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Limiting absorption principle for contractions ∗

Joachim Asch †, Olivier Bourget ‡

18/5/24

Abstract

We establish limiting absorption principles for contractions on a Hilbert
space. Our sufficient conditions are based on positive commutator estimates.
We discuss the dynamical implications of this principle to the correspon-
ding discrete-time semigroup and provide several applications. Notably to
Toeplitz operators and contractive quantum walks.

1 Introduction

The limiting absorption principle states that there exists a topology in which
the resolvent can be continuously extended to parts of the essential spectrum.
It was originally developed for resolvents of selfadjoint Schrödinger operators [1]
and is widely used to establish propagation properties of the associated strongly
continuous group and perturbations thereof, see [23].

In particular it provides information on the absolutely continuous subspace and
plays an important role in the proof of asymptotic completeness of the quantum
mechanical N− body problem and in the study of the dynamics of embedded
eigenvalues.

In the present contribution we are interested in the dynamics of non-isolated
systems modeled by a discrete semigroup (V n)n∈N for a contraction V .

We consider H a separable Hilbert space, its bounded operators B(H) and a
contraction

V ∈ B(H), ∥V ∥ = 1.
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1 ∈ B(H) denotes the identity operator. By a limiting absorption principle for
V with respect to a weight W ∈ B(H) we mean that :

{z ∈ C; |z| < 1} =: D ∋ z 7→ W (1− zV ∗)−1W ∗

extends to a norm continuous function on a suitable subset D ⊂ D.
In particular

sup
z∈D

∥W (1− zV ∗)−1W ∗∥ <∞.

For ψ ∈ RanW ∗ this implies square summable decay of the correlations ⟨ψ, V nψ⟩,
more precisely ψ is an element of

Hac(V ) :=

{
ψ ∈ H : ∃Cψ ≥ 0, sup

∥φ∥=1

∞∑
n=0

|⟨φ, V nψ⟩|2 ≤ Cψ

}
,

see Proposition 3.1. Hac(V ) is called the absolutely continuous subspace ; for
unitary V , it is the space of vectors of absolutely continuous spectral measure.

While there exists a large body of literature concerning limiting absorption
principles, let us just briefly mention some work which concerns the non selfadjoint
case :

The absolutely continuous subspace for the generator of a continuous con-
traction semigroup was introduced by Davies [9], see also [14], and used in his
non-unitary scattering theory, [10] see [11] for a recent development.

Limiting absorption principles in a non-selfadjoint settings has been developed
by Royer [20,21], see also [8] for interesting information.

Limiting absorption principles for unitary operators and the related prop-
agation properties for the corresponding discrete group have been established
in [2], [22], [3], see also Kato [15].

The theory of characteristic functions can be used to obtain complementary
spectral information in the case of trace class perturbations of unitary operators,
see [16].

1.1 Main results

We now state our conditions on the contraction V and our results. For the proofs
we use the positive commutator method pioneered by Mourre [17], see also [6],
which makes use of an escape observable i.e.: an unbounded selfadjoint operator
which we consistently call A in the sequel.
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Definition 1.1. Let A be a selfadjoint operator. For a bounded operator B denote
Ade−iAt(B) := e−iAtBeiAt (t ∈ R). We say:

1. B ∈ Ck(A) for k ∈ N if Ade−iAt(B) is strongly Ck;

2. B ∈ C1,1(A) if:∫ 1

0

∥Ade−iAt(B) + AdeiAt(B)− 2B∥ dτ

|τ |2
<∞ .

3. For B ∈ C1(A), define the commutator [A,B] := adA(B) := i∂tAde−iAt(B)|t=0.

Remarks 1.2. 1. One has C2(A) ⊂ C1,1(A) ⊂ C1(A) and C1,1(A) is a ∗-
algebra, see [6].

2. If U ∈ C1(A) is unitary then U∗AU − A extends from the domain of A to
B(H) and U∗AU − A = U∗adA(U), see [3].

3. For U unitary U ∈ C1,1(A) is the minimal regularity assumption needed for
proving the limiting absorption principle to hold using Mourre methods [3,6].

Our first result is a global limiting absorption principle under the rather strong
assumption of existence of a positive commutator. We use the notation ⟨A⟩ :=
(A2 + 1)1/2.

Theorem 1.3. Let V ∈ B(H), ∥V ∥ = 1. Assume: V ∈ C1,1(A) and there exists
an a0 > 0 such that ℜ (V ∗adAV ) ≥ a0I.

Then for s > 1
2
the map D ∋ z 7→ ⟨A⟩−s(1− zV ∗)−1⟨A⟩−s extends continuously

in the uniform topology to D; in particular

sup
z∈D

∥⟨A⟩−s(1− zV ∗)−1⟨A⟩−s∥ <∞ and

Ran⟨A⟩−s ⊂ Hac(V ) ∩Hac(V
∗).

Remark 1.4. Remark that a contraction can always be decomposed in a direct sum
of its unitary and completely non-unitary parts [19]. Theorem 1.3 and Theorem
1.9 below are known to hold for a unitary Vu whereas for a completely non-unitary
Vcnu it is known that Hac(Vcnu) ∩ Hac(V

∗
cnu) = H, see Proposition 3.2 below. This

decomposition and information on the unitary part may be difficult to obtain in
applications, we will not make use of it in the present contribution.
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For our second main result it is sufficient to assume positivity of the commu-
tator locally in the spectrum of a unitary reference operator which we always call
U .

We denote T := R/2πZ and use its identification with the unit circle ∂D =
exp(iT) . Denote the spectral family of U by E(Θ), where Θ belongs to the Borel
sets of T. Thus for bounded Borel functions Φ on ∂D, we have

Φ(U) =

∫
T
Φ(eiθ)dE(θ).

Definition 1.5. Let U ∈ C1(A). We say that:
U satisfies a Mourre estimate w.r.t. A on the Borel set Θ if there exist a > 0

and a compact operator K such that

E(Θ)(UAU∗ − A)E(Θ) ≥ aE(Θ) +K, (1)

The Mourre estimate is called strict if K = 0.

For an operator B denote |B| :=
√
B∗B. We assume

Hypotheses (H). For a selfadjoint operator A,

(H1): there exists a unitary operator U , U ∈ C1(A) such that a Mourre estimate
(1) holds on an open subset Θ ⊂ T;

(H2): V = PUQ for P,Q such that 0 ≤ P ≤ 1, 0 ≤ Q ≤ 1;

(H3): V ∈ C1,1(A);

(H4): Let a be the Mourre constant defined in (1). For W = UV ∗ and for W =
U∗V , it holds: there exists a compact selfadjoint operator KW such that

∥iadA(ℑ(W ))−KW∥ < a (2)

and there exists α > 0, such that

2ℜ(1−W )− (1 + α)|1−W |2 ≥ 0. (3)

Remarks 1.6. Hypothesis (H4) is technical and used in Section 4.3.2.

1. (H4) is not a restriction if in (H2) P = 1 or Q = 1 c.f. Remark 2.2 below.

2. (H4) is not a restriction if in (H2) P = Q and P is an orthogonal projection
such that [U, P ] is compact, c.f. Remark 2.5 below.
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Concerning eigenvalues on the unit circle, we will prove

Proposition 1.7. Assume (H1), (H2). Then

1. For µ ∈ ∂D, ψ ∈ H \ {0}: V ψ = µψ =⇒ Uψ = µψ.

2. If a strict Mourre estimate (1) holds with K = 0 in Θ, then V has no
eigenvalues in eiΘ.

We now state our second main result, a local limiting absorption principle in
the subset Θ of the spectrum of U where the Mourre estimate (1) holds:

We denote by E(B) the set of eigenvalues of an operator B.

Theorem 1.8. Assume (H1− 4). Then for any s > 1/2 the map
z 7→ ⟨A⟩−s(1− zV ∗)−1⟨A⟩−s extends continuously from D to D ∪ eiΘ \ E(U) in

the operator norm topology; in particular

sup
z∈[0,1)·eiΘ0

∥⟨A⟩−s(1− zV ∗)−1⟨A⟩−s∥ <∞

for any closed set Θ0 such that eiΘ0 ⊂ eiΘ \ E(U)

Our third version of the limiting absorption principle is :

Theorem 1.9. Assume (H1 − 4). Then for any s > 1/2 and any closed set Θ0

such that eiΘ0 ⊂ eiΘ \ E(U), any Φ ∈ C∞(∂D;R) supported on eiΘ0:

sup
z∈D

∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥ <∞ and

RanΦ(U)⟨A⟩−s ⊂ Hac(V ) ∩Hac(V
∗).

