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ABSTRACT

The detection of transient events, Type Ia supernovae in particular, has
become an important research subject in today’s astronomy. We use as a base tool
the software suite for astronomical image processing called LSSTsp and adapt it
to assemble a Type Ia supernova detection pipe. We study some straightforward
changes of the overall pipeline by selecting better quality inputs to perform a
coaddition of reference images, we analyze the different residual sources detected on
the difference images and, lastly, we build light curves by taking into account the
features of detected difference image analysis sources. Finally, we build a catalog of
supernova candidates by using a random forest classification, and check the relevance
of these additions. We reduce the overall source detection density with our changes
while finding between 82% and 85% of the present Type Ia supernovae.

RESUMEN

La detección de eventos transientes, especialmente de las supernovas tipo Ia
(SNIa), es un tema de particular importancia en la astronomı́a contemporánea. Us-
ando como herramienta de base el paquete de software llamado LSSTsp, adaptamos
el código para ensamblar un pipeline de detección SNIa y estudiar el impacto de in-
corporar cambios directos sobre la selección de entradas intermedias para la coadición
de imágenes de referencia, analizar las fuentes detectadas en imágenes de diferencia
y finalmente construir curvas de luz teniendo en cuenta las caracteŕısticas de las
detecciones residuales de fuentes. Finalmente, construimos y reportamos un con-
junto de posibles supernovas usando un algoritmo de clasificación de randomforest,
verificando también la relevancia de las adiciones estudiadas. Redujimos la densidad
de detecciones con nuestros cambios, hallando entre un 82% y un 85% de las SNIa
presentes.

Key Words: methods: data analysis — supernovae: general — techniques: image
processing

1. INTRODUCTION

Transient events are phenomena with a short lifes-
pan when compared with everything else in the uni-
verse. However, since their behavior and duration
can vary from one object to another, they present
a great diversity, even within same class of events.
Gamma ray bursts can last less than a second while
microlensing or supernovae events remain visible from
a few days to several weeks.

Type Ia supernovae (SNIa) are among the most
important types of transients for cosmological anal-

1Universidad de los Andes, Bogotá, Colombia.
2Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille,

France.

ysis. This particular type of transient has been key
for the determination of the expansion history of the
universe by comparing the observed flux of these ob-
jects with their redshifts. Thanks to SNIa, the recent
acceleration of the universe expansion has been de-
rived and measured (Riess et al. 1998; Perlmutter et
al. 1999; Betoule et al. 2014).

With the advent of more powerful and complete
all-sky photometric surveys, either from ground tele-
scopes or satellites, an increasing amount of data
will be delivered to the scientific community. This
enormous volume of data requires more sophisticated
and efficient methods to analyze them and report
important findings, such as SNIa. The more data
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modern telescopes are capable of gathering, the more
latent is the necessity of algorithms, big data tech-
niques and automation strategies to fully study and
leverage such amount of information.

Dedicated rolling search has been employed in
several surveys to search for transients in specific
regions of the sky and to perform photometric follow-
up of these events. Some of these surveys are the
Supernova Legacy Survey (SNLS) (Guy et al. 2010),
the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS) (Scolnic et al. 2018), the
Sloan Digital Sky Survey (SDSS) (Sako et al. 2018),
the Hyper Suprime-Cam Subaru Strategic Program
(HSC SSP) (Aihara et al. 2018) the Dark Energy
Survey (DES). Smith et al. (2020) have developed
programs in search of SNIa.

The Vera C. Rubin Observatory Legacy Survey
for Space and Time (LSST) is one of these surveys
whose objective is to provide an unprecedented vol-
ume of images and information, using the largest
digital camera ever constructed (Ivezić et al. 2019).
Along with the LSST, there is an important effort to
provide a software backbone for the processing and
generation of LSST data in the form of the LSST
Science Pipelines, the LSSTsp, for short (Jurić et al.
2017; Bosch et al. 2018). The LSSTsp is a suite of
software packages capable of enabling the creation
of dedicated data products with high quality and
great performance (Axelrod et al. 2010). This is the
base tool the LSST survey will use to accomplish its
science goals and that this work employs to analyze
and study SNIa in real and simulated images.

Other surveys have developed tool sets to analyze
transients. For instance, Perrett et al. (2010) devel-
oped a pipeline for SNLS that involved calibrating,
warping and subtracting the images; then using pho-
tometry fittings; and finally, generating triplets of
transient candidates that were visually confirmed by
experts, relying on manual classification.

Another example is Kessler et al. (2015), which de-
scribed the DES-SN difference imaging pipeline used
to detect transients for DES . This pipeline is based
on selecting objects, mixing thresholding images and
matching catalogs. They use Hotpants (Becker 2015),
an implementation of the Optimal Image Subtrac-
tion (OIS) (Alard & Lupton 1998), and Autoscan, a
machine learning code to replace human intervention
when identifying transient objects (Goldstein et al.
2015).

Recently, Sánchez et al. (2022) worked using a dif-
ference image pipeline built on the LSSTsp to analyze
simulated images that included SN Ia light curves.
It also measured cosmic distances and cosmological

parameters from the SNIa to monitor the detection
efficiency of the LSSTsp. Sánchez et al. (2022) em-
ployed the LSSTsp systems as a tool to study images
from different characteristics for the needs of current
and future surveys.

As powerful as difference imaging is, recent works
have also leveraged machine learning to further refine
the detection transients. For instance, Goldstein
et al. (2015) proposed a random forest approach to
identify artifacts among the objects extracted from
difference images in the DES-SN transient detection
pipeline (Kessler et al. 2015). Their method presented
a missed detection rate of 5% and a false positive
rate of 2.5%.

