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Abstract

Using object lifetime information enables performance im-
provement through memory optimizations such as pretenur-
ing and tuning garbage collector parameters. However, pro-
filing object lifetimes is nontrivial and often requires a spe-
cialized virtual machine to instrument object allocations and
dereferences. Alternative lifetime profiling could be done
with less implementation effort using available finalization
mechanisms such as weak references.

In this paper, we study the impact of finalization on object
lifetime profiling. We built an actionable lifetime profiler
using the ephemeron finalization mechanism named FI1LiP.
FILIP instruments object allocations to exactly record an ob-
ject’s allocation time and it attaches an ephemeron to each
allocated object to capture its finalization time. We show
that FILIP can be used in practice and achieves a significant
overhead reduction by pretenuring the ephemeron objects.
We further experiment with the impact of sampling allo-
cations, showing that sampling reduces profiling overhead
while maintaining actionable lifetime measurements.

CCS Concepts: » Software and its engineering — Soft-

ware maintenance tools; Software performance; Garbage

collection.
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1 Introduction

Object lifetime information is crucial to optimize perfor-
mance through memory optimizations such as pre-tenuring
or tuning garbage collector parameters [9, 20]. Implementing
algorithms that compute object lifetimes in a precise and
scalable manner is nontrivial and requires often a modified
virtual machine for execution [4, 6, 7, 14, 15, 32]. For example,
Hertz et al. [14, 15] introduced a perfect tracing algorithm
that computes object lifetimes called Merlin. However, Mer-
lin has an overhead between 70 and 300 X.

One practical alternative used in the past is to use finaliza-
tion mechanisms such as weak references to estimate object
lifetimes [1, 25]. However, the topic in question was never
explored in depth. In this paper, we explore the profiling
of object lifetimes using the ephemeron finalization mecha-
nism [13]. In a nutshell, we instrument object allocations to
trace object birthtime and we attach an ephemeron to each
object to be notified when the object becomes collectible.
The main challenge is that naively using such a mechanism
attaches an ephemeron to each allocated object stressing
the memory manager, adding extra runtime overhead and
negatively impacting the precision of the lifetime measures.

To address these challenges, we study the impact of sam-
pling in lifetime profiling. For this purpose we have devel-
oped FILIP, a lifetime profiler working on top of the Pharo
Virtual Machine and available under the MIT open-source
license. Our solution utilizes the underlying ephemeron sup-
port with Pharo’s generational scavenger memory manager
and implements sampling to scope instrumentation.
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We first validate that our profiler is actionable [24], veri-
fying that there is a causal connection between the bench-
marked applications and our measurementsi.e., If we action
on application source code to increase object lifetimes, we
should see a change in the measured object lifetimes. Second,
we show that pretenuring ephemerons and sampling allo-
cations significantly reduce profiling overhead. Finally, we
show that our profiler achieves similar precision across differ-
ent sampling rates when measuring object lifetimes. These
results indicate that finalization and sampling are promising
solutions to build object lifetime profilers.

The contributions of this paper are:

e Empirical evidence that a finalization-based profilers
can be weakly actionable and have low overhead.

e Empirical evidence of how pre-tenuring ephemerons
significantly reduces overhead in the stressful setting
that is allocation profiling, making profiling practical.

e Empirical evidence that sampling allocations reduce
further profiling overhead while still providing rele-
vant object lifetime information.

Paper’s outline. The paper is structured as follows: Sec-
tion 2 presents the problems of profiling object lifetimes
using a finalization mechanism. Section 3 explains the core
design of our finalization profiler used for experimentation.
Section 4 presents our experimental setup, research ques-
tions, and experimental methodology. Section 5 presents
our validation and answers the research questions. Section 7
presents the related work and Section 8 concludes the paper.

2 Challenges of finalization-based object
lifetimes

The ideal lifetime of an object spans from the moment it is
allocated to the moment it becomes unreachable. Measuring
such an ideal lifetime requires instrumenting the memory
manager to track allocations and dereferences with algo-
rithms such as Merlin [14, 15]. In this paper, we explore the
tradeoffs of measuring object lifetimes with a finalization
mechanism. Using the finalization mechanism available in
existing implementations allows for retrofitting lifetime pro-
filing to an existing language runtime without major changes
in the memory manager.

2.1 Ephemeron finalization

Finalization is a runtime mechanism that allows developers
to hook into object deallocation. The objective of finalization
is to notify about object deallocation, generally by executing
a user-defined callback when this happens. Such a mecha-
nism is useful to e.g., dynamically free runtime resources
such as file descriptors when objects become unreachable.
One popular finalization mechanism is ephemeron finaliza-
tion [13], present in languages such as Lua [16], OCaml [30],
Racket [11], Squeak [2] and Pharo [27]. Ephemerons are key-
value pairs that strongly hold their values as long as their
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Figure 1. An object’s lifetime.

keys are referenced. When the key becomes unreachable in
the object graph by objects other than the ephemeron, the
memory manager mourns the ephemeron and triggers the
finalization callback.