We will illustrate our abstract results in Section 2 through various examples.
In particular, we discuss the role played by the hypotheses. The following sections
are dedicated to the proofs. In Section 3, we prove Proposition 1.7 and relate the
limiting absorption principle to the control of the absolutely continuous subspace
as stated in Theorems 1.3 and 1.9. The proof of the limiting absorption princi-
ples is developed in Section 4. We start with some auxiliary results on Mourre
inequalities in Section 4.1. The proof of our limiting absorption principle under
the C1,1(A) regularity condition, which is optimal on the scale of Cs,p(A) spaces
as developed in [6], requires the technical developments of Section 4.2. In Sec-
tion 4.3 we then proceed with some a priori estimates on a weighted version of
a suitably deformed resolvent. In Section 4.4, we establish some differential in-
equalities on this weighted deformed resolvent, which, once combined with the a
priori estimates, allows to conclude the proofs of Theorems 1.3 and 1.8. Some com-
plementary aspects related to the proof of Theorem 1.9 are developed in Section
5.
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2 Applications and discussion of the hypotheses

We will use freely:

Remark 2.1. B ∈ C1(A) if and only if the sesquilinear form

D(A)×D(A) ∋ (φ, ψ) 7→ ⟨Aφ,Bψ⟩ − ⟨φ,BAψ⟩

extends continuously to H × H. In this case, the bounded operator associated to
its extension is adA(B).

2.1 Fundamental example

We illustrate Theorem 1.9 with the rather basic but instructive example of a
specific rank 1 perturbation of the shift operator.

With the normalized Lebesgue measure dℓ, let H := L2(∂D, dℓ), Uψ(z) :=
zψ(z), Qψ(z) := ψ(z)−

∫
∂D ψdℓ, V := UQ. Remark that

V zn =

{
zn+1 n ̸= 0
0 n = 0

so ker(V ) = span{z0} and on kerV ⊥ the contraction decouples to the forward
shift and a unitary equivalent to the backward shift. In particular

spectrum(V ) = D and E(V ) = D.

While one can see explicitly from the definition of V that Hac(V )∩Hac(V
∗) = H,

our hypothesis are satisfied and we can apply our theorem. Indeed, for

A := z∂z on D(A) :=

{∑
n∈Z

anz
n;
∑
n∈Z

(1 + n2)|an|2 <∞

}
it holds

e−iAtUeiAt = e−itU, e−iAtQeiAt = Q,

in particular U and Q are in C∞(A) and (U∗AU − A) = 1 so a strict Mourre
estimate (1) holds with constant a = 1 on any measurable subset Θ.

Concerning hypothesis (H4), remark that V ∗U = Q, UV ∗ = UQU∗, thus for
W ∈ {V ∗U,UV ∗}: ℑ(W ) = 0 so (2) always holds with KW = 0. Also in both cases
0 ≤ ℜ(W ) ≤ 1, thus 0 ≤ 1 − ℜ(W ) ≤ 1, which implies 1 − ℜ(W ) ≥ |1 − ℜ(W )|2
and (3) holds with α = 1.

So (H1−4) are satisfied and we can apply Theorem 1.9 for Φ = id and conclude
that for s > 1

2
, Hs :=

{∑
n∈Z anz

n;
∑

n∈Z (1 + n2)
s|an|2 <∞

}
:

Hs = H = Hac(V ) ∩Hac(V
∗).
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Remark 2.2. It follows from this argument that in general if P = 1, i.e. V = UQ,
then Hypothesis (H2) implies (H4). The same is true if V is of the form V = PU .

Remark 2.3. The unilateral forward shift V ψ(z) := zψ(z) on the Hardy space

H :=

{∑
n∈N

anz
n;
∑
n∈N

|an|2 <∞

}
is an example for Theorem 1.3.
Indeed, with A := z∂z on D(A) :=

{∑
n∈N anz

n;
∑

n∈Z(1 + n2)|an|2 <∞
}
, it holds

V ∈ C∞(A) and V ∗adA(V ) = 1, so 1.3 applies.

2.2 Contractive convolution operators, quantum walks

In H = ℓ2
(
Zd;Cd′

)
consider V = UP for U = C0C1 , P = P0P1P0 where C1, P1

are convolution operators and P0, C0 matrix valued multiplication operators with
Cj unitary and 0 ≤ Pj ≤ 1.

More specifically, denote U(d′) ⊂ Md′,d′ the unitary group and P01(d
′) = {Q ∈

Md′,d′ ; 0 ≤ Q ≤ 1}. For the symbols f ∈ L∞(Td, U(d′)), g ∈ ℓ∞(Zd, U(d′)), and
p ∈ L∞(Td,P01(d

′)), q ∈ ℓ∞(Zd,P01(d
′)) consider

C1ψ(x) =
∑
y∈Z

f̂(x− y)ψ(y), C0ψ(x) = g(x)ψ(x)

P1ψ(x) =
∑
y∈Z

p̂(x− y)ψ(y), P0ψ(x) = q(x)ψ(x).

Suppose that

f is analytic and

∫ ∞

1

sup
r≤|x|≤2r

∥g(x)− 1∥dr <∞.

p ∈ C3(Td,P01(d
′)) and

∫ ∞

1

sup
r≤|x|≤2r

∥q(x)− 1∥dr <∞.

Remark that contractive quantum walks with asymptotically periodic coins
and local absorption are a particular example of the above [5, 13].

We argue that hypotheses (H1− 4) are satisfied:

Denote the selfadjoint operator Xψ(x) := xψ(x) defined on D(X) = {ψ ∈
H;

∑
x(1+x

2)|ψ(x)|2 <∞}. Then there exists a selfadjoint propagation observable
A such that U ∈ C1,1(A) and a discrete subset τf ⊂ T such that a Mourre estimate
(1) holds on every open Θ such that Θ ⊂ T \ τf .

Furthermore A is relatively bounded, As⟨X⟩−s ∈ B(H), s ∈ {1, 2} and P ∈
C1,1(A), we again refer to [5, section 3] for proofs.

Also 0 ≤ P ≤ 1; Hypotheses (H1)− (H3) are satisfied and by Remark 2.2 also
(H4). Thus Theorem 1.9 applies.
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2.3 Toeplitz operators

Let H = ℓ2 (Z;C), V = PUP with P the multiplication by the characteristic
function of the half line: Pψ(x) = χ(x ≥ 0)ψ(x), and U a unitary convolution

operator with symbol f ∈ L∞(T, U(1)), Uψ(x) :=
∑

y∈Z f̂(x− y)ψ(y).
Remark that the restriction of V to RanP is equivalent to the Toeplitz operator

with symbol f .
We now show that Hypotheses (H1)− (H4) are satisfied if f is smooth enough

and Theorem 1.9 applies.
If f ∈ C3(T, U(1)) and f ′ has no zeros in Θ ⊂ T, then there exists a propa-

gation observable A such that U ∈ C1,1(A) and such that a Mourre estimate (1)
holds in Θ, see [5, section 3] and [4].

In order to prove smoothness of the Hardy projection P , we recall the con-
struction of A.

Denote Lg be the convolution operator with symbol g on H. For g := if f̄ ′ the
selfadjoint operator A := 1

2
(LgX +XLg) = LgX + i

2
Lg′ is defined by extension

from D(X) which is a core for A.
It holds

Proposition 2.4. If f ∈ C6(T, U(1)) then P ∈ C1,1(A).

Proof. We show first that ⟨X⟩αadAP is a bounded operator for α ∈ {0, 1}.
Let P⊥ := 1 − P . For a symbol h ∈ C4(T,C), we can estimate the matrix

elements of P⊥LhP on the canonical basis of l2(Z):

|⟨ek, P⊥LhPel⟩| = χ(k < 0)χ(l ≥ 0)
(
|⟨ek, Lhel⟩| = |ĥl+|k||

)
≤ const

(|k|+ |l|)4
≤ const

⟨k⟩2⟨l⟩2

For α, β ∈ {0, 1} it follows

|⟨ek, XαP⊥LhPX
βel⟩| ≤

const⟨k⟩α⟨l⟩β

⟨k⟩2⟨l⟩2

which implies that the Hilbert-Schmidt norm of XαP⊥LhPX
β is finite. It holds:

P⊥AP = P⊥LgPX +
i

2
P⊥Lg′P

with g, g′ ∈ C4(T,C). It follows that adAP = P⊥AP − PAP⊥ and XadAP are
bounded operators.
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For χ ∈ C∞(R; [0,∞)) supported on an interval (a, b), 0 < a < b one has :∫ ∞

1

∥χ(⟨X⟩/r)adAP∥
dr

r
≤

∫ ∞

1

∥χ(⟨X⟩/r)⟨X⟩−1∥∥⟨X⟩adAP∥
dr

r

≤ ∥⟨X⟩adAP∥
∫ ∞

1

dr

ar2
<∞.

In view of the criterion provided by Theorem 7.5.8 [6] (also Theorem 3.2 in [4]),
we deduce that P ∈ C1,1(A).

It is a corollary that [U, P ] is Hilbert Schmidt for f ∈ C4(T,C) and compact
for continuous f .

Remark 2.5. Concerning hypothesis (H4). We have UV ∗ = UPU∗P , so 2iℑUV ∗ =
P⊥[U, P ]U∗P − PU [P,U∗]P⊥.