An example of classification of detected tran-
sients within the LSST comes from Pasquet et al.
(2019), which proposes a complex deep learning ar-
chitecture to characterize and classify supernovae
of different types, based on previous applications of
the same strategy to other similar problems in as-
tronomy. They tested it with simulated data from
the Supernova Photometric Classification Challenge
SNPhotCC, which is a set of simulated supernovae
on DES images (Kessler et al. 2010). This algorithm
presents an accuracy of over 86% for SNPhotCC with
an AUC of 0.937, and despite some uncertainties, it
obtained an accuracy of between 90% and 97% with
an AUC of between 0.990 and 0.997 for simulated
SNIa in the LSST Deep Fields.

Another example comes from Boone (2019) which
proposed Avocado: a Gaussian process augmenta-
tion applied over light curves in all bands, used to
train a decision tree to classify different types of
transients for the Photometric LSST Astronomical
Time-Series Classification Challenge or PLAsTiCC
(The PLAsTiCC team et al. 2018). PLAsTiCC is a
community-wide challenge to foster the development
of machine learning classification algorithms on a
set of realistic LSST simulations of transient events.
Avocado was the winner of this challenge, achieving
an AUC of 0.957 for the classification of SNIa.

Lastly, Neira (2020) used a Random Forest based
classification for binary classification (transient/non-
transient) and eight-class classification. We use their
approach with their base features as well as some mod-
ifications to understand the relevance of the studied
additions.

In this paper we present a study of detection tech-
niques to select SNIa on images from big telescopes.
To obtain and analyze our results we use the LSSTsp.
Our main objective is to show how it is possible to
explore and design procedures that contribute to the
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exploration and analysis of data for the astrophysics
field through the use of powerful computational tools.

2. MATERIALS

This section presents the characteristics of the
images used to test the proposed pipeline. We employ
real data and try to find genuine supernovae present
in the images. We also work with simulated data,
creating and injecting supernovae in the input images,
to help us understand the behavior of the different
tasks with varying inputs. As these new images are
virtually equivalent to normal acquisitions, we can
use them as inputs to determine the sensitivity of
our processing by counting the SNIa detected after
simulations, as if these were real phenomena.

2.1. Real Data

We employ two types of real data: images ob-
tained from the Canada France Hawaii Telescope
(CFHT) and light curves from SNIa found in these
images by the Supernovae Legacy Survey (SNLS).
The SNLS has developed a major program on su-
pernova detection that includes an image processing
pipeline. It has detected more than 300 SNIa in its
first five years of observation (Guy et al. 2010).

2.1.1. Images

Images from CFHT datasets belong to one of the
four deep fields (noted D1, D2, D3 and D4) during
the first three years of the survey: the D3 field. We
use this field as a limited sample that allows us to test
our contributions within the limits of our technical
resources. These first three years, from 2004 to 2006,
have available valuable results regarding the detec-
tion of SNIa among the images (Guy et al. 2010).
These images are obtained using the Megacam cam-
era. The Megacam has 36 charge-coupled devices
(CCD) capable of providing an image. The number
of images per filter varies as shown in Table 1; the
total number of images in the used field is 54614.
It is noticeable that most images use filters r and i,
which justifies why we focus some of our results on
the former.

These deep fields have the following characteris-
tics:

• An observation set every 5 nights on average.

• When a night is observed, 5 observations are
gathered on average.

• 1 deg2 of sky observed during almost 6 consecu-
tive months every year.

• A full focal plane composed of 36 CCDs.

• Each CCD is 2048× 4612 pixels

• Each pixel is 0.186 arcsec.

• The limit magnitude of four fields are u = 27.5,
g = 27.9, r = 27.7., i = 27.4 and z = 26.2.

• Depth per night is about magnitude 3.

• Seeing range between og approximately 0.6 and
1.1 with an average of 0.8

TABLE 1

TOTAL OF ORIGINAL CCDS IMAGES PER
FILTER FOR THE FIRST THREE YEARS OF

CFHT OBSERVATION IN FIELD D3

Filter Number of images

r 13242

i 18033

g 10828

z 12511

2.1.2. Light Curves

To validate our results, we use the SNIa reported
by the SNLS and identified using spectroscopy. This
survey has identified and measured the photometric
properties of 252 SNIa with a redshift range of be-
tween 0.15 and 1.1 (Guy et al. 2010) and reported at
least 485 SNIa candidates (Bazin et al. 2011). The
first SNLS sample provides one of the most uniform
sets of SNIa available, but the actual number of ob-
jects per deep field is low, providing only 75 SNIa
for the D3 field in the three years of observation.
Nevertheless, these supernovae serve as the ground
truth for the detection.

2.2. Simulated Data

We present here the simulation of SNIa injected
on real images. We simulate type SNIa through the
Supernova Analysis Software or SNANA (Kessler
et al. 2009) using the Spectral Adaptive Lightcurve
Template 2 model, also known as SALT2 (Guy et al.
2007), and then inject them into the CFHT images,
to create an effective sample of time series for testing
our analysis using machine learning algorithms along
with Poisson noise from the source. We generate
5000 SNIa for the CFHT deep field D3, and we inject
each one on the successive visits during the season
and the field. Each injection is individually given a
coordinate in the images and then added to it.

