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Quantum graph waves external triggering : energy transfer and damping

F. Plouraboué
Institut de Mécanique des Fluides de Toulouse (IMFT),

Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
(Dated: February 27, 2024)

The propagation of wave-trains resulting from a local external trigger inside a network described
by a metric-graph is analyzed using quantum graph theory. The external trigger is a finite-
time perturbation imposed at one vertex of the graph, leading to a consecutive wave-train into
the network, supposedly at rest before the applied external perturbation. A complete analytical
solution for the induced wave-train is found having a specific spectrum as well as mode’s amplitudes.
Furthermore the precise condition by which the external trigger can transfer a maximal energy to
any specific natural mode of the quantum graph is derived. Finally, the wave damping associated
with boundary-layer dissipation is computed within a multiple times-scale asymptotic analysis.
Exponential damping rates are explicitly found related to their corresponding mode’s eigenvalue.
Each mode energy is then obtained, as well as their exponential damping rate. The relevance of
these results to the physics of waves within networks are discussed.

I. INTRODUCTION

First introduced for the study of chemical vibrations
spectrum arising in molecules by L. Pauling [1], the
concept of quantum graphs associated with Schrödinger
equation defined along each one-dimensional coupled
chemical bounds, has since then been developed in
many areas and contexts [2, 3]. Quantum graphs now
cover operators equipping a metric graph, i.e a graph
whose edges have a physical length. The broadening
of the quantum graph concept has thus enlarged the
physical fields and related issues associated with it. From
coupled vibrations and spectrum structure in metric
graphs [4], quantum chaos e.g [5, 6], wave scattering
[7, 8], more recent interests have been focussed on wave
propagation within them e.g. [9]. Recent advances in
various physical domains such as magnons propagation
in magneto-elastic materials [10], cavity magnonics
[11], surface polaritons [12], micro-wave networks [13–
17], nano-photonics [18, 19] are interested in waves in
networks having wire-like connections. Furthermore
in more traditional engineering areas such as water-
hammer waves in pipelines [20] or pulse pressure waves
in vascular beds [21] this issue is also important. The
wave-length of the waves are in every-case much larger
than the size of the wire-like substrate so that a one-
dimensional propagation model is relevant within each
individual wire-like substrate (e.g branch, vessel, cavity,
pipe, fiber, chemical bound, etc..) of the network,
so that a one dimensional wave operator — a long-
wavelength approximation— is relevant for these waves
propagation and interaction. In these contexts, there
are technological motivations to control, manipulate or
refill the energy of confined sustained waves. This is
for example done by the use of injection seeders in
nano-photonics or spin current injection in spin-wave-
propagation [22]. In this case one needs to open the
network in order to inject some energy into it [23]. Also,
the opposite can occur during a possibly unintentional
opening of the network, where some energy loss could

occur. This is for example the case for water-hammer
generation within pipe’s networks generally produced by
"network management" events (valve’s sudden opening
or closure, pipe breakdown, pump’s shutdown, etc..)
[24]. In these contexts it is interesting to consider
how a sudden, finite-time "event" arising at a given
location might perturb and/or generate a wave-train
propagating inside the network. This issue has been
previously addressed many times in the engineering
community with the use of numerical simulations
where the network edges have to be finely discretized
(Cf [25] and references therein). On the contrary
to these numerical discrete approaches, a quantum
graph formulation permits a spectral discretization of
the wave solution along each network’s edge saving
a huge numerical cost [26]. Furthermore, quantum
graph theory permits to establish general results, that
numerical computations can only illustrate. In this
contribution transient wave propagation resulting from
external trigger within metric graphs are theoretically
analyzed. Both un-damped and damped propagation are
considered. Damped wave propagation in metric graph
has received attention from the mathematical viewpoint,
since, certain class of damping models lead to non-self-
adjoint operators [27]. In this contribution we analyze
small damping effect resulting from a well-established
acoustic/fluid-mechanics boundary layer damping within
a perturbation approach. This damping model does not
modify the self-adjointness of the Laplacian operator on
the metric graph.

Section II introduces the wave model under
consideration as well as quantum graph theory. Section
III discusses the un-damped wave propagation resulting
from an external trigger. Section IV describes how the
external trigger can be shaped in order to maximize
the energy transfer into internal modes. Section V
discuss the wave damping resulting from a time-delayed
damping model. The physical relevance and significance
of the obtained theoretical results are discussed in VII.
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II. THEORETICAL FRAMEWORK

A. Damped waves propagation model

We consider a wave moving at constant wave speed cp
within a complex network. Rescaling the time t? by the
time for a unit-length to be covered by the wave t1 = 1/cp
defines a dimensionless time t = t?/t1 = cpt

? for which
inside each wire-like connection, equipped with axial
coordinate x, the pressure p fulfills the dimensionless
damped wave propagation problem [21](

∂2

∂t
− ∂2

∂x2

)
p = 2ε

∂τw
∂x

(1)

where τw is the wall shear rate, and where ε is a small
parameter. In the context of acoustic/fluid mechanics,
this small parameter ε is called the water-hammer
dimensionless number [20, 21]. It is built upon the
time-scale ratio between the longitudinal time-scale for
the wave to propagate within the network L/cp, to the
radial diffusion of the wave within the boundary-layer
R2/ν (where ν is the fluid kinematic viscosity, R the
pipe radius), i.e ε = νL/R2cp. In many applications,
associated to blood hammer, or water hammer ε � 1
[20, 21]. For example, for a propagating distance of
L = 104m, for water ν = 10−6, within a pipe radius
R = 10−1m, in steel material where cp ≈ 103m/s, which
are realistic parameters for water distribution networks,
ε ≈ 10−3. Hence, in the following an asymptotic solution
of (1) within a metric graph is searched for. The wall-
shear rate is related to the longitudinal velocity gradient
within the boundary layer [21, 28]. Solving for the
velocity field radial variation within the boundary layer,
leads to a relation with the longitudinal pressure gradient
[21, 28]

τw = − 1√
π

∫ t

0

1√
t− t′

∂p(t′)

∂x
dt′ (2)

which is non-local in time (due to the time delayed
response of the boundary layer), and involves the
convolution product of the pressure gradient with the
diffusion kernel. As found in [28], in Laplace domain
using variable s conjugate to time, the Laplace transform
τ̃w of τw (2) reads (Cf Appendix IXA for more
informations)

τ̃w = − 1√
s

∂p̃(s, x)

∂x
(3)

Hence, the damped wave propagation problem (1) is a
non-local problem in time, the solution of which is not
straighforward. This is why a considerable literature has
been devoted to solve it numerically e.g [20, 29]. One
interesting alternative approach first introduced in [21]
is to benefit from its perturbed nature, i.e using the
fact that the damping term is O(ε) small and search
for a multi-time scale solution. At leading order, for

fast time, the damping is neglected as detailed in section
III. At first order one can compute the long-time scale
corrections resulting from the influence of the damping
term and establish the damping rates as detailed in
section V.