[U, P ] compact and U, P ∈ C1,1(A) so (2) holds for W = UV ∗with KW =
iadAℑW for any a > 0. On the other hand,

2ℜ(1− UV ∗) = 2(1− PUPU∗P )− P⊥UPU∗P − PUPU∗P⊥

|1− UV ∗|2 = 1− PUPU∗P − P⊥UPU∗P − PUPU∗P⊥

Now observe

2ℜ(1− UV ∗)− 3

2
|1− UV ∗|2 = 1

2
(1− PUPU∗P ) +

1

2
(P⊥UPU∗P + PUPU∗P⊥)

=
1

2
(P⊥ + PUP⊥U∗P )− 1

2
(P⊥UP⊥U∗P + PUP⊥U∗P⊥)

=
1

2
|P⊥ − UP⊥U∗P |2.

which is positive so (3) holds with α = 1/2. Similarly one shows that (2) and (3)
hold for W = U∗V = U∗PUP and we conclude that the hypotheses are satisfied
and we can apply our theorem.

3 Dynamics

To prove the dynamical implications we extend the techniques known for unitary
operators.

3.1 Absolutely continuous subspace

We prove that the limiting absorption principle implies that certain vectors belong
to Hac which proves the corresponding assertions in Theorems 1.3 and 1.9.
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Proposition 3.1. For a contraction V and W ∈ B(H) it holds: if

sup
z∈D

∥W (1− zV ∗)−1W ∗∥ <∞,

then
RanW ∗ ⊂ Hac(V ) ∩Hac(V

∗).

Proof. The result is known for the case where V is unitary, [2, Theorem 2]. Con-
sider the operator

Pz(V ) := 2ℜ
(
(1− zV ∗)−1

)
− 1 = (1− zV ∗)−1

(
1− |z|2V ∗V

)
(1− zV ∗)−1∗.

The assumption implies

c := sup
z∈D

∥WPz(V )W ∗∥ <∞.

Let V̂ be a unitary dilation on a Hilbert space Ĥ = H⊕H⊥ as described in [19].
For the orthogonal projection PH onto H, it then holds for all ψ ∈ H:

PH

(
V̂ nψ ⊕ 0

)
= V nψ and PH

(
V̂ ∗nψ ⊕ 0

)
= V ∗nψ

and thus PH

(
Pz(V̂ )ψ ⊕ 0

)
= Pz(V )ψ. Define W := W ⊕ 0 ∈ B(Ĥ). Then, for

φ̂, ψ̂ ∈ Ĥ,

∣∣∣〈Pz(V̂ )W∗φ̂,W∗ψ̂
〉
Ĥ

∣∣∣ = |⟨Pz(V )W ∗φ,W ∗ψ⟩| ≤ c∥φ∥∥ψ∥ ≤ c∥φ̂∥Ĥ∥ψ̂∥Ĥ
so

sup
z∈D

∥WPz(V )W∗∥ = c.

Now by [2, Theorem 2] ∑
n∈Z

∥WV̂ nφ̂∥2H ≤ c∥φ̂∥2H.

Taking φ̂ = φ⊕ 0 for any φ ∈ H, it follows

∞∑
n=0

∥WV ∗nφ∥2 +
∞∑
n=0

∥WV nφ∥2 ≤ c∥φ∥2.

Now for ψ = W ∗η

|⟨φ, V nψ⟩|2 = |⟨WV ∗nφ, η⟩|2 ≤ ∥WV ∗nφ∥2∥η∥2,

which implies ψ ∈ Hac(V ). Repeating the argument with V ∗ replacing V , we
conclude that Ran(W ∗) ⊂ Hac(V )∩Hac(V

∗), which finishes the proof as the latter
set is closed.
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The result on completely non-unitary contractions mentioned in Remark 1.4
follows from the well known result of Nagy-Foias [18] by the same reasoning :

Proposition 3.2. Let V be completely non-unitary. Then Hac(V )∩Hac(V
∗) = H.

Proof. Let V̂ be the minimal unitary dilation on a Hilbert space Ĥ = H⊕H⊥ as
described in [19]. For the orthogonal projection PH onto H, it then holds for all

ψ ∈ H: PH

(
V̂ nψ ⊕ 0

)
= V nψ and PH

(
V̂ ∗nψ ⊕ 0

)
= V ∗nψ. The spectrum of V̂

is absolutely continuous, see [18] , which is equivalent to Ĥ = Hac(V̂ ).

For φ̂ = φ⊕ 0 ψ̂ = ψ ⊕ 0 one has∑
n∈Z

∣∣∣〈φ̂, V̂ nψ̂
〉∣∣∣2 = ∑

n≥0

|⟨φ, V nψ⟩|2 +
∑
n>0

|⟨φ, V ∗nψ⟩|2

from which the assertion follows.

3.2 Eigenvalues, proof of Proposition 1.7

Lemma 3.3. For two bounded operators A,B suppose that ∥A∥ ≤ 1, −1 ≤ B ≤ 1
and ker(1 +B) = {0}. Then for µ ∈ ∂D, φ ∈ H,

ABφ = µφ⇒ Aφ = µφ and Bφ = φ.

Proof. First observe that:

0 = ∥φ∥2 − ∥ABφ∥2 = ⟨Bφ, (1− A∗A)Bφ⟩+ ⟨φ, (1−B2)φ⟩.

Both terms on the right hand side are non negative. It follows φ ∈ ker(
√
1−B2),

which implies

Bφ = φ and ABφ = Aφ = µφ as − 1 /∈ E(B).

Now, we prove Proposition 1.7.

Proof. (of Proposition 1.7)

1. V = PUQ with U unitary and 0 ≤ P ≤ 1, 0 ≤ Q ≤ 1. We can apply
lemma 3.3 to A := PU and B := Q and we get for µ ∈ ∂D,

V ψ = PUQψ = µψ ⇒ PUψ = U(U∗PU)ψ = µψ and Qψ = ψ.

Observe that 0 ≤ U∗PU ≤ 1 so we can apply Lemma 3.3 again to A := U
and B := U∗PU to conclude that Uψ = µψ and in addition that

U∗PUψ = ψ and thus Pψ = ψ.

11



2. Suppose for µ ∈ eiΘ, V ψ = µψ thus Uϕ = µψ and

⟨ψ,E(Θ)(U∗AU − A)E(Θ)ψ⟩ = ⟨ψ, (U∗AU − A)ψ⟩

which was proven to equal zero in [3] Section 4.1. So E(Θ)(U∗AU −A)E(Θ)
cannot be positive.

4 Proof of Theorems 1.3 and 1.8

We will prove Theorems 1.3 and 1.8 in parallel. We dub 1.3 the global case and
1.8 the local case.

In the local case of Theorem 1.8, we will show that the maps z 7→ ⟨A⟩−s(1 −
zV ∗)−1⟨A⟩−s can be continuously extended to a neighborhood of any eiθ ∈ eiΘ \
E(U). In Section 4.1, we also have to rewrite the Mourre inequality in this neigh-
borhood.

In Section 4.2, we show how Hypothesis (H3) can be translated into the exis-
tence of suitable approximations for V and adAV . The construction of a deformed
resolvent for V , denoted by Gϵ(z), is based on this approximation. At this point,
the proofs of Theorems 1.3 and 1.8 differ, see Sections 4.3.1 and 4.3.2 respectively.
For convenience, we group the hypotheses as follows:

• (Glo) for the set of Hypotheses (H1’) and (H3),

where (H1’) stands for: there exists a0 > 0 such that ℜ (V ∗adAV ) ≥ a0I.

• (Loc) for the set of Hypotheses (H1), (H2), (H3) and (H4).

In both cases, we establish some a priori estimates on the deformed resolvent and
on weighted versions of this deformed resolvent, denoted by Fs,ϵ(z), see (43).

Next, we develop Mourre’s differential inequality strategy in Section 4.4. We
deduce the continuous extension of the weighted resolvent at any point of ∂D
under Assumption (Glo) and at any points eiθ ∈ eiΘ \ E(U) under Assumption
(Loc) (Proposition 4.22).

For any S1 ⊂ [0,∞) and any S2 ⊂ T, we write

S1 · eiS2 = {z ∈ C, |z| ∈ S1, arg z ∈ S2}.
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4.1 Reduction to a strict Mourre estimate

If a Mourre estimate holds in a set not containing any eigenvalues, then a strict
Mourre estimate holds in an open neighborhood of each point of this set. This
remains true if one adds a compact operator to the commutator.

More precisely,

Lemma 4.1. Suppose (H1). Let eiθ ∈ eiΘ \ E(U) , 0 < c1 < a and K a compact
selfadjoint operator then there exists an open connected neighborhood Θ′ of θ such
that:

E(Θ′)(U∗AU − A+K)E(Θ′) ≥ c1E(Θ
′)

E(Θ′)(A− UAU∗ +K)E(Θ′) ≥ c1E(Θ
′).

Proof. Since eiθ ∈ eiΘ \ E(U) and K,K are compact operators, we may find an
open connected neighborhood Θ′ containing θ such that ∥E(Θ′)(K +K)E(Θ′)∥ ≤
a− c1.