We inject simulated point sources on real CFHT
images. We choose a random date and a random loca-
tion from the CFHT image set to inject the simulated
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supernovae. The selection of the random location is
achieved by employing an external catalog to select
any galaxy in the field as a host. This external source
catalog provides the location of galaxies within a
sequence of images. At this point, all injections are
then handled as single image simulations: we locate
the coordinates of such galaxy in the map of the sky
so we know which images we need to retrieve. Subse-
quently, we get the respective image in the located
coordinates for every observation in the simulated
curve. After that, we calculate the local PSF values
using principal component analysis to give shape to
the supernovae; then we inject the simulated super-
novae with an intensity added to that of the host
galaxy, with a random off-set to the location within
the confines of the host galaxy.

3. METHODS

We use the LSSTsp as the base tool to detect the
SNIa. We present in this section the main tasks used
and some custom tasks we developed for our specific
needs.

3.1. The LSST Science Pipelines

The LSST Science Pipelines (LSSTsp) was de-
veloped for the purpose of processing data for the
Vera C. Rubin Observatory Legacy Survey for Space
and Time. It is developed in Python and C++ (Kan-
tor et al. 2007; Bosch et al. 2018) and it has being
tested through data challenges with different levels
of complexity and being constantly prototyped. Cur-
rently, it has more than 40 packages that perform
a large variety of image and data processing opera-
tions; it includes efficiently designed C++ algorithms
wrapped in SWIG. It provides architectures to pro-
cess inputs and to generate the required results (Ivezić
et al. 2019).

The LSSTsp has several different tasks for image
processing. Each task has its own independent re-
sponsibilities, but when put together, it is possible
to employ the intermediate products to detect tran-
sients by means of a pipeline. Our work relies on the
LSSTsp v14 for assembling a processing pipeline for
SNIa detection, through the use of some Difference
Image Analysis (DIA) tasks and routines. We ac-
knowledge that more recent versions of the LSSTsp
have included new features related to the analysis
presented in this paper, but we still use this version
to ensure compatibility with our previous work and
this does not change the relevance of our results.

As there is not an official transient detection
pipeline for CFHT images within the LSSTsp, we as-
semble one as a starting point. This pipeline is shown

in Figure 1. It has three main stages: First, the Gen-
eration of Difference Images, which encompasses the
pre-processing, coaddition, and subtraction of images
using the OIS. The second stage is the Candidate
Selection, which comprises the optimization of the
detection of sources in the difference images, the as-
sociation of sources to produce multi-channel source
associations (up to 5 pixels) to produce light curves,
and the selection of transient candidates based on
their light curves. In this stage, all operations that
use the difference image are noted with the prefix
DIA (Difference Image Analysis). The third and
last stage is the Type Ia Supernova Identification,
which applies a machine learning algorithm to the
candidates to recognize the SNIa.

Figure 1 highlights elements that we use, adapted
and created for the pipeline. Tasks in blue are used
without any modification, tasks in purple have been
extended to help them fit better into the new pipeline.
Tasks in red are new and they are programmed using
the task architecture of the LSSTsp and developed
completely to answer the need of processing for par-
ticular points of the pipeline.

3.2. Generation of Difference Images

The purpose of this stage is to generate the dif-
ference images for each reference and science image
input. As shown in Figure 1a, the tasks involved in
this stage are the Image Pre-processing; the Image
Coaddition tasks (Day Coaddition and Deep Coaddi-
tion tasks) to generate the respective input images
for the image subtraction; and the Optimal Image
Subtraction itself. Here we study the impact on the
existing software of implementing a task to select
better reference images (calexps) for the Deep Coad-
dition.

3.2.1. Image Pre-Processing Task

Firstly, the Image Pre-Processing task encom-
passes the calibration of the initial exposures, the
artifact correction, the detection of visible sources,
and the masking of saturated and edge pixels. This
processing provides a relatively clean set of images
with noise corrections, masked saturated pixels and
cosmic rays. These images are used as inputs for the
Image Coaddition tasks. The result of this first task
is a set of calibrated exposures or calexps.

3.2.2. Image Coaddition and Input Selection

Typically, when using coadditions in LSSTsp, the
final user is in charge of selecting calibrated exposure
inputs and there are no enforced rules within the code
to differentiate between a coaddition for a reference
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Optimal Image Subtraction
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Light Curve Generation

Light Curve Selection

Machine Learning Classification

science images reference image set
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selected calexps

refCoadd

calexp imagescalexp images

dayCoadd

difference image

DIASources

labeled DIASources

light curve set

transient candidate light curves

classified light curves

Fig. 1. The Supernova Detection Pipeline divided in
three stages: (a) Generation of Difference Images; (b)
Candidate Selection; and (c) SNe Ia Identification. Blue
tasks are left untouched, purple tasks have been modified
and red ones are tasks we created for the LSSTsp. The
color figure can be viewed online.

image and one for a science image. This process is
reached through the use of two tasks and it is indif-
ferent to the purpose of the output. In the pipeline,
we opt to fuse both generation and assembly tasks
together and then specialize each one to generate
the coaddition for science and reference calexps. We
call these the Day Coaddition and the Deep Coad-
dition tasks. This allows us more control over each
process independently, without affecting the other.
From a technical perspective, this also mitigates the
impact of bottlenecks for global field processing and
allows the new tasks to be more time efficient when
generating the deep coadditions.

