
HAL Id: hal-04581288
https://hal.science/hal-04581288

Submitted on 21 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Towards Antipatterns-Based Model Checking
Hassan Loulou, Sebastien Saudrais, Hassan Soubra, Cherif Larouci

To cite this version:
Hassan Loulou, Sebastien Saudrais, Hassan Soubra, Cherif Larouci. Towards Antipatterns-Based
Model Checking. PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns
and Applications, Mar 2016, Rome, Italy. �hal-04581288�

https://hal.science/hal-04581288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Towards Antipatterns-Based Model Checking

Hassan Loulou

University of Paris-Sud
Paris, France

email: hassan.loulou@u-psud.fr

Sebastien Saudrais

ESTACA’LAB
Laval, France

email: sebastien.saudrais@estaca.fr

Hassan Soubra

ESTACA’LAB
Saint-Quentin-en-Yvelines, France

email: hassan.soubra@estaca.fr

Cherif Larouci

ESTACA’LAB
Saint-Quentin-en-Yvelines, France

email: cherif.larouci@estaca.fr

Abstract—Discovering bugs in the early stages of the develop-
ment life cycle is an important issue. However, software model
checking realized by transforming design models into formal
methods cannot test all the possible execution scenarios. Thus,
we developed an approach to guide the model checker and the
security engineer to the most suspicious parts of these models
firstly. The objective is to build and analyze antipatterns to
notify the security engineer to concentrate on specific parts of
their models during the model checking. Our first contribution is
dedicated to exploring ProB model checker features which help
the translated model to find attack scenarios automatically. The
second one is the definition and the analysis of 10 antipatterns
as a step towards their automatic detection.

Keywords–Antipatterns; Model Checking; Formal Methods.

I. INTRODUCTION

Hidden errors in software design phase lead in later soft-
ware development stages into complex bugs which need a lot
of time to be solved. Thus, discovering these errors at this
phase is of high importance.

Few works have examined the impacts of models’ func-
tional and non-functional artifacts co-evolution on design
constraints. This type of co-evolution exists in UML profiles
such as SecureUML [1]. Our approach validates SecureUML
models’ dynamic aspects by applying model checking oper-
ations after transforming them into a formal representation
called B-method [2]. Meanwhile, the validation of design
models cannot explore all the possible software executions and
requires certain level of experience with formal methods. For
realizing a systematic validation of security policies, the model
checker needs to be guided to discover design constraints by
applying appropriate enhancements on the models’ resulted
formal representations. Furthermore, system designers would
prefer intuitive solutions depending on antipatterns representa-
tions for those design structures which must be avoided. Also,
a solution for highlighting suspicious parts of the models which
are likely to introduce violations during the system evolution
may make their work easier.

We study the existing facilities for guiding the model
checker to detect security constraints’ violations in Se-
cureUML. Thereafter, we define the design artifacts which
were the source of violations in form of antipatterns. These
antipatterns are substructures suspected to be the reason of
design constraints’ violations during software evolution. They
are discovered after the transformation of models into a formal
representation and after launching their formal verification
using ProB [3] model checker’s facilities. We aim at paving
the way towards an automatic detection of the root cause

of security bugs by introducing design artifacts which are
responsible for these bugs to the software security engineer. We
applied our approach on a case study related to the verification
of access control constraints.

This paper is organized as follows: In Section II, we explain
the structure of SecureUML [4] profile and the limitations of
its validation works. In Section III, we show how we exploited
ProB model checker to find the violations automatically. There-
after, in Section IV, we introduce an example of the extracted
antipatterns. Finally, in Section V, we make a conclusion on
our contribution and perspectives.

II. SECUREUML VALIDATION

In this section, we show the basic idea of SecureUML,
the works related to validating it and our choice to represent
SecureUML models and to exploit this representation.

A. SecureUML
Role-based access control (RBAC) has been standardized

by the National Institute of Standards and Technology (NIST)
[5]. It defines a role as a set of permissions to access resources.
Users get their permissions by being assigned to one or more
roles. SecureUML [1], is an extension of UML for specifying
RBAC access control policies. In SecureUML, a permission
is a relation connecting a role to actions on resources. The
permission semantics are defined by the action elements used
to classify the permissions [6]. Every action represents a class
of security relevant operations on a protected resource. Access
control can be expressed as an assignment of users to permis-
sions by using their roles. Otherwise, authorization constraints,
or more commonly the Object Constraint Language (OCL) [7]
constraints, are checked on snapshots of the meta-model. OCL
can specify constraints on users permissions in an expressive-
contextual manner.