Proposition 4.2. Suppose (H1), (H2) and (H4). Let eiθ ∈ eiΘ\E(U). There exist
0 < a0 < a, a1 > 0 and an open connected neighborhood Θ′ of θ such that:

(U∗AU − A)− iadAℑUV ∗ ≥ a0 − a1E(Θ
′)⊥

(A− UAU∗)− iadAℑV ∗U ≥ a0 − a1E(Θ
′)⊥.

Proof. Let m < c2 < c1 < a. where

m := max {∥iadAℑ(UV ∗)−KUV ∗∥, ∥iadAℑ(V ∗U)−KV ∗U∥} .

First, we apply Lemma 4.1 and fix the neighborhood Θ′ accordingly. Next, in view
of Proposition 6.1, we deduce there exists a1 > 0 such that:

(U∗AU − A) +KUV ∗ ≥ c2 − a1E(Θ
′)⊥.

Writing

(U∗AU − A)− iadAℑUV ∗ = (U∗AU − A)− (iadAℑUV ∗ −KUV ∗) +KUV ∗

the first inequality follows with a0 = c2 −m and the second equality analogously.

4.2 Properties of V

Now, we enumerate the properties which are implied by our hypothesis V ∈ C1,1(A)
and which are used in the proofs of Theorems 1.3 and 1.8. We refer to [6, Lemma
7.3.6] and [7] for a proof of the following results which are used in the proof the
priori estimates and in the differential inequality procedure.
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Proposition 4.3. Let V ∈ C1,1(A). Then, there exists a map S ∈ C1((0, 1);C1(A))
(equipped with the operator norm topology), such that for B := adAS,
B ∈ C1((0, 1);C1(A)) and :

limϵ→0 ϵ
−1∥Sϵ − V ∥ = 0,

limϵ→0 ∥Bϵ − adAV ∥ = 0,

supϵ∈(0,ϵ0) ∥Bϵ∥ <∞ for some ϵ0 ∈ (0, 1).

In addition, ∫ 1

0

∥∂ϵSϵ∥
ϵ

dϵ+

∫ 1

0

∥∥adABϵ

∥∥ dϵ+ ∫ 1

0

∥∥∂ϵBϵ

∥∥ dϵ <∞.

Remark 4.4. In particular, there exists C > 0 so that ∥Sϵ − V ∥ ≤ Cϵ for any
ϵ ∈ (0, 1) ; also the functions S, B and ∂ϵS extend continuously to [0, 1) by setting
S0 = V , B0 = adAV , so that (∂ϵS)(0) = 0.

Corollary 4.5. Let V ∈ C1,1(A). For ϵ ∈ (0, 1) define the map

Q(ϵ) = ∂ϵSϵ − ϵ∂ϵBϵ − ϵadABϵ. (4)

Then,

ϵ 7→ ∥Q(ϵ)∥
ϵ

∈ L1((0, 1)).

Remark 4.6. If V ∈ C2(A), we can define for all ϵ: Sϵ ≡ V and Bϵ ≡ adAV .

4.3 Deformed resolvents and first estimates

In this section, we define the deformed resolvent (1 − zV ∗)−1, then establish its
invertibility and finally prove some a priori estimates, see Proposition 4.16 below.

In view of Section 4.2, we use the following shortcuts :

qϵ :=
S∗
ϵ − V ∗

ϵ
−B∗

ϵ − adAV
∗,

Qϵ :=
S∗
ϵ − V ∗

ϵ
−B∗

ϵ ,

(5)

and q0 := 0, Q0 := adAV
∗. Note that limϵ→0+ ∥qϵ∥ = 0.

For ϵ ∈ [0, ϵ0), z ∈ D, define

Vϵ := Sϵ − ϵBϵ

Tϵ(z) := 1− zV ∗
ϵ

= T0(z)− zϵQϵ,

(6)

To sum up:
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Lemma 4.7. Suppose (H3), then with

b := sup
ϵ∈[0,ϵ0)

∥Qϵ∥ <∞, (7)

for any ϵ ∈ [0, ϵ0) and any z ∈ D it holds∥∥Tϵ(z)− T0(z)
∥∥ ≤ bϵ. (8)

4.3.1 First estimates supposing (Glo)

Proposition 4.8. Suppose (Glo). There exists 0 < ϵ1 < ϵ0 such that for any
ϵ ∈ [0, ϵ1), z ∈ D \ {0},

Tϵ(z)
∗ + z̄VϵTϵ(z) ≥ d(ϵ, z) (9)

Tϵ(z) + zV ∗
ϵ Tϵ(z)

∗ ≥ d(ϵ, z), (10)

where
d(ϵ, z) := 1− |z|2 + a0ϵ|z|2. (11)

Proof. Fix z ∈ D \ {0}. Using the Mourre estimate and the contraction property
for V , we have:

Tϵ(z)
∗ + z̄VϵTϵ(z) = 1− |z|2VϵV ∗

ϵ = 1− |z|2 (V + (Vϵ − V )) (V ∗ + (Vϵ − V )∗)

= 1− |z|2|V ∗|2 − 2|z|2ℜ(V (Vϵ − V )∗)− |z|2|V ∗
ϵ − V ∗|2

≥ 1− |z|2 − 2|z|2ℜ(V (Vϵ − V )∗)− |z|2|V ∗
ϵ − V ∗|2

Mind that: (Vϵ − V )∗ = ϵ (adAV
∗ + qϵ) = ϵQϵ, so |(Vϵ − V )∗|2 = ϵ2|Qϵ|2 and

ℜ(V (Vϵ − V )∗) = ϵℜ(V adAV
∗) + ϵℜ(V qϵ).

It follows :

Tϵ(z)
∗ + z̄VϵTϵ(z) ≥ 1− |z|2 − 2|z|2ϵℜ(V adAV

∗)− 2|z|2ϵℜ(V qϵ)− |z|2ϵ2|Qϵ|2.

We observe that: 0 ≤ |Qϵ|2 ≤ b2 and −∥qϵ∥ ≤ ℜ(V qϵ) ≤ ∥qϵ∥. This yields:

Tϵ(z)
∗ + z̄VϵTϵ(z) ≥ d(|z|, ϵ) + |z|2ϵ

(
a0 − b2ϵ− 2∥qϵ∥

)
.

Pick 0 < ϵ1 < ϵ0 such that

b2ϵ1 + 2 sup
ϵ∈[0,ϵ1]

∥qϵ∥ ≤ a0, (12)

and (9) follows. The proof of (10) can be done analogously .
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For d and ϵ1 respectively defined in (11) and (12), we define:

ΩT = {(ϵ, z) ∈ [0, ϵ1]× D \ {0}; d(ϵ, z) > 0} (13)

We deduce that:

Proposition 4.9. Suppose (Glo). For (ϵ, z) ∈ ΩT, the operator Tϵ(z) is boundedly
invertible.

Proof. Fix ϵ, z as stated. Making explicit (9) and (10) in terms of quadratic forms
shows that Tϵ(z) and Tϵ(z)

∗ are injective from H into itself and has closed range.
Since

RanTϵ(z) = (KerTϵ(z)
∗)⊥,

we deduce that Tϵ(z) and Tϵ(z)
∗ are actually linear and bijective hence boundedly

invertible by the Inverse Mapping Theorem.

4.3.2 First estimates supposing (Loc)

We now look for an analog of (9) and (10) under Assumptions (Loc).
In this subsection, we fix θ ∈ Θ \ E(U) and look at the local properties of the

resolvent on some open subset Θ0, such that Θ0 ⊂ Θ′, where the open set Θ′ has
been defined in Proposition 4.2.

We introduce some shortcuts:

R = UV ∗

L = V ∗U

R = 1−R

L = 1− L.

(14)

We also set: E = E(Θ′).

Lemma 4.10. Suppose (H1), (H2), (H3). Fix an open neighborhood Θ0 of θ,
such that Θ0 ⊂ Θ′ and denote d0 := dist(Θ0,T \ Θ′) > 0. Then, we have for any

ϵ ∈ [0, ϵ0), z ∈ (0, 1] · eiΘ0 ,

E⊥ ≤ 3π2

4d20|z|
(
|Tϵ(z)|2 + |z|2|R|2 + b2 ϵ2|z|2

)
, (15)

E⊥ ≤ 3π2

4d20|z|

(
|Tϵ(z)∗|2 + |z|2|L∗|2 + b2 ϵ2|z|2

)
, (16)

with b defined by (7).
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Proof. For ϵ ∈ [0, ϵ0), we use shortcuts

Rϵ := UV ∗
ϵ ,

= R + ϵ UQϵ,

Lϵ := V ∗
ϵ U,

= L+ ϵQϵU.

(17)

For ϵ ∈ [0, ϵ0), z ∈ (0, 1] · eiΘ0 , we have

E⊥ = (1− zU∗)−1E⊥ (
Tϵ(z)− zU∗R + zU∗(Rϵ −R)

)
= (1− zU∗)−1E⊥ (

Tϵ(z)− zU∗R + zϵQϵ

)
,

which entails the first estimates. We conclude analogously for the second one.