B. Quantum graph theory for Laplacian
eigenfunctions and spectrum on metric graphs

We consider an un-directed compact metric graph
G(V, E), having vertex set V and edge one E the cardinal
of which are respectively denoted V and E. The
corresponding un-directed non-metric graph is denoted
G. G (and G) are not multi-graphs, i.e there is a single
edge connecting two distinct vertices, and contain no
vertex with self-edges. The connection mapping between
the vertex set is provided by the adjacency V × V
symmetric matrix A (as G is un-directed), both for G
and G. On this metric graph G continuous function Ψ
along finite (since G is compact) metric edges ek ∈ E
being intervals [0, `ij ≡ `ek ] (with i, j ∈ [1, V ] the vertex
indexes joined by edge ek) are considered in the H2

Sobolev space over G denoted HG

HG ≡ H2(G) =
⊕
ek∈E

H2(ek) (4)

Laplacian operator over G denoted −∆G and acting over
Ψ ∈ HG is defined as the operator − d2

dx2 with x ∈ [0, `ek ]
lying along each edge ek ∈ E equipped at each vertex
with one of the following vertex conditions

i Kirchhoff condition (also called natural or current
conservation [30]) meaning continuity of Ψ and that
the sum of the normal derivatives of Ψ at vertex is
zero,

ii Dirichlet condition meaning continuity of Ψ at
vertex whereas a prescribed value Ψ = 0 is also
imposed there,

iii Kirchhoff-Robin condition meaning continuity of Ψ
and that the sum of the normal derivatives of Ψ at
vertex is proportional to the value of Ψ at vertex.

Is it possible to show that condition (iii) can be
degenerated into (i) or (ii) [31], this is why, in the
following, (iii) is considered as a general formulation.
Furthermore it is known that −∆G is a self-adjoint and
semi-bounded operator [32]. Its spectrum consists of a
sequence of real eigenvalues of finite multiplicity, and it
admits an orthogonal base of eigenfunctions. Following
[2, 26], one considers the eigenfunctions Ψλ ∈ HG of
−∆G whose values between vertex i and j along straight
metric edge eij of lenght `ij travelled along distance x
(being zero at vertex i) are denoted Ψij(x). Ψλ can
be viewed as a E-component vector of functions Ψij(x),
with, again i, j ∈ [1, V ] being the vertex indexes joined
by edge ek. The restriction of Ψλ over V i.e Ψλ|V defines



3

a V -component vector denoted φλ having φj amplitudes
with j ∈ [1, V ]. Along each edge the component Ψij(x)
of the solution Ψλ is a solution of

− d2

dx2
Ψij(x) = λ2Ψij(x). (5)

Dirichlet continuity at vertex i and j read

Ψij(0) = φi Ψij(`ij) = φj . (6)

Denoting Aij the components of A, the Neumann
continuity condition at each vertex i reads

−
∑
j<i

Aij
d

dx
Ψij(`ij) +

∑
j>i

Aij
d

dx
Ψij(0) = hiφi. (7)

Condition (7) is Kirchhoff-Robin condition (iii). For
hi = 0 it degenerates to Kirchhoff condition (i). On
the contrary, in the limit hi → ∞, it gives a Dirichlet
condition (ii) at vertex i where it imposes φi = 0. Given
the continuity conditions (6) Ψij(x) can be adequately
chosen, without loss of generality, as

Ψij(x) =
Ai,j

sin(λ`ij)
(φi sin(λ(`ij − x)) + φj sin(λx)) .

(8)
(8) is built to have by construction, a unique continuous
value across each vertices satisfying the continuity
condition (6), as well as the Laplacian equation (5).
(8) is a spectral base for the wave propagation solution,
the precision of which converges exponentially with the
number of modes [26]. It is interesting to note that if λ
and φλ are known, Ψλ is analytically defined on G from
(8), so that numerically, φλ and λ are equivalent to Ψλ.

Furthermore the Kirchhoff-Robin condition (7) used at
each vertex i leads to

hiφi = −
∑
j<i

λAij
sin(k`ij)

(−φj + φi cos(λ`ij))

+
∑
j>i

λAij
sin(k`ij)

(−φi cos(λ`ij) + φj) . (9)

(9) defines a set of linear homogeneous equations for
the φi amplitudes of Ψλ over vertices. Hence a V × V
symmetric matrix A defined as

Aij(λ,h) = −δij

 ∑
m∈N(i)

Aimcot(λ`im) +
hi

λ

+Aij
1

sin(λ`ij)
.

(10)
where N(i) = {m\Aim 6= 0} being the neighbor vertices
of vertex i associated with non-zero components of
adjacency matrix A. Matrix A, sometimes called the
secular matrix, is built so that (9) is equivalent to

V∑
j=1

Aijφj = Aφλ = 0, (11)

where, again, φλ is the V -component vector of
amplitudes φj . (11) can have a non-trivial solution
different from zero when the so-called secular condition
is met

detA(λ,h) = 0. (12)

The secular condition can be interpreted as finding the
solution within the kernel of the A(λ) matrix which
encapsulates the boundary conditions at any vertex. It
generalizes to a metric graph how the spectrum within a
single pipe is found from connecting boundary conditions
with transfer matrix [33]. Condition (12) provides the
condition defining the discrete eigenvalues set of the
Laplacian operator subsequently denoted λn. Several
other approaches can be used to find a similar securality
condition, e.g scattering approach over edges [2] or
mixed vertex/edges approaches [34]. Since each matrix
entry Aij(λ) (10) of matrix A is Lipschitz-continuous,
so does detA(λ). Furthermore since λ ∈ R, i.e lying
in one dimension, provided that d[detA(λ)]/dλ 6= 0,
the implicit-function theorem states that λn(`eij , hi) is a
single-value function of parameters `eij with eij ∈ E and
hi (if hi is chosen to be either zero or infinity there are
only E parameters `eij ), so that each λn has algebraic
multiplicity one. This implies that the null-space of
A(λn) is one-dimensional, i.e ∀n ∈ N,dim KerA(λn) = 1.

When hi = 0,∀ i ∈ [1, V ], i.e. h = 0, then it is known
that the minimum eigenvalue of the discrete spectrum
λ1 = 0 being associated with a constant eigenfunction
Ψλ1

. On the contrary if ∃ i ∈ [1, V ] such that hi 6= 0,
then λ1 6= 0 and Ψλ1

is not constant over G[34]. This
paper focusses on Kirchhoff vertex where hi = 0 or
Dirichlet ones where hi → ∞ of relation (1) where
constant pressure boundary conditions are imposed. It
is nevertheless interesting to note that condition (iii)
has also been considered to model leakage within pipes
[35, 36] (when the transient wave pressure amplitude
is small compared to the steady static one), so that
the considered framework and related approach is also
relevant to analyze leaking pipe’s networks. VK ⊂ V and
its complement subset VD ⊂ V respectively denote the
subsets of V where Kirchhoff or Dirichlet conditions are
applied such that VK ∪ VD = V and VK ∩ VD = ∅. It is
interesting to mention that the spectral properties of ∆G
are unchanged when adding a new Kirchhoff two-degree
vertex within any edge of G [2, 32] ("gluing" a "dummy"
Kirchhoff vertex as described in [32]).