Selecting high quality inputs is vital to ensure
a good coaddition and subsequently good difference
images. Using low quality inputs without any sort of
quality metric has the potential of propagating no-
ticeable errors and aberrations from the coaddition,
all the way to the detection of transient candidates.
Errors on the images come from the sky background
and increase as the square root of the signal, bad
atmospheric conditions or deficient seeing. As the
image subtraction operation alters the inherent noise
of the inputs through convolution, they become prob-
lematic and the artifacts become more visible most
of the time. We choose to address this issue for deep
coadditions.

Day Coaddition Task

The objective of this task is to generate a high
quality science coaddition image, as mentioned before.
Day coadditions, or dayCoadds, are built by using
the different exposures acquired on a given night. As
there is a limited number of acquisitions per night
(between 4 and 10 in most cases), we use all available
exposures to ensure the best possible quality without
performing a selection of high quality inputs. This
way of generating day coadditions means that very
short-lived objects (less than one night) are not reg-
istered in the detections or might appear as single
point detections.

As with science images, we expect the transient
and variable objects to be present here; thus, when
performing the OIS, we match their PSF to that of
the astrometrically corresponding deep coaddition to
detect them after subtracting both.

Deep Coaddition Task

Deep coadditions created from a reference image
set are referred to as refCoadds. These coadded expo-
sures, which come from a wider time frame belonging
to an outside acquisition year, help to detect all
changes in science images during the subtraction. As
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Fig. 2. First part of the pipeline: the generation of difference images. The tasks here are responsible for generating
the reference and science image coadditions, and then performing the subtraction using the OIS algorithm. The Deep
Coaddition task generates the reference image, whereas the Day Coaddition task creates the science image. The Image
Subtraction task generates the difference image as final result.

explained before, the convolution Kernel that calcu-
lates the OIS when matching with the day coaddition
modifies these images. High quality images provide
better and less complex PSFs to be parametrized by
the sum of Gaussians via the OIS, reducing the overall
artifacts later when a subtraction is performed.

Ensuring the quality of the inputs is especially
important when constructing the deep coaddition,
because input datasets for these can span up to
hundreds of different images acquired during sev-
eral months of operation. Therefore, we construct
these references guaranteeing high signal-to-noise on
the result and thus obtaining high quality difference
images. To achieve this, we perform an selection
using the noise variance levels on the input images
after warping and adjusting them to their respective
patch in the skymap, but before assembling the final
coaddition. As noise levels change locally within the
image and can present variation between the original
calexps and the smaller patches used for the coaddi-
tion, it follows that the optimal approach is to use
the values in the patches as criteria for the selection.
We call this process the Input Selection.

3.2.3. Optimal Image Subtraction

As already mentioned, we use the OIS (Alard &
Lupton 1998; Alard 2000) LSSTsp task with the new
dayCoadds and refCoadds as inputs. We use the
default parameters of 3 Gaussians with degrees 4, 2
and 2. As expected, the OIS generates a difference

image that is the output of the current stage and will
be the input of the next one

3.3. Candidate Selection

The main objective of this stage is to produce a
set of plausible candidates, from the detections in the
difference images, to be transient objects. The tasks
involved in this stage are the DIASource Selection,
the Light Curve Generation and the Light Curve
Selection. These tasks are shown in Figure 1b. We
perform a quality analysis for the sources detected
in the difference images through the use of footprint
analysis.

3.3.1. DIASource Selection

This first task of this stage is divided in two
phases: The DIASource detection and the DIASource
labeling.

DIASource Detection

The detection of sources in difference images is
performed using the default single frame measure-
ment algorithm of the LSSTsp that searches posi-
tive and negative local peaks, and using a detection
threshold of 5σ. Each detected source is then stored
into a catalog created for each patch of the defined
skymap. Every source is characterized by its coordi-
nates, its flux measurement and its flux error which
are calculated from the aperture flux. We use an aper-
ture with a radius of 4.5 pixels that has consistently
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Fig. 3. Second part of the pipeline: Light curve detection and selection. The tasks here include the detection of
DIASources; and the detection and selection of light curves.

Fig. 4. Example of sources with footprints overlaid as
semi-transparent blue groups of pixels. The color figure
can be viewed online.

yielded the most stable results of flux measurements
while reducing the overall measurement error in our
experiments.

Previous analysis using the LSSTsp suggest that
an underestimation of noise in the CFHT images ends
up generating a high number of detections during this
step (Slater 2016). To mitigate this, we re-estimate
the value of background noise on the images using
the algorithm in the LSSTsp and then recalculate
the threshold value defined for the image in the given

band. This process, even if time-consuming, ensures
that there are less bogus detections in the images,
and guarantees that the noise is not inflated.

When a DIASource is detected, one or two foot-
prints are calculated on a 20× 20 local neighborhood
centered around the source. Footprints F are con-
nected regions that start as contiguous patches of
high-intensity pixels that are then expanded to in-
clude up to 4 pixels away from the initial pixels. As
these footprints can be calculated in difference im-
ages, the possible footprints will group pixels with
positive or negative values. Overlapping footprints
with the same sign are merged. Figure 4 shows an
example of positive footprints calculated on a cali-
brated image. Consequently, a given DIASource can
have either one positive F+ footprint, one negative
F− footprint or both at the same time. Footprints
are defined as follows:

F+ =
⋃
i

R′
i+ , (1)

F− =
⋃
i

R′
i− , (2)

where R′ is the result of a region growth over an
initial group of pixels R+ or R− such as:

(x, y) ∈ R′ ⇐⇒ ∃(x′, y′) ∈ R : d((x′, y′), (x, y))< g.
(3)

Here, d((x′, y′), (x, y)) is the Euclidean distance be-
tween pixels I(x′, y′) and I(x, y). g is the growth
value of the region.
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R+ and R− are initial groups of at least 5 pixels for
which:

(x, y) ∈ R+ ⇐⇒ I(x, y) > th ∗ σ , (4)

(x, y) ∈ R− ⇐⇒ I(x, y) < −th ∗ σ . (5)

Here th is the threshold value, and x and y represent
the pixel coordinates.