In Lemma 4.11 and Proposition 4.13, we show how the local estimates ob-
tained in Proposition 4.2 can be used to derive some estimates on ℜ(V adAV

∗) and
ℜ(V ∗adAV ) respectively.

Lemma 4.11. Suppose (H1), (H2). With

C := (A− UAU∗)

CU := U∗CU = (U∗AU − A)

it holds:

2ℜ(V adAV
∗) = −2C − 2R∗CR + 4ℜ(R∗C) + 2ℜ(R∗adAR) (18)

2ℜ(V ∗adAV ) = 2CU + 2LCUL∗ − 4ℜ(CUL∗) + 2ℜ(L adAL
∗). (19)

Proof. Since U and V belong to C1(A), R and L also belong to C1(A). Also,
V ∈ C1(A) iff V ∗ ∈ C1(A) and adAV

∗ = −(adAV )∗. So, adAV
∗ = adA(U

∗R) =
U∗(adAR) + (adAU

∗)R and

2ℜ(V adAV
∗) = 2ℜ(R∗adAR)− 2ℜ(R∗CR),

from which (18) follows. Similarly, (19) follows from adAV = adA(UL
∗) = U(adAL

∗)+
(adAU)L

∗ and

2ℜ(V ∗adAV ) = 2ℜ(L adAL
∗) + 2ℜ(LCUL∗).
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Remark 4.12. We will use several times the following estimates. Let A,B ∈
B(H). Then, for any p > 0 and any φ ∈ H,

|⟨φ, 2ℜ(A∗B)φ⟩| ≤ ∥B∥
(
∥|A|φ∥2

p
+ p∥φ∥2

)
. (20)

We also have that

|⟨φ,A∗BAφ⟩| ≤ ∥B∥∥|A|φ∥2. (21)

Proposition 4.13. Suppose (Loc). There exists c0 > 0, such that:

−2ℜ(V adAV
∗) ≥ 3a0

2
− 2a1E

⊥ − c0|R|2

2ℜ(V ∗adAV ) ≥ 3a0
2

− 2a1E
⊥ − c0|L

∗|2.

Proof. Once noted that 2ℜ(adAR) = 2iadAℑR, Lemma 4.11 writes:

−2ℜ(V adAV
∗) = 2(C − iadAℑR) + 2R∗CR− 4ℜ(R∗C) + 2ℜ(R∗(adAR)).

Applying inequality (20) to the couples (A,B) = (R,C) and (R, adAR) yields for
any p > 0,

−2ℜ(R∗C) ≥ −∥C∥
(
p−1|R|2 + p

)
2ℜ(R∗(adAR)) ≥ −∥adAR∥

(
p−1|R|2 + p

)
while: R∗CR ≥ −∥C∥|R|2. Summing up, for any p > 0,

−2ℜ((adAV )V ∗) ≥ 2(C − i(adAℑR))− p(2∥C∥+ ∥adAR∥)− FR(p)|R|2,

where FR(p) = (2∥C∥ + ∥adAR∥)p−1 + 2∥C∥. Fix p = pR where 2pR(2∥C∥ +
∥adAR∥) = a0 and apply Proposition 4.2; we get the first estimate with c0,R =
FR(pR) instead of c0.

Back to Lemma 4.11, we can derive the second estimate analogously by defining
the function FL, the positive number pL and c0,L = FL(pL). We conclude by setting
c0 := max{c0,L, c0,R}.

Proposition 4.14. Suppose (Loc). There exists 0 < ϵ1 < ϵ0 such that for any

ϵ ∈ [0, ϵ1], z ∈ (0, 1] · eiΘ0 ,

Tϵ(z)
∗ + z̄VϵTϵ(z) +

3π2a1
2d20

ϵ|z||Tϵ(z)|2 ≥ d(ϵ, z), (22)

Tϵ(z) + zV ∗
ϵ Tϵ(z)

∗ +
3π2a1
2d20

ϵ|z||Tϵ(z)∗|2 ≥ d(ϵ, z), (23)

where
d(ϵ, z) = 1− |z|2 + a0ϵ|z|2. (24)

18



Proof. Fix z ∈ (0, 1] · eiΘ0 . We have:

Tϵ(z)
∗ + z̄VϵTϵ(z)

= 1− |z|2R∗
ϵRϵ = 1− |z|2 (R∗ + (Rϵ −R)∗) (R + (Rϵ −R))

= 1− |z|2|R|2 − 2|z|2ℜ(R∗(Rϵ −R))− |z|2|Rϵ −R|2. (25)

Mind (5). We have that: Rϵ−R = ϵ U(adAV
∗+qϵ) = ϵ UQϵ, so |Rϵ−R|2 = ϵ2|Qϵ|2

and

ℜ(R∗(Rϵ −R)) = ϵℜ(V adAV
∗) + ϵℜ(V ∗qϵ).

Rewriting |R|2 = |1−R|2 = 1− 2ℜR + |R|2, (25) yields

Tϵ(z)
∗ + z̄VϵTϵ(z) = 1− |z|2 + |z|2XR + |z|2ϵY − |z|2ϵ Zϵ
where XR = 2ℜR− |R|2

Y = −2ℜ(V adAV
∗)

Zϵ = 2ℜ(V ∗qϵ) + ϵ|Qϵ|2.

We estimate the term Y from below. Combining Proposition 4.13 with (15) allows

us to derive for ϵ ∈ [0, ϵ0), z ∈ (0, 1] · eiΘ0 ,

bϵ +
3π2a1
2d20|z|

|Tϵ(z)|2 ≥
(
3a0
2

− 3π2a1
2d20

|z|b2ϵ
)
− |R|2

(
c0 +

3π2a1
2d20

|z|
)
. (26)

Taking advantage of the fact that |z| ≤ 1, we get

Tϵ(z)
∗ + z̄VϵTϵ(z) +

3π2a1
2d20

ϵ|z||Tϵ(z)|2 ≥

d(ϵ, z) + |z|2ϵ
(
a0
2

− cϵ −
3π2a1
2d20

b2ϵ2
)
+ |z|2Fϵ(R)

where for ϵ ≥ 0

Fϵ(R) := 2ℜR− (1 + γϵ)|R|2, (27)

with γϵ = ϵ

[
c0 +

3π2a1
2d20

]
. (28)

Now, we observe that: 0 ≤ |Qϵ|2 ≤ b2 and −∥qϵ∥ ≤ ℜ(V ∗qϵ) ≤ ∥qϵ∥. So, ∥cϵ∥ =
o(ϵ). This allows us to pick 0 < µ < ϵ0 such that

b2µ23π
2a1

2d20
+ sup

ϵ∈[0,µ]
∥cϵ∥ ≤ a0

2
, (29)

and γµ ≤ α. (30)
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From (31), we obtain for all ϵ ∈ [0, µ] and z ∈ (0, 1] · eiΘ0 ,

Tϵ(z)
∗ + z̄VϵTϵ(z) +

3π2a1
2d20

ϵ|z||Tϵ(z)|2 ≥ d(ϵ, z) + |z|2(2ℜR− (1 + α)|R|2). (31)

At this point of the proof, the condition (3) of Hypothesis (H4), comes into scene
to estimate the last terms on the RHS. This concludes the proof of (22). The proof
of (23) is analogous.

For d and ϵ1 respectively defined in (24) and (29), let us write

Ω0 := {(ϵ, z) ∈ [0, ϵ1]× (0, 1] · eiΘ0 ; d(ϵ, z) > 0}. (32)

We deduce that:

Proposition 4.15. Assume (Loc). For (ϵ, z) ∈ Ω0, the operator Tϵ(z) is boundedly
invertible.

Proof. Fix ϵ, z as stated. Reinterpreting (22) (resp. (23)) in terms of quadratic
forms shows that Tϵ(z) (resp. Tϵ(z)

∗) is injective from H into itself and has closed
range. Since

RanTϵ(z) = (KerTϵ(z)
∗)⊥,

we deduce that Tϵ(z) and (Tϵ(z))
∗ are actually linear and bijective hence boundedly

invertible by the Inverse Mapping Theorem.