Mourning typically happens during garbage collection (GC),
thus the mourned ephemerons found during a GC cycle are
queued and not treated immediately. Finalization callbacks
are then executed when control returns to the execution
engine: ephemerons are dequeued one by one and their at-
tached objects are finalized.

2.2 Object lifetime and finalization

Let us consider a profiler that computes object lifetimes using
the finalization approach described before. Such a profiler
will store a timestamp when an object is allocated and reg-
ister an ephemeron for it. When the object is finalized, the
profiler stores a second timestamp. Such a profiler suffers
several issues on how lifetimes are measured, as illustrated
in Figure 1.

Problem 1: Delayed observation time. There is a po-
tentially large distance imposed by design between the mo-
ment when an object becomes unreachable and its final-
ization. Ideally, an object’s lifetime should indicate the time
when it was dereferenced and became unreachable. However,
since mourning happens only during GC cycles, a profiler
will never observe lifetimes under the period between GCs.
Moreover, the mourning process queues objects for later
finalization by the runtime engine. Thus, the time interval
between an object becoming unreachable and its finalization
time is influenced by the latency of the program executing
the finalization. This difference between the dereferencing
time and the finalization time can lead to imprecise measure-
ments.

Problem 2: Ephemeron contamination. Ephemerons,
generally treated by implementations as normal objects, add
additional stress to the memory manager. This stress may
negatively impact the period and overhead of GCs, and hurt
the lifetime measurement. This increased overhead may even
render the solution unaffordable in terms of performance,
thus posing a significant challenge.
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3 Finalization-based lifetime profiling

In this paper, we explore the profiling of object lifetimes
using the ephemeron finalization mechanism [13]. We have
developed FILIP, a lifetime profiler working on top of the
Pharo Virtual Machine, available under the MIT open-source
license and based on the lllimani memory profiling frame-
work !. In a nutshell, FILIP instruments object allocations
to trace object birthtimes and attaches ephemerons to each
object to be notified when the object becomes collectible.
To investigate the impact of the delayed observation time
and ephemeron contamination, FILIP improves lllimani with
two key extensions: customized pre-tenured ephemerons
and configurable object sampling.

In the rest of this section, we explain the inners of our
profiler. Later, in Section 4 we explain our experimental setup
and methodology, and Section 5 presents our experimental
results on five different application benchmarks.

3.1 Instrumenting allocations

FILIP dynamically instruments object allocations by taking
advantage of that in Pharo all allocations occur through mes-
sage sending [3]. It is thus enough to instrument the methods
responsible for allocation. We implement such an instrumen-
tation with a method proxy library re-implementation of
method wrappers [5]. Method wrappers are user-defined
hooks that are invoked before and after an instrumented
method is invoked. The method wrapper library makes sure
that allocations produced by the profiler itself are not instru-
mented as well, as may be the case in a reflective environment
such as Pharo.

When an allocator method is invoked, the after hook will
contain the return value of the original method, which is the
newly allocated object. We then register its allocation time
and attach an ephemeron to it.

3.2 Customizing finalization

The standard ephemeron framework in Pharo produces two
objects per ephemeron: the ephemeron key-value object pro-
vided by the standard library, and the user-defined finalizer.
To minimize the pressure in the memory manager we cus-
tomize ephemerons in our profiler to use a single object
fulfilling both roles. The ephemeron is thus also a finalizer
to avoid additional allocations.

Furthermore, as we know in advance that the ephemerons
will live at least longer than the object they observe, we
optimize the allocation by pre-tenuring ephemerons. This
approach reduces the pressure on the scavenger algorithm,
which needs to run quickly and frequently. They will still
impose some overhead because ephemerons will be tracked
in the memory manager’s remembered set because their key
will be allocated as young objects.

Ihttps://github.com/jordanmontt/illimani-memory-profiler
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3.3 Sampling support

FILIP introduces built-in support for configurable sampling
allocation events. All our experiments below use different
sampling rates. Each sampling rate is represented as a re-
duced fraction. For example, a 20% sampling rate is repre-
sented as 1/5, meaning the profiler will capture 1 out of every
5 produced allocations. We leave for future work the study of
different sampling approaches, such as using time windows.

4 Experimental setup

This section presents the general context of our experiments,
including our research questions, the methodologies fol-
lowed, and the list of benchmarks we profiled. The detailed
results of our experiments are shown and discussed in Sec-
tion 5.

4.1 Research questions

This paper studies the following research questions on the
FILIP profiler and its design.

e RQ.1 - Actionability. Is our profiler actionable? If
we act on the application source code to extend the
object lifetimes, does the profiler report reflect these
changes? This first question aims to validate our pro-
filer implementation.

RQ.2 - Object lifetime precision across sampling
rates. How do different sampling rates impact the
computed object lifetimes? Do the object lifetimes
vary across these different sampling rates? This second
question aims to evaluate the precision of the profiler,
and how sampling impacts the measurements.

RQ.3 - Execution time overhead. Does sampling
object allocations reduce the overhead introduced by
the finalization profiler, enabling its use without sig-
nificant performance impact? This third question aims
to validate how practical is such a profiler.