B. Related Works
Yu et al [8][9] exploited USE tool to support lightweight

analysis of RBAC security policies expressed by UML and
OCL to find violations. In their approach, an application design
model was translated into a model containing predefined
valid sequences of object diagrams. A snapshot is an object
configuration that describes a system state. A sequence of
object interactions, called a scenario, is then checked against
the invariants defined in the snapshot model. After the analysis,
if a good scenario is described as invalid, or a bad scenario
is described as valid, then there is a problem in the security
policy which either prevents valid scenarios or permits invalid
ones. Basin et al [6][10] introduced SecureMOVA. This tool is

27Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE I. THE LACK OF AUTOMATED DISCOVERY FOR ATTACK SCENARIOS

used to ask questions about a current state, i.e., a given object
diagram. Such queries return the permissions authorized for
a given role, or a given user. However, these two approaches
do not consider the real execution sequence of operations to
reach a specified state. They just give a possible object diagram
representing a required constraint and conforming to the class
diagram according to some specified constraints. Nevertheless,
they do not ensure the reachability of this state. Another
approach tried to simulate the real execution of software
systems by introducing the notion of execution scenarios. It
depends on transforming UML diagrams augmented with OCL
constraints into Alloy [11][12][13]. However, these works do
not transform the security constraint to validate them by Alloy
model checker and they do not consider the impacts of the
functional model evolution on the security policy. Moreover,
these works suffer from the false negative alerts (Alerts that
should have happened but did not because the model checker
did not reach certain states). Additionally, they do not define
a systematic approach for guiding the model checker. An
interesting approach exploited Z formal method to animate
SecureUML models [14]. However, false negatives still exist
and antipatterns are not defined and thus not exploited to
automate the search for attacks. We compare these works in
Table I, showing the lack of a validation approach for the
functional model evolution impacts on the security parts of
secureUML. Also, no antipatterns are defined to guide the
security engineer or the model checker into the suspicious parts
of the models under test. To solve this problem, we translated
both functional and security parts into B-method. Then, we
proposed solutions to guide the model checker to find the co-
evolution of SecureUML parts and we exploited these solutions
to resume our findings in the form of antipatterns.

C. B-method for SecureUML validation
We decided to transform SecureUML models into B-

method [15]. The reason is that B-method allows to simulate
the co-evolution of functional and non-functional parts of mod-
els by its animator called ProB. This simulation mimics the
real execution of software system. Moreover, a B-method tool
called B4Msecure [16] is developed by Ledru et al. [17][14]
to transform SecureUML models into B-method. B-method is
a formal method for specifying, refining and implementing
software systems. It is based on Set Theory and Predicate
Calculus. Each B model is called an abstract machine. These
machines are animated using ProB. Yet, the model checker
needs to be guided by the user in order to find the potential

Figure 1. SecureUML case study

attacks. Thus, the tool still needs an automation in order to
search for models’ most suspicious artifacts and to examine
the impacts of these artifacts’ possible compositions.

III. OUR PROPOSITIONS FOR VALIDATING SECUREUML
In this stage, we aim at exploring ProB features which help

to find an attack scenario depending on the capabilities of ProB
model checker.

A. Illustrative example
We built the security model shown in Figure 1. It is sup-

plied with a stereotype representing the notion of organization.
In this way, a user, called Jack, who has the role supervisor,
is able to access data related to employees in organization
E2, but he is prevented from doing so in E1. In this model,
we notice that a new function setBoss() is added to express
the uncontrolled reflexive association presented in [10] and
to examine the potential risks resulting from the solution
introduced there.

B. Validating the resulting model by ProB
We explored many mechanisms to find attack scenarios.

The validation process considers an initialization state as
shown in Figure 2, where there are two employees and one
supervisor in the same organization E2.

1) Finding flaws by querying the functional model: When
an employee in the functional model gets the role supervises
of the reflexive association, he gets simultaneously a new
role in the security model and new permissions according
to this new role. In our example, when the employee Martin
becomes a supervisor, an interaction between the functional
and the security models occurs by invoking the operation

Figure 2. The initial state

28Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

add userAssign. This operation makes him a supervisor in his
organization. As a result, the following assignment, which adds
new role to the user in his organization, takes place: (user 7→
(org 7→ role)). This relation has the following values in our
illustrative example: (Martin 7→ (E2 7→ Supervisor)).