4.3.3 Synthesis

Aside from the local vs global aspects, the remaining components of the proofs
of Theorems 1.8 and 1.3 are identical . From now, we unify notations with the
introduction of

Ω :=

{
ΩT if (Glo) holds
Ω0 if (Loc) holds

S :=

{
∂D if (Glo) holds

eiΘ0 if (Loc) holds
. (33)

Accordingly, assuming (Glo) or (Loc), Propositions 4.9 and 4.15 allow us to
define for any (ϵ, z) ∈ Ω,

Gϵ(z) := (1− zV ∗
ϵ )

−1. (34)

We have:

Proposition 4.16. Suppose (Glo) or (Loc). Then

C0 := sup
(ϵ,z)∈Ω

d(ϵ, z)∥Gϵ(z)∥ <∞. (35)
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In addition, for any ϵ ∈ (0, ϵ1], z ∈ (0, 1] · S,

max {∥Gϵ(z)φ∥, ∥G∗
ϵ(z)φ∥} ≤

√
2|ℜ⟨φ,Gϵ(z)φ⟩|

a0ϵ|z|2
(36)

Proof. For (ϵ, z) ∈ Ω, denote

Hϵ(z) :=
1 + zV ∗

ϵ

1− zV ∗
ϵ

= 2Gϵ(z)− 1. (37)

We observe that

ℜHϵ(z) = Gϵ(z)
∗ (Tϵ(z)

∗ + z̄VϵTϵ(z))Gϵ(z)

= Gϵ(z) (Tϵ(z) + zV ∗
ϵ Tϵ(z)

∗)Gϵ(z)
∗,

(38)

hence for any φ ∈ H,

ℜ⟨φ,Hϵ(z)φ⟩ ≤ 2∥φ∥∥Gϵ(z)φ∥+ ∥φ∥2. (39)

Case (Glo): (9) and (38) yield

ℜ⟨φ,Hϵ(z)φ⟩ ≥ d(ϵ, z)∥Gϵ(z)φ∥2 (40)

for any (ϵ, z) ∈ ΩT. We deduce from (39) and (40) that

2d(ϵ, z)∥Gϵ(z)∥+ 1 ≥ d(ϵ, z)2∥Gϵ(z)∥2

and (35) follows as the region where 2X + 1−X2 is positive is bounded.
Inequality (40) also implies for any (ϵ, z) ∈ ΩT,

∥Gϵ(z)φ∥2 ≤
ℜ⟨φ,Hϵ(z)φ⟩

a0ϵ|z|2
≤ 2ℜ⟨φ,Gϵ(z)φ⟩

a0ϵ|z|2

hence (36) for ∥Gϵ(z)φ∥. The proof of (36) for ∥G∗
ϵ(z)φ∥ is analogous.

Case (Loc): (22) and (38) yield

ℜ⟨φ,Hϵ(z)φ⟩+
3π2a1
2d20

ϵ|z|∥φ∥2 ≥ d(ϵ, z)∥Gϵ(z)φ∥2 (41)

for any (ϵ, z) ∈ Ω0. Taking into account (11), (28) and (30), we note that:

0 ≤ d(ϵ, z) ≤ 1 + a0ϵ1 and
3π2a1
2d20

ϵ ≤ γϵ ≤ α ≤ 1. (42)
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We deduce from (39) and (41) that for any (ϵ, z) ∈ Ω0,

2d(ϵ, z)∥Gϵ(z)∥+ 2(1 + a0ϵ1) ≥ d(ϵ, z)2∥Gϵ(z)∥2,

and (35) follows from the region of positivity of the polynomial 2X+2(1+a0ϵ1)−
X2.

Inequality (41) also yields for any (ϵ, z) ∈ Ω0,

∥Gϵ(z)φ∥2 ≤
ℜ⟨φ,Hϵ(z)φ⟩

a0ϵ|z|2
+

3π2a1
2d20a0|z|

∥φ∥2,

≤ 2ℜ⟨φ,Gϵ(z)φ⟩
a0ϵ|z|2

+
1

a0ϵ|z|2

(
3π2a1|z|

2d20
ϵ− 1

)
∥φ∥2 ≤ 2ℜ⟨φ,Gϵ(z)φ⟩

a0ϵ|z|2

where we have finally used (38) and (42). This proves (36) for ∥Gϵ(z)φ∥. The
proof for ∥G∗

ϵ(z)φ∥ is analogous.

Suppose either (Glo) or (Loc). For any (ϵ, z) ∈ Ω and 1/2 < s ≤ 1, we define
the weighted deformed resolvent:

Fs,ϵ(z) := Ws(ϵ)Gϵ(z)Ws(ϵ) (43)

Ws(ϵ) := ⟨A⟩−s⟨ϵA⟩s−1. (44)

Note that for any s ∈ (1/2, 1], (Ws(ϵ))ϵ∈[0,ϵ0) is a family of bounded selfadjoint
operators. In particular, supϵ∈[0,1] ∥Ws(ϵ)∥ ≤ 1. Proposition 4.16 entails:

Corollary 4.17. Suppose either (Glo) or (Loc). We have for d defined in (11)
and (24) resp.,

sup
(ϵ,z)∈Ω

d(ϵ, z)∥Fs,ϵ(z)∥ ≤ C0 <∞.

In addition, given r ∈ (0, 1), for any (ϵ, z) ∈ (0, ϵ1]× [r, 1] · S,

max {∥Gϵ(z)Ws(ϵ)φ∥, ∥Gϵ(z)
∗Ws(ϵ)φ∥} ≤

√
2|ℜ⟨φ, Fs,ϵ(z)φ⟩|

a0ϵr2
. (45)

4.4 Differential Inequalities

Next, we derive some differential inequalities for the weighted deformed resolvents
Fs,ϵ(z). The first ingredient is

Proposition 4.18. Suppose (Glo) or (Loc). Then, for any ϵ ∈ (0, ϵ1), z ∈ (0, 1)·S,
the map ϵ 7→ Gϵ(z) is continuously differentiable on (0, ϵ1) in the operator norm
topology with

∂ϵGϵ(z) = adAGϵ(z) + zGϵ(z)Q(ϵ)∗Gϵ(z),

where Q is defined in (4).
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Proof. For any fixed z ∈ (0, 1) ·S, the map ϵ 7→ Gϵ(z) is continuous on the interval
[0, ϵ1) and continuously differentiable on (0, ϵ1) in the operator norm topology, and

∂ϵGϵ(z) = zGϵ(z)(∂ϵS
∗
ϵ − ϵ∂ϵB

∗
ϵ −B∗

ϵ )Gϵ(z).

Now, for any ϵ ∈ [0, ϵ1), z ∈ (0, 1] · S, we have Gϵ(z) ∈ C1(A) with

adAGϵ(z) = zGϵ(z)(adAS
∗
ϵ − ϵadAB

∗
ϵ )Gϵ(z), (46)

which concludes the proof.

Now, for any fixed 1/2 < s < 1, the map ϵ 7→ Ws(ϵ) is strongly continuous on
[0, ϵ0) and converges strongly to ⟨A⟩−s as ϵ tends to zero.

We have:

Proposition 4.19. Suppose (Glo) or (Loc). Let 1/2 < s ≤ 1. For any fixed
z ∈ (0, 1) · S, the map ϵ 7→ Fs,ϵ(z) is weakly continuously differentiable on (0, ϵ1)
and for any φ ∈ H, any ϵ ∈ (0, ϵ1),

|⟨φ, ∂ϵFs,ϵ(z)φ⟩| ≤ h1(ϵ)∥φ∥
√
|⟨φ, Fs,ϵ(z)φ⟩|+ h2(ϵ)|⟨φ, Fs,ϵ(z)φ⟩|. (47)

where:

h1(ϵ) =
2
√
2(2− s)ϵs−1

√
a0 ϵ r

, h2(ϵ) =
2∥Q(ϵ)∥
a0r2ϵ

. (48)

Proof. First, note that the map ϵ 7→ Ws(ϵ) is strongly continuously differentiable
on the interval (0, ϵ0) and that for any ϵ ∈ (0, ϵ0), any φ ∈ H, we have

∥∂ϵWs(ϵ)φ∥ ≤ (1− s)ϵs−1∥φ∥. (49)

Note also that for 1/2 < s ≤ 1,

∥AWs(ϵ)∥ = ∥Ws(ϵ)A∥ ≤ ϵs−1. (50)

Fix z ∈ (0, 1) · S. Due to Proposition 4.18, the map ϵ 7→ Fs,ϵ,(z) is weakly
continuously differentiable on (0, ϵ0) and we have for any ϵ ∈ (0, ϵ0),

|⟨φ, ∂ϵFs,ϵ(z)φ⟩| ≤ t1,ϵ(z) + |⟨Ws(ϵ)φ, (∂ϵGϵ(z))Ws(ϵ)φ⟩|
≤ t1,ϵ(z) + t2,ϵ(z) + t3,ϵ(z)

where

t1,ϵ(z) = |⟨(∂ϵWs(ϵ))φ,Gϵ(z)Ws(ϵ)φ⟩+ ⟨Ws(ϵ)φ,Gϵ(z)(∂ϵWs(ϵ))φ⟩|
t2,ϵ(z) =

∣∣⟨Ws(ϵ)φ, adA(Gϵ(z))Ws(ϵ)φ⟩
∣∣

t3,ϵ(z) = ϵ|z||⟨Q(ϵ)Gϵ(z)
∗Ws(ϵ)φ,Gϵ(z)Ws(ϵ)φ⟩|.
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Invoking (36), (49) and (50), we deduce that:

t1,ϵ(z) ≤ ∥(∂ϵWs(ϵ))φ∥ (∥Gϵ(z)Ws(ϵ)φ∥+ ∥Gϵ(z)
∗Ws(ϵ)φ∥)

≤ 2
√
2(1− s)ϵs−1

√
a0 ϵ r

∥φ∥
√

|⟨φ, Fs,ϵ(z)φ⟩|,

t2,ϵ(z) ≤ ∥AWs(ϵ)φ∥ (∥Gϵ(z)Ws(ϵ)φ∥+ ∥Gϵ(z)
∗Ws(ϵ)φ∥)

≤ 2
√
2ϵs−1

√
a0 ϵ r

∥φ∥
√
|⟨φ, Fs,ϵ(z)φ⟩|,

while

t3,ϵ(z) ≤ ∥Q(ϵ)∥∥Gϵ(z)
∗Ws(ϵ)φ∥∥Gϵ(z)Ws(ϵ)φ∥ ≤ 2∥Q(ϵ)∥

a0 r2 ϵ
|⟨φ, Fs,ϵ(z)φ⟩|.