In the following, a supplementary non-homogeneous
condition is applied at one of the Kirchhoff vertex
denoted vO ∈ VK called the origin vertex for wave
generation. Multiple origins could also be considered,
receiving a similar treatment as subsequently provided,
but to avoid un-necessary complexity, a single origin is
chosen. This origin vertex vO is the location of the
sudden change in boundary condition. In the context
of pressure waves within pipe’s networks it is associated
with the sudden open/closure of a valve or a pipe
breakage at a given location leading to a surge i.e a
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water-hammer bouncing waves all around into the pipe’s
network modeled as a metric graph G [24].

The spectrum of discrete eigenvalue λn of the operator
∆G has to be complemented by their corresponding
eigenfunctions Ψλn . We introduce notation Ψn

ij(x) ≡
Ψn
ek

(x) for the kth component function of Ψλn , being a
E-component vector of functions defined over each edge
k ∈ [1, E] joining vertices i and j. But, as previously
mentioned, Ψλn is equivalent to the datum of λn and φλn .
Given λn, only φλn has then to be computed to find Ψλn .
Condition (11) implies that vector φλn ⊂ KerA(λn,h).
Hence, φλn can be computed using standard algebraic

techniques to obtain the eigenvectors spanning the null-
space of A(λn,h) [26]. Finally, in order to find the
base orthogonality, one has to define the scalar product
between the distinct (i.e n 6= m) eigenfunctions Ψλn and
Ψλm

〈Ψλn ,Ψλm〉 =
∑

ek≡eij∈E

∫ `ij

0

Ψn
ij Ψm

ij dx (13)

Using (8), in (13) one finds

〈Ψλn ,Ψλm〉 =
∑
ek≡eij

(
(φni φ

m
i + φnj φ

m
j )(−λn cot(λn`ij) + λm cot(λm`ij))−

(φni φ
m
j + φnj φ

m
i )(

λn
sin(λn`ij)

− λm
sin(λm`ij)

)

)
Aij

(λ2n − λ2m)
(14)

Realizing that the sum over the vertex set is twice
the sum over edge set (since there is only one edge
connecting two vertices) since each edge is visited twice,
(14) can be re-written as half the same sum over vertices.
Introducing notations An = A(λn,h) as well as Dn and

An the matrices derived from (10)

Dn
ij = −δij

 ∑
m∈V(i)

Aimcot(λn`im) +
hi

λ

 , (15)

Anij = Aij
1

sin(λn`ij)
, (16)

such that An = Dn + An one can then re-write (14) as

〈Ψλn ,Ψλm〉 =
1

4

V∑
j=1

V∑
i=1

(
−λnφni (Dn

ij +Anij)φ
m
i + λmφ

n
i (Dm

ij +Amij )φ
m
i

) 1

(λ2n − λ2m)
, (17)

so that finally, expressing (17) as a compact matrix-
vector contraction (a quadratic form) whilst using (11)

leads to the orthogonality for n 6= m

〈Ψλn ,Ψλm〉 =
1

4

(−λnφλmAnφλn + λmφλmA
mφλn)

(λ2n − λ2m)
= 0,

(18)
where Einstein’s convention for repeated index has been
used. For n = m the scalar product (13) using (8)
simplifies to

〈Ψλn ,Ψλn〉 =
∑
ek≡eij

(
(φni φ

n
i + φnj φ

n
j )(− cot(λn`ij) +

λn`ij

sin2(λn`ij)
) + 2φni φ

n
j (− 1

sin(λn`ij)
+ λn`ij

cot(λn`ij)

sin(λn`ij)
)

)
Aij
2λn

.

(19)

Since (19) is a scalar equality, and since each eigenvector φλn having components φni i ∈ [1, V ] that are all defined
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(in the one-dimensional null-space of A(λn)) up to a
scaling multiplying factor µn, this multiplying factor

can be chosen so that (19) is unity, i.e, given a set of
admissible value for φni , they should be all multiplied by
µn defined as

1

µ2
n

=
∑
ek≡eij

(
(φni φ

n
i + φnj φ

n
j )(− cot(λn`ij) +

λn`ij

sin2(λn`ij)
) + 2φni φ

n
j (

1

sin(λn`ij)
− λn`ij

cot(λn`ij)

sin(λn`ij)
)

)
Aij
2λn

(20)

III. WAVE PROPAGATION ON METRIC
GRAPH TRIGGERED FROM AN ORIGIN

EVENT

Let us now consider the un-damped pressure solution
over G, denoted P0

G ∈ HG being decomposed into a E-
component vector of functions p0k(x, t) defined along each
metric edge ek ∈ E bounded by vertices i and j. The
wave propagation problem (1) without damping (i.e when
ε = 0) within each edge reads(

∂2

∂τ2
− ∂2

∂x2

)
p0k(x, τ) = 0 (21)

or more compactly, the leading-order problem for P0
G is(

∂2

∂τ2
−∆G

)
P0
G ≡ − G P0

G = 0 (22)

A time-domain solution P0
G ∈ HG for the leading-

order solution is obtained from separable variable
decomposition over the Laplacian ∆G ’s eigenfunctions
Ψλn

P0
G =

∑
n∈N

(
An(T )ane

iλnτ +An(T )?a?ne
−iλnτ

)
Ψλn + Pp

P0
G =

∑
n∈N

(
An(T )ane

iλnτ + cc
)
Ψλn + Pp, (23)

with long-time T defined as T = ετ and its associated
long-time complex amplitude An(T ) multiplying each
mode, where ? denotes complex conjugate. In (23) cc
stands for the complex-conjugate expression of the term
within parenthesis. In the sequel we refer to the first
term of right-hand-side of (23) as the homogeneous part
of P0

G whereas the second term Pp is called its particular
part. The spectrum of the homogeneous part is built
from previously defined secular matrix A(λ,0) chosen
such as ∀vi ∈ V, i ∈ [1, V ], hvi ≡ hi = 0 in (10), with
zero determinant condition (12). Since the eigenfunctions
Ψλn satisfy Dirichlet boundary conditions over VD and
Kirchhoff ones over VK so does the pressure field P0

G .
The homogeneous component of (23), by construction
lies within the null-space of G ’s operator and fulfills
(22). In the early stage of the propagation the fast-time
τ being O(1), then T ∼ O(ε) so that

An(T ) = An(ετ) ≈ An(0) τ � O(1/ε), T � 1 (24)

Condition (24) provides a validity condition for the
leading-order solution to hold. A normalization condition
is then set on An(T ) so that the long-time scale is an
asymptotic perturbation of the leading-order solution

An(0) = 1. (25)