We can search for this scenario in ProB by searching a state
satisfying specific predicate in the checked model as follows:
find a state in which Boss(Martin) = Fred. As a result, the
model checker finds a scenario which makes an employee
as a supervisor. Consequently, this new supervisor has new
permissions and this case is suspicious. We found that as the
reflexive association is not controlled by constraints, it does
not have a clear interpretation. Moreover, as Basin et al [10]
used an actional tool, which cannot simulate the real reachable
methods in a specific system state, they could not consider the
operations’ real effects on the security policy and they could
not find this potential attack.

2) Querying security aspects of the model: The proposition
here is to make queries about all the roles which someone
must not be authorized to have. Thus, we ask the model
checker queries about the roles of users. If the translated model
contains a scenario which can give a user, Martin, the role
supervisor, considering that he was an employee with the role
worker, then this scenario is suspicious and it can be a flaw in
the security policy. The query about the system states takes the
following form: User assign (Martin) = (E2 7→ Supervisor).
This query means: is there a scenario that leads the system
to a state where Martin is a supervisor? Considering that the
latter state is assumed as an invalid state. We search for this
state, because the existence of such sequence of operations
may make Martin able to change the salary of other users in
the system, which is considered illegal in that organization.

The result given by the model checker is the following
susceptible scenario: after giving the values of the system
constants concerning the system users, the system’s functional
and security models are initialized. After that, the users are
assigned to their permissions. Jack, who is a supervisor,
connects to the system as a supervisor in the organization
E2. This assignment of Jack to his roles occurs in the session
S1. While, in another session, a user whose name is Fred and
who has the role worker takes the session S2 and connects
to the system as a worker. When Fred gives Martin a position
supervisor by applying the function secure Employee setBoss,
the state of the system evolves and Martin gets the role
supervisor. As a result, with the existence of another employee
like Bob, Martin who has got temporarily the role supervisor
becomes able to make Bob as a supervisor. Subsequently, even
if Martin loses his new role, Bob holds this role and can change
the salary of his colleagues Martin and Fred.

3) Exploiting the attainability of an operation: An opera-
tion is enabled if its precondition and its guard’s sections are
true. These two sections are computed taking into account the
system state. We proposed a new solution benefiting from this
property. The mechanism of this scenario detection solution
is explained by the following example. A system variable
currentUser is related to an active session user. Therefore, we
can add a constraint in the guard’s section of an operation,
where this constraint says that the operation will not be enabled
if the current user is not Fred, for example. We do that taking
into account that this user does not have an authorization
to execute this operation. Next, we search for a scenario in

which this operation could be attainable and executable. If such
scenario exists, we conclude that there is a suspicious scenario
which may cause a serious attack. As will be shown next, the
constraint (currentUser = Fred) is added in the guards section
of the operation secure Employee SetSalary:

s e c u r e Employee S e t S a l a r y (I n s t a n c e , Employee
↪→ s a l a r y V a l u e) = SELECT c u r r e n t U s e r = Fred

The disadvantage of this solution is: to reach the state we
are searching for (where currentUser = Fred), we may need
the same operation without the added pre-condition. Thus, the
solution is to add another operation with the same name but
without that obstructive constraint. In this way, this additional
operation will be executed first, if needed. Then, ProB continue
searching for the target suspicious state.

4) Searching flaws by asking ProB about permissions: In
this way, we are interested in finding a scenario where a user
is capable of reaching a permission he did not have before. For
example, is there a scenario in which the user Martin can get
the access to execute the operation employee SetSalary? The
execution of this operation was granted, at the beginning of
the system execution, only to Jack who is a supervisor. This
question can be formulated using B as follows:

employee S e t S a l a r y ε i s P e r m i t t e d [c u r r e n t O r g R o l e
↪→ S e s s i o n] ∧ C u r r e n t U s e r = M ar t i n

Consequently, if the model checker reaches a state where
the previous constraint holds, we conclude that the user Martin
will be able to get an unauthorized permission. The resulted
scenario given by the model checker is the same as the one
mentioned in the previous solutions.