Notice that, as the region growing algorithm deter-
mined by equation 3 does not take into account pixel
values, footprints F+ and F− can have intersections.

DIASource Labeling

Once the footprints of a DIASource are calculated,
the number of pixels and their flux are measured.
These values are used to label the corresponding DI-
ASource. The analysis of DIASources is a custom
task independent from similar ones currently pre-
sent in more recent versions of the LSSTsp such as
DipoleAnalysis. The possible labels that we assign
are:

• Positive: DIASources that only have F+. Their
presence is the result of a transient object in the
science image.

• Negative: DIASources that only have F−.
These are rare residuals and they sometimes
indicate transients present in the reference im-
ages.

• Dipole: DIASources with F+ and F− with
balanced flux and size with low geometric over-
lapping.

• Fringe: DIASources with F+ and F− with bal-
anced flux and size with high geometric overlap-
ping.

• Artifact: DIASources that do not fit in any of
the previous categories.

Let us define:

F = F+ ∪ F− . (6)

To determine whether a DIASource is a Dipole or
a Fringe, we define two properties: Geometric Dipoles
GD(F ) and Photometric Dipoles PD(F ).

A Geometric Dipole GD(F ) is defined using the
following equation:

GD(F ) =



1 : if
∑

(x,y)∈F+

1 ≤ 2

3

∑
(x,y)∈F

∧∑
(x,y)∈F−

1 ≤ 2

3

∑
(x,y∈F

0 : otherwise.

(7)

A Photometric Dipole PD(F ) is defined using the
following equation:

PD(F )=



1: if
∑

(x,y)∈F+

|I(x, y)| ≤ 2

3

∑
(x,y)∈F

|I(x, y)|

∧∑
(x,y)∈F−

|I(x, y)| ≤ 2

3

∑
(x,y)∈F

|I(x, y)|

0 : otherwise.

(8)
Therefore, using the properties defined in equa-

tions 7 and 8, we define a Dipole D(F ) as:

D(F ) =

{
1, if PD(F ) = 1 ∧GD(F ) = 1

0, otherwise.
(9)

And a Fringe Fr(F ) as:

Fr(F ) =

{
1, if PD(F ) = 1 ∧GD(F ) = 0

0, otherwise.
(10)

To summarize, we evaluate the amount of overlap-
ping in terms of pixels and calculated flux to deter-
mine the label for a given footprint. The proportions
are empirically determined, leaving the possibility of
a more in-depth study and refinement of these cate-
gories. Visual examples of their aspect are presented
in Table 2.

3.3.2. Light Curve Generation

From the detected and labeled DIASources ob-
tained from the previous step, we match all DIA-
Sources that are located at the same coordinates
within a 1 arcsec of radius in all the different images
along all the seasons, under the assumption that all
these detections belong to the same object. For each
set of matched DIASources, we build a light curve
and assign an object ID to it. Consequently, each
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TABLE 2

FOOTPRINT LABELS DEFINED FOR EVERY SOURCE DETECTION BASED ON THEIR FOOTPRINTS*

Label Visual Aspect Description

Positive
Sources that only have positive footprints. Their
presence usually is the result of a transient object in
the science image.

Negative
Sources that only have negative footprints. These are
rare residuals and they sometimes indicate transients
present in the reference images.

Dipole
Sources with positive and negative footprints. These
artifacts occur when there are alignment problems
between the images.

Fringe
Sources with positive and negative footprints. These
artifacts occur when there are inaccuracies in the PSF
matching algorithm.

Artifact
Sources with both positive and negative footprints,
but that do not fall in the Dipoles or Fringes cate-
gories.

*The Visual Aspect column shows a general idea of the type of objects labeled as such.

light curve may be composed of several DIASources
and always has at least one.

The output of this task is a catalog of the light
curves for every filter. Each light curve is stored as set
of DIASources with all the relevant information such
as the coordinates, flux, error, magnitude, filter, and
date (MJD format). The study of the DIASources
and its classification is helpful to identify which type
of object is being described by the light curve.

3.3.3. Light Curve Selection

A consequence of the previous task is that a de-
tected light curve can technically contain, in the worst
case, a single point. Isolated detections of an object
do not strongly indicate the presence of supernova-
like transients; in fact, they can be indicative of
anomalous subtractions, short-lived events, or tran-
sients who vary in intensity and position at the same
time. The Light Curve Selection task is implemented
so that it chooses only curves that satisfy two crite-
ria: at least five total detections and data present in

at least two different bands. This ensures that the
object has a certain continuity between observations
and that its residual light intensity can be picked in
different bands.

Although these criteria might appear to be sim-
plistic, they perform a considerable reduction of the
candidate set, while also being conservative enough
not to reject true transients.

3.4. Type Ia Supernovae Identification

The final stage of the pipeline classifies the tran-
sient candidate light curves to identify real SNIa,
using the machine learning classification method pro-
posed by Neira (2020). Figure 1c depicts this task
in the pipeline. We use the identification part of the
pipeline to validate the impact of our studies and
characterization, specially when introducing new vari-
ables calculated after obtaining better quality light
curves.