In this section III P0
G is computed in the limit ε → 0

for early-stage fast-time τ satisfying condition (24) so
that An = 1 here. Furthermore, the pressure field
fulfills an additional non-homogeneous time-dependent
imposed boundary condition at the origin vertex vO,
located at xvO which needs to be added. This condition is
associated with an added flux within each pipe connected
to the origin vertex and depending on time [33]. Since
the flux is related to the local pressure gradient along
each pipe direction, the condition reads∑

ek

∂P0
G

∂x
(xvO , τ) = PO(τ), (26)

where PO(t) is supposed to be a [0, Te] compact support,
square integrable L2 function over the analysed period
Te. Defining τe < Te as the typical duration time of
the triggering, during the recording finite interval [0, Te]
there is no constraint concerning the relative value of
τe compared to the typical propagation time L/cp built
over the typical length L. Nevertheless, it is interesting
to have in mind that τe could be smaller than L/cp for
the excitation time to be short compared to the wave
propagation inside the network. PO(t) is sometimes
called the ’closure law’ in water-hammer problems. From
linearity, standards Green-functions techniques apply
and the impulse response associated with PO(t) = δ(t)
provides the general solution by convolution with it (δ
denotes the Dirac distribution). In the following we
keep with a general unspecified closure law PO(t) and
derive a general solution depending on it. We suppose
that the origin vertex belongs to the Kirchhoff set, i.e
vO ∈ VK . This is mathematically consistent since a
flux condition can not be imposed at the location where
another imposed Dirichlet condition has to be met, and
physically meaning full since this is where water-hammer
events can be triggered. The leading-order solution for
the wave pressure propagation (23) within early-time
condition (24)) simplifies to

P0
G =

∑
n∈N

(
ane

iλnτ + cc
)
Ψλn + Pp (27)
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where the particular solution Pp ∈ HG takes care
of the non-homogeneous condition prescribed at the
origin vertex vO. Since Pp does not share a Kirchhoff
condition on vertex vO it does not lies inside the
image of the Laplace operator ∆G , so that it can
not be fully decomposed into its eigenfunction basis
Ψλn . Nevertheless, let-us now consider the new self-
adjoint Laplacian operator associated with a Kirchhoff-
Robin condition at vertex vO with hvO 6= 0 rather
than Kirchhoff one, with all other conditions unchanged
on every other vertices, and denote this operator ∆p

G .
Then, from Kirchhoff-Robin condition (9) with hvO the
eigenmodes Ψλpn of the ∆p

G thus verify ∀n ∈ N∑
ek

∂Ψp
λpn

∂x
(xvO ) = hvOΨp

λpn
(xvO ). (28)

∆p
G has a distinct spectrum from ∆G since from changing

one vertex boundary condition only we change the
associated matrix (10), such that secular condition (12)
is distinct from the ∆G ’s one. More explicitly, one
can define from (10) a distinct matrix Ap(λ,h) from
previous one A(λ,0), such that for vO ∈ V, hvO 6= 0
(yet unspecified, but further defined precisely) and for
∀vi 6= vO ∈ V, hvi = 0, resulting in a distinct spectrum,
associated with zero determinant condition (12). By
definition, Pp is part of the operator ∆p

G image. On
can thus chose Pp in the null-space of ∂2

∂τ2 −∆p
G ≡ −

p
G

operator, so that, as the homogeneous part the particular
solution reads

Pp =
∑
m∈N

(
Apma

p
me

iλpmτ + cc
)

Ψp
λpm
. (29)

Since the aim of the particular solution is to handle
the time-variations of the triggering at location xvO ,
rather than choosing Ψp

λpm
as a spatial base, it is more

appropriate to chose it as a temporal one. (35) can be set
as a temporal base if λpm maps into a Fourier mode series,
given the finite recording time Te (since the triggering has
compact support in [0, Te]), λpm = mπ/Te. Hence, each
temporal mode λpm define a single hvO = hm such as the
secularity condition is met, i.e

detA(λpm,h ≡ hmêO) = 0, (30)

where êO is the unit vector of V on vertex vO, whose
components are êOi = δivO . Ψp

λpm
then represents a

set of non-orthogonal eigenvectors, acting as a forcing
term upon the orthogonal base solution decomposed
into the base Ψλn . In the sequel, modes Ψp

λpm
are

referred to as Kirchhoff-Robin-Fourier modes. Similarly
as for the homogeneous solution, the same short-time
normalization, reads

∀m ∈ N, Apm(T ) ≈ Apm(0) τ � O(1/ε), T � 1, (31)

so that at this early-stage fast-time τ satisfying condition
(24) Apm = 1. Using (28) in (26) then leads to∑

m∈N

(
apme

iλpmτ + cc
)
hmΨp

λpm
(xvO ) = PO(τ), (32)

Considering POm′ the real Fourier decomposition
coefficients of compact support function PO over [0, Te]
interval, given by

POm =
2

Te

∫ Te

0

PO(τ) sinm
πτ

Te
dτ, (33)

Since λpm = mπ/Te are precisely the Fourier mode
of the particular solution, projecting (32) over each
Fourier mode, considering that

(
apme

iλpmτ + cc
)

=
2[<(apm) cos(λpmt) − =(apm) sin(λpmt)] leads to pure
imaginary apm coefficient reading

apm = − i
2

POm
hm

1

Ψp
λpm

(xvO )
, (34)

which gives the amplitude of vector ap by which
the particular solution Pp is achieved. Being purely
imaginary,

Pp= −
∑
m∈N

Apm2=(apm) sinλpmτΨ
p
λpm

=
∑
m∈N

Apm
POm
hm

1

Ψp
λpm

(xvO )
sinλpmτΨ

p
λpm
. (35)

Now considering the initial condition at rest, such that
∀x 6= xvO

P0
G |τ=0 = 0,

∂P0
G

∂t
|τ=0 = 0, (36)

then permits to find the modes amplitude an, since from
(27), whilst using (35) in (36) one finds that ∀x 6= xvO∑

n∈N
(an + a?n)Ψλn +

∑
m∈N

(apm + ap?m )Ψp
λpm

= 0,∑
n∈N

λn(an − a?n)Ψλn +
∑
n∈N

λpm(apm − ap?m )Ψp
λpm

= 0.(37)

Let-us define the projections matrices between
eigenfunction base Ψλn and eigenfunctions Ψλpm ,
as

Πnm = 〈Ψλn ,Ψ
p
λpm
, 〉, Π′nm =

λpm
λn

Πnm, (38)

as well as projections matrice between non-orthogonal
eigenfunctions Ψλpm and Ψλp

m′

Πpp
nm′ = 〈Ψλpm ,Ψλp

m′
〉, (39)

with normalyzed condition of unit diagonal, i.e Πpp
mm = 1

∀m ∈ N. Using the orthogonality of eigenfunctions Ψλn

such that 〈Ψλn ,Ψλn′ 〉 = δnn′ , (37) then leads to

a = −1

2
(Π′ + Π) ap +

1

2
(Π′ −Π) ap?. (40)

Furthermore since from (34) ap is purely imaginary, so
does a, hence (40) simplifies to

a = −Π′ap. (41)

(41) then provides an explicit solution for P0
G defined in

(27) using (35).
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IV. SHAPING INTERNAL MODES FROM
EXTERNAL TRIGGER

We now consider the physical interpretation of the
solution obtained in the previous section and discuss how
can it serves interesting physical control of the vibrating
modes. First, one should realize that the two right-hand-
side term decomposition of (27) are distinct. The first
one, called the homogeneous solution in the previous
section (from the corresponding associated boundary
condition) decompose the propagating wave into the
stationary internal standing wave of the metric graph,
that acts has a complex "cavity" into which only some
typical modes of excitations are permitted, that we have
denoted Ψλn . The second term decomposes itself into
distinct modes, depending specifically on the location
of an externally imposed time-varying trigger. This is

why the resulting wave denoted Pp can be considered
as a consecutive wave echo of the external trigger. One
important specificity about the considered metric graph
is that Pp can not be chosen in the kernel of the metric
graph Laplacian since, this kernel is empty. In the case of
simple cavities–such as a one dimensional cavity– on the
contrary, the particular solution is found inside the kernel
of the Laplacian, triggering no external wave into the
cavity [33]. This understood leads to further interesting
questions. First, how much energy is produced by the
external trigger into internal modes ?