5) Taking the initial state into account: We consider dif-
ferent possible object diagrams resulted from the reflexive
association and its multiplicities in the illustrative example.

a) Studying initialization object diagrams: The first ob-
ject diagram, Figure 3, is composed of the following structure:
an employee with a role worker who is not associated to a
supervisor and another employee with a role worker associated
to a supervisor. In this state, we cannot find an attack scenario.
No scenario can lead Martin to change Freds salary because
Jack is not the supervisor of Fred. Thus, he is not able to
execute the setBoss() operation. Likewise, in the following
state, Figure 4, there is no attack scenario. The only case
where there is an attack scenario is, as shown in Figure 2,
when there is an object diagram containing more than one
employee managed by a common supervisor. This is because
the existence of a supervisor for an employee is essential to
change the value of the reflexive association represented as
a relation called boss in the functional model. This relation
issues an association between two objects in the Employees
functional class diagram.

Moreover, we found another kind of attack happening when
we have a hierarchy of employees in the same organization,
as shown in Figure 5. It is impossible to change the salary of
the employee E7, as he is not associated to a supervisor. An
employee E1, E3 has found a scenario to change the salary of
their supervisors E3, E5 respectively. As a result, we found out
that the initial state which is constructed using the supervisor
hierarchy two times at least is essential to have such risk.

29Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

Figure 3. Initialization state1.

Figure 4. Initialization state2

Figure 5. Initialization state3

b) An approach to construct an important object dia-
gram (tree): A solution is needed to construct either all the
possible object diagrams of the class diagram or all those states
which are considered more suspicious to produce the attack
scenario. The produced object diagram differs according to
the structure it tries to instantiate. For example, the different
states we must consider in the previous reflexive association
are: (i) initializing the B machine with two employees, one of
them has a different manager, (ii) two employees, each of them
has one different manager, (iii) a tree structure representing the
structure of the hierarchy. (iv) considering another organization
with some users.

The initial state must be considered separately in each
new diagram. However, in addition to the previous recurring
structure, we try to give solutions to produce initial states
for the main possible structures of SecureUML as follows:
(A) When there is an association affecting an OCL constraint,
the multiplicity of the two ends of the association has to be
considered in the initialization. For the many multiplicity, two
objects at least are instantiated.
(B) Each of the entities mentioned in a constraint must be
instantiated in order to construct a structure capable of tricking
the OCL constraint. As shown in Figure 6, a malicious user
connects with a manager and staff roles at the same time.
When he is a manager, he delegates the user with the role staff
(himself) in order to make him able to approve the refund, as
stated by the OCL constraint associated with the permissions
on the class refund. Thus, this user will be able to give the
value True to the variable IsApproaved in the class refund.
Hence, the constraint Approved by 2 managers became true, as
the staff become also a manager. Then, this manager approves
the refund and refund procedure starts. Thus, the manager
prepares and issues the payments after approving them. This
separation of duties (SoD) problem comes from the structure in

Figure 6. Example showing the importance of instantiating OCL entities

which the manager inherits the permissions of staff role. The
solution to this problem is to add an OCL constraint saying
that the same person can connect as a manager or as a staff
in the same session, but not as the both.
The instantiation of this diagram could take the following
way: an instance of the class refund and two users had to
be instantiated as mentioned in the OCL constraint Approved
by 2 managers. Additionally, according to the constraint is
delegated, the delegation instance must be presented. That
means, we must produce an object delegates and an object
delegated. As a result, this initialization diagram is capable of
starting the game of finding the attack.
(C) For a unidirectional association, the accessed object must
be instantiated and linked to the instance accessing it.
(D) When there is an OCL constraint controlling permissions
and depending on an attribute value, we ought to instantiate
the class where this variable exists, then we assign a user who
has a modify permission.
(E) When there is a role inheritance, we assign users to the
inheriting roles to check all the prevented separation of duties
conditions as happened in Figure 6. Thus, an invariant has
been added to prevent this user getting two conflicting roles.

