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Abstract. The fine-tuning of generative pre-trained language models
(PLMs) on a new task can be impacted by the choice made for repre-
senting the inputs and outputs. This article focuses on the linearization
process used to structure and represent, as output, facts extracted from
text. On a restricted relation extraction (RE) task, we challenged T5 and
BART by fine-tuning them on 12 linearizations, including RDF standard
syntaxes and variations thereof. Our benchmark covers: the validity of
the produced triples, the performance of the model, the training be-
haviours and the resources needed. We show these PLMs can learn some
syntaxes more easily than others, and we identify a promising “Turtle
Light” syntax supporting the quick and robust learning of the RE task.

Keywords: Data extraction · RDF · Linearization · Language Model.

1 Introduction: Targeted Data Properties Extraction

Relation extraction (RE) – the task of retrieving relations from unstructured text
– was drastically improved recently by two main changes: (1) the construction
of massive corpora aligning texts and facts from Knowledge graphs (KG) e.g.
Wikipedia articles with corresponding Wikidata or DBpedia subgraphs, and (2)
the usage of pre-trained language models (PLM) to carry out this task. However,
Wikidata and DBpedia still struggle with coverage and quality issues [24,6]. In
this context, extracting from Wikipedia the missing information in KGs is an
important task. A promising research direction is to design a system allowing
adaptability and fine-grained quality control. Now that we have end-to-end off-
the-shelf methods, we have the opportunity to directly produce RDF serialization
from natural language, and specify and control the output with constraints (e.g.
with SHACL, ShEx). However, to the best of our knowledge, no LLM-based
system currently performs RE directly from Wikipedia articles with a specific
RDF syntax. Formally, let Db ⊆ W × G be a dual base, where W is a set
of Wikipedia articles and G a set of corresponding KGs. Our goal is to learn a
pattern-based extractor leveraging generative PLM: EDb:W×S → G; (t, s) 7→ g,
where t ∈ W is an input text, s ∈ S is a set of SHACL shapes, and g is an RDF
graph implied by t and valid against s.
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Generative PLMs are very flexible but variations in prompts and output
formats can impact their performances. In this paper, we focus on RE for the
most common datatype properties of DBpedia resources of type dbo:Person.
In this simplified setup, we challenged two encoder-decoder models trained on
twelve RDF syntax flavours. Hence our research question: How does the choice
of a syntax impact the generation of RDF triples using datatype properties?

After reviewing the related works (Section 2) we present a method to extract
RDF from Wikipedia (Section 3) and the experiments we conducted (Section 4)
before discussing the results (Section 5).

2 Related Works: RDF Extraction with Language Models

Before investing in generative PLMs, the research community focused on systems
built on top of encoder-only PLMs (derived from BERT [2]), where relations
were decoded by design in a discriminative manner [19]. Since 2021, generative
PLMs have gained interest after demonstrating their ability to solve complex
tasks in an end-to-end design. The solutions based on pre-trained generative
transformer models rely either on encoder-decoder or decoder-only models. (1)
Encoder-decoder models traditionally proposed for translation or summarization
tasks also demonstrate several successes in Question Answering (QA) and RE
tasks which were achieved by finetuning BART [13] and T5 models [22]. For RE
we can cite: REBEL [7], TALN [20], DEEPstruct [28] or UIE [16]. (2) Decoder-
only models have interesting generalization properties but generally work at large
scale and need dedicated resources to be adapted to a specific task. Few-shot and
zero-shot approaches were studied for these reasons. But few-shot learning does
not seem sufficient to solve the relation extraction task [4]. Parameter-efficient
fine-tuning (PEFT) approaches [3] allow the adaptation of large models to a
specific task but do not necessarily perform as well as fine-tuned models [14].

The use of generative pre-trained models allows us to learn the triple syn-
tax implicitly from the examples submitted during training [29]. The question
of the structure of the output was initially referred to as “Answer Engineer-
ing” [15], but in the domain of graph extraction, the community refers to it as
the “linearization process” i.e. the transformation of a graph structure into a raw
sequence of tokens. This allows the usage of a generative model pre-trained on
natural language texts [9]. Until now, different methods have been investigated
but they were not rigorously compared. The two main solutions proposed repre-
sent a relation as a list of triples [28]: ((s1, p1, o1), (s2, p1, o2), ...) or a sequence
of tags [12] where each element of the triple is preceded by a special token e.g.
H,R, T in ⟨H⟩s1⟨R⟩p1⟨T ⟩o1⟨H⟩s2⟨R⟩p1⟨T ⟩o2. [7] and [11] proposed a triple
linearization method (subject-collapsed) where triples sharing the same subject
are grouped to avoid repetition.

