3. Let π be an sd-path formula. Then

1. π is deterministic.

2. π is monotone: for each trace t and for all events e, e′ in t, if e ≤ e′ and both π(e) and
π(e′) exist, then π(e) ≤ π(e′).

3. The event formula 〈π〉 is equivalent to a LocPastPDL formula.

Proof. The first two statements are easily proved by structural induction on π. The last state-
ment is proved using the facts that 〈π〉 is equivalent to 〈π〉>?, that the sd-path formulas ϕ?
and previ(ϕ) are local, and that 〈π · π′〉 = 〈π〉〈π′〉 = 〈π · 〈π′〉?〉.

Example 3.4. Note that sd-path formulas used to address past events are not necessarily
unique. Referring to Fig. 2, it is easy to verify the following examples.

Y1(e8) = (prev2(>) · prev2(>) · on1?)(e8) = e4

Y1(e8) = (prev2(on1))(e8) = e4

Y2(e8) = (prev2(>) · on2?)(e8) = e5

e1 = (prev1(>) · prev1(>))(e4)

Y3(e8) = (prev2(>) · on3?)(e8) = e5

Y4(e8) = (prev2(on3) · prev3(on4))(e8) = e3

ut

We say that a sd-path formula π is in standardized form if it is of the form

ϕ′0? · previ1(ϕ1) · ϕ′1? · · · · · ϕ′n−1? · previn(ϕn) · ϕ′n?.

8



Since the path formulas previ1(ϕ1) · previ2(ϕ2) and ϕ? · ψ? are equivalent to previ1(ϕ1) · >? ·
previ2(ϕ2) and (ϕ ∧ ψ)?, respectively, we see that every sd-path formula is equivalent to one in
standardized form, of the same length. The following easy lemma will be useful in the sequel.

Lemma 3.5. For any n ≥ 0, there are only finitely many logically distinct sd-path formulas of
length n.

Proof. Let π be an sd-path formula of length n. We may assume that π is in standardized form:

π = ϕ′0? · previ1(ϕ1) · ϕ′1? · · · · · ϕ′n−1? · previn(ϕn) · ϕ′n?.

The ij range over the finite set P. And the ϕi and ϕ′i are atomic event formulas, and hence
range over a finite set (the power set of Σ). The result follows directly.

The link between the constants Yi ≤ Yj , Yi,j ≤ Yk and the sd-path formulas is given by
Proposition 3.6.

Proposition 3.6. Let t be a trace t, e an event and i a process such that Yi(e) exists. Then
Yi(e) = (π · oni?)(e) for some sd-path formula π satisfying 1 ≤ ‖π‖ < |P|.

Proof. Suppose that f = Yi(e) exists. By definition of Yi, we have f < e. We construct
sequences of m events f = e1 < e2 < e3 < · · · < em < e and m distinct processes i =
i1, i2, i3 . . . , im such that

1. For 1 ≤ j ≤ m, Yij (e) = ej .

2. For 1 < j ≤ m, ej−1 and ej are ij-events, and loc(ej−1) ∩ loc(e) = ∅.

3. There is a process which participates in both em and e, that is, loc(em) ∩ loc(e) 6= ∅.

We begin the construction by letting e1 = f and i1 = i. In particular, we have Yi1(e) = e1.
Suppose that we have constructed a length n sequence of events e1 < e2 < e3 < · · · < en < e

and a length n sequence of distinct processes i1, i2, i3 . . . , in such that (a) for 1 ≤ j ≤ n,
Yij (e) = ej and (b) for 1 < j ≤ n, ej−1 and ej are ij-events, and loc(ej−1) ∩ loc(e) = ∅. If
loc(en) ∩ loc(e) 6= ∅, we let m = n and we are done.

If instead loc(en) ∩ loc(e) = ∅, we extend these sequences as follows. We have in 6∈ loc(e),
since in ∈ loc(en). Since en < e, there exists e′ such that en < ·e′ ≤ e. As an immediate
successor of en, e′ satisfies loc(en)∩ loc(e′) 6= ∅ and, as a result, we have e′ < e. Choose in+1 to
be any process in loc(en) ∩ loc(e′). As e′ is an in+1-event strictly below e, Yin+1(e) exists. We
now set en+1 = Yin+1(e). Clearly, both en and en+1 are in+1-events and en < e′ ≤ en+1 < e.
We now argue that, for any 1 ≤ j ≤ n, in+1 6= ij ; indeed, if in+1 = ij , then en+1 = Yin+1(e) =
Yij (e) = ej ≤ en, a contradiction. Thus the processes i1, i2, . . . , in, in+1 are pairwise distinct.

We repeat this procedure as long as loc(e) is disjoint from the location of the last event
constructed. Since P is finite, the procedure can be repeated only finitely many times. Let
m be the length of the final event sequence e1 < e2 < · · · < em and the final process sequence
i1, i2, . . . , im. At that stage, we have loc(em) ∩ loc(e) 6= ∅.

We now use these sequences of events and processes to construct the announced sd-path
formula π.

The fact that Yim(e) = em implies that no event e′ satisfying em < e′ < e is an im-event.
Let ` ∈ loc(em) ∩ loc(e). Then both em and e are `-events and em = Yim(e) = prev`(onim)(e).

Similarly, for 1 < j ≤ m, Yij−1(e) = ej−1 and hence no ij-event e′ satisfying ej−1 < e′ < e
is an ij−1-event. In particular, Yij−1(ej) = ej−1. Moreover, both ej−1 and ej are ij-events, so
ej−1 = Yij−1(ej) = previj (onij−1)(ej).

9



Now let π = prev`(onim) · previm(onim−1) · · · previ2(oni1). Then π is an sd-path formula and
Yi(e) = f = e1 = π(e). Moreover, since i1 = i, we also have Yi(e) = (π · oni?)(e).

To conclude, we only need to verify that m < |P|. Let indeed ` be any process in loc(em)∩
loc(e). Since loc(ej)∩ loc(e) = ∅ for every j < m, we find that ` /∈ loc(ej), and hence ` is distinct
from i1, i2, . . . , im. Therefore m+ 1 ≤ |P|, which completes the proof.

Example 3.7. The proof of Proposition 3.6 shows that, for the trace in Fig. 2, we have

Y2(e11) = (prev4(on3) · prev3(on2) · on2?)(e11) = e5

ut

3.2 Expressing Constant Event Formulas in LocPastPDL

The main theorem in this section is the following.