The result of Figure 1 translation contains a reflexive
association: bb ε Employee 9 Employee ∧ bb. Before setting
the permissions of users, we applied the previous approach
for constructing an efficient object diagram. The approach
contains the following steps: (i) give the possible values for
associations’ ends and specify their multiplicities, (ii) avoid
constructing circular associations to avoid a state where a
person is supervisor of himself, (iii) add properties for asso-
ciations members’ multiplicities, (iv) initialize the functional
model, (v) produce the possible values of the relation: user →
({E2} × ROLES), (vi) initialize the user assignment model.
To make the possible suspicious initial state (the tree shown
before), the following constraint is defined on the association
multiplicity:

(c a r d (r a n (bb)) =1 ∧ c a r d (dom (bb)) =2)
∨

(c a r d (r a n (bb))
↪→ =2 ∧ c a r d (dom (bb)) =2)

∨
(c a r d (r a n (bb)) =4

As a result, the way we ask our queries to the model checker
must change. This is because the model checker possibly
will take a shorter path while searching and this path is not
normally an attack scenario. For example, if we ask ProB about
a state in which Martin can change the salary of Fred, the

30Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

model checker finds rapidly a scenario satisfying this query.
However, in this scenario, Martin is assigned directly to the
role supervisor and he changes the salary of Fred, which is
not an interesting scenario for us. As a solution, we propose
to make the queries separated from users names and related to
a general description of the attack meaning, as shown in the
next section.

6) Generalizing the way we search the suspicious scenar-
ios: To avoid the problems of making automatic initialization
with specified properties, we propose to avoid asking about
a user who has a specific permission. The question becomes
more general as follows: is there a scenario which allows a
user who have a worker role to have a supervisor role?

∀ (u) . (u ε USERS ∧ u ε
dom (u s e r a s s i g n (r a n (u s e r a s s i g n) {Worker})) ∧ u 6∈
r a n (B) =⇒ u 6∈ dom (u s e r a s s i g n (r a n (u s e r a s s i g n)
{S u p e r v i s o r})))∧ . .

Where, the variable B contains the boss relations values
calculated during the initialization of the security machine. In
another way, the set wasWorker contains all the users assigned
to the role worker at the initialization step of the security
machine. Consequently, we add this formula as an invariant of
the machine. Thus, when this invariant is violated, this means
one of the users has obtained the role supervisor. This formula
is constructed as follows:

∀ (u) . (u ε USERS ∧ u ∧ wasWorker
=⇒ r a n ({u s e r a s s i g n (u)}) 6= {S u p e r v i s o r})

Where:

wasWorker :=dom (u s e r a s s i g n � (r a n (u s e r a s s i g n)
� {Worker})) ∩ dom (boss)

The other invariant we added to capture the attack risks con-
cerns preserving the permissions during the execution of the
model checker. It can answer the following question: is there
a scenario that leads to an increase in any users permissions
during the system execution? The formula is constructed to
ask always about the user connected to the role which has a
lower number of permission such as the role worker in the
illustrative example. The following formula shows an example
of an added invariant in the security machine. This formula
searches if the number of a user’s permissions with the role
worker may increase during the execution of the system.

∀ (u , org , r o l e) . (u ε USERS ∧
u= c u r r e n t U s e r ∧ u ε dom (boss) ∧ org ε ORG
∧ org =E2 ∧ r o l e ε ROLES ε r o l e =Worker =⇒
i s P e r m i t t e d [{ u s e r a s s i g n (u) }] − i s P e r m i t t e d
[{ (o rg 7→ r o l e) }] 6= ∅)

Similarly, we can add the names of other roles if they exist
in the system to be contained in the last formula. By doing
so, the query covers all the users in the system. As a result,
searching those scenarios, which may affect the security policy,
has become easier.

7) Detecting possible vulnerabilities in OCL constraints:
The goal in this stage is to violate the OCL constraints which
describe security aspects because the ability to violate them
is considered as a flaw. To succeed in doing that, we express
this constraint but with a change in their parts expressing the
name of the roles. Then, these names are replaced by other

Figure 7. An example of the defined patterns

unauthorized ones. In other words, we reached this state by
adding a constraint as a pre-condition for an operation like the
operation secure setSalary(). This constraint restricts the op-
eration execution permission to Fred who has the role worker,
such access must be prohibited. This constraint specifies Fred
as the employee whose salary will change. Checking the model
under this condition shows an important evolution of the
functional model. This evolution violates the access permission
which limits the execution of setSalary to a supervisor in the
same organization of the employee.