Estimate (47) follows.

The next result combines Proposition 4.19 with Gronwall’s Lemma.

Proposition 4.20. Suppose (Glo) or (Loc). Fix s ∈ (1/2, 1]. Then,

C1 := sup
(ϵ,z)∈(0,ϵ1]×[r,1]·S

∥Fs,ϵ(z)∥ <∞. (51)

In addition, there exists Hs ∈ L1((0, ϵ1]), such that for any (ϵ, z) ∈ (0, ϵ1]× [r, 1] ·S,

∥∂ϵFs,ϵ(z)∥ ≤ Hs(ϵ). (52)

Proof. With h1 and h2 defined in (48), h2 ∈ L1((0, ϵ1]). By inspection, h1 also
belongs to L1((0, ϵ1]). For any (ϵ, z) ∈ (0, ϵ1]× [r, 1] · S and any φ ∈ H,

|⟨φ, Fs,ϵ(z)φ⟩| ≤ |⟨φ, Fs,ϵ1(z)φ⟩|+
∫ ϵ1

ϵ

|⟨φ, ∂µFs,µ(z)φ⟩| dµ,

which combined with Corollary 4.17 and Proposition 4.19 yields:

|⟨φ, Fs,ϵ(z)φ⟩| ≤
C0

a0ϵ1
∥φ∥2 + ∥φ∥

∫ ϵ1

ϵ

h1(µ)
√

|⟨φ, Fs,µ(z)φ⟩| dµ

+

∫ ϵ1

ϵ

h2(µ)⟨φ, Fs,µ(z)φ⟩| dµ.

Using Gronwall’s Lemma as stated in e.g. [6] Lemma 7.A.1, we deduce

|⟨φ, Fs,ϵ(z)φ⟩| ≤

[√
C0

a0ϵ1
+

1

2

∫ ϵ1

ϵ

h1(µ) exp

(
−1

2

∫ ϵ1

µ

h2(x) dx

)
dµ

]2

∥φ∥2

× exp

(∫ ϵ1

ϵ

h2(µ) dµ

)
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Since the functions h1 and h2 are integrable on (0, ϵ1], we deduce that:

sup
∥φ∥=1

sup
(ϵ,z)∈(0,ϵ1]×[r,1]·S

|⟨φ, Fs,ϵ(z)φ⟩| <∞.

Recall that ∥Fs,ϵ(z)∥ = sup∥φ∥=1,∥ψ∥=1 |⟨φ, Fs,ϵ(z)ψ⟩| ; so, (51) follows by polarisa-
tion. Incorporating it into (47) entails,

|⟨φ, ∂ϵFs,ϵ(z)φ⟩| ≤
(√

C1h1(ϵ) + C1h2(ϵ)
)
∥φ∥2,

for any (ϵ, z) ∈ (0, ϵ1]× [r, 1] · S and any φ ∈ H. (52) follows by polarisation.

Proposition 4.21. Suppose (Glo) or (Loc). Then for any fixed s ∈ (1/2, 1] and
any fixed z ∈ [r, 1) · S,

w − lim
ϵ→0+

Fs,ϵ(z) = Fs(z) (53)

where
Fs(z) = ⟨A⟩−s(1− zV ∗)−1⟨A⟩−s for z ∈ D. (54)

Proof. Fix r ∈ (0, 1). Pick two vectors φ, ψ in H and fix for a moment z ∈ [r, 1)·S.
For any ϵ ∈ (0, ϵ0),

⟨φ, ⟨A⟩−s(1− zV ∗)−1⟨A⟩−sψ⟩ − ⟨φ, Fs,ϵ(z)ψ⟩ = t1,ϵ(z) + t2,ϵ(z) + t3,ϵ(z)

with

t1,ϵ(z) = ⟨Ws(ϵ)φ, ((1− zV ∗)−1 −Gϵ(z))Ws(ϵ)ψ⟩
t2,ϵ(z) = ⟨Ws(0)φ, (1− zV ∗)−1(Ws(0)−Ws(ϵ))ψ⟩
t3,ϵ(z) = ⟨(Ws(0)−Ws(ϵ))φ, (1− zV ∗)−1Ws(ϵ)ψ⟩.

First, we estimate t1,ϵ(z). For any (ϵ, z) ∈ [0, ϵ1]× (0, 1) ·S, Gϵ(z)− (1− zV ∗)−1 =
Gϵ(z)(T0(z) − Tϵ(z))(1 − zV ∗)−1. We observe that for z ∈ D, we have ∥(1 −
zV ∗)−1∥ ≤ 1/(1− |z|). Using Lemma 4.7 and Proposition 4.16, we deduce that

∥Gϵ(z)− (1− zV ∗)−1∥ ≤ min

{
C0b ϵ

(1 + |z|)(1− |z|)2
,

C0b

a0|z|2(1− |z|)

}
(55)

hence

|t1,ϵ(z)| ≤
C0b ϵ

(1 + |z|)(1− |z|)2
∥φ∥∥ψ∥

since ∥Ws(ϵ)∥ ≤ 1 for any ϵ ∈ [0, 1]. Now, since ∥(1 − zV ∗)−1∥ ≤ 1/(1 − |z|) for
any z ∈ D, we also have

|t2,ϵ(z)| ≤
1

1− |z|
∥(Ws(0)−Ws(ϵ))φ∥∥ψ∥

|t3,ϵ(z)| ≤
1

1− |z|
∥φ∥∥(Ws(0)−Ws(ϵ))ψ∥,
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which concludes.

We have arrived at the heart of the proof of Theorems 1.8 and 1.3:

Proposition 4.22. Suppose (Glo) or (Loc). For s ∈ (1/2, 1]. Then, Fs defined by
(54) admits a continuous extension to D∪S. In addition, given r ∈ (0, 1), it holds

sup
z∈[r,1)·S

∥Fs,ϵ(z)− Fs(z)∥ →ϵ→0+ 0. (56)

We denote the extension also by Fs.

Proof. From Proposition 4.20, we get for any ϵ, µ ∈ (0, ϵ1], ϵ < µ, z ∈ [r, 1) · S,

∥Fs,ϵ(z)− Fs,µ(z)∥ ≤
∫ µ

ϵ

Hs(ξ)dξ

which vanishes as µ and ϵ tend to 0 (uniformly in z ∈ [r, 1] · S). So, (Fs,ϵ,(z)) is
Cauchy in B(H), hence converges to some F+

s (z) ∈ B(H) for any fixed z ∈ [r, 1] ·S.
In view of Proposition 4.21, F+

s (z) = Fs(z) if z ∈ [r, 1] · S and

∥Fs,ϵ(z)− F+
s (z)∥ ≤

∫ ϵ

0

Hs(ξ)dξ (57)

for any ϵ ∈ (0, ϵ1]. (56) follows. It remains to prove the continuity of F+
s . Given

ϵ ∈ (0, ϵ1], z, z
′ ∈ [r, 1] · S,

Fs,ϵ(z)− Fs,ϵ(z
′) = Ws(ϵ)(Gϵ(z)−Gϵ(z

′))Ws(ϵ)

= (z − z′)Ws(ϵ)Gϵ(z)(S
∗
ϵ − ϵB∗

ϵ )Gϵ(z
′)Ws(ϵ) (58)

where we have used (6) in the final step.
Now, following Corollary 4.17 and Proposition 4.20, we get for any ϵ ∈ (0, ϵ1]

and any z ∈ [r, 1] · S,

max {∥Gϵ(z)
∗Ws(ϵ)∥, ∥Gϵ(z)Ws(ϵ)∥} ≤ Br√

ϵ
with Br :=

√
2C1 + 1

r
√
a0

.

Combining these estimates with (58) entails for any ϵ ∈ (0, ϵ1], z, z
′ ∈ [r, 1] · S,

∥Fs,ϵ(z)− Fs,ϵ(z
′)∥ ≤ B2

r

ϵ
|z − z′|.

Due to (57), we obtain

∥F+
s (z)− F+

s (z
′)∥ ≤ ∥F+

s (z)− Fs,ϵ(z)∥+ ∥Fs,ϵ(z)− Fs,ϵ(z
′)∥+ ∥F+

s (z
′)− Fs,ϵ(z

′)∥

≤ 2

∫ ϵ

0

Hs(ξ)dξ +
B2
r

ϵ
|z − z′|,

for any ϵ ∈ (0, ϵ1]. The conclusion follows since the function Hs is integrable.
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4.5 Proof of Theorem 1.3

Rephrasing Proposition 4.22 under assumptions (Glo), we have shown that the
weighted resolvent ⟨A⟩−s(1 − zV ∗)−1⟨A⟩−s, which is defined naturally for z ∈ D,
extends continuously to D.