RQ.4 - Memory overhead. How much memory over-
head does our profiler introduce? This fourth question
also aims to validate how practical our profiler is.

4.2 Experimentation platform

Our implementation resides in the Pharo programming lan-
guage [10], which has a mature virtual machine implemen-
tation in stable production usage for over a decade [19, 22,
23, 26, 27]. Pharo implements generational scavenger [31]
with a remembered set implemented as a sequential store
buffer, and a mark-compact GC for the older generation [17].
Pharo implements Ephemerons [27], a finalization mecha-
nism allowing the execution of user-defined actions when
an object is about to be garbage collected [13]. We run the
experiments on a MacBook M2 Pro with 16 GB of memory
running OSX 14.3.1.
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4.3 Benchmarks

We run all our experiments in the following set of bench-
marks. These benchmarks are programs extracted from ex-
isting production libraries/applications.

e DataFrame: DataFrame [28] is a tabular data struc-
ture commonly used for data analysis. We load a syn-
thetic dataset that follows a linear distribution with
some noise. The dataset weighs 230 MB and it has
2000000 rows and 6 columns. This scenario is interest-
ing because of the amount of objects manipulated and
the execution time of the computation.

e Honey Ginger: A smoothed-particle hydrodynamics
simulator with rich visualization and interactivity. We
render one simulation for 1000 rendering cycles.

e Re:Mobidyc: A multi-agent simulator for individual-
based modeling in population dynamics and ecotoxi-
cology. We run a simulation where wolves chase and
eat goats in a grass field. The simulation shows the
evolution of the wolves and goats population. The
simulation takes about 2-3 minutes to finish.

e Bloc:Blocis alow-level Ul infrastructure and Ul frame-
work for Pharo. We executed the Boids benchmark,
which renders moving figures that simulate the flock-
ing behavior of birds. We let the benchmark execute
for 10 seconds.

e Moose: Moose is an open-source extensive platform
for software and data analysis. It offers multiple ser-
vices ranging from importing and parsing data to model,
measuring, querying, mining, and building interactive
and visual analysis tools. We loaded a large software
database from a private company into the Moose meta-
model. The software model has 13521 classes and 48087
methods.

4.4 General methodology

We applied the following methodology to validate FILIP
and to respond to the research questions. We profiled each
benchmark using four different sampling rates: 0.1%, 1%, 50%,
and 100%. These sampling rates were chosen to provide a
wide range of comparisons.

When presenting results based on time (e.g., lifetimes
and overhead) we use execution time relative to the un-
instrumented benchmark which serves as baseline. For ex-
ample, instead of expressing that an object lived for 62 out
of 77.5 seconds, we will state that it lived for 80% of the total
execution time. This is because we expect the profiler to
introduce execution overhead, which will vary according to
the sampling rate. With a higher sampling rate, we will exert
more stress on memory, thereby increasing garbage collec-
tion time, and thus affecting the absolute measurements.

Sebastian Jordan Montafio, Guillermo Polito, Stephane Ducasse, and Pablo Tesone

Definitions.

e Most allocated classes. We consider a class as ‘most
allocated’ if its instances represent at least 1% of the
total allocations. If an application has too few or too
many such classes, the threshold can be adjusted, al-
though for our analysis the 1% threshold showed good
results.

e Short-lived and long-lived object. We consider all
instances of a class as short-lived if their average life-
time is less or equal to 5% of the benchmark execution
time. We consider all other instances as long-lived. No-
tice that although this threshold will vary depending
on the application, we use it only to classify instances
in our actionable experiments and to present results.

4.5 Actionability experiments

As discussed in Section 2, our approach does not provide
the exact object lifetimes, but an approximation. To validate
FIL1P, we adopt the definition of actionable profilers pro-
posed by T. Mytkowicz [24]. T. Mytkowicz [24] et al. define
actionable profilers as follows:

"To evaluate if a profiler is actionable, we use causality anal-
ysis. Causality analysis works by intervention: we change our
system (the intervention) and then check if the intervention
yields the predicted performance. If the prediction holds, then
causality analysis gives us confidence that the profiler is ac-
tionable; if the prediction does not hold, causality analysis
indicates that the profiler is not actionable."

In our case, since we are evaluating memory rather than
performance, we intervene in the application’s source code to
alter object lifetimes. Given the difficulty of reducing object
lifetimes, we opted for increasing the lifetime of short-lived
objects. We will name baseline profiler the finalization pro-
filer, for which no action was taken. Conversely, the profiler
in which we took action to increase lifetimes is named the
actionable profiler.

In our actionability experiments, we instrument each bench-
mark to keep references to instances of short-lived classes at
allocation time, to prevent them from being garbage collected
until the end of the application. We compare the average
lifetimes of the actionable profiler with those of the baseline
profiler. We expect that lifetimes measured by the action-
able profiler should increase. Additionally, for the DataFrame
benchmark we present an in-depth analysis of the most allo-
cated classes across the different sampling rates.