Regarding the identification, we worked on four
fronts: First, the adaption of the method to binary
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TABLE 3

FEATURES CALCULATED FOR MACHINE LEARNING TRAINING OF LIGHT CURVES

Feature Category Description

skew moment-based Asymmetry of the curve

kurtosis moment-based Measure of extreme values in either tail of the curve

small kurtosis moment-based Small sample kurtosis

std moment-based Standard deviation

beyond1std moment-based
Percentage of magnitudes beyond one standard deviation from the weighted mean.

Each weight is calculated as the inverse of the photometric error

stetson j moment-based The Welch-Stetson J variability. A robust standard deviation

stetson k moment-based The Welch-Stetson K variability. A robust kurtosis

max slope flux-based Maximum absolute slope between two consecutive observations

amplitude flux-based Difference between maximum and minimum intensity

median absolute deviation flux-based Median discrepancy of fluxes from the median magnitude

median buffer range percentage flux-based Percentage of points within 10% of the median flux.

pair slope trend flux-based Percentage of all pairs of consecutive positive slope measurements

pair slope trend last 30 flux-based
Percentage of the last 30 pairs of consecutive positive slope measurements

minus percentage of last 30 pairs of consecutive negative slope measurements.

resPos flux-based Percentage of footprints labeled as positive in light curve

percent amplitude percentile-based Largest percentage difference between absolute max. magnitude and the median.

percent difference flux percentile percentile-based Ratio of F5,95 and the median flux.

flux percentile ratio mid20,35,50,65,80 percentile-based Ratio of percentile and F5,95

poly1 a fitting-based Coefficient of the monomial curve fitting

poly2 a,b fitting-based Coefficients of the quadratic curve fitting

chi2SALT2 fitting-based χ2 goodness-of-fit value using the SALT2 model

chi2sGauss fitting-based χ2 goodness-of-fit value using the Skewed Gaussian model

classification (SNIa and non-SNIa). Secondly, the se-
lection of relevant data features and the introduction
of three new ones in the form of the χ2 goodness-of-
fit statistic for the SALT2 and the Skewed Gaussian
models. Third, we extend the classification to use
real data from all the filters, given that the original
implementation classifies light curves, one band at a
time. Finally, the use of simulated data as well as
other real non SNIa objects detected in the difference
images to train and validate the algorithm, as the
dataset does not contain enough real SNIa on CFHT
images for a viable classification effort.

Before classifying, the method uses dimension
reduction via feature extraction. Light curve observa-
tions are not sampled at regular intervals and all of
them do not have the same number of observations.
This makes it very challenging to use the time-series
data directly for classification using traditional meth-
ods. To solve this difficulty, a set of characteristic
features is extracted from each light curve instead,
using statistical and model-specific fitting techniques.
From the original implementation, we only use 23
features that are strictly geometrical and statistical
(Table 3). These features are categorized in the fol-
lowing four groups: moment-based, magnitude-based,
percentile-based and fitting-based.

The three new features we introduce are:

• The χ2 statistic for a fit of the light curve with
the SALT2 model, denoted as chi2SALT2. The

χ2 goodness-of-fit coefficient is calculated for
the candidate light curves obtained from the
previous stage of the pipeline.

• The χ2 statistic for a fit of the light curve
with the Skewed Gaussian model, denoted as
chi2sGauss. Both this and the previous χ2

statistic are calculated by fitting the models to
the points of the light curve.

• The percentage of DIASources labeled as posi-
tive present in the light curve of a given object,
denoted as resPos. This feature is obtained by
calculating the number of footprints labeled as
positive as a percentage of the total number of
sources present in the light curve.

4. RESULTS

We present here the results of our analyses in each
stage using our pipeline: Generation of Difference
Images, Candidate Selection, and Type Ia Supernova
Identification. We show the results when applying
the different options offered by the pipeline.

4.1. Tuning the OIS

We tested the effect of modifying the OIS param-
eters to better adapt it to our input images using
the simulated inputs with various fluxes. Among
the many parameters that can be tuned to optimize
the OIS, we varied the cell size, the Spatial Kernel
Order and the number of Gaussians used to model
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TABLE 4

NUMBER AND DENSITY OF SOURCE
DETECTIONS BEFORE AND AFTER INPUT

SELECTION ON FILTER R

Number

of Sources

Sources per

square degree

Before

input selection
4215406 48452.9

After

input selection
87042 1000.5

the PSF for different patches in the images and then
we applied a grid search test to find the better param-
eter combinations. For the cell size, we tested values
between 50 and 500 pixels, we varied the number of
Gaussians between 3 and 8 and for the Spatial Ker-
nel Order we used several combinations of degrees
between 1 and 9. There were no improvements of
more than 1.2% in the number of detections. For
all the studied parameters, we concluded that the
default values fixed by the Rubin Observatory Data
Management team are the optimal ones for our data
as well (real CFHT data with simulated supernovae).

4.2. Generation of Difference Images

To measure the impact of the pipeline different
options on the Deep Coaddition task, we compared
the number of DIASources detected on the CFHT
image dataset with and without input analysis and
then we analyzed the quality of such sources using the
footprint labeling. Figure 6 presents the number of
detections as a function of the number of input coad-
ded images in three situations: (a) when using Input
Selection to select low variance images, (b) when se-
lecting random input images, and (c) when averaging
the results for several images while using low variance,
high variance, and without Input Selection (noted
as random). Figure 7 shows the same results, but
instead of variance, it depicts Input Selection based
on PSF radius size. From these results, we infer that
the number of detections in coadditions is reduced
when selecting input images with low variance and
low PSF radius size.