In this article, we will also consider the syntaxes recommended by the W3C
to serialize RDF triples, namely, RDF/XML, N-Triples, Turtle, and JSON-LD.
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3 Methodological Framework: Definitions and Notations

Our pipeline takes as input a DBpedia dump3 which is filtered to check that
the values of the triples we target are mentioned in the corresponding Wikipedia
abstracts and comply with a SHACL shape (Section 3.1). The selected triples
are ordered and the URIs they use are cleaned. The dataset is then linearized
into 12 syntaxes (Section 3.2) and each version is used in a K-fold approach.
(Sections 3.3 and 4).

3.1 Dataset and Ground Truth

Our experiment focuses on a simplified relation extraction task to better anal-
yse the impact of the syntax. To avoid any entity linking step related to ob-
ject properties, we only focused on datatype properties that relate to numbers,
string values and dates. This is a good starting point because LLM hallucina-
tion generally affects these literal values [8]. Moreover, until now, the proposed
generative models mostly focused on object properties, allowing for constrained
decoding [10] that cannot be envisaged in the case of datatypes properties.

We focused on the DBpedia subgraphs describing instances of one of
the most represented DBpedia classes, dbo:Person, and their corresponding
Wikipedia abstracts. The instances of this class include the highest number of
datatype properties, among which: rdfs:label, dbo:alias, dbo:birthName,
dbo:birthDate, dbo:deathDate, dbo:birthYear, dbo:deathYear. Our origi-
nal set was composed of 1 833 493 entities and 3 249 446 related triples, but this
is over-scaled compared to our task. Preliminary trials [23] shown that a smaller
set could be sufficient to learn the graph pattern captured by a SHACL shape.

Several works mention the noise caused by the massive alignment of facts
with text [25], which also impacts T-Rex or REBEL [14]. More specifically, two
problems are pointed out: the triple values do not necessarily appear in the text
and, conversely, the facts of the text may not have counterpart triples in the
knowledge base. To solve the first one, we keep only the triples describing values
that could be found in the Wikipedia abstract of a given entity. To answer
the second problem, we designed a SHACL shape targeting dbo:Person and
specifying which property is mandatory and which is optional, and we kept only
the graphs valid against this shape. By applying these two pre-processing steps
to a random sample of 1000 entities, we found that 80% of the triples contain
values that can be found in the Wikipedia abstract, but that only 45% of the
entities have a description graph valid against the shape.

Our pipeline includes two additional pre-processing steps: (1) Triple ordering:
[17] demonstrated the importance of having in the first place the triples typing
the entity. As RDFlib 4 does not ensure this on every syntax, we added an
ordering step. (2) URI encoding: the Turtle syntax uses tokens that can be found
in URIs (dots and parenthesis) but their usage is forbidden in local names. We
had to encode them systematically

3
https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2022-09

4 https://rdflib.readthedocs.io/en/stable/

https://databus.dbpedia.org/dbpedia/collections/dbpedia-snapshot-2022-09
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3.2 RDF Syntaxes and Alternative Linearizations

Our benchmark covers three types of syntaxes. First we consider the four W3C
RDF syntaxes: XML-RDF (noted x), Turtle (noted T ), N-Triples (noted n) and
JSON-LD (noted j). Second, we include the classical syntaxes of the literature:
the List (noted l) and the Tags (noted g). Finally, we propose Turtle light, a sim-
plified Turtle syntax where namespaces, prefixes, and datatypes are considered
as already defined (noted t). We also consider two variations. The first one is
the triple subject factorisation (noted f ). It is naturally integrated into Turtle,
JSON-LD and RDF-XML and we also apply to the Turtle Light, the List and the
Tags. A second variation is the single-line writing (noted 1) to evaluate the im-
pact of the carriage return 5. Finally, we consider the use of vocabulary extension
(noted v) which first ensures that syntax-related tokens will not be considered
as unknown by the tokenizer, but also allows us to detach these tokens from the
pre-trained embedding space because they relate to another semantic space, e.g.
a comma in Turtle vs. a comma in a text in natural language. For each W3C
syntax, we added all the tokens specified in its recommendation.