4.6 Object lifetime precision across sampling rates

To study the precision of our profiler, we compare the overall
lifetime frequencies for each sampling rate relative to the
total benchmark execution time. Allocation histograms bin
allocations by second. We compare the results across all
sampling rates to assess the degree of variation between
them. We expect consistent results across all sampling rates.
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Additionally, for the DataFrame benchmark we present
a in-depth analysis of the most allocated classes across the
different sampling rates.

4.7 Execution time and memory overhead

To study the overhead of our profiler, we executed each
benchmark across 5 configurations: without the profiler and
with the profiler active at sampling rates of 100%, 50%, 1%
and 0.1%. We used ReBench [21] to drive our benchmark
execution, using 30 VM iterations with 1 benchmark iter-
ation each [12]. We strongly believe that one benchmark
iteration per VM invocation does not alter our results be-
cause our target language implementation, the Pharo VM,
has a non-optimizing baseline JIT compiler that JIT com-
piles on the second method invocation and does not apply
optimizations that impact allocation behavior such as scalar
replacement. For each configuration, we report the mean
value of the measurements. To avoid interference from other
applications during benchmark execution at maximum dur-
ing benchmark execution, we stopped all OS applications
that could be stopped and we cut the internet connection.

We measured baseline memory consumption with our
profiler. We added up the size of all allocated objects at 100%
of sampling. We then estimated the incurred overhead by
computing the size of a FILIP ephemeron instance multiplied
by the total number of allocations at each sampling rate.

5 Results

This section presents the results of our research questions
using all our benchmarks. When applicable, we perform an
in-depth analysis on the DataFrame [28] benchmark.

5.1 RQ.1- Actionability

This section presents our actionability experiments. First, we
show how actionable are the overall averages of lifetimes in
the different benchmarks. Then we dive into the DataFrame
case study and show a histogram of lifetime variations of
both overall lifetimes and per most allocated class.

5.1.1 Acting on lifetimes. This subsection shows the ef-
fect of actioning on object allocation for all of our bench-
marks. As it was said in Section 4.5, we act on the most
allocated short-lived classes of each benchmark. Following
we list the classes and the percentage of objects allocated.

e DataFrame. NumberParser (27.9%), Fraction (27.9%),
and ReadStream (27.9%).

e HoneyGinger. Rectangle (1.02%), Array (0.74%), and
Form (0.22%).

e Re:Modidyc. Array (28.7%), Dictionary (14.9%), and
RMDFishmanMooreRandomGenerator (7.4%).

e Bloc. BIChildrenSortedByElevation (30%), BIVector2D
(1.6%), and WriteStream (2%).

e Moose. WideString (15%), ValueLink (1.7%), and Set
(1.4%).
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Figure 2. Comparison of the overall lifetime relative fre-
quencies: baseline vs. actionable profiler in DataFrame.

Table 1 shows the difference in average lifetime between
the baseline and the actionable profilers when applying the
different sampling rates (columns) per benchmark (rows).

5.1.2 Actionable lifetime averages in DataFrame. In
this section, we dive into the DataFrame benchmark to study
how actionability in object lifetimes happen at the class level.
Table 2 presents the difference in the average lifetimes be-
tween the actionable and the baseline profiler for the most
allocated classes in the benchmark. Two groups exist: the
short-lived and the long-lived ones. The short-lived group
shows differences ranging from 72% to 38%. The long-lived
shows differences from 4% to 6%. The classes on which we
took action, NumberParser, Fraction, and ReadStream, ex-
hibit significant differences in their average lifetimes. This
difference in variation is expected as we did not act on the
long-lived objects.

5.1.3 Actionable lifetime frequencies in DataFrame.
Figure 2 presents the overall lifetime frequencies for all allo-
cated objects across the four different sampling rates. Each
row plots the overall lifetime at a different sampling rate.
The first column shows that we go from a situation (in the
top) where most of the objects are short-lived to a situation
(in the bottom) where objects lived from 50% to 100% of the
execution time. In addition, the plots of the second row (ac-
tionable profiler) show that the lifetime is spread from 50%
to 100% for the first plot and from 0% to 100% for the three
last plots.

Figure 3 splits the same analysis for the short-lived classes
(Fraction, NumberParser, and ReadStream). Similarly to the
overall lifetime, the results show an increased lifetime for
the classes that we acted upon.
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Table 1. Differences in overall lifetimes in the baseline vs. actionable profiler for all benchmarks.

100% Sampling 50% Sampling 1% Sampling 0.1% Sampling
DataFrame
Difference in average lifetimes +60% +42% +32% +33%
HoneyGinger
Difference in average lifetimes +76% +56% +47% +47%
Re:Mobidyc
Difference in average lifetimes +34% +32% +24% +23%
Bloc
Difference in average lifetimes +25% +13% +13% +14%
Moose
Difference in average lifetimes +10% +9% +10% +10%

Table 2. Differences in average lifetimes in the baseline vs. actionable profiler in DataFrame.