Theorem 3.8. Let i, j, k ∈ P. The constant event formulas Yi ≤ Yj and Yi,j ≤ Yk can be
expressed in LocPastPDL

Overview of the proof. The proof relies on a complex construction, which occupies the rest of
Section 3.2. We show (Proposition 3.9 below) that, for each pair (π, π′) of sd-path formu-
las, there exists a LocPastPDL event formula Leq(π, π′) which expresses the following: t, e |=
Leq(π, π′) if and only if π(e) and π′(e) exist and π(e) ≤ π′(e). Proposition 3.6 is then used to
show that Yi ≤ Yj and Yi,j ≤ Yk are logically equivalent to LocPastPDL event formulas using
formulas of the form Leq(π, π′), see Corollaries 3.10 and 3.11.

The proof of Proposition 3.9 (in Section 3.2.1) uses the existence of another class of LocPastPDL
formulas, written Eq(π, π′), which express that π(e) and π′(e) exist and π(e) = π′(e) (Proposi-
tion 3.12 below). And the proof of Proposition 3.12, in Section 3.2.2, in turn uses the existence
of finite sets of so-called separating formulas, which are constructed in Section 3.2.3.

We now unravel this complex proof structure.

Proposition 3.9. For each pair of sd-path formulas π and π′, there exists a LocPastPDL event
formula Leq(π, π′) such that t, e |= Leq(π, π′) if and only if π(e) and π′(e) exist and π(e) ≤ π′(e).

The proof of Proposition 3.9 is deferred to Section 3.2.1. Proposition 3.9 yields the two
following corollaries, which establish Theorem 3.8.

Corollary 3.10. Let i, j ∈P be processes. Then Yi ≤ Yj is logically equivalent to the following
LocPastPDL event formula:∨

π′

〈π′ · oni?〉︸ ︷︷ ︸
ϕ1

∧
∨
π

〈π · onj?〉︸ ︷︷ ︸
ϕ2

∧
∨
π

∧
π′

(
〈π′ · oni?〉 =⇒ Leq(π′ · oni?, π · onj?)

)
︸ ︷︷ ︸

ϕ3

where the disjunctions and conjunctions run over sd-path formulas π, π′ of length at least 1 and
at most |P| − 1
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Proof. By definition, t, e |= Yi ≤ Yj if and only if Yi(e) and Yj(e) exist, and Yi(e) ≤ Yj(e). If
π′ is an sd-path formula and π′ · oni?(e) exists, then there is an i-event in the strict past of e,
and hence Yi(e) exists. Conversely, Proposition 3.6 shows that if Yi(e) exists, then it is equal
to π′ · oni?(e) for some such π′, with length between 1 and |P| − 1. Therefore t, e |= ϕ1 if and
only if Yi(e) exists. Similarly ϕ2 expresses the existence of Yj(e).

Now assume that t, e |= Yi ≤ Yj . Let π be given by Proposition 3.6 such that Yj(e) =
π · onj?(e), and let π′ be an arbitrary sd-path with 1 ≤ ‖π′‖ < |P|. Consider the (π, π′)
implication in ϕ3. If π′ · oni?(e) does not exist, this implication is vacously satisfied. If instead
π′ · oni?(e) exists, then it is an i-event, so π′ · oni?(e) ≤ Yi(e) and the same implication is also
satisfied. This establishes the fact that t, e |= Yi ≤ Yj implies that t, e |= ϕ3.

Conversely, assume that Yi(e) and Yj(e) exist, and t, e |= ϕ3. Then there exists an sd-path
π which addresses a j-event in the strict past of e (namely π ·onj?(e)) such that every i-event of
the form π′ ·oni?(e) (where π′ is an sd-path formula with 1 ≤ ‖π′‖ < |P|) lies below π ·onj?(e).
In particular, Yi(e) ≤ π · onj?(e) ≤ Yj(e), and this concludes the proof.

Corollary 3.11. Let i, j, k ∈ P be processes. Then Yi,j ≤ Yk is logically equivalent to the
following LocPastPDL event formula:

∨
π′,π′′

〈π′ · oni? · π′′ · onj?〉︸ ︷︷ ︸
ϕ1

∧
∨
π

〈π · onk?〉︸ ︷︷ ︸
ϕ2

∧


∨
π

∧
π′,π′′

(
〈π′ · oni? · π′′ · onj?〉 =⇒

Leq(π′ · oni? · π′′ · onj?, π · onk?)
)


︸ ︷︷ ︸
ϕ3

where the disjunctions and conjunctions run over sd-path formulas π, π′, π′′ of length at least 1
and at most |P| − 1.

Proof. By definition, t, e |= Yi,j ≤ Yk if and only if Yj(Yi(e)) and Yk(e) exist, and Yj(Yi(e)) ≤
Yk(e). As in the proof of Corollary 3.10, Proposition 3.6 can be used to prove that ϕ1 expresses
the existence of Yj(Yi(e)) and ϕ2 expresses the existence of Yk(e).

Assume that t, e |= Yi,j ≤ Yk. Let π be given by Proposition 3.6 such that Yk(e) =
π · onk?(e), and let π′, π′′ be arbitrary sd-path formulas with length between 1 and |P| − 1. If
π′ · oni? · π′′ · onj?(e) does not exist, then the (π, π′, π′′) implication in ϕ3 is vacously satisfied.
If it does exist, then it is a j-event which is strictly below an i-event in the strict past of e. In
particular, this event sits below Yj(Yi(e)) ≤ Yk(e) = π · onk?(e), and hence the corresponding
implication in ϕ3 is again satisfied. Thus t, e |= ϕ3.

Conversely, suppose that Yj(Yi(e)) and Yk(e) exist and t, e |= ϕ3. Again as in the proof of
Corollary 3.10, there exists an sd-path π such that the k-event π ·onk?(e) sits above any j-event
of the form π′ · oni? · π′′ · onj?(e) (where π′, π′′ are sd-path formulas of length between 1 and
|P| − 1). In particular (again using Proposition 3.6), Yj(Yi(e)) ≤ π · onk?(e) ≤ Yk(e) and this
concludes the proof.

3.2.1 Reducing inequalities to equalities

Our next step is to prove Proposition 3.9, which relies on the following proposition.
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π(e)

e

f

ji
ei−1

ϕi

ei

g

=

Yji (f)

π′

π′′′

¬ϕi

Figure 3: Proof of Lemma 3.13

Proposition 3.12. For each pair of sd-path formulas π and π′, there exists a LocPastPDL event
formula Eq(π, π′) such that t, e |= Eq(π, π′) if and only if π(e) and π′(e) exist and π(e) = π′(e).

The proof of Proposition 3.12 is deferred to Section 3.2.2. For now, we show how it is used
to establish Proposition 3.9. We first record the following technical lemma.