3.3 Pre-trained Language Models: the Choice of Frugal Sizes

We focused our benchmark on the two encoder-decoder models traditionally used
in the literature (see Section 2), BART (noted B) and T5, and we limited our ex-
periment to the “base” size of these pre-trained models that can be seen as small
or frugal LLMs compared to decoder-only models: today’s LLMs count billions
of parameters [18], where BART base uses 140M parameters and T5 base 220M.
When comparing BART and T5, they were pre-trained on different datasets and
in a different manner. Each model is given a specific Task Prompt, where $Ab-
stract is a Wikipedia abstract and $Syntax the targeted RDF syntax: (1) BART:
“$entity URI : $Abstract”; and (2) T5: “Translate English to $Syntax:
[$entity URI] $Abstract”. In the next sections, we use the notations intro-
duced in this section to name each possible configuration. For instance, a BART
model trained on Turtle Light syntax, with factorization and multi-lines will be
written Btf , and a T5 model trained on lists with a vocabulary will be written
T5vl.

4 Experimental set-up

4.1 Fine-Tuning Details

Our code6 is published under an open license and based on a fork of REBEL7,
which we extended and adapted to our task. For each standard RDF syntax, we
developed a specific parser and integrated the metrics we present below.

5 the ”\n” special token
6 https://github.com/datalogism/12ShadesOfRDFSyntax
7 https://github.com/Babelscape/rebel

https://github.com/datalogism/12ShadesOfRDFSyntax
https://github.com/Babelscape/rebel
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Data Split: we follow a 5-fold cross-validation based on 5 000 rotated exam-
ples split into 4 000 training examples and 1 000 test examples. In addition, 250
disjoint examples are used for the evaluation.Configuration: The BART model
was fine-tuned using the inverse square root scheduler with an initial learning
rate of 0.00005. For T5 we used the Adafactor scheduler with an initial learning
rate of 0.001. Both models were fine-tuned with 1000 steps of warmup and config-
ured with an early stop mode with patience of 5 steps. Both models were trained
on a single GPU, Tesla V100-SXM2-32GB for BART and NVIDIA A100 80GB
PCIe for T5 (able to manage bf16). Management of Tokenization Inconsis-
tencies: As underlined in [26,1], both T5 and BART tokenizers may duplicate
or delete spaces before or after special tokens. For this reason, we controlled the
token consistency during the evaluation with a typographic checker and cleaner.
This is applied to the learning examples and to the predicted output when both
are compared.

4.2 Evaluation Metrics

The first stage of this experiment is to evaluate the ability of the model to
produce a given syntax without generating any parsing error. This is measured
by the rate of Parsed Triples RPT . We also introduce the rate of Correct Subject
RCS : the choice of the URI for the subject of a generated triple depends on the
ability of a model to copy from the input the targeted entity. In addition, we
define the rate of SHACL-Validated Triples RSV T .

RPT =
Nboutput parsed

Nboutput generated
RCS =

NbURI found

Nboutput parsed
RSV T =

Nboutput V alid

Nboutput parsed

Non-parsable triples are evaluated using the Levenstein edit distance
lev(rg, rt) where rg is the generated RDF code, rt is the one targeted. The
result is the number of editions needed to transform rg into rt.

Traditionally, RE focuses on precision (P ), recall (R), F1 score, or top@k
metrics. Following [5], only parsed outputs are evaluated with these metrics
and we focus on macro-measures (P+, R+, F+

1 ) that better account for the
imbalanced distribution of properties.

These metrics follow the Strict Mode evaluation [27], comparing predicted
and ground truth values and verifying their strict equality. The strict evaluation-
based metrics are not the most appropriate to evaluate datatype properties with
values of type xsd:String, where we may accept semantically close values. For
this reason, we also compute the BLEU score [21] (B): the closer B is to 1, the
greater the similarity between string values.