Fraction NumberParser ReadStream ByteString Array
100% Sampling
Difference in average lifetimes ~ +72% +72% +72% +4% +4%
50% Sampling
Difference in average lifetimes ~ +49% +49% +49% +4% +4%
1% Sampling
Difference in average lifetimes ~ +38% +38% +38% +6% +6%
0.1% Sampling
Difference in average lifetimes ~ +38% +38% +38% +6% +6%

short-lived

long-lived

RQ.1 Conclusion. Acting on objects resulted in a
noticeable increase in the observed average lifetimes.
We observed significant differences across all sam-
pling rates, ranging from 10% to 76%. Object graphs
revealed an anchoring effect: all objects referenced
by an affected object will also increase their lifetimes.
These findings suggest that our finalization profiler
provides weak actionability: while overall average
lifetimes are increased, graph anchoring prevents
predicting the expected increase.

5.2 RQ.2 - Object lifetime precision across sampling
rates

This section presents the results of our profiler’s precision
across sampling rates. First, we show how the average mea-
sured lifetimes vary across sampling rates for each applica-
tion. Then we dive into the DataFrame case study and show
a matrix of lifetime histograms for both overall lifetimes and
per most allocated class.

5.2.1 Precision across average lifetimes. This subsec-
tion shows how lifetime measurements are affected across
different sampling rates. As stated in Section 4.4, we report
lifetime measurements relative to the benchmark execution
time to cope with the instrumentation-induced overheads.
Table 3 shows the average lifetime applying the different
sampling rates (columns) per benchmark (rows).

Our results show that sampling shows little variation in
the observed lifetimes for each application, and that variation
is particularly low when average lifetimes tend to be longer.

5.2.2 Precision per most-allocated class in DataFrame.
In this section, we dive into the DataFrame benchmark to
study how object lifetimes vary at the class level. Table 4
presents per most-allocated class and across the different
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Baseline profiler lifetime frequencies
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Figure 3. Baseline vs. actionable profiler relative lifetime frequencies by class.

sampling rates the following information: number of allo-
cated objects relative to the number of objects, amount of
memory allocated relative to the total memory allocated, and
relative average observed lifetimes. The left part of the table
shows long-lived classes, and the right short-lived classes.

The table shows that the percentage of captured alloca-
tions does not vary across sampling rates: 27.9% for Fraction,
27.9% for NumberParser, 27.9% for ReadStream, 13.9% for
ByteString, and 2.3% for Array. Memory usage varies across
sampling rates e.g., the class NumberParser has 27.9% of
allocations but the occupied memory varies from 52.3% to
34% because sampling affects the number of total objects
captured. However, the percentage of memory used per class
remains always in the same order of magnitude.

Regarding the average lifetimes, we observe slight reduc-
tions as we reduce the sampling rate while staying always in
the same order of magnitude: for the short-lived objects, the
average relative lifetime varies from 0.06% to 0.04% for Frac-
tion (0.01% difference), and for the long-lived objects from
93.3% to 86.3% for ByteString (7% difference). This shows that
although most instances of ByteString are long-lived, there
are several short-lived instances and the results affected if
less long-lived instances are sampled.

5.2.3 Lifetime frequencies in DataFrame. Figure 4 pre-
sents the lifetime frequencies for all objects across four differ-
ent sampling rates. We observe a bimodal distribution across
all sampling rates. Approximately 85% of the total allocated
objects exhibit lifetimes close to 0% of the execution time.
The other 15%, in the three bins on the right, are below 10%
and have a lifetime closer to the one of the benchmark.

It is worth noting the following about the use of a relative
axis in the plots. Since the instrumentation of the profiler

Lifetime frequencies for baseline profiler
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Figure 4. Lifetime relative frequency histograms for
DataFrame.

may change the execution speed of the application, the exe-
cution time varies according to the number of captured. Not
using the normalized histogram would make the compari-
son unfair. Time normalization is essential to the analysis
because the overhead varies on the sampling rate.

5.2.4 Lifetime frequencies per most allocated class in
DataFrame. Figure 5 presents the lifetime frequencies per
most allocated class in the DataFrame benchmark. Each row
shows the lifetimes of a class across sampling rates. The
three upper rows show lifetime frequencies for short-lived
classes. The two lower rows show lifetime frequencies for
long-lived classes. Reading this figure per column shows
different classes per sampling rate, reading it per row shows
class lifetime variation across sampling rates. Figure 5 shows
that the lifetime distributions per class remain similar across
sampling rates.
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Table 3. Overall lifetimes for all benchmarks.

100% Sampling 50% Sampling 1% Sampling 0.1% Sampling Avg+stdev

DataFrame

Overall average lifetimes 15.24% 14.68% 14.09% 14.21% 14.55%+0.45
HoneyGinger

Overall average lifetimes 0.09% 0.08% 0.05% 0.06% 0.07%=+0.014
Re:Mobidyc

Overall average lifetimes 0.5% 0.36% 0.46% 0.18% 0.37%+0.12
Bloc

Overall average lifetimes 6.27% 6.27% 6.51% 6.63% 6.42%+0.15
Moose

Overall average lifetimes 13.19% 13.33% 13.67% 12.82% 13.25%+0.3

Table 4. Comparison of DataFrame with different sampling rates.