We can consider that the higher the number of
DIASources detected, the more spurious detections
are present among them. As such, a precise pipeline
should strive to reduce the overall number of detec-
tions while preserving real transients. Consequently,
better coadditions should have fewer detections with
unchanged efficiency of detecting transients. The
efficiency of detecting transient is evaluated with the

Fig. 5. Comparative percentage of labeled DiaSources.
Not only does the original pipeline have more detections,
but the proportion of spurious detections (non-positive)
is consistently higher that when using Input Selection.
The color figure can be viewed online.

simulated data and does not vary significantly with
the coaddition. Our results show that increasing the
number of input images for the coaddition reduces
the number of detections as well.

By Input Selection and DIASource analysis, we
were able to reduce the overall source detection den-
sity for one filter as shown in Table 4. This represents
a reduction of 80% of detections, a percentage that
is greater if other filters are taken into consideration.
This result is comparable with the artifact density
found by Sánchez et al. (2022), which also uses a strat-
egy to ensure high quality template images, with the
difference that we use straightforward modifications
with real data.

Another measure of the impact of our contribu-
tions is the proportion of positive and dipole labeled
DIASources. Firstly, we obtained around 85% of posi-
tive labeled DIASources, against only 24% before our
additions. We were also able to reduce the number
of dipoles from 40% to 9%. Similar reductions in
artifacts and fringes are measured, as illustrated by
Figure 5.

By enhancing the quality of the inputs we reduce
the total number of detections while yielding higher
quality transient-like candidates.
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136 REYES, HERNÁNDEZ HOYOS, & FOUCHEZ

(a)

(b)

(c)

Fig. 6. Analysis of the number of detections with dif-
ferent amounts of coadded images using Input Selection
to coadd images with: (a) low variance inputs and (b)
random variance inputs. (c) Analysis of the number of
average detections for low, high and random variance
input coadded images. Image ID indicates the location of
the image in the skymap. The color figure can be viewed
online.

4.3. Candidate Selection

We present the results of selecting SNIa candi-
dates in the pipeline with the different options pre-
sented with simulated and real data.

Real data

When we tested our pipeline with real data
(CFHT images), it preserved among the candidates
85% of the supernovae reported by SNLS (64 out of
75).

We also determined the quality of the supernova-
like candidates by measuring the proportions of

(a)

(b)

(c)

Fig. 7. Analysis of the number of detections with different
amounts of coadded images using Input Selection to coadd
images with: (a) low PSF Radius inputs and (b) random
PSF Radius inputs. (c) Analysis of the number of average
detections for low, high and random PSF Radius input
coadded images. Image ID indicates the location of the
image in the skymap. The color figure can be viewed
online.

DIASource labels per object. Results on the CFHT
images show that, before Input Selection, at least
33% of the objects presented light curves with 70%
or more detections labeled as artifacts, whereas after
the Input Selection only around 6% presented this
property. For the dipoles, the difference was less
stringent, as some of the built light curves still had a
mixture of dipole and positive detections, that can
be probably attributed to subtraction problems and
other imaging issues.
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Fig. 8. Heatmap of light curves per configuration of
maximum magnitude values vs number of points for the
simulated curves that were not found (Top) and the
simulated curves that were successfully found by the
algorithm (Bottom). The color figure can be viewed
online.

Before Input Selection, the distribution of posi-
tives per light curve was so low that there were no
strong candidates with this quality. Our results show
that 72% of the light curves have 80% of DIASources
labeled as positive. The reduction of the number of
artifacts with the extra options of the pipeline is no-
table: originally, at least 33% of objects we obtained
have light curves with 70% or more detections that
were labeled as artifacts, whereas for our pipeline
only less than 1% presented this quality.

Simulated Data

In the case of simulations, we tested the Candi-
date Selection by injecting 5000 artificial supernovae.
While obtaining 80% less total detections, we were
able to find 75% of the injected supernovae. By creat-
ing simulations that avoided injecting SNIa too near
the edges of patches we were able to increase the

number of found SNIa to between 75% and 78%. The
detection efficiency drops at a redshift of about 0.8.

Figure 8 illustrates that most of the light curves
that were not found by the algorithm have a low num-
ber of individual points and a considerable number of
high magnitude points. These qualities make these
curves more susceptible to be missed, thus reducing
the overall efficiency. By using curves with points
with a lower magnitude, and a slightly higher number
of points, we improved the pipeline’s response to the
simulated events.

The results in this case are highly dependant
on the simulated curves and the magnitude used.
It is possible to vary the threshold to allow more
candidates, at the cost of more spurious candidates.

The distribution of positive residuals among the
simulated type Ia supernova light curves showed that
95% of these detected supernovae had at least 90% or
more of their individual detections labeled as positive
residuals. Thus, they have an overall higher quality
and demonstrate that we are able to obtain a cleaner
candidate set.

It is important to notice that, even if we are
able to greatly reduce the load by sacrificing some
accuracy, other works provide better insights on how
to improve these results. For instance, Goldstein et
al. (2015) use machine learning methods to reduce by
11% the load of candidates to evaluate with a loss of
only 1%. We also believe that an adapted threshold
for detection might mitigate this loss, at the cost of
augmenting again the number of candidates.

Given the fact that the proportion of positive
labels among all objects rose in the light curves we
obtained, we assert that our enhancements go in the
right direction. Reducing the number of DIASouces
and increasing their quality provides a more accu-
rate detection of transients. This accuracy is not
only susceptible to increase by applying methods
to automatically classify SNIa, but also when using
high quality datasets with strategies such as Input
Selection.