To assess the training process itself based on cross-entropy loss objective, we
define meta-metrics to monitor the behaviour of the RPT and F1 metrics. The
three meta-metrics are defined as: (1) the learning velocity V is the number of
epochs needed to reach the first saturation (> 0.9) of a given metric, e.g. VF−

1
is

the number of epochs needed to reach the first saturation when F−
1 > 0.9; (2)

the stability of a learning process is defined as the ratio of epochs during which a
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metric remains stable after the first saturation, e.g. for F−
1 we note the stability

SF−
1
; (3) the final divergence of the learning process is defined as the number of

folds for which there is a final divergence, e.g. the divergence DF−
1

is the number

of folds for which the final F−
1 is lower than the value of its first saturation.

In some folds, the learning behaviours metrics may have no value. First, when
saturation never happens on a fold, the average velocity (V ) and stability (S)
cannot be computed. For this reason, we focus on the micro-F1 (F−

1 ), because
the macro-F1 (F+

1 ) metric never saturates8

Finally, we define a global grade Gg that will allow us to compare the overall
performances of our configurations. It combines the performance of the model
in terms of parsability, SHACL validity and subject validity on one side, and in

terms of macro F1 on the other side: Gg = RPT × RCS × RSV T × F+
1 × 100

where, for instance, F+
1 is the average of F+

1 over the splits.
Additionally, we monitored the training time Tt (in minutes) and the carbon

cost9 Cc (emissions of CO2-equivalents in kg) for training a model.

5 Results and Discussions: the Best Syntaxes

Table 5 compiles the results for the best-performing configurations ; additional
details are online10. As the configurations using a vocabulary systematically per-
form better, we only report these in the table. Starting with the triple validity
metric, almost every configuration produces triples that could be parsed (RPT );
except T5 that struggles to produce the Turtle and N-Triples syntaxes.

Considering the lev computed on the triples with syntax errors, we observe
the ability of some models to extract close to perfect triples. Moreover, a lot of
models record negligible lev distances (lev ≈ 0) and in these cases the parsing
mainly fails because of forgotten or misplaced tokens that break the syntax (see
examples online10). In contrast, high values of the lev also allow us to identify
models producing triples that can be far from the well-formed triples (T5vT ,
T5vn, T5vlf , T5vt1). Once the results are parsable, they are always valid against
the shape (RSV T ). The subject URI is also generally easily copied from the
prompt by the model, even if we can find some exceptions (T5vgf and T5vlf ).

The RE metrics are computed on valid triples and, in that respect, the best

models have a F+
1 , P+ and R+ close to 0.95. This is a good result since the

macro metrics are generally less optimistic and more informative than the micro
ones, where every configuration seems to reach an almost perfect extraction.
From that point of view, T5vj is our best result, closely followed by Bvgf , Bvtf1,
BvT , T5vtf1 and T5vgf . Considering the BLUE score B, we can see that T5vj
is always perfectly predicting string values of datatype properties, and other
models generally perform well, except T5vtl.

8 A formalisation of the computation of those three metrics is detailed on GitHub:
https://github.com/datalogism/12ShadesOfRDFSyntax/tree/main/eval

9 https://codecarbon.io/
10 https://wandb.ai/celian-ringwald/12ShadesOfRDF

https://github.com/datalogism/12ShadesOfRDFSyntax/tree/main/eval
https://codecarbon.io/
https://wandb.ai/celian-ringwald/12ShadesOfRDF


12 shades of RDF 7

The training behaviour metrics show that the models generally saturate at
the first epoch. Velocity metrics (VRPT

and VF−
1
) also demonstrate that models

learn the relation extraction task slightly before they learn to produce syntacti-
cally correct triples. Considering the stability (SRPT

and SF−
1
), we observed that

two models T5vT and T5vn experience difficulties to converge. As for the diver-
gence metrics (

∑
DRPT

and
∑

DF−
1
), we see that the forgetting effect could be

reached, but BART-based models are less impacted.
The resources metrics also show important discrepancies between models,

that could be explained by the verbosity of some syntaxes, the resources needed
for each model, and the ability of the latter to learn a given syntax without
divergences. Indeed T5 models are greedier than BART models and simple syn-
taxes are thriftier than RDF ones. Model training costs vary from 29g of CO2,
reached by Bvtf to 300g of CO2 emitted by Tvx.