Fraction NumberParser ReadStream ByteString Array

100% Sampling rate

Allocations (Total: 86,002,607) 27.9% 27.9% 27.9% 13.9% 2.3%
Memory 11.4% 45.6% 15.2% 7.6% 20.2%
Avg. Lifetime 0.06% 0.06% 0.06% 93.3% 93.3%
50% Sampling rate

Allocations (Total: 43,001,311)  27.9% 27.9% 27.9% 13.9% 2.3%
Memory 11.2% 44.6% 14.9% 7.4% 21.9%
Avg. Lifetime 0.05% 0.05% 0.05% 89.9% 89.9%
1% Sampling rate

Allocations (Total: 860,026) 27.9% 27.9% 27.9% 13.9% 2.3%
Memory 13% 52.3% 17.4% 8.7% 8.5%
Avg. Lifetime 0.04% 0.04% 0.04% 86.3% 86.3%
0.1% Sampling rate

Allocations (Total: 86,003) 27.9% 27.9% 27.9% 139 % 2.3%
Memory 8.5% 34% 11.3% 5.7% 40.4%
Avg. Lifetime 0.04% 0.04% 0.04% 87.1% 87%

short-lived long-lived

. . . 5.3 RQ.3 - Execution time overhead
RQ.2 Conclusion. We observe consistent lifetime

frequencies across the various sampling rates, in-
cluding the lowest one. This consistency holds even
for the most-allocated classes, where we find no sig-
nificant changes. This evidence suggests that our
profiler reports precise measurements relative to
the benchmark execution time.

We observed that results vary depending on the sam-
pling rate and the profiling application. If the appli-
cation makes a considerable number of allocations,
we recommend using a small sampling rate and grad-
ually incrementing it if needed. We obtained weakly
actionable results using a 0.1% sampling rate.

This section studies the overhead introduced by the pro-
filer in the benchmark execution in two scenarios: with and
without ephemeron pretenuring. Our profiler introduces
overhead because we instrument all allocator methods and
allocate an ephemeron object for each produced allocation.

Table 5 displays the introduced execution time overhead
per application across different sampling rates. For each
application, the table presents three rows: the measurements
without pretenuring, the measurements with pretenuring
and the estimated improvement of pretenuring over not
doing it, computed as:
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Table 5. Profiler overhead comparison with different sampling rates.

Sampling rate 100% 50% 1% 0.1%
DataFrame - pretenuring 5.8 X +0.017 3.8 X +0.019 2.25X +0.019  2.27 X £0.012
DataFrame + pretenuring 2.29x+0.03  1.64x+0.01 1.08 X +0.001  1.12 X £0.001
APretenuring 2.53% 2.32% 2.08x 2.03%
HoneyGinger - pretenuring 9.2 X £0.01 8.91 X £0.03 8.4 X +£0.6 7.8 X £0.04
_HoneyGinger + pretenuring  32x+0.10 25X #0.10 _ 2.2x+0.06  18x#0.05
APretenuring 2.88x% 3.56% 3.82% 4.33%
Bloc - pretenuring 1.04 X £0.002 1.04 X £0.001 1.04 X £0.0008 1.04 X +0.0006
Bloc + pretenuring 103X +0.001 103X £0.001 _1.03 X £0.0007_ 1.03 £0.0007 _
APretenuring 1.01x 1.01x 1.01x 1.01x
Moose - pretenuring 3.2 X £0.02 2.6 X +£0.008  2.02 X +0.007  2.00 X £0.005
_Moose + pretenuring 202X 0.03 1.6x+0.007  11x+0.003  1.09x+0.002
APretenuring 1.58% 1.63% 1.84x 1.84%
Re:Mobidyc - pretenuring 32.3x+2.2  13.8x+0.11  9.14 X £0.13 9.01 X +0.08
_Re:Mobidyc + pretenuring  2.06 X £0.005 15X £0.004 13X £001  1.25x 005
APretenuring 15.68% 9.20% 7.03% 7.21%
Avg. + pretenuring 2.12x 1.65% 1.34x 1.26x

Lifetime frequencies by most-allocated classes
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Figure 5. Relative lifetime frequencies by most-allocated
classes. The x-axis represents the relative execution time of
the application and the y-axis is the percentage of objects.

Mean without pretenuring

APretenuring =
B Mean with pretenuring

The table shows that both the sampling rate and the allo-
cation ephemeron incur significant overhead on benchmark
execution, except for the Bloc benchmark arguably because it

is less allocation intensive. Our results show that pretenuring
ephemerons has a 3.68x improvement against not pretenur-
ing on average. Moreover, ephemeron pretenuring shows
an improvement of 15.68x the Mobidyc benchmark when
performing 100% of sampling.

Overall, the profiler using the pretenured ephemeron con-
figuration shows an average overhead of 1.59x across all
sampling rates, diminishing with the sampling rate.

As we have shown that not pre-tenuring of objects sig-
nificantly increases the overhead introduced by the profiler,
we have chosen not to further investigate the impact of pre-
tenuring on the computed overall lifetimes.