4.4. Type Ia Supernova Identification

In order to assess the efficiency of the algorithm
to classify candidate light curves in two classes, SNIa
or non-supernova objects, we used:

• A balanced training set composed of 1333 simu-
lated light curves of each class (simulated SNIa
and real non-SNIa light curves).

• An unbalanced validation set that contains
1404 simulated supernovae and 444 real non-
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TABLE 5

RESULTS OF THE MACHINE LEARNING BINARY CLASSIFICATION OF SUPERNOVAE AND
NON-SUPERNOVAE OBJECTS*

Test F1-score Precision Recall AUC

Base features in filter r 0.899 0.853 0.950 0.983

All features in filter r 0.911 0.883 0.941 0.984

Base features in all filters 0.951 0.958 0.943 0.995

All features in all filters 0.960 0.970 0.949 0.996

*Using simulated data: 1404 simulated supernovae and 444 real non-supernova light curves.

TABLE 6

RESULTS OF THE MACHINE LEARNING BINARY CLASSIFICATION OF SUPERNOVAE AND
NON-SUPERNOVAE OBJECTS*

Test F1-score Precision Recall AUC

Base features in filter r 0.744 0.690 0.807 0.968

All features in filter r 0.754 0.650 0.900 0.971

Base features in all filters 0.901 0.926 0.876 0.996

All features in all filters 0.918 0.891 0.946 0.997

*Using real data: 130 oversampled instances of 75 real supernovae and 444 real non-supernova light curves.

supernova light curves randomly selected from
photometric classification from previous analy-
ses. Table 5 shows the classification results for
this set.

• A second validation set consisting of 130 real
SNIa light curves and 444 real non-supernovae
light curves. To supply the real SNIa light curves
we use the 75 real SNIa instances detected by
SNLS and then we oversampled to generate the
remaining ones using the technique described by
Neira (2020). Table 6 depicts the results for
this set.

The classification algorithm had an f-score of 0.899
and 0.744 on simulated and real data respectively,
using only the original base features proposed by
Neira (2020). When using the base features, the
features we added and light curves with detection on
several filters, we went from an f-score of 0.911 and
0.901 up to 0.960 and 0.918 for simulated and real
data respectively. In both cases there was a slight
improvement in the classification performance.

We also calculated the comparative ROC curves
for simulated data using the base features and our new
features. Figures 9 and 10 show the comparison of the
curves when classifying light curves in all filters and
in one selected filter. Here, a marginal improvement
was still noticeable when expanding the features for
the classification. Additional research is necessary to
keep finding the ideal combination while also reducing

Fig. 9. ROC curve for the efficiency of the classification
using only base features with information from the filter r
(orange) and information from all the filters (blue). The
color figure can be viewed online.

the number of features and still maintaining a high
classification performance.

The importance of all features is shown in Fig-
ure 11. The selected features, already studied by
Neira (2020), proved to be effective. With a 97%
precision on other simulated curves and a 89% preci-
sion on real supernovae, we can see that the classifi-
cation with new features was successful, even if the
contribution to the efficiency was small. As a matter
of fact, even with the possible issues with the flux of
simulated supernovae on images, this performance on
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Fig. 10. ROC curve for the efficiency of the classification
using all features with information from the filter r (blue)
and information from all the filters (green). The color
figure can be viewed online.

a real dataset indicates that the algorithm remains
flux invariant.

When compared with similar classification meth-
ods such as the ones proposed by Pasquet et al. (2019)
and Muthukrishna et al. (2019), our results were in
line with these works in terms of the AUC values.
While we obtained between 0.971 and 0.997 for real
data and 0.984 and 0.996 for simulated data and, Pas-
quet et al. (2019) reported between 0.984 and 0.996
for simulated and real data in three different datasets
similar to the CFHT ones, whereas Muthukrishna et
al. (2019) obtained between 0.940 and 0.970, using
the PLAsTiCC dataset (The PLAsTiCC team et al.
2018). Both works used deep learning and included
more source characteristics such as photometric red-
shift. Further comparisons might be needed using
similar datasets; however, we do show that quality im-
provements along the pipeline and an increase in the
amount of information available to find light curves
impact positively the results for SNIa detection. We
are cautiously optimistic about these results, as they
may open new research paths on this subject, in par-
ticular, applying these ideas to classify more kinds of
supernovae and even other types of transients.

5. CONCLUSIONS

In this paper we presented an exploration of pos-
sible optimizations for type Ia supernovae detection
using the LSSTsp as a base tool. Using this frame-
work, we focused our contributions on studying some
changes to the Generation of Difference Images, the
Candidate Selection, and the Type Ia Supernova
Identification stages.

Our studies demonstrates the importance of fine-
tuning a transient detection pipeline through improv-
ing the quality of inputs, and consequently, helping
the pipeline detect and classify candidates.

Fig. 11. Feature importance for binary classification of
supernovae. The new features (chiSALT, chi2sGauss and
respos) have variable non-negligible importance on the
classification. The color figure can be viewed online.

We have achieved a relatively high efficiency in
the identification of Type Ia Supernovae, and we
have showcased how a framework such as the LSSTsp
could be used to leverage new studies and open the
door to new possibilities exploring the intersection
between the application of computational methods,
machine learning, and image processing to astronom-
ical surveys.

Overall, we presented different approaches,
tweaks, and adaptations to traditional transient detec-
tion pipelines. We believe our results are significant
enough to justify further exploration in this area.
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