A. Wave energy

The triggered wave potential energy is given by

1

2
〈P0
G ,P

0
G〉 =

1

2

∑
n,n′∈N

(aneiλnt + ap?n e−iλnt)(a
p
n′e

iλn′ t + ap?n′ e
−iλn′ t)〈Ψλn ,Ψλn′ 〉+

1

2

∑
n,m∈N

(aneiλnt + ap?n e−iλnt)(a
p
meiλ

p
mt + ap?m e−iλ

p
mt)〈Ψλn ,Ψ

p
λm
〉+ (42)

1

2

∑
m,m′∈N

(apmeiλ
p
mt + ap?m e−iλ

p
mt)(apm′e

iλp
m′ t + ap?m′e

−iλp
m′ t)〈Ψp

λm
,Ψp

λm′
〉,

where, notation f(t)g(t) = limTa→∞
1
Ta

∫ Ta
0

f(τ)g(τ)dτ has been used. From time averaging, and eigenmodes
orthogonality this potential energy simplifies to

1

2
〈P0
G ,P

0
G〉 =

∑
n∈N

ana
?
n〈Ψλn ,Ψλn〉 +

∑
m∈N

apma
p?
m 〈Ψ

p
λm
,Ψp

λm
〉 =

∑
n∈N

ana
?
n +

∑
m∈N

apma
p?
m (43)

The wave kinetic energy is given by

1

2
〈∇P0

G ,∇P0
G〉 =

1

2

∑
n,n′∈N

(aneiλnt + ap?n e−iλnt)(a
p
n′e

iλn′ t + ap?n′ e
−iλn′ t)〈∇Ψλn ,∇Ψλn′ 〉+

1

2

∑
n,m∈N

(aneiλnt + ap?n e−iλnt)(a
p
meiλ

p
mt + ap?m e−iλ

p
mt)〈∇Ψλn ,∇Ψp

λm
〉+ (44)

1

2

∑
m,m′∈N

(apmeiλ
p
mt + ap?m e−iλ

p
mt)(apm′e

iλp
m′ t + ap?m′e

−iλp
m′ t)〈∇Ψp

λm
,∇Ψp

λm′
〉,

where notation

〈∇Ψλ,∇Ψλ′ 〉 =
∑
ek∈E

∫ `ek

0

dΨλ
k

dx

dΨλ′

k

dx
dx, (45)

has been introduced. It is interesting to mention that
each energy mode contribution of (45) is independant
of the edge’s orientation since it is left invariant from
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x→ −x transformation within any edge. From a simple
computation, temporal average zeros the cross-terms so
that (44) reduces to self-energy terms

1

2
〈∇P0

G ,∇P0
G〉 =

∑
n∈N

ana
?
n〈∇Ψλn ,∇Ψλn〉

+
∑
m∈N

apma
p?
m 〈∇Ψp

λm
,∇Ψp

λm
〉. (46)

From integrating by part (45) one finds

〈∇Ψλ,∇Ψλ〉 =
∑
ek∈E

(
[Ψλ
k

dΨλ
k

dx
]−
∫ `ek

0

Ψλ
k

d2Ψλ
k

dx2
dx

)

=
∑
ek∈E

[Ψλ
k

dΨλ
k

dx
] + λ2〈Ψλ,Ψλ〉, (47)

where notation [] is the usual evaluation difference at the
frontier of each segment ek, i.e at each vertex. In the case
where Ψλ is an eigenfunctions of ∆G , since the boundary
conditions at each vertex are either natural or Dirichlet,
this term cancels out. The same applies at almost every
vertex for eigenfunctions of ∆p

G except at the origin vertex
xO where the sum of derivatives is not zero from (28) so
that a contribution arises there. Hence,

〈∇Ψλn ,∇Ψλn〉 = λ2n〈Ψλn ,Ψλn〉 = λ2n, (48)

〈∇Ψp
λm
,∇Ψp

λm
〉 = h2mΨp

λm
(xO)2 + λp2m , (49)

so that summing (43) and (46) using (48) and (49) leads
to the the total wave energy

1

2
〈P0
G ,P

0
G〉+

1

2
〈∇P0

G ,∇P0
G〉 =

∑
n∈N

ana
?
n(λ2n + 1)

+
∑
m∈N

apma
p?
m

(
h2mΨp

λm
(xO)2 + λp2m + 1)

)
,(50)

Hence, the total energy of the wave is split into two
contributions. First, an imposed external term –the
second term of (50)’s right-hand-side— composed of
amplitude apn deduced from the Fourier decomposition
of the trigger, the local amplitude Ψp

λm
(xO)2 of the

mode at the trigger origin xO, the eigenvalue λpm of the
corresponding excited mode, and the hm constant for
which the secularity condition is met for this eigenvalue.
Second, an internal term given by the product between
the mode amplitude an and the square of its real
eigenvalue λn. From this, one realizes that this second
term -first term of (50)’s right-hand-side— is the only
transferred energy from the external trigger into the
internal modes, feeding the metric-graph cavity internal
vibration. This open a second natural question : under
which condition some extremal amount of energy can be
transferred from external to internal waves ?

B. Optimal energy transfer conditions

Denoting EI the transferred energy into internal
metric graph natural modes, i.e

EI =
∑
n∈N

EIn =
∑
n∈N

ana
?
n(λ2n + 1) (51)

Defining the vector Π′
n

= Π′
T · n̂ from the product of

matrix Π′
T , being the transposed of Π′, with unit-vector

n̂ whose components ni = δin, from (41) each component
an reads an = −Π′

n ·ap so that, using the fact that both
vector a and ap are purely imaginary from (34) and (41)
the energy reads

EI =
∑
n∈N

EIn = −
∑
n∈N

(Π′
n · ap)2(λ2n + 1) (52)

Since the derivative of (52) with respect to any
component of vector ap is proportional to (Π′

n · ap),
it is zero for the trivial condition ap = 0 for which
a minimum energy is achieved. A maximal condition
can nevertheless be found from considering a constraint
over finite possible values of vector ap components.
This constraint comes from a prescribed finite energy
of the triggering function PO(τ) given by its Fourier
decomposition from the Parseval-Plancherel equality∫

R
P 2
O(τ)dτ = ‖PO‖2 =

∑
m∈N

P 2
Om, (53)

a maximum energy transfer can be set from defining
function

Jn(ap, λ) = EIn − λ
(
‖PO‖2 − EPO

)
(54)

where the constraint ‖POm‖2 = EPO is set from
minimizing Jn over the Lagrangian multiplier λ.
Minimizing Jn over both ap and λ leads to

λ = −λ
2
n + 1

EPO

(
Π′

n · ap
)2

(
Π′

n · ap
)
apm = EPO

Π′nm
4h2mΨp

λm
(xO)2

(55)