RQ.3 Conclusion. The impact of the overhead in-
troduced by the profiler varies depending on the
sampling rate and the ephemeron pretenuring con-
figuration. Pretenuring ephemerons reduces the over-
head by 3.68x on average. The pretenured configura-
tion presents an average overhead of 1.59x across all
sampling rates. This makes finalization profiling a
practical alternative to estimating object lifetimes.

54 RQ.4 - Memory overhead

This section studies the memory overhead introduced by the
profiler in the benchmark execution. Our profiler introduces
memory overhead because one ephemeron is allocated by
each application allocation.

Table 6 presents the baseline memory consumption of
each benchmark when the profiler is not present and the
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memory overhead relative to the baseline of each sampling
configuration. In this table, each column is each of our bench-
marks. The rows show respectively the baseline absolute
measurements and the overhead relative to the baseline at
the different samplings. We computed the estimated memory
overhead as follows:

Overheadsampiing = Baseline + size,  allocationssampiing

where Baseline represents the absolute memory consump-
tion, size, represents the size of a FILIP ephemeron instance,
and allocationssampiing represents the number of allocations
for a given sampling rate.

The table shows that sampling significantly impacts mem-
ory overhead, with a linear tendency for all applications. In
the worst scenario using 100% of sampling, overheads range
between 2.36 X and 3.34 X, suggesting that FILIP ephemeron
objects are between 36% and 134% bigger than the average
objects in each benchmark. This shows that there is a poten-
tial optimization on the size of ephemerons that could both
reduce memory overhead and improve locality.

RQ.4 Conclusion. Our results show that low sam-
pling rates have negligible memory overhead. In the
worst case, we have an overhead of up to 3.34 X, and
2.75 X in average.

6 Discussion and threats to validity

6.1 Benchmark selection and homogeneous
workloads

In our experiments, we selected 5 different benchmarks for
our evaluation. We did our best to choose benchmarks with
different memory allocation profiles. However, benchmarks
like DataFrame are designed to work with a homogeneous
workload: alarge CSV file with the same structure and similar
data in each row. This paper does not analyze the impact
of workload homogeneity on our results. It is left to future
work to guarantee that the results are generalizable to all
kinds of applications.

6.2 Strong vs. weak actionability

Our results in RQ. 1 show that acting on object lifetimes
allows us to observe an increase in the overall average life-
times as expected. However, as discussed previously, our
profiler exhibits weak actionability: object graphs have an
anchoring effect that makes it difficult to precisely predict
the outcome of our actions on lifetimes. Our experiments
show such weak actionability property is possible but more
work is required to guarantee strong actionability.

Sebastian Jordan Montafio, Guillermo Polito, Stephane Ducasse, and Pablo Tesone

7 Related work

Weak references to profile object lifetimes. Agesen et
al. [1] investigated profiling object lifetimes in the Java pro-
gramming language using weak references and various sam-
pling techniques. One sampling technique involves attaching
a weak reference to every X-th allocated instance, for exam-
ple once every 1000th allocation. Other discussed sampling
techniques include sampling objects causing local allocation
buffer (LAB) refills, custom allocator routines, and thread-
specific sampling. Weak references are attached to object
allocations, and upon garbage collection, the finalization
time of objects is recorded. To store information about the
object, such as its type, memory size, and allocation time,
the authors extended the PhantomReference class, ensuring
that the object won’t be revived at finalization. To the best
of our knowledge, the work by Agesen et al. is the most rele-
vant to ours. We attach an ephemeron to an object allocation
instead of relying on weak references. In Pharo, ephemerons
are not a class but a memory layout, allowing us to customize
ephemerons to e.g., make the ephemeron its finalizer. We
also ensure that the object won’t be revived during finaliza-
tion. Although relevant, Agesen et al’s work is descriptive
but misses a report on their experiments and validation. Our
paper provides an analysis of the impact of sampling and
analyses the effect of ephemeron contamination and a vali-
dation methodology.

Pearce et al. [25] use weak references to profile object
lifetimes for the Aspect] programming language. Similarly
to Agesen et al., they attach a weak reference instance when
an object allocation is produced to record the finalization
time of the object.

Object lifetime profiling. Hertz et al. [14, 15] introduced
the Merlin algorithm, a perfect tracing algorithm that com-
putes object lifetimes by reconstructing exactly when ob-
jects were last reachable. Implemented on a modified virtual
machine, Merlin determines object lifetimes offline, after
the application’s execution, albeit with an overhead rang-
ing between 70 and 300 times. In contrast, our approach is
implemted on top an unmodified Pharo VM and exhibits
overheads up to 2.29 times.

Bruno et al. [6] developed an object lifetime recorder (OLR)
that calculates object lifetimes in terms of garbage collection
generations. It incorporates an allocation recorder that tracks
allocation sites and provides notifications when a collection
is completed. Subsequently, it generates incremental heap
dumps upon completion of a collection. After the execution,
it analyzes the object graph, incorporating allocation sites
from the heap dumps to determine which objects should
belong to the same generation. Bruno et al. [7] introduced a
lifetime profiler called ROLP (Runtime Object Lifetime Pro-
filer) based on OLR. ROLP predicts the object lifetimes based
on its allocation context, which comprises the allocation site
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Table 6. Baseline memory consumption and memory overhead.