Lemma 3.13. Let t be a trace, let e, f be two events in t with e 6< f and let π be an sd-path
formula such that π(e) exists. Then π(e) ≤ f if and only if there exists a prefix π′ of π and a
sd-path formula π′′ with ‖π′′‖ ≤ |P| such that π′(e) = π′′(f).

Proof. One direction is easy: if π′(e) = π′′(f) for a prefix π′ of π, then π(e) ≤ π′(e) = π′′(f) ≤ f .
Conversely, suppose that π(e) ≤ f with π = ϕ′0? ·prevj1(ϕ1) ·ϕ′1? · · · · ·ϕ′k−1? ·prevjk(ϕk) ·ϕ′k?

(we may assume that π is in standardized form).
If e = f , the announced result holds with π′ = ϕ′0? and π′′ = >?. We now assume that

e 6= f .
Let e0 = e and, for 1 ≤ i ≤ k, ei = prevji(ϕi)(ei−1). By definition of prevj(ϕ), we have

ji ∈ loc(ei) ∩ loc(ei−1). And we also have ek = π(e) ≤ f . Let i be the least index such that
ei ≤ f ; then 1 ≤ i ≤ k since e0 = e 6≤ f . Now let π′ = ϕ′0? ·prevj1(ϕ1) ·ϕ′1? · · · · ·ϕ′i−1? ·prevji(ϕi).
Then π′ is a prefix of π and ei = π′(e).

Since ei and ei−1 are ji-events, the maximal ji-event such that g ≤ f satisfies ei ≤ g < ei−1,
see Fig. 3. Moreover, g = π′′′(f) for some sd-path formula π′′′ with ‖π′′′‖ < |P|. Indeed, if
g < f , we have g = Yji(f) (since ei−1 6≤ f) and Proposition 3.6 shows the existence of π′′′. If
instead g = f , then we let π′′′ = >?.

We can now conclude the proof: if g = ei then we let π′′ = π′′′. Otherwise, we have
ei = prevji(ϕi)(g) and we let π′′ = π′′′ · prevji(ϕi). In either case, we have π′(e) = ei = π′′(f),
as announced.

Proof of Proposition 3.9. Let π, π′ be sd-path formulas. We define Leq(π, π′) to be the LocPastPDL
event formula

Leq(π, π′) = 〈π〉 ∧ 〈π′〉 ∧
∨

π′′,π′′′

Eq(π′′, π′π′′′)

where π′′ ranges over prefixes of π and π′′′ ranges over sd-path formulas of length at most |P|
(so that π′′ and π′π′′′ have length at most |π| and |π′|+ |P|, respectively).

First suppose that t, e |= Leq(π, π′). Clearly π(e) and π′(e) exist. Since t, e |=
∨

π′′,π′′′
Eq(π′′, π′π′′′),

there exists a prefix π′′ of π and an sd-path formula π′′′ such that π′′(e) = π′′′(π′(e)). This yields
π′′(e) ≤ π′(e). Since π′′ is a prefix of π, it follows that π(e) ≤ π′′(e), and hence π(e) ≤ π′(e).
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Conversely, suppose that π(e) and π′(e) exist and that π(e) ≤ π′(e). The first (existence)
condition implies that t, e |= 〈π〉 ∧ 〈π′〉. Since π(e) ≤ π′(e), Lemma 3.13 applied with f = π′(e)
shows that π′′(e) = π′′′(π′(e)) for some prefix π′′ of π and an sd-path formula π′′′ with length
at most |P|. That is, t, e |= Eq(π′′, π′π′′′) for those particular π′′, π′′′ and this completes the
proof.

3.2.2 Reduction of equalities to separating formulas

Our aim here is to prove Proposition 3.12. For this, we use yet another intermediate result.

Proposition 3.14. For each sd-path formula π of length at least 1, there exists a finite set
Ξ(π) of LocPastPDL event formulas such that, for every trace t and event e in t such that π(e)
exists, Ξ(π) separates e and π(e): that is, there exist ξ, ξ′ ∈ Ξ(π) such that ξ holds at e and not
at π(e), and ξ′ holds at π(e) and not at e.

The proof of Proposition 3.14 is complex and is given in Section 3.2.3. Let us see immediately
how that statement is used to prove Proposition 3.12.

Proof of Proposition 3.12. Let π, π′ be sd-path formulas. Let Ξ be the union of the set {oni |
i ∈ P} and of the Ξ(σ) where σ is an sd-path formula of length at least 1 and at most
max(|π|, |π′|) + |P|. Notice that Ξ is a finite set since, up to equivalence, there are finitely
many sd-path formulas of bounded length. We define the LocPastPDL event formula Eq(π, π′)
by

Eq(π, π′) = 〈π〉 ∧ 〈π′〉 ∧ ¬
∨
ξ∈Ξ

(
〈π〉ξ ∧ 〈π′〉¬ξ

)
.

Suppose first that π(e) and π′(e) exist and are equal. Clearly t, e |= 〈π〉 ∧ 〈π′〉. Moreover,
since π(e) = π′(e), we have t, e |= 〈π〉ϕ if and only if t, e |= 〈π′〉ϕ, for every event formula ϕ.
This implies t, e |= ¬

∨
ξ∈Ξ

(
〈π〉ξ ∧ 〈π′〉¬ξ

)
, and hence t, e |= Eq(π, π′).

Conversely, assume that t, e |= 〈π〉 ∧ 〈π′〉 and let f = π(e) and f ′ = π′(e). Suppose f 6= f ′.
We show that t, e 6|= Eq(π, π′), i.e., t, e |= 〈π〉ξ ∧ 〈π′〉¬ξ for some ξ ∈ Ξ. If loc(f) 6⊆ loc(f ′) then
we choose ξ = oni for some i ∈ loc(f) \ loc(f ′).