Using the simple relation between vector ap components
and PO given in (34), and defining the unit vector
direction of the triggering Fourier components pO =
PO/‖PO‖, then (55) simplifies to(

Π′
n · pO

)
pO = Π′

n
. (56)

The solution of (56) is then simply

pO = Π′
n
/‖Π′n‖ (57)

(57) states that the optimal energy transfer is obtained
when the triggering Fourier components vector is aligned
with vector Π′

n whatever its amplitude.
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V. DAMPED WAVES SOLUTIONS

This section now considers the wave damping with
the viscous damping model discussed in section IIA.
Following [21, 28] the solution for the damped wave
pressure problem (1) is search within a multi-time scale
expansion solution. Using long time T = ετ so that
∂t ≡ (∂τ + ε∂T ), a regular approximate solution for the
pressure solution over G (1) is searched as

PG = P0
G + εP1

G + .. (58)

Along with the pressure fields the long-time wave
amplitude are also decomposed into such multi-
scale asymptotic expansion so that for for both the
homogeneous and particular part, so that for each n,m ∈
N

An(T ) = A0
n(T ) + εA1

n(T ) + ..., (59)

Apm(T ) = A0p
m (T ) + εA1p

m (T ) + ... (60)

The long-time damping amplitudes A0
n(T ) of the leading

order solution is then found from analyzing the first order
one in Laplace-domain from what is called the secularity
condition [37]. The Laplace transform of field denoted

with tildes, is considered, so that, using (59), (60) the
Laplace transform of the leading order (23) reads

P̃0
G =

∑
n∈N

(
A0
n(T )a0n
s− iλn

+ cc

)
Ψλn

+
∑
m∈N

(
A0p
m (T )a0pm
s− iλpm

+ cc

)
Ψλpm , (61)

where coefficients a0n are identical with coefficients an
computed in section III where the ε = 0 limit has been
considered. At first order (1) leads within each edge k to(

∂2

∂τ
− ∂2

∂x2

)
p1k = 2

(
∂τ0w
∂x
− ∂

∂T

∂

∂τ
p0k

)
, (62)

where within each edge, the pressure leading order and
first order are respectively denoted p0k and p1k for k ∈ E.
Since, the first order problem is then decomposed into
the Laplacian eigenfunctions

P1
G =

∑
n∈N

[a1n(τ) + cc]Ψλn +
∑
m∈N

[a1pm (τ) + cc]Ψp
λm
. (63)

From (61), one can evaluate the right-hand-side of (62)
in the Laplace domain which reads, using the Laplace
transform of the wall-shear-stress (3)

2

(
∂τ̃0w
∂x
− ∂

∂T
sP̃0
G

)
= 2

(∑
n∈N

[
a0n

s− iλn
(A0

n

√
s

s
λ2n − s

∂A0
n

∂T
) + cc]Ψλn +

∑
m∈N

[
a0pm

s− iλpm
(A0

m

√
s

s
λp2m − s

∂A0p
m

∂T
) + cc]Ψλpm

)
.

(64)
Writing (62) in Laplace domain whilst using (64), the first-order problem written on G reads(

s2 −∆G
)
P1
G = 2

(∑
n∈N

[
a0n

s− iλn
(A0

n

√
s

s
λ2n − s

∂A0
n

∂T
) + cc]Ψλn +

∑
m∈N

[
a0pm

s− iλpm
(A0p

m

√
s

s
λp2m − s

∂A0p
m

∂T
) + cc]Ψλpm

)
.

(65)
Projecting (65) over Ψλn leads to

1

2
[ã1n + cc] +

∑
m∈N

[ã1pm (s) + cc]
s2 + λp2m
s2 + λ2n

Πnm = [
an

(s− iλn)2
(
An
√
s
s λ

2
n − s∂An∂T

(s+ iλn)
) + cc]

+
∑
m∈N

(
[(

apm
s− iλpm

)(
Apm

√
s
s λ

p2
m − s

∂Apm
∂T

s2 + λ2n
) + cc]

)
Πnm. (66)

Furthermore, projecting (65) over Ψλpn leads to∑
m′∈N

Πpp
mm′

[ã1pm′ + cc]

2
+
∑
n∈N

[ã1n(s) + cc]

2

s2 + λ2n

s2 + λp2m
Πnm= [

apm
(s− iλpm)2

(
Apm

√
s
s λ

2p
m − s

∂Apm
∂T

(s+ iλpm)
) + cc]

+
∑
m′ 6=m

 apm′

(s2 + λp2m )(s− iλpm′)
(
Apm′

√
s
s λ

p2
m′ − s

∂Ap
m′

∂T

(s+ iλpm′)
) + cc

Πpp
mm′

+
∑
n∈N

(
[(

an
s− iλn

)(
An
√
s
s λ

2
n − s∂An∂T

s2 + λp2m
) + cc]

)
Πnm. (67)

It is now crucial to note that only the first line of (66) and
(67)’s right-hand-side have double poles–respectively at

s = ±iλn for (66) and s = ±iλpm for (67) –, whereas
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both second lines of (66) and second and third lines
of(67)’s right-hand-side display only simple poles. Only
double poles in Laplace domain lead to time-diverging
terms : these are called resonant poles [21, 28]. These
double–poles are associated with resonance conditions
between the (65)’s RHS and the natural frequencies of
the (65)’s LHS. These resonance conditions produce a
linear divergence term upon the fast time τ of ã1n and
ãp1m as can be seen from the inverse Laplace transform of
the double poles through Cauchy’s residue theorem

L−1
(

1

(s± iλn)
2

)
(τ) = lim

s→±iλn
(∂se

sτ ) = τe±iλnτ .

(68)
It is interesting to note that the second line of (66) and
the second and third lines of (67) do not have double
poles but only simple ones because the eigenvalues of
the operator ∆G can not have resonance with those of
∆p
G . The secularity condition is built to remove those

divergent terms, i.e double poles, so that both first lines
of (66) and (67) have to cancel. Imposing this secularity
condition for the first line of (66) leads to

lim
s→iλn

(
An

√
s

s
λ2n − s

∂An
∂T

)
= 0,

lim
s→−iλn

(
A?n

√
s

s
λ2n − s

∂A?n
∂T

)
= 0, (69)

leading to the same consistent secularity solution

An(T ) = e−
√
−iλnT = e

−( 1−i√
2
)
√
λnT , (70)

using the normalization condition (25). A very similar
result is obtained canceling the double pole of the first
line of (67)’s right-hand-side

lim
s→iλpm

(
Apm

√
s

s
λp2m − s

∂Apm
∂T

)
= 0,

lim
s→−iλpm

(
Ap?m

√
s

s
λp2m − s

∂Ap?m
∂T

)
= 0, (71)

leading to a parallel damping of the particular solution
using normalization (31)

Apm(T ) = e−
√
−iλpmT = e

−( 1−i√
2
)
√
λpmT (72)

Now, using (70) and (72) in (23) leads to the damped
leading order solution

P0
G =

∑
n∈N

e−
√

λn
2 T
(
a0ne

i
√

λn
2 T eiλnt + cc

)
Ψλn

+
∑
m∈N

e−
√
λ
p
m
2 T

(
ap0m e

i

√
λ
p
m
2 T eiλ

p
mt + cc

)
Ψλpm . (73)