DataFrame HoneyGinger Bloc Moose Re:Mobidyc
Total allocated memory 5053.51 MB 3312.44 MB 9.86 MB  3081.95 MB  4906.64 MB
Memory overhead (100% sampling) 2.36 X 3.34 X 2.9 % 2.61 X 2.53 X
Memory overhead (50% sampling) 1.68 X 2.25 % 2.0 X 1.81 % 1.75 %
Memory overhead (1% sampling) 1.01 X 1.03 x 1.02 X 1.02 x 1.01 x
Memory overhead (0.1% sampling) 1.001 X 1.003 X 1.002 X 1.002 X 1.001 X

plus the thread stack state. Upon allocation, objects are an-
notated in their header with the allocation context. Different
from us, it relies on virtual machine modifications to obtain
good scalability at runtime.

Evaluating profilers. Mytkowicz et al. [24] studied the
issue of disagreement among commonly used Java profilers
in identifying hot methods. The paper employs causality
analysis to evaluate profiler correctness, revealing biases
and observer effects contributing to incorrect profiles. It
introduces the concept of actionable profilers and proposes
causality analysis as a method to evaluate profiler accuracy
without relying on a correct profiler.

Burchell et al. [8] conducted a study on the precision of
Java profilers. They evaluated the precision, reliability, and
overhead of six actively maintained Java profilers using deter-
ministic benchmarks. The study evaluates six actively main-
tained profilers, finding them relatively reliable but highlight-
ing application-specific variations and disagreements among
profilers in identifying hot methods. This study builds upon
the work of Mytkowicz et al. [24], conducted 13 years prior.

Our validation was inspired by these two works. We ap-
plied Mytkowicz’s methodology to evaluate whether our
profiler is actionable. We based our precision comparison by
doing differential profiling across different sampling rates.

Hybrid finalization mechanism. Valloud [33] imple-
mented a new finalization mechanism for the HPS Smalltalk
VM due to performance issues with the existing mechanisms:
Weak Arrays and Ephemerons. Weak arrays were deemed
inefficient, while ephemerons introduced a significant mem-
ory overhead. To address these issues, the author developed
a new finalization mechanism that combines elements from
both approaches to improve performance. While our paper
did not specifically examine the memory overhead caused
by ephemerons, our experiments show that ephemerons add
a noticeable overhead when used in stressful scenarios such
as profiling. Moreover, even when allocating one ephemeron
per sampled allocation, the computed object lifetimes remain
actionable and the introduced overhead is manageable. It’s
important to note that the implementation of ephemerons
in Pharo differs from that in HPS Smalltalk.

Allocation site optimizations. Clifford et al. [9] intro-
duced an instrumentation technique called allocation me-
mentos. Mementos are small objects placed in the new space
alongside allocated objects. They are designed not to sur-
vive any garbage collection cycle. These mementos contain
information such as the allocation site and whether the ob-
ject was tenured or not. This information is used to apply
dynamic memory optimizations, including pre-tenuring, pre-
transitioning, and presizing. The authors proposed a new
instrumentation technique for applying memory optimiza-
tions. In contrast, our approach focuses on providing an eval-
uation of a finalization-based object lifetime profiling that
targets application developers and manual optimizations.

In our previous work [18], we introduced Illimani, a mem-
ory profiling framework designed to operate on the stock
Pharo VM. This work explores a case study to tune garbage
collector parameters from object lifetime information. In this
paper, we use lllimani as the underlying infrastructure for
developing FILIP.

Most allocated objects. Shuf et al. [29] introduced a novel
garbage collection algorithm based on object types. They
introduced the concept of prolific and non-prolific types,
categorizing them based on their allocation frequency. The
prolific types are the types of objects that are most allocated,
and the non-prolific ones are those rarely allocated. They
delineated this categorization using a threshold of 1%. If the
total allocated instances of a type are above 1%, that type
is considered prolific. However, in our study, we encoun-
tered objects with 2.3% allocations that exhibit long lifetimes,
thus contradicting the authors’ proposed 1% threshold for
classifying an object as prolific.

8 Conclusion

In this paper, we evaluated the actionability, precision, and
overhead of finalization-based object lifetimes profilers. By
attaching an ephemeron to allocated objects and recording
their finalization times, we approximate computed object life-
times without requiring modifications to the virtual machine.
Our approach offers actionable insights into object lifetimes
that can be used for memory performance optimization, such
as pre-tenuring, and garbage collector tuning.

Our profiler is weakly actionable: it presents significant
increases in the average lifetimes of targeted classes when
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taking action to extend their lifetimes even when consider-
ing low sampling rates. Furthermore, our results show that
pretenuring ephemerons and sampling object allocations
effectively reduce the overhead introduced by the profiler,
particularly in allocation-intensive applications. The most
impactful optimization is the pretenuring of the ephemerons
with an overhead reduction of 3.68x on average.

We observed that results vary depending on the sampling
rate and the profiling application. When profiling allocation-
intensive applications, we recommend developers use an
iterative methodology starting with a small sampling rate
and gradually incrementing if needed.
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