Globally, BART generally writes syntactically better triples than T5, where
T5 needs less training epochs but requires more resources. The factorisation
variation has shown a positive impact on the performance of the models, except
on T5vl configurations. On the Turtle Light variations, the one-line option also
improves quality but the best configuration seems to be the combination of both
factorisation and one-line writing. In the end, Bvtf1 offers good performances,
at a low cost with a standard and human-readable syntax.

Finally, the experiment conducted has some limitations. T5 and BART were
pre-trained partially on Wikipedia, which means they may already have been
exposed to some of the knowledge we want to extract. The second limitation is
our dependency on the tokenization method which, if changed, could impact the
effectiveness of a given syntax to capture relations.

6 Conclusion: a Light Turtle Goes a Long Way

In this article, we evaluated how the choice of a syntax impacts the generation
of RDF triples focusing on datatype properties extraction from text. We showed
that basic syntaxes (list and tags) are generally easily parsed but lead to average
performances. While learning W3C RDF syntaxes is more resource-consuming,
the best-performing configuration T5vj outperforms the others at the cost of 2
hours of training on an A100 GPU and 250g of CO2 produced. An interesting
compromise is the use of simplified syntaxes, close to standards, robust and quick
to learn, in particular inline factorised Turtle Light (Bvtf1 and T5vtf1).

Our experiments also showed the limits of full fine-tuning in some training
configurations: T5vn or T5vT , underlining that Turtle and N-Triples may require
better-fitted adaptation. Several directions could be explored, including the use
of a loss or an iterative learning process designed to take into account the syntax
and the task, as well as models specialized on code.

Acknowledgments This work is supported by 3IA Côte d’Azur (ANR-19-
P3IA-0002) and UCAJEDI (ANR-15-IDEX-01) and the OPAL infrastructure
and Université Côte d’Azur’s Center for High-Performance Computing.



8 Ringwald et al.

C
o
n
fi
g

T
rip

le
V
a
lid

ity
R
E

p
erfo

rm
a
n
ces

×
1
0
0

E
d
itio

n
m
.