VI. ILLUSTRATION WITH AN EXAMPLE

In this section we illustrate the previous solution over
a very simple 3-star graph illustrated in figure 1 having

A

2 O
B C

FIG. 1: 3-star metric graph having length `21 = 2.211,
`23 = 3.111 and `24 = 4.711 where the triggering is

applied at origin point O, i.e @ vertex #2.

non-commensurable length with the considered modes,
i.e `ijλn 6= nπ and `ijλ

p
m = `ijmπ/Te 6= mπ. The

adjacency matrix of the 3-star graph of figure 1 reads

A =

 0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

 . (74)

Using definition (10) the secular matrix reads

A(λ,h) =


− cot(`21λ) 1

sin(`21λ)
0 0

1
sin(`21λ)

−hmλ − cot(`21λ)− cot(`32λ)− cot(`24λ) 1
sin(`32λ)

1
sin(`24λ)

0 1
sin(`32λ)

− cot(`32λ) 0

0 1
sin(`24λ)

0 − cot(`24λ)

 , (75)

whose determinant is

detA(λ,h) =

[
((

hm

λ
cot(`24λ)− 1) cot(`23λ)− cot(`24λ)) cot(`21λ)− cot(`23λ) cot(`24λ)

]
. (76)
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(a) Kirchhoff mode Ψλ1 .

(b) Kirchhoff mode Ψλ2 .

FIG. 2: First two Kirchhoff eigenmode of the 3-star
graph 1.

Numerically solving for detA(λn,0) = 0 gives the
eigenvalues λn of the Kirchhoff modes. This spectrum
is complemented with the vertex vector φλn of quantum
graph modes n (8) obtained from computing the one
dimensional null-space of matrix A(λn,0) (here a 4-
vector) which then sets Ψλn . Table I provides the λn and
φλn values of the first twenty Kirchhoff modes. Figure
2 illustrates the first two Kirchhoff mode Ψλ1

and Ψλ2
,

showing as expected an increasing number of minima and
maxima as λn increases.

Furthermore, imposing the Fourier modes λpm =
mπ/Te and solving for hm such that detA(λpm,h =
hmê0) = 0, with vector ê0 being the unit vector on
vertex vO = 2, permits to find φλpm from the null-space
of A(λpm,h = hmê0) which then provides the Kirchhoff-
Robin-Fourier modes Ψλpm . Table II provides the hm
values, as well as the λpm and φλpm of the first twenty

(a) Kirchhoff-Robin-Fourier Ψλ
p
1
.

(b) Kirchhoff-Robin-Fourier Ψλ
p
2
.

FIG. 3: First two Kirchhoff-Robin-Fourier eigenmode of
the 3-star graph 1.

Kirchhoff-Robin-Fourier modes. Figure 3 also illustrates
the first two Kirchhoff-Robin-Fourier modes Ψλp1

and
Ψλp2

(using the graphs structure of the Python’s GraFiDi
library [38] nested with NetworkX’s one [39]). A pulsed,
Gaussian closure law

PO(t) = e
− (t−t0)2

2τ2e , (77)

is chosen with t0 = 1 and τe = 0.1. This pulsed law
is almost zero at t = 0 and t = Te (chosen as Te =
4.75 in figure 4) so that the condition for Fourier serie
decomposition over a finite-time interval is met. One
can see in figure 4 an example of full-solution computed
without and with damping correction. As can be seen,
since the closure law is localized in time, it excites a
rather larger number of Fourier modes, resulting in a
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spatially oscillating solution.

(a) Udampted full solution (27)

(b) Damped full solution (73)

FIG. 4: Comparison between undamped and dampted
solution at t = 3 for closure law (77) taken for t0 = 1,

τe = 0.1, Te = 4.75.

VII. DISCUSSION

This contribution has addressed how a finite-time
excitation happening within a specific location (called the
origin) of the network propagates into it as a wave train.
This propagating wave train is decomposed into the
stationary waves modes of the metric graph, as classically
done in simple cavities. However, since a graph has a
complex topology (provided by its adjacency matrix), the
stationary modes of vibrations given by the quantum-
graph eigenfunction of the Laplacian operator are also
complex. However, these quantum-graph modes provide
the (infinite dimensional) discrete base for propagating

wave decomposition, as the canonical decomposition of
the harmonic-oscillator in quantum mechanics. In the
absence of damping mechanism, section III shows how
the undamped propagating wave decomposes into two
distinct parts : (i) a specific one, leading to the particular
part of the stationary-wave decomposition, having its
own spectrum of vibration λpm chosen as Fourier modes
and eigenfunctions depending on the excitation origin xO
and (ii) the natural vibration modes given by the metric-
graph’s Laplacian eigenfunction, associated with their
specific homogeneous spectrum of vibration λn. Section
III found how the amplitude of the particular part can
be deduced from the Fourier-mode decomposition of the
finite-time excitation. Furthermore, projection matrix
Π′ permits to deduce the natural homogeneous modes
amplitude from the particular ones. To our knowledge,
these explicit quasi-analytical solutions for the wave train
are new. These solutions have then permitted to address
several interesting issues.

First, provided that the origin and the finite-time
excitation can be changed, it is interesting to find the
"optimal" excitation able to feed the natural cavity
modes, i.e to produce optimal energy into the natural
cavity modes. This question arises since the excitation
naturally decomposes into the particular modes, which
secondarily transmit their energy to natural modes.
Section IVA derives the total energy of the wave
inside a metric graph, showing that only the internal
part, denoted EI is able to feed natural cavity
vibrations modes. Looking for optimal conditions for
energy transfer between the excitation’s Fourier-mode
decomposition and the natural cavity mode, section
IVB shows that an optimal energy transfer into the
nth natural mode is achieved when the Fourier mode
decomposition vector of the triggering PO is co-linear
with vector Π′

n
= Π′

T ·n̂. This simple geometrical result
permits to consider a mode-to-mode specific triggering,
but it is important to stress that this energy transfer can
be shaped optimally for a single natural mode only. Also,
it is worth mentioning that even if this optimal condition
is general for any origin location, it differs for each chosen
origin since matrix Π′ depends on the chosen origin xO
for the finite-time excitation.

It is also interesting to note that the lowest natural
energy modes n = 1, having eigenvalue λ1 and wave-
form Ψλ1

, a sort of "ground-state" of natural vibrations,
could be a natural choice for such optimal harvesting
of external triggers. This choice could be justified from
the fact that this mode is the less damped one, as now
discussed.

Second, analyzing the acoustic damping established in
fluid mechanics for the boundary-layer diffusion of axial
momentum transfer, section V derives a multi time-scale
expansion analysis associated fast time-scale τ and long
time-scale T of the wave propagation. This asymptotic
framework applied within quantum-graph wave-form
decomposition, leads to an explicit analytical result
for the leading-order wave propagation damping. This
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leading order damping is surprisingly simple, since each
mode is exponentially damped over long time-scale T ,
with a damping rate directly related to their eigenvalue
λn and λpm, i.e proportional to

√
λn/2 and

√
λpm/2.