Furthermore, when an employee is delegated to do the
supervisor tasks, he keeps his previous role. That means a
person who executes the operation secure setSalary() can be
the same one for whom this operation is executed. As a
result, an employee is able to change his own salary. Thus,
a user keeps owning his previous roles when his position
changes. The structure of SecureUML model, which contains
the previous artifacts, could be considered as a recurring
antipattern that needs to be checked in new models under test.

IV. EXTRACTING THE ANTIPATTERNS

To reduce the impacts of the state explosion, we are
going to define scenario attack patterns according to our
experimentations using the previous translation and validation
techniques. Thereafter, we will try to find out the suspicious
recurring structures, as well as the operations affecting these
structures to help the model checker to find its way to the
suspicious attack states.

A. Defining SecureUML antipatterns structures
To help the model checker estimating if a translated Se-

cureUML model may have an access attack, we constructed
a table containing characteristics of previous suspicious Se-
cureUML diagrams. For the time being, we are going to define
some patterns found in the examined diagrams.

In the following, we introduce an example of the defined
antipatterns structure, suspicious recurring structure, shown in
Figure 7. In this antipattern, there is a read permission on
an entity. But, after initializing the security machine, the user
finds himself able to modify parameters in the entity C2.

The detailed parts of this suspicious structure are as
follows: Users u1, u2 assigned to role r1. Class C1 has a
reflexive association a1. R1 has a modify permission p1 on
class c1. R1 has methodAction permission on the operation
op1 which changes a1. A1 and attr1 decide the value of ocl1.
R1 has permission p2 on class c2 controlled by ocl1.
This structure existed in different examples of SecureUML.

31Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE II. REASONS OF VIOLATIONS IN THE ANTIPATTERNS

SubStructure Description
Sub1 There is a unidirectional association.
Sub2 The accessing class is itself accessed directly by a fullaccess permis-

sion which affects the accessed class operations and attributes.
Sub3 The role owning a direct permission on the accessing class has only

Read permission on an accessed class.
Sub4 An OCL constraint depends on an association value (grant permission).
Sub5 An operation modifies an association’s values.
Sub6 Methodaction permission on an operation which modifies an important

association.
Sub7 An OCL constraint depends on an attribute value.
Sub8 Role inheritance without adding SoD constraints.
Sub9 More than one user are assigned to the same role, but they have some

hierarchy defined by a reflexive association. Their permissions could
differ according to a constraint.

Sub10 Assigning roles after changes in a hierarchy association.
Sub11 User assigned to two roles at the same time. These two roles did not

come from the inheritance. They have permissions on the same entity.
Sub12 An operation changes an attributes value which participates in calcu-

lating the value of an OCL constraint.

We use it with the other supposed 9 antipatterns to analyze
and predict the existence of flaws in the new models.

B. Extracting the reasons of attack in the previous structures
In order to avoid the arbitrary search of the model checker

algorithms, we have extracted the most important factors of the
security policy vulnerabilities depending on some characteris-
tics, shown in Table II. These characteristics describe the most
suspicious recurring structures used in SecureUML diagrams.

For each attack pattern, we search for the existence of
each of the sub-structures (sub-structures 1 to 12). When this
structure exists, we modify the scores of this pattern parts in a
probabilistic suspicious-table. Thereafter, the suspicious-table
is used for guiding the model checker. Due to the limited
space, we show later how to extract the exhaustive search plan
which concentrates on suspicious execution scenarios. The
optimization process of the suspicious-table is done according
to the incremental feedback loop process, shown in Figure 8.

V. CONCLUSION AND FUTURE WORK

According to our knowledge, bugs resulted from the co-
evolution of the functional and non-functional parts of Se-
cureUML models are not sufficiently studied. Moreover, no
antipatterns have been defined to help the system designers to
avoid suspicious compositions of design artifacts.

This paper introduced an approach based on the trans-
formation of SecureUML diagrams into formal models to
simulate their execution. Moreover, we exploited the possible
offered validation techniques in the model checker ProB. By

Figure 8. Feedback loop for guiding the model checker

applying them on many different systems, we could define
10 kinds of suspicious rudimentary antipatterns. Then, we
analyzed them to notify the security engineer to investigate
much more validation efforts on the suspicious parts when they
are introduced in their models. However, this work must be
extended to detect the antipatterns automatically. Moreover, the
transformation of the security models into B-method still needs
user interventions to make the resulted model executable. This
limitation should be avoided to make the approach presented
in Figure 8 achievable.