4.6 Proof of Theorem 1.8

We rephrase Proposition 4.22 under assumptions (Loc). Given θ such that eiθ ∈
eiΘ \ E(U), we have shown there exists an open neighborhood of θ, Θ0 ⊂ Θ such
that the weighted resolvent ⟨A⟩−s(1 − zV ∗)−1⟨A⟩−s, which is defined a priori for
z ∈ D, extends continuously to D ∪ eiΘ0 . Since the choice of θ was arbitrary, we
have actually shown that this continuous extension holds on D ∪ eiΘ \ E(U).

5 Proof of Theorem 1.9

In Theorem 1.8, the estimates only hold for z ∈ D with r ≤ |z| < 1 and arg z ∈ Θ.
In order to obtain an estimate for all z ∈ D and to derive Theorem 1.9, we need to
localize spectrally. We will do this in Lemmata 5.1 and 5.2, then proceed to the
proof of Theorem 1.9.

Lemma 5.1. Let U be a unitary operator which belongs to C1(A) and ϕ ∈ C1(T)
be a function such that its derivative ϕ′ belongs to the Wiener algebra. With Φ
defined by Φ(eiθ) = ϕ(θ) for θ ∈ T, the operator ⟨A⟩−δΦ(U)⟨A⟩δ extends to a
bounded operator in B(H) for all δ ∈ [−1, 1].

Proof. By hypothesis, we have that: Φ(eiθ) = ϕ(θ) =
∑

n∈Z ϕ̂ne
inθ with

∑
n∈Z |nϕ̂n| <

∞. We first prove that Φ(U) ∈ C1(A). First, observe that for any n ∈ Z,
Un ∈ C1(A) with:

adAU
n =

n−1∑
k=0

Uk(adAU)U
n−1

for n ≥ 1 and adAU
n = −Un(adAU

−n)Un for n ≤ −1. So, ∥adAUn∥ ≤ |n|∥adAU∥
for any n ∈ Z. Given N ∈ Z+, let

ΦN(U) =
∑
|n|≤N

ϕ̂nU
n.

(ΦN(U))N∈N ⊂ C1(A) converges in norm to Φ(U) and (adAΦN(U))N∈N is conver-
gent w.r.t the operator norm topology. So, Φ(U) ∈ C1(A) and limN→∞ adAΦN(U) =
adAΦ(U) [6, 12].

As a consequence, we deduce that for δ ∈ {−1, 0, 1}, ⟨A⟩−δΦ(U)⟨A⟩δ extend to
a bounded operator in B(H). We conclude by interpolation.
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Lemma 5.2. For any z ∈ D and any ψ ∈ H, it holds:

∥(U∗ − V ∗)G0(z)ψ∥2 ≤ 8⟨ψ,ℜ(G0(z))ψ⟩.

Proof. We decompose U∗ − V ∗ = U∗P +QU∗P , so

∥(U∗ − V ∗)G0(z)ψ∥2 ≤ 2∥PG0(z)ψ∥2 + 2∥QU∗PG0(z)ψ∥2.

It remains to bound each term on the RHS. Let P = 1− P . Since 0 ≤ P ≤ 1 and
0 ≤ Q ≤ 1, so P 2 ≤ P and

P
2 ≤ 1− P 2 = 1− PUU∗P ≤ 1− PUQ2U∗P = 1− V V ∗

≤ 1− |z|2V V ∗ = T0(z) + T0(z)
∗zV ∗,

for any z ∈ D. It follows that for any ψ ∈ H,

∥PG0(z)ψ∥2 ≤ ⟨G0(z)ψ, ψ⟩+ ⟨ψ, zV ∗G0(z)ψ⟩
= ⟨ψ, 2ℜ(G0(z))ψ⟩ − ∥ψ∥2 ≤ 2⟨ψ,ℜ(G0(z))ψ⟩.

Also Q
2 ≤ 1−Q2, hence it holds

PUQ
2
U∗P ≤ PU(1−Q2)U∗P ≤ 1− PUQ2U∗P ≤ 1− V V ∗

≤ 1− |z|2V V ∗ = T0(z) + T0(z)
∗zV ∗,

for any z ∈ D. As before, we get for any ψ ∈ H,

∥QU∗PG0(z)ψ∥2 ≤ ⟨G0(z)ψ, ψ⟩+ ⟨ψ, zV ∗G0(z)ψ⟩ ≤ 2⟨ψ,ℜ(G0(z))ψ⟩.

and the conclusion follows.

Proof. (of Theorem 1.9)
Let Θ1 and Θ0 be open connected subsets such that Θ1 ⊂ Θ0 ⊂ Θ0 ⊂ Θ.

Let ϕ ∈ C∞(T;R) be supported in Θ1. Combining Theorem 1.8 with Lemma 5.1
yields:

sup
|z|<1,arg z∈Θ0

∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥ <∞.

For z ∈ D, the resolvent identity reads:

(1− zV ∗)−1 = (1− zU∗)−1 − z(1− zU∗)−1(U∗ − V ∗)(1− zV ∗)−1.

Given any z ∈ D, we bound the quantity ∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥ by:

∥⟨A⟩−sΦ(U)(1− zU∗)−1Φ(U)⟨A⟩−s∥
+ ∥(U∗ − V ∗)(1− zV ∗)−1Φ(U)⟨A⟩−s∥∥(1− z̄U)−1Φ(U)⟨A⟩−s∥.
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Unitary functional calculus yields:

Cϕ,Θ0 = sup
|z|<1, arg z ∈T\Θ0

∥(1− z̄U)−1Φ(U)∥ <∞.

From Lemma 5.2, we deduce that for any z ∈ D with arg z ∈ T \Θ0, the quantity
∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥ is bounded by:

Cϕ,Θ0

(
∥Φ∥∞ + 2

√
2
√

∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥
)
,

which entails

sup
|z|<1,arg z∈T\Θ0

∥⟨A⟩−sΦ(U)(1− zV ∗)−1Φ(U)⟨A⟩−s∥ <∞.

This completes the proof.

6 Appendix

Proposition 6.1. Let B ∈ B(H) be symmetric and E an orthogonal projection
acting on H. Denote E⊥ := 1−E. The following statements are equivalent: there
exist c > 0, a ∈ (0, c] and b > 0 such that:

(a) EBE ≥ cE,

(b) B ≥ aE − bE⊥ = a− (a+ b)E⊥.

Proof. Assume (a). Write B = EBE + 2ℜ(EBE⊥) + E⊥BE⊥ and note that:
E⊥BE⊥ ≥ −∥B∥E⊥ and EBE ≥ cE by hypothesis. In addition, for any p > 0

2ℜ(EBE⊥) ≤ p∥B∥E + p−1∥B∥E⊥,

so
B ≥ (c− p∥B∥)E − ∥B∥(1 + p−1)E⊥.

Once fixed p > 0 in such a way that 0 < c−p∥B∥ < c, we obtain (b). The converse
implication is immediate.

Remarks 6.2. 1. In applications it is convenient to note that: for unitary U
one has U ∈ C1(A) if an only if

there exists a core S for A such that US ⊂ S and U∗AU − A : S → H
extends to a bounded operator on H ; or, equivalently: U∗S ⊂ S and
A− UAU∗ : S → H extends to a bounded operator.
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In addition, the bounded extension of U∗AU −A is precisely U∗(adAU). See
Propositions 6.3 and 6.4 for details.

Proposition 6.3. If U ∈ C1(A) is unitary, then UD(A) ⊂ D(A) and the operator
U∗AU−A : D(A) → H extends to a bounded operator on H, denoted (U∗AU−A).
It holds: (U∗AU − A) = U∗adAU = −(adAU

∗)U . Conversely, let S be a core for
A such that US ⊂ S. Assume that the operator U∗AU − A : S → H extends to a
bounded operator on H and denote by C this extension. Then, U (and U∗) belongs
to C1(A) and U∗adAU = C.

Proof: For the proof of the first statement, see [12] Proposition 2.2. We deduce
that for all (φ, ψ) ∈ H × D(A), ⟨φ,U∗AUψ⟩ − ⟨φ,Aψ⟩ = ⟨φ,U∗(AU − UA)ψ⟩.
This implies our claim. Conversely, assume that for all (φ, ψ) ∈ S×S, ⟨Aφ,Uψ⟩−
⟨φ,UAψ⟩ = ⟨φ,AUψ⟩−⟨U∗φ,Aψ⟩ = ⟨U∗φ,U∗AUψ⟩−⟨U∗φ,Aψ⟩ = ⟨U∗φ,Cψ⟩ =
⟨φ,UCψ⟩. The identity extends continuously over D(A)×D(A). This shows that
U ∈ C1(A) and that: adAU = UC. □

Remark 6.4. Analog relations can be built between A− UAU∗ and (adAU)U
∗ =

−UadAU∗.
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