This result shows that the higher the energy mode, the
higher damping rate. This general theoretical result
established within a secularity condition of resonant
modes provides a significant long time-scale

√
2/(
√
λ2 −√

λ1) for which all n > 1 modes are damped but
for the remaining cavity natural ground state vibration
n = 1. Similarly

√
2/(
√
λp2 −

√
λp1) gives the time-

scale for the particular solution ground-state to survive
over highest order modes m > 1. Here again these
theoretical results have been established within a general
context and apply to any metric graph. They surprisingly
generalize the result obtained within a single pipe [21].
They furthermore give a supplementary physical insights
for each mode eigenvalue. Since the wave energy of
each mode EIn is proportional to its amplitude i.e EIn =
AnA

?
nana

?
n(λ2n + 1), it is thus exponentially decaying

for damped waved so that EIn ∼ e−
√
2λnT . Hence,

not only each mode eigenvalue sets the corresponding
vibration mode energy level but also its damping rate.
This conclusion is obviously specific to the considered
hydrodynamic damping model.

Nevertheless, it is known in other area that weak non-
linearities are responsible for wave damping, whereby
a small parameter can be considered, e.g spin-wave
propagation [22]. Hence, the generic perturbed multi-
scale approach proposed in this study might be adapted
to other contexts.

VIII. CONCLUSION

This paper considers a one-dimensional model of
wave propagation inside a metric graph, i.e a long
wavelength approximation propagation within a network
of wire-like connections, triggered by an external event
arising at one vertex origin. Even though a general
case of (compact and not-multi-graph) graph has been
considered a number of analytical results have been
established.

It has been found that the external trigger induces two
families of secondary waves into the network : (i) an
external one specific to the origin location (ii) an internal
one provided by the natural modes of the metric graph.
Canonical decomposition of the wave modes has been set-
up, the amplitude of which have been found explicitly for
any finite-time triggering shape. Furthermore, an explicit
condition on the finite-time trigger shape has been found,
given its origin, in order to obtain an optimal energy
transfer into one single internal mode.

Finally, this contribution has analyzed the influence
of boundary-layer dissipation on the wave propagation
within the network. Within an established damping
model for which the wall-shear rate is a time-convolution
of the pressure gradient with a diffusion kernel, a multi-

time scale analysis of the wave dynamics has been
performed. This analysis has permitted to establish
the damping rate of each mode from the secularity
condition of resonant modes. The obtained final result
is surprisingly simple and general : the damping-rate
of each mode is exponential with a corresponding time-
decay directly related to the mode’s eigenvalue. This
results holds for any metric graph and any triggering
event origin and shape. Knowing the decaying rates
of propagating modes inside the network is a precious
information that might benefit further investigations in
various physical domains.

IX. APPENDIX

Three movies are proposed in SM to illustrate the
quantum-graph wave within a 3-star metric graph, with
(i.e for water hammer small parameter ε = 0.1, 0.01) and
without damping.

A. Shear rate derivation

This appendix considers the boundary layer structure
of an acoustic wave propagating into a straight pipe
along its main axis (which is the metric graph’s edge).
Whatever the transverse shape of the pipe, this boundary
layer is a thin layer described by a re-scaled variable y
(y = 0 at the pipe’s wall whereas matching conditions
have to be met has y � 1). Within this layer, even
if the fluid pressure does not depends on y and is the
same as in the core of the pipe, this is not the case
for the perturbed longitudinal velocity traveling with the
wave-front. Albeit the wave-front velocity has a plane-
wave structure not varying in the transverse direction,
in the layer the velocity varies, because it as to match a
no-slip condition at the pipe’s wall. Following [21, 28]
the dimensionless boundary-layer problem associated
with the longitudinal velocity w(y, t) perturbation within
boundary layer thickness is :(

∂

∂t
− ∂2

∂y2

)
w = − ∂

∂z
p (78)

(78) is a diffusion problem driven by the longitudinal
pressure gradient associated with no-slip boundary
condition

w(y, t)|y=0 = 0 (79)

The Laplace transform of (78) reads(
s− ∂2

∂y2

)
w̃ = − ∂

∂z
p̃ (80)

The solution for w̃ with boundary condition (79) is

w̃ = −1

s

(
1− e−

√
sy
) ∂

∂z
p̃. (81)
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From, (81), one can evaluate the shear-rate

∂w̃

∂y
= −
√
s

s
e−
√
sy ∂

∂z
p̃ (82)

which, evaluated at y = 0 gives the wall shear-stress

τ̃w =
∂w̃

∂y
|y=0 = −

√
s

s

∂

∂z
p̃ (83)

B. Numerical evaluation of Eigen-modes on the
3-star example

n λn µn φ1 φ2 φ3 φ4

1 0.3881987759 0.721871103 -0.2964486625 -0.1937941785 -0.5456176736 0.7595152146
2 4.7117467165 0.870663106 0.5961287943 -0.3256461334 0.6541514685 0.3326723804
3 6.3525865114 0.747238735 0.6621539408 0.0605673071 0.0991111588 0.7403112441
4 12.4788910454 0.807255566 0.3962512926 -0.3072388027 -0.7091748792 0.4956412231
5 15.6637713517 0.715622334 0.0250483717 -0.0249778073 -0.7076024501 0.7057247770
6 18.8328225632 0.828397911 -0.4571083665 0.3189075512 -0.7049346172 0.4386537365
7 21.8647164683 0.877339202 -0.7303136021 0.2516560345 0.5482473241 -0.3205248111
8 24.9689545929 0.740647579 -0.6023871790 -0.1364432674 0.2094689958 0.7580472684
9 28.1697479121 0.834695986 0.5045162370 0.4304968982 0.4548185059 0.5943701826
10 28.5032976758 0.817198780 -0.4200833880 -0.4126076818 -0.5436874373 0.5980709143
11 37.6697929771 0.713414664 0.2875184547 0.1521514201 -0.5394990582 0.7766104878
12 39.0342472648 0.767642573 -0.7240653074 0.0258486717 -0.0445497912 0.6878056360
13 40.9700198335 0.788614889 0.7589439659 -0.0675152885 0.1450308764 0.6311986909
14 46.9910214079 0.718634694 0.1655504268 -0.1435465042 0.6484171240 0.7290697433
15 47.6534209076 0.719792691 -0.0764957925 0.0745746258 -0.7114791028 0.6945390596
16 50.3790954261 0.774936991 -0.7289459417 -0.0860765421 0.1039341549 0.6711380889
17 53.5507183138 0.771439486 -0.7173461300 0.0989350844 0.1053306351 0.6815657241
18 56.6752993239 0.822768128 -0.6273590268 -0.3495142650 0.3509945675 -0.6008853831
19 59.8244568982 0.890364225 -0.5139237713 -0.4819467842 -0.5205770943 0.4822957012
20 63.0481713312 0.799147437 0.4084803861 0.3870989844 -0.5340092449 0.6309772395

TABLE I: First 20th Kirchhoff eigenmodes for the
3-star graph illustrated in figure 1 having `21 = 2.211,

`23 = 3.111 and `24 = 4.711.
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