Suppose now that loc(f) ⊆ loc(f ′). Then f and f ′ are `-events for any process ` ∈ loc(f),
and hence they are ordered. Without loss of generality, we assume that f < f ′. By Lemma 3.13,
there exist sd-path formulas π1, π2, π

′′ such that π = π1 · π2, ‖π′′‖ ≤ |P| and π1(e) = π′′(f ′),
see Fig. 4. In particular, f = π2(π1(e)) = π2(π′′(f ′)). Observe that the path π′′π2 has length

e

π′(e)π(e)

π′π1

π2 π′′

Figure 4: Proof of Proposition 3.12

at most |π|+ |P| and at least 1 (since (π′′π2)(f ′) = f < f ′). Proposition 3.14 then implies the
existence of a formula ξ ∈ Ξ(π′′π2) ⊆ Ξ such that t, f |= ξ and t, f ′ |= ¬ξ. Therefore t, e satisfies
〈π〉ξ ∧ 〈π′〉¬ξ, and t, e 6|= Eq(π, π′). In the symmetric case f ′ < f we use a formula ξ′ ∈ Ξ such
that t, f ′ |= ¬ξ′ and t, f |= ξ′. We obtain t, e |= 〈π〉ξ′ ∧ 〈π′〉¬ξ′, which concludes the proof.
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3.2.3 Construction of separating formulas

Here we establish Proposition 3.14. This is a complex construction which involves constructing,
for each sd-path formula π, LocPastPDL event formulas samej(π) (j ∈ P) which capture the
fact that both 〈π〉 and 〈prevj(〈π〉)〉 are defined on a j-event e, and point to the same event
in the past of e (Proposition 3.16); and LocPastPDL formulas Mod(k, n, π) (0 ≤ k < n) which
allow counting modulo n the number of events f in the past of the current event such that π(f)
exists and π(f) 6= π(f ′) for all f ′ < f where π is defined.

We start with an easy lemma.

Lemma 3.15. Let π be an sd-path formula of length n. Let t be a trace and e0, e1, . . . , en be
events in t on each of which 〈π〉 holds. If π(e0) < π(e1) < · · · < π(en), then e0 ≤ π(en).

Proof. The proof is by induction on n = ‖π‖, and the statement is trivial if n = 0 since in this
case π(e0) = e0.

Assume now that n > 0, say, π = ϕ′? · prevj(ϕ) · π′. For each 0 ≤ i ≤ n, let fi = π(ei). Note
that, since 〈π〉 holds at each ei, then each ei is a j-event, and so is each e′i = prevj(ϕ)(ei). In
particular, the ei and e′i are totally ordered. In addition, fi = π′(e′i), see Fig. 5.

j

π′

e0

ϕ

e′0

f0 ¡ ¡ ¡

π′

e1

ϕ

e′1

f1

π′

en

ϕ

e′n

fn

e2 · · · en−1

f2 · · · fn−1

e′1 ≤ fn

¬ϕ ¬ϕ ¬ϕ

Figure 5: Lemma 3.15

The induction hypothesis implies e′1 ≤ fn. Moreover, f0 < f1 implies e′0 < e′1. If e′1 < e0,
we have e′1 = e′0 by definition of prevj(ϕ), a contradiction. So we have e0 ≤ e′1 ≤ fn and this
concludes the proof.

We now establish the existence of the LocPastPDL formulas samej(π) announced in the
introduction of Section 3.2.3.

Proposition 3.16. Let π be an sd-path formula and j ∈P. There exists a LocPastPDL event
formula samej(π) such that, for every trace t and event e, we have t, e |= samej(π) if and only
if 〈π〉 and 〈prevj(〈π〉)〉 hold at e, and π(e) = π(prevj(〈π〉)(e)).

Proof. The proof is by structural induction on π. We observe that if t, e satisfies 〈prevj(〈π〉)〉,
then e is a j-event.

Case 1: π = ϕ? In this case, π(e) = e if it exists, whereas prevj(〈π〉) holds only in the strict
past of e. So we can never have π(e) = π(prevj(〈π〉)(e)) and we can let samej(π) = ⊥.

Case 2: π = ϕ?·π′ Note that t, e |= 〈π〉 if and only if t, e |= ϕ∧〈π′〉. In that case, π(e) = π′(e).
Assume that π(e) and prevj(〈π〉)(e) exist. Consider the sequence ek < ek−1 < · · · < e0 of

all j-events satisfying 〈π′〉, starting at ek = prevj(〈π〉)(e) and ending at e0 = e, see Fig. 6. In
particular, ei+1 = prevj(〈π′〉)(ei) for every 0 ≤ i < k.

If π(e) = π(prevj(〈π〉)(e)), then π′ also maps e, prevj(〈π〉)(e), and hence all the ei, to the
same event: equivalently, π′(ei+1) = π′(ei) for every 0 ≤ i < k.
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j
e = e0

ϕϕ

ek

π(e)

e1

¬ϕ
ek−1

¬ϕ
(〈π′〉 =⇒ (¬ϕ ∧ samej(π′))

π′ π′π′π′

ek−2 · · · e2

Figure 6: Case π = ϕ? · π′

i=j
e

ϕϕ

e′

π(e)

e′′

=

←−i(e)

¬ϕ
¬ϕ

π′

Figure 7: Case π = previ(ϕ) · π′ and t, e′′ |= ¬ϕ

Conversely, suppose that, for every 0 ≤ i < k, we have π′(ei) = π′(ei+1). It follows that every
π′(ei) is equal to π′(e0). By definition, π′(e0) = π(e) and π′(ek) = π(ek) = π(prevj(〈π〉)(e)).
Therefore, prevj(〈π〉)(e) = π(e).

Thus, if π(e) and prevj(〈π〉)(e) exist, then samej(π) holds at e if and only if the j-events
strictly between prevj(〈π〉)(e) and e that do satisfy 〈π′〉 (that is: the ei) do not satisfy ϕ, and
do satisfy samej(π

′). This justifies letting samej(π) be

ϕ ∧ samej(π
′) ∧

〈
←j ·

((
¬〈π′〉 ∨ (¬ϕ ∧ samej(π

′))
)
? · ←j

)∗〉
〈π〉.

Case 3: π = previ(ϕ) · π′ An event e satisfies 〈π〉 if and only if e′ = previ(ϕ)(e) exists and
satisfies 〈π′〉. In that case, π(e) = π′(e′). We first consider the case where j = i, which is
notationally slightly simpler yet contains the substance of the proof.

Let e′′ be the immediate predecessor of e on process i. Suppose first that e′′ does not
satisfy ϕ (see Fig. 7). Then e′ < e′′ and e′ = previ(ϕ)(e′′). It follows that e′′ satisfies 〈π〉,
e′′ = previ(〈π〉)(e) and π(e′′) = π′(e′) = π(e).

Suppose now that e′′ satisfies ϕ (see Fig. 8). Then e′ = e′′. Assume that f = previ(〈π〉)(e)
exists. Then f ≤ e′ and f satisfies 〈π〉, so f ′ = previ(ϕ)(f) exists and satisfies 〈π′〉.

We first verify that f ′ = previ(ϕ ∧ 〈π′〉)(e′): if it is not the case, there exists an i-event g
strictly between f ′ and e′, satisfying ϕ ∧ 〈π′〉. Then the immediate successor of g on the i-line
satisfies 〈π〉. This yields a contradiction since g > f ′ = previ(ϕ)(previ(〈π〉)(e)).