T
ra
in
in
g
b
eh

av
io
rs

R
eso

u
rces

G
g

R
P
T

R
C
S

R
S
V
T

F
−1

F
+1

P
+

R
+

B
lev

N
b
e
p
o
c
h
s
V
R

P
T

S
R

P
T ∑

D
R

P
T

V
F

−1
S
F

−1 ∑
D

F
−1

C
c

T
t

T
5
v
j

1
1

1
9
9
.7
5

9
5
.6
3

1
0
0
.0
0

9
4
.3
7

1
.0
0

0
1
3

0
.2

∅
0

0
.2

∅
2

0
.2
5
2

1
3
7

9
6

B
v
g
f

1
1

1
9
9
.6
9

9
5
.4
7

9
9
.2
9

9
4
.2
8

0
.9
7

0
1
5

0
∅

0
0

∅
1

0
.0
4
2

2
9

9
5

B
v
tf

1
1

1
1

9
9
.7
2

9
4
.5
4

9
7
.0
9

9
3
.2
0

0
.9
3

0
1
2

0
∅

0
0
.2

∅
2

0
.0
3
5

2
7

9
5

B
v
T

1
1

1
9
9
.7
3

9
4
.4
3

9
6
.3
9

9
3
.4
2

0
.9
7

1
1
2
2

0
∅

0
0

∅
1

0
.1
0
4

7
5

9
4

T
5
v
tf

1
1

1
1

9
9
.5
1

9
3
.9
4

9
5
.4
8

9
3
.1
3

0
.9
6

0
1
4

0
.2

∅
0

0
∅

3
0
.0
9
9

5
6

9
4

T
5
v
x

1
1

1
9
9
.5
8

9
2
.8
6

9
6
.8
1

9
1
.9
1

0
.9
5

2
1
8

0
.4

∅
1

0
.4

∅
2

0
.3
2
4

2
0
6

9
3

B
v
g

1
1

1
9
9
.6
2

9
2
.5
7

9
6
.3
4

9
1
.0
8

0
.9
4

0
1
7

0
∅

0
0

∅
0

0
.0
5
3

4
6

9
3

T
5
v
l

1
1

1
9
9
.5
5

9
2
.3
4

9
5
.1
9

9
1
.4
0

0
.9
7

0
1
1

0
.8

∅
1

0
.6

∅
1

0
.1
1
8

7
5

9
2

B
v
lf

1
1

1
9
9
.6
3

9
1
.9
9

9
6
.6
8

9
0
.4
9

1
.0
0

2
1
2

0
∅

0
0

∅
1

0
.0
4

2
9

9
2

B
v
l

1
1

1
9
9
.6
2

9
2
.0
3

9
4
.7
5

9
0
.3
7

0
.9
0

1
8
1
8

0
∅

0
0

∅
1

0
.0
6
4

5
4

9
2

B
v
tf

1
1

1
9
9
.4
9

9
0
.7
2

9
5
.4
5

8
9
.1
3

0
.9
7

0
1
2

0
∅

0
0

∅
0

0
.0
2
9

2
6

9
1

T
5
v
g
f

1
0
.9
6

1
9
9
.5
7

9
4
.1
8

9
6
.7
6

9
2
.5
1

0
.9
8

1
1
3

0
.2

∅
0

0
.2

∅
1

0
.0
8
7

4
5

9
1

T
5
v
tf

1
1

1
9
9
.3
3

9
0
.7
2

9
5
.8
1

8
8
.7
2

0
.9
6

1
1
0

0
.8

∅
1

0
.4

∅
1

0
.0
7
2

4
4

9
0

B
v
j

1
1

1
9
9
.5
2

9
0
.2
7

9
5
.1
4

8
8
.8
5

0
.9
6

4
7
1
1

0
.2

∅
0

0
∅

0
0
.0
9
3

7
4

9
0

B
v
x

1
1

1
9
9
.4
6

8
9
.8
7

9
6
.6
9

8
8
.8
5

0
.9
7

1
7
1
4

0
∅

0
0
.2

∅
1

0
.0
9
2

7
5

9
0

T
5
v
t1

0
.9
7

1
1

9
9
.3
4

9
1
.7
3

9
5
.3
2

8
9
.6
8

0
.9
7

9
9
1
0

0
∅

0
0

∅
2

0
.1
0
9

5
6

8
9

T
5
v
lf

1
0
.9
8

1
9
9
.3
2

9
0
.3
2

9
4
.2
8

8
9
.4
3

0
.8
8

2
0
5
1
1

1
∅

1
0

∅
4

0
.0
8
1

4
9

8
8

B
v
n

1
1

1
9
9
.3
6

8
7
.7
3

9
7
.0
1

8
5
.4
8

0
.9
9

8
1
2
4

0
∅

0
0
.4

∅
1

0
.1
3
4

1
1
9

8
8

T
5
v
g

0
.9
8

1
1

9
9
.2
9

8
8
.7
2

9
6
.1
5

8
6
.2
8

0
.9
4

1
8
1
5

0
.4

∅
1

0
∅

1
0
.1
0
7

7
6

8
7

T
5
v
t

0
.9
7

1
1

9
9
.2
4

8
8
.4
1

9
2
.6
0

8
6
.6
1

0
.9
4

2
9
1
4

0
.2

∅
1

0
.2

∅
3

0
.1
1
5

7
9

8
5

B
v
t1

0
.9
7

1
1

9
9
.3
2

8
6
.1
5

9
4
.1
3

8
3
.8
9

0
.9
9

2
0
1
6

0
∅

0
0

∅
1

0
.0
4
7

4
1

8
3

B
v
t

0
.9
7

1
1

9
9
.3
4

8
5
.6
8

9
3
.5
2

8
3
.6
4

0
.9
8

1
3
1
4

0
∅

0
0

∅
1

0
.0
5
3

4
3

8
3

T
5
v
T

0
.8
2

1
1

9
9
.2
5

8
8
.4
1

9
2
.6
0

8
6
.6
1

0
.9
7

8
1
0
1
5

0
.8

0
.5

2
0
.4

∅
3

0
.2
2
1

1
3
9

7
2

T
5
v
n

0
.7
5

1
1

9
9
.3
9

9
0
.6
1

9
7
.9
8

8
8
.1
7

0
.9
7

1
3
7
1
3

1
.6

0
.4

3
0
.2

0
.5

3