Next, we are going to use a graph query language to
efficiently discover antipatterns substructures in large models.
The objective of this task is to generate a controller to guide
the model checker automatically to design flaws.

REFERENCES
[1] D. Basin, M. Clavel, J. Doser, and M. Egea, “A metamodel-based

approach for analyzing security-design models,” in Model Driven
Engineering Languages and Systems. Springer, 2007, pp. 420–435.

[2] J.-R. Abrial, M. K. Lee, D. Neilson, P. Scharbach, and I. H. Sørensen,
“The b-method,” in VDM’91 Formal Software Development Methods.
Springer, 1991, pp. 398–405.

[3] “Prob,” https://www3.hhu.de/stups/prob/index.php/Main Page,
accessed: 2016-01-21.

[4] T. Lodderstedt, D. Basin, and J. Doser, “Secureuml: A uml-based
modeling language for model-driven security,” in ł UML 2002The
Unified Modeling Language. Springer, 2002, pp. 426–441.

[5] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R. Chan-
dramouli, “Proposed nist standard for role-based access control,” ACM
Transactions on Information and System Security (TISSEC), vol. 4,
no. 3, 2001, pp. 224–274.

[6] D. Basin, M. Clavel, J. Doser, and M. Egea, “Automated analysis of
security-design models,” Information and Software Technology, vol. 51,
no. 5, 2009, pp. 815–831.

[7] “Ocl,” http://www.omg.org/spec/OCL/, accessed: 2016-01-25.
[8] L. Yu, R. B. France, and I. Ray, “Scenario-based static analysis of uml

class models,” in Model Driven Engineering Languages and Systems.
Springer, 2008, pp. 234–248.

[9] L. Yu, R. France, I. Ray, and S. Ghosh, “A rigorous approach to
uncovering security policy violations in uml designs,” in Engineering of
Complex Computer Systems, 2009 14th IEEE International Conference
on. IEEE, 2009, pp. 126–135.

[10] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,”
in Proceedings of the 16th ACM symposium on Access control models
and technologies. ACM, 2011, pp. 1–10.

[11] “Alloy,” https://www3.hhu.de/stups/prob/index.php/Main Page,
accessed: 2016-01-22.

[12] W. Sun, R. France, and I. Ray, “Rigorous analysis of uml access control
policy models,” in Policies for Distributed Systems and Networks
(POLICY). IEEE, 2011, pp. 9–16.

[13] M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar,
“Ensuring spatio-temporal access control for real-world applications,”
in Proceedings of the 14th ACM symposium on Access control models
and technologies. ACM, 2009, pp. 13–22.

[14] Y. Ledru, A. Idani, J. Milhau, N. Qamar, R. Laleau, J.-L. Richier, and
M.-A. Labiadh, “Taking into account functional models in the validation
of is security policies,” in Advanced Information Systems Engineering
Workshops. Springer, 2011, pp. 592–606.

[15] J.-R. Abrial, J.-R. Abrial, and A. Hoare, The B-book: assigning pro-
grams to meanings. Cambridge University Press, 2005.

[16] “B4msecure,” http://b4msecure.forge.imag.fr/, accessed: 2016-01-15.
[17] Y. Ledru, A. Idani, and J.-L. Richier, “Validation of a security policy

by the test of its formal b specification: a case study,” in Proceedings of
the Third FME Workshop on Formal Methods in Software Engineering.
IEEE Press, 2015, pp. 6–12.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

https://www3.hhu.de/stups/prob/index.php/Main_Page
http://www.omg.org/spec/OCL/
https://www3.hhu.de/stups/prob/index.php/Main_Page
http://b4msecure.forge.imag.fr/

	Introduction
	SecureUML Validation
	SecureUML
	Related Works
	B-method for SecureUML validation

	Our Propositions for Validating SecureUML
	Illustrative example
	Validating the resulting model by ProB
	Finding flaws by querying the functional model
	Querying security aspects of the model
	Exploiting the attainability of an operation
	Searching flaws by asking ProB about permissions
	Taking the initial state into account
	Generalizing the way we search the suspicious scenarios
	Detecting possible vulnerabilities in OCL constraints

	Extracting The Antipatterns
	Defining SecureUML antipatterns structures
	Extracting the reasons of attack in the previous structures

	Conclusion and Future Work
	References