Let now f ′ = ek < · · · < e1 = e′ be the sequence of i-events between f ′ and e′ which satisfy
〈π′〉. In particular, for each 1 ≤ h < k, eh+1 = previ(〈π′〉)(eh).

Now π(e) = π(f) if and only if π′(e′) = π′(f ′). This is equivalent to requiring that π′(eh) =
π′(e′) = π′(e1) for all h, which in turn is equivalent to each eh (1 ≤ h < k) satisfying samei(π

′).
Since f ′ = previ(ϕ ∧ 〈π′〉)(e′) note that all events in the interval (f ′, e′) either satisfy ¬〈π′〉 or
they are among eh hence they satisfy ¬ϕ ∧ samei(π

′)
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i=j

π(e)

f ′

ϕ〈π
′〉

e′ = e′′

ϕsamei(π
′)¬ϕsamei(π

′)¬ϕsamei(π
′)¬ϕsamei(π

′)

e

samei(π)

π′

= = = =

π′

¬〈π′〉 ¬〈π′〉 ¬〈π′〉 ¬〈π′〉

Figure 8: Case π = previ(ϕ) · π′ and t, e′′ |= ϕ

This justifies letting samej(π) be the conjunction of 〈π〉 and

〈←i〉¬ϕ ∨
〈
←i · (ϕ ∧ samei(π

′))? · ←i·((
〈π′〉 =⇒ (¬ϕ ∧ samei(π

′))
)
? · ←i

)∗
·
(
〈π′〉 ∧ ϕ

)
?
〉
.

Sub-case 3.2: i 6= j Here we let samej(π) = samei(onj? ·π). Note that Case 2 gives a formula
for samei(onj? · π) in terms of samei(π), which in turn is constructed in Case 3.1 above.

To justify this choice for samej(π), we observe that any event satisfying 〈π〉 is an i-event, since
π starts with ←i. Similarly, if prevj(〈π〉) holds at an event e, then both e and f = prevj(〈π〉)(e)
are j-events (since prevj(〈π〉) starts and ends with ←j). As a result, π and prevj(〈π〉) are
defined at e if and only if onj? · π and previ(〈onj? · π〉) are. Moreover, in that case, we have
f = prevj(〈π〉)(e) = previ(〈onj? · π〉)(e), π(e) = (onj? ·π)(e) and π(f) = (onj? ·π)(f). Therefore
π(e) = π(f) if and only if (onj? · π)(e) = (onj? · π)(f). This concludes the proof.

We now use Lemma 3.16 to construct, for each sd-path formula π, LocPastPDL event formulas
which count modulo n the number of events f in the past of the current event e with different
π-images.

Lemma 3.17. Let π be an sd-path formula of positive length, say π = ϕ′? · previ(ϕ) · π′. For
every n > 1 and 0 ≤ k < n, there exists a LocPastPDL event formula Mod(k, n, π) such that,
for any trace t and event e in t, t, e |= Mod(k, n, π) if and only if t, e |= 〈π〉 and∣∣∣{f < e | t, f |= 〈π〉 ∧ ¬samei(π)

}∣∣∣ = k (mod n).

Proof. We note that every event satisfying 〈π〉 is an i-event. Let ψ = 〈π〉 ∧ ¬samei(π).
If t, e |= 〈π〉, then the events f < e satisfying ψ are the events (previ(ψ))m(e) (m > 0), and

the minimal such event (which does not satisfy previ(ψ)) satisfies ¬
(
〈←+

i 〉ψ
)
, see Fig. 9. As a

result, choosing the following formulas for the Mod(k, n, π)

Mod(0, n, π) = 〈π〉 ∧
〈((

previ(ψ)
)n)∗〉¬(〈←+

i 〉ψ
)

Mod(k, n, π) = 〈π〉 ∧ 〈previ(ψ)〉Mod(k − 1, n, π) for every 1 ≤ k < n.

proves the statement.
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Figure 9: Mod Counting

We can finally complete the task of Section 3.2.

Proof of Proposition 3.14. Let π be an sd-path formula of positive length, say π = ϕ′?·previ(ϕ)·
π′, and let n = ‖π‖+ 1. In particular, 〈π〉 holds only at i-events. Let

Ξ(π) =
{
¬〈π〉, 〈π〉, samei(π),¬samei(π)

}
∪
{
Mod(k, n, π) | 0 ≤ k < n

}
.

We want to show that Ξ(π) is a separating set of formulas for π, that is, if t is a trace, e is
an event and π(e) exists, then there exist ξ ∈ Ξ(π) such that ξ holds at e and not at π(e). It
follows easily from the definition of Ξ(π) that there is also a formula ξ′ ∈ Ξ(π) such that ξ′

holds at π(e) and not at e.
Suppose that this is not the case: there exists a trace t and an event e such that π(e) exists

and, for every formula ξ ∈ Ξ(π), if ξ holds at e, then it holds at π(e) as well. Since 〈π〉 ∈ Ξ(π)
holds at e, the event π(e) also satisfies 〈π〉.

Let e1 < · · · < em be the i-events f such that π(e) < f ≤ e and t, f |= 〈π〉 ∧ ¬samei(π). If
m = 0, then every i-event f such that π(e) < f ≤ e which satisfies 〈π〉, satisfies samei(π) as
well. In particular, e satisfies samei(π) and it follows that π(π(e)) = π(e). This cannot be since
‖π‖ > 0. Therefore m > 0.

By construction, π(e) < e1 and eh−1 ≤ previ(〈π〉)(eh) for each 1 < h ≤ m. By definition of
samei(π), we have π(e1) < · · · < π(em) ≤ π(e) < e1. If m ≥ n = ‖π‖ + 1, then Lemma 3.15
yields e1 ≤ π(em), a contradiction. Therefore, 1 ≤ m < n.

Now consider the formula samei(π) and ¬samei(π) in Ξ(π). Assuming, as we do, that Ξ(π)
is not separating, shows that e satisfies samei(π) if and only if π(e) does. Therefore e satisfies
〈π〉 ∧ ¬samei(π) if and only π(e) does. As a result, m is also the number of events f satisfying
〈π〉 ∧ ¬samei(π) and π(e) ≤ f < e.

Finally, let k be such that t, e |= Mod(k, n, π) (there is necessarily such a k). Since
Mod(k, n, π) ∈ Ξ(π), π(e) too satisfies Mod(k, n, π), and this implies that m = 0 mod n —
again a contradiction since we verified that 1 ≤ m < n. This concludes the proof that Ξ(π) is
a separating set.

3.3 Expressing Constant Trace Formulas in LocPastPDL

This subsection is dedicated to proving the analog of Theorem 3.8 for constant trace formulas.