0
.2
5

1
6
0

6
7

µ
0
.9
8

1
.0
0

1
9
9
.4
9

9
1
.4
2

9
6
.0
2

8
9
.8
7

0
.9
6

6
3
1
4

0
.3

∅
0
.5

0
.1

∅
1
.5

0
.1
1

7
3

8
9

σ
0
.1

0
.0

0
0
.2

2
.7

1
.7

3
0
.0

1
6
3
3

0
.4

∅
0
.7

0
.2

∅
1

0
.1

4
6

6
.8

T
a
b
le

1
.
R
esu

lts
fo
r
th
e
b
est-p

erfo
rm

in
g
co
n
fi
g
u
ra
tio

n
s.

T
h
is

ta
b
le

is
o
rd
ered

b
a
sed

o
n
th
e
G

g
sco

re
ta
k
in
g
in
to

a
cco

u
n
t
b
o
th

trip
le

va
lid

ity
a
n
d
p
erfo

rm
a
n
ces.

In
b
o
ld

a
re

th
e
b
est

resu
lts.

In
ita

lics
a
re

th
e
seco

n
d
-b
est

resu
lts.

T
h
e
w
o
rse

resu
lts

a
re

u
n
d
erlin

ed
.
A
v
era

g
es

a
re

ca
lcu

la
ted

ov
er

th
e
5
fo
ld
s.

T
h
e
m
ea
n
µ
a
n
d
sta

n
d
a
rd

d
ev
ia
tio

n
σ
a
re

p
rov

id
ed

fo
r
ea
ch

m
etric.

A
s
a
rem

in
d
er

th
e
sy
n
ta
x
n
o
ta
tio

n
is:

X
M
L
-R

D
F

(
x
),

T
u
rtle

(
T
),

T
u
rtle

L
ig
h
t
(
t ),

N
-T
rip

les
(
n
),

J
S
O
N
-L
D

(
j ),

list
(
l )

a
n
d
ta
g
s
(
g ).



12 shades of RDF 9

References

1. Banerjee, D., Nair, P.A., Kaur, J.N., Usbeck, R., Biemann, C.: Modern Baselines
for SPARQL Semantic Parsing. In: Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval. pp.
2260–2265. SIGIR ’22, Association for Computing Machinery, New York, NY, USA
(Jul 2022). https://doi.org/10.1145/3477495.3531841, https://doi.org/10.1145/
3477495.3531841

2. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. As-
sociation for Computational Linguistics, Minneapolis, Minnesota (Jun 2019).
https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423

3. Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu, S., Chen, Y.,
Chan, C.M., Chen, W., Yi, J., Zhao, W., Wang, X., Liu, Z., Zheng, H.T.,
Chen, J., Liu, Y., Tang, J., Li, J., Sun, M.: Parameter-efficient fine-tuning
of large-scale pre-trained language models. Nat Mach Intell 5(3), 220–235
(Mar 2023). https://doi.org/10.1038/s42256-023-00626-4, https://www.nature.

com/articles/s42256-023-00626-4, number: 3 Publisher: Nature Publishing
Group

4. Han, R., Peng, T., Yang, C., Wang, B., Liu, L., Wan, X.: Is Information Ex-
traction Solved by ChatGPT? An Analysis of Performance, Evaluation Criteria,
Robustness and Errors (May 2023). https://doi.org/10.48550/arXiv.2305.14450,
http://arxiv.org/abs/2305.14450, arXiv:2305.14450 [cs]

5. Harbecke, D., Chen, Y., Hennig, L., Alt, C.: Why only micro-f1? class
weighting of measures for relation classification. In: Shavrina, T., Mikhailov,
V., Malykh, V., Artemova, E., Serikov, O., Protasov, V. (eds.) Proceed-
ings of NLP Power! The First Workshop on Efficient Benchmarking in NLP.
pp. 32–41. Association for Computational Linguistics, Dublin, Ireland (May
2022). https://doi.org/10.18653/v1/2022.nlppower-1.4, https://aclanthology.

org/2022.nlppower-1.4

6. Hofer, M., Obraczka, D., Saeedi, A., Köpcke, H., Rahm, E.: Con-
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