Theorem 3.18. The constant trace formulas Li ≤ Lj and Li,j ≤ Lk can be expressed in
LocPastPDL

The proof strategy is the same as for Theorem 3.8. We start by strengthening Lemma 3.13,
using the fact that we are now only concerned with events at the end of the trace.
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Lemma 3.19. Let i be a process, t be a trace, e be the maximum i-event of t and f be any
event. Let π be an sd-path formula such that π(e) is defined. Then π(e) ≤ f if and only if π
can be factored as π = π1 ·π2 and there exists an sd-path formula π3 of length at most |P| such
that π1(e) = π3(f).

Proof. If π1, π2, π3 exist such that π = π1 · π2 and π3(f) = π1(e) then concatenating both sides
by π2 we have π(e) = π2(π1(e)) ≤ π1(e) = π3(f) ≤ f .

Conversely, suppose that π(e) ≤ f . If e 6< f , we apply Lemma 3.13 to get the expected
result. Suppose now that e < f . Since e is the maximum i-event, Proposition 3.6 shows that
there exists an sd-path formula π′ of length at most |P| such that e = π′(f). We conclude by
letting π3 = π′, π1 = >? and π2 = π.

Lemma 3.20. Let i, j be processes and let π1, π2 be sd-path formulas. There exist LocPastPDL
trace formulas EQi,j(π1, π2) and LEQi,j(π1, π2) such that for all traces t, t satisfies EQi,j(π1, π2)
(resp. LEQi,j(π1, π2)) if and only if π1(Li(t)) and π2(Lj(t)) exist, and π1(Li(t)) = π2(Lj(t)) (resp.
π1(Li(t)) ≤ π2(Lj(t))).

Proof. Let EQi,j(π1, π2) and LEQi,j(π1, π2) be the following formulas:

EQi,j(π1, π2) =EMi(〈π1〉) ∧ EMj(〈π2〉)

∧ ¬
∨
ξ∈Ξ

EMi(〈π1〉ξ) ∧ EMj(〈π2〉¬ξ)

LEQi,j(π1, π2) =EMi(〈π1〉) ∧ EMj(〈π2〉)

∧
∨
π′1,π3

EQi,j(π
′
1, π2 · π3)

with Ξ = {oni? | i ∈ P} ∪
⋃
π Ξ(π) where the union runs over the sd-path formulas π with

length at least 1 and at most |P|+ max(||π1||, ||π2||) (and Ξ(π) is given by Proposition 3.14);
and where the last disjunction is over the prefixes π′1 of π1 and the sd-path formulas π3 of length
at most |P|.

Observe first that t |= EMi(〈π1〉) ∧ EMj(〈π2〉) if and only if π1(Li(t)), π2(Lj(t)) exist. If in
addition π1(Li(t)) = π2(Lj(t)), then, for every event formula ϕ, we have t |= EMi(〈π1〉ϕ) if and
only if t |= EMj(〈π2〉ϕ). In particular, t satisfies EQi,j(π1, π2).

Conversely, suppose that f1 = π1(Li(t)) and f2 = π2(Lj(t)) exist and f1 6= f2. If loc(f1) 6⊆
loc(f2), let ` be a process in loc(f1) \ loc(f2). Then ξ = on`? ∈ Ξ and t satisfies EMi(〈π1〉ξ) ∧
EMj(〈π2〉¬ξ). Thus t does not satisfy EQi,j(π1, π2).

If instead loc(f1) ⊆ loc(f2), let ` ∈ loc(f1). Then f1 and f2 are `-events, and hence f1 < f2

or f2 < f1. Assume f1 < f2 (the proof is similar if f2 < f1). By Lemma 3.19, there exist
sd-path formulas π′1, π

′′
1 , π3 such that π1 = π′1 · π′′1 , ‖π3‖ ≤ |P| and π′1(Li(t)) = π3(f2), see

Fig. 10. In particular f1 = π′′1(π3(f2)). Let then π′ = π3 · π′′1 . In particular ‖π′‖ ≥ 1 (since
f1 = π′(f2) < f2) and ‖π′1‖ ≤ ‖π1‖, so Ξ(π′) ⊆ Ξ. Therefore, we find ξ ∈ Ξ(π′) such that t
satisfies EMi(〈π1〉ξ) ∧ EMj(〈π2〉¬ξ), and hence it does not satisfy EQi,j(π1, π2).

This concludes the proof of the statement on EQi,j(π1, π2). The proof of the statement on
LEQi,j(π1, π2) is a direct application of Lemma 3.19, which states that π1(Li(t)) ≤ π2(Lj(t)) if
and only if there exist sd-path formulas π′1, π′′1 and π3 such that π1 = π′1 · π′′1 , ‖π3‖ ≤ |P| and
π′1(Li(t)) = π3(π2(Lj(t))). This is true if and only if t satisfies

∨
π′1,π3

EQi,j(π
′
1, π2 · π3).

We can now complete the proof of the expressive completeness of LocPastPDL.

Proof of Theorem 3.18. We want to show that the constant trace formulas Li ≤ Lj and Li,j ≤ Lk
are logically equivalent to LocPastPDL formulas.
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Figure 10: Applying Lemma 3.19 when e = Li(t), f1 = π1(Li(t)), f2 = π2(Li(t)) and f1 < f2

(left) or f2 < f1 (right)

It is immediate that Li ≤ Lj is equivalent to the LocPastPDL formula LEQi,j(>?,>?) from
Lemma 3.20.

Now recall that t satisfies Li,j ≤ Lk if and only if Lk(t), Li,j(t) exist and Li,j(t) ≤ Lk(t).
Notice that Li(t) is a j-event if and only if t |= EMi(onj). In this case, Li,j(t) = Li(t).

If Li(t) is not a j-event, then Li,j(t) is equal to Yj(Li(t)) and Proposition 3.6 asserts that
Li,j(t) = (π · onj?)(Li(t)) for some sd-path formula π of length at least 1 and at most |P| − 1.

The existence of Li,j(t) and Lk(t) is asserted by the sentence
∨
π EMi(〈π〉onj) ∧ EMk(>),

where the disjunction runs over the sd-path formulas π of length at most |P| − 1.
This justifies considering the following LocPastPDL formula:

Φ =EMk(>) ∧
∨
π

EMi(〈π〉onj)

∧

(∧
π

EMi(〈π〉onj) =⇒ LEQi,k(π · onj?,>?)

)
,

where both the disjunction and the conjunction run over the sd-path formulas π of length at
most |P| − 1. As discussed, if t satisfies Φ, then it satisfies Li,j ≤ Lk.

Conversely, suppose that t satisfies Li,j ≤ Lk and that Lk(t) and Li,j(t) exist. Then every
event of the form (π · onj?)(Li(t)) lies below Li,j(t), and hence below Lk(t). Thus t satisfies Φ.
This establishes that Li,j ≤ Lk is logically equivalent to Φ, which concludes the proof.

4 Applications

4.1 Asynchronous devices and cascade product

We first quickly review the model of asynchronous automata due to Zielonka [21]. Besides
using these automata to accept trace languages, we also use them, as in [18, 1, 2], to locally
compute relabelling functions on input traces, similar in spirit to the sequential letter-to-letter
transducers on words. The local cascade product of asynchronous automata from [1, 2] is a
natural generalization of cascade product of sequential automata and, like in the word case [19],
it corresponds to compositions of related relabelling functions.

Recall that, in keeping with our earlier notation, Σ̃ = {Σi}i∈P is a distributed alphabet
over the set P of processes with total alphabet Σ = ∪i∈PΣi.

An asynchronous automaton A over Σ̃ (or simply over Σ) is a tupleA = ({Si}i∈P , {δa}a∈Σ, sin)
where

• for each i ∈P, Si is a finite non-empty set of local i-states.
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• for each a ∈ Σ, δa : Sa → Sa is a deterministic joint transition function where Sa =∏
i∈loc(a) Si is the set of a-states.

• with S =
∏
i∈P Si as the set of all global states, sin ∈ S is a designated initial global

state.

For a global state s ∈ S, we write s = (sa, s−a) where sa is the projection of s on loc(a)
and s−a is the projection on the complement P \ loc(a). For a ∈ Σ, the joint transition
function δa : Sa → Sa can be naturally extended to a global transition function ∆a : S → S,
on global states as follows: ∆a((sa, s−a)) = (δa(sa), s−a). Further we define, for a trace t over
Σ, ∆t : S → S by letting ∆ε be the identity function on S, the composition ∆t = ∆a ◦ ∆t′

when t = t′a. The well-definedness of ∆t follows easily from the fact that, for a pair (a, b) of
independent letters, ∆a ◦ ∆b = ∆b ◦ ∆a. We denote by A(t) the global state ∆t(sin) reached
when running A on t.

Asynchronous automata are used to accept trace languages. If F is a subset of the set S of
global states, we say that L(A, F ) = {t | A(t) ∈ F} is the trace language accepted by A with
final states F . A trace language is said to be accepted by A if it is equal to L(A, F ) for some
F ⊆ S.

In this work, we use asynchronous automata also as letter-to-letter asynchronous transduc-
ers, which compute a relabelling function. Let Γ be a finite non-empty set. The set Σ×Γ natu-
rally inherits a distribution from Σ̃: loc((a, γ)) = loc(a). We denote by Tr(Σ) (resp. Tr(Σ×Γ))
the set of traces over corresponding alphabets. A function θ : Tr(Σ) → Tr(Σ × Γ) is called a
Γ-labelling function if, for every t = (E,≤, λ) ∈ Tr(Σ), θ(t) = (E,≤, (λ, µ)) ∈ Tr(Σ× Γ). Thus
a Γ-labelling function simply decorates each event e of the trace t with a label µ(e) from Γ.

An asynchronous Γ-transducer over Σ is a tuple Â = (A, {µa}) where A = ({Si}, {δa}, sin)
is an asynchronous automaton and each µa (a ∈ Σ) is a map µa : Sa → Γ. The Γ-labelling
function computed by Â is the following map from Tr(Σ) to Tr(Σ× Γ), also denoted by Â: for
t = (E,≤, λ) ∈ Tr(Σ), let Â(t) = (E,≤, (λ, µ)) ∈ Tr(Σ × Γ) such that, for every e ∈ E with
λ(e) = a, µ(e) = µa(sa) where s = A(⇓e).

An asynchronous automaton (resp. transducer) with local state sets {Si} is said to be lo-
calized at process i if all local state sets Sj with j 6= i are singletons. It is localized if it is
localized at some process. Note that, in a device localized at i, only process i carries non-trivial
information and all non-trivial transitions are on letters in which process i participates.

Now we introduce the important notion of local cascade product of asynchronous transducers
[4, 2].

Definition 4.1. Let Â be a Γ-transducer over Σ and let B̂ be a Π-transducer over Σ× Γ, say,
Â = ({Si}, {δa}, sin, {µa}) and B̂ = ({Qi}, {δ(a,γ)}, qin, {ν(a,γ)}). We define the local cascade

product of Â and B̂ to be the (Γ × Π)-transducer Â ◦` B̂ = ({Si × Qi}, {∇a}, (sin, qin), {τa})
over Σ where ∇a((sa, qa)) = (δa(sa), δ(a,µa(sa))(qa)) and τa : Sa × Qa → Γ × Π is defined by
τa((sa, qa)) = (µa(sa), ν(a,µa(sa))(qa)).

In the sequential case, that is, when |P| = 1, the local cascade product coincides with the
well-known operation of cascade product of sequential letter-to-letter transducers.

The following lemma (see [2]) is easily verified.

Lemma 4.2. The (Γ × Π)-labelling function computed by Â ◦` B̂ is the composition of the
Γ-labelling function computed by Â and the Π-labelling function computed by B̂: for every
t ∈ Tr(Σ),

(Â ◦` B̂)(t) = B̂(Â(t))

20



4.2 LocPastPDL translation into cascade product

Now we exploit the locality and the natural hierarchical structure of LocPastPDL formulas to
translate them into local cascade products of localized devices.

We start with the definition of a natural relabelling function associated with a collection F
of LocPastPDL event formulas. Let ΓF = {>,⊥}F . For each trace t ∈ Tr(Σ) and event e in t,
we let µF (e) ∈ ΓF be the tuple of truth-values of the formulas ϕ ∈ F at e, and we let θF be the
ΓF -labelling function given by θF (t) = (E,≤, (λ, µF )), for each t = (E,≤, λ) ∈ Tr(Σ).

We can now state an important result on event formulas in LocPastPDL. This result, without
an analysis of global states of the resulting construction, is already implicit in [3].

Theorem 4.3. Let ϕ be a LocPastPDL event formula and θϕ be the corresponding {>,⊥}-
labelling function. Then θϕ can be computed by a local cascade product of localized asynchronous
transducers. The number of global states in this transducer is 2O(|ϕ|).

Let us highlight the main ideas required to prove Theorem 4.3. The proof proceeds by
structural induction on ϕ, and constructs a cascade product Aϕ of localized transducers which
computes θϕ. The most non-trivial case is when ϕ = 〈π〉 where π is an i-local path formula.
Recall that π is a regular expression involving top-level moves ←i and test formulas. Let F be
the set of event formulas which appear in these test formulas. By induction, for each ψ ∈ F ,
θψ can be computed by cascade product Aψ of localized transducers. By a direct product
construction, which may be seen as a special case of cascade product, we can construct a
transducer of the desired form, say AF , which computes ΓF -labelling function θF . We finally
construct Aϕ as a cascade product of AF ◦` B where B is localized at i. In order to construct
B, we first convert π into a deterministic finite-state automata Bi over alphabet ΓF . Now
we obtain the asynchronous transducer by localizing Bi at process i and suitably designing a
labelling function which computes θϕ. See [3] for more details.

The complexity bound is also proved by structural induction. The sizes |ϕ| and |π| of event
and path formulas are defined inductively as expected, with |ψ?| = 1+|ψ|. For a path expression
π, we also define the top-level size ||π|| which does not take into account the size of the event
formulas tested in π: ||ψ?|| = 1. The transducers for atomic formulas ϕ = a with a ∈ Σ have a
single global state. The transducers for the boolean connectives ¬,∨,∧ also have a single global
state. Consider now the non-trivial case ϕ = 〈π〉 described above. By induction, the number
of global states of each Aψ is 2O(|ψ|). We get the local cascade product AF with 2O(||F ||) global
states, where ||F || =

∑
ψ∈F |ψ|. Finally, we translate the regular expression π, considering test

formulas ψ? for ψ ∈ F as uninterpreted symbols, to a DFA with 2O(||π||) many states. A final
cascade product yields Aϕ with 2O(|ϕ|) many global states.

Now we turn our attention to translating LocPastPDL sentences into automata. A basic
trace formula Φ is of the form EMi ϕ where ϕ is an event formula. A trace t satisfies EMi ϕ
if the last i-event exists and ϕ holds at this event. By Theorem 4.3, we have a local cascade
product Â of localized transducers which computes θϕ and thus, records the truth value of ϕ
at every event. It is easy to convert Â into an asynchronous automaton which checks at the
final global state if the last i-event exists and whether ϕ evaluates to > at this event. As an
arbitrary trace formula is simply a boolean combination of formulas of the form EMi ϕ, which
can be handled by a direct product construction, we get the following result.

Theorem 4.4. Let Φ be a LocPastPDL sentence. We can construct a local cascade product of
localized asynchronous automata which precisely accepts the language defined by Φ. The number
of global states is 2O(|Φ|).
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4.3 Zielonka’s theorem, distributed Krohn-Rhodes theorem and a Gossip
implementation

Now we present some important applications of the expressive completeness of LocPastPDL. The
next theorem provides a new proof of the fundamental theorem of Zielonka which characterizes
regular trace languages using asynchronous automata.

Theorem 4.5. A trace language is regular if and only if it is accepted by a local cascade product
of localized asynchronous automata. In particular, every regular trace language can be accepted
by an asynchronous automaton.

Proof. Let L be a regular trace language. By Theorem 3.1, there is a LocPastPDL sentence
Φ which defines L. By Theorem 4.4, we can construct a local cascade product of localized
automata which accepts the language defined by Φ, that is, L.

Conversely, a local cascade product of localized automata is an asynchronous automaton,
which is known to accept a regular trace language.

Another important application is a novel distributed Krohn-Rhodes theorem. Recall that the
classical Krohn-Rhodes theorem [15] states that every sequential automaton can be simulated
by a cascade product of simple automata, namely, two-state reset automata and permutation
automata. In a two-state reset automaton, the transition function of each letter is either the
identity function or a constant function. In contrast, in a permutation automaton, each letter
induces a permutation of the state set.

Let i ∈P. A two-state reset automaton localized at process i is an asynchronous automaton
localized at i which has two i-local states and the local transition on each letter is either the
identity function or a constant. Similarly, in a localized permutation automaton, each letter of
the active process induces a permutation of its local state set while the other local state sets
are singletons.

Theorem 4.6. Every regular trace language can be accepted by a local cascade product of local-
ized two-state reset automata and localized permutation automata.

Proof. Note that, by essentially using the classical Krohn-Rhodes theorem, an asynchronous
automaton localized at process i can be simulated by a local cascade product of two-state reset
automata localized at i and permutation automata localized at i. Therefore, the theorem follows
by Theorem 4.5.

Our final application concerns an implementation of a gossip automaton/transducer. Let G
be the collection of constant event formulas {Yi ≤ Yj}i,j∈P . Consider the ΓG-labelling function.
Note that ΓG records, for every trace and at each event of that trace, the truth values of the
formulas in G in the form of an additional label from ΓG . So θG keeps track of the ordering
information between leading process events. By a gossip transducer, we mean any asynchronous
transducer which computes θG and hence keeps track of the latest gossip/information [18] in a
distributed environment.

Theorem 4.7. The ΓG-labelling function θG can be computed by an asynchronous transducer
which is a local cascade product of localized asynchronous transducers.

Proof. By Theorem 3.8, event formulas in G can be expressed in LocPastPDL. Further, by
Theorem 4.3, for each of these LocPastPDL formulas ϕ, the corresponding θϕ can be computed
by a local cascade product of localized asynchronous transducers. Combining these together
through a direct product, we obtain an asynchronous transducer of the desired form which
computes θG .
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The existing constructions [21, 18] of a gossip transducer are intrinsically non-local and
non-hierarchical. It is important to note that our construction is quite inefficient in terms of
the size of the resulting transducer. The key point of our construction is to show the existence
of a gossip implementation using compositions of labelling functions each of which is localized
at some process. It was not at all clear that such an implementation could exist!

5 Conclusion

Our main result is the identification of a local, past-oriented fragment of propositional dy-
namic logic for traces called LocPastPDL, which is expressively complete with respect to regular
trace languages. The natural hierarchical structure of LocPastPDL formulas allows a modular
translation into a cascade product of localized automata. We have also given many important
applications such as a new proof of Zielonka’s theorem, a novel distributed version of Krohn-
Rhodes theorem and a hierarchical implementation of a gossip automaton.

A natural question is to identify a fragment of LocPastPDL which matches the first-order
logic in expressive power. Another promising future direction is to characterize the precise
power of local cascade products of localized two-state reset automata. Extending these results
with future-oriented path formulas, and to the setting of infinite traces are also interesting
directions.

It remains to investigate the utility of LocPastPDL specifications from a more practical and
empirical viewpoint. Our modular and efficient translation of these specifications should provide
significant improvements in applications such as synthesizing distributed monitors and verifying
properties of concurrent programs.
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