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Abstract. Conformance testing is still the main indus-
trial validation technique for telecommunication proto-
cols. In practice, the automatic construction of test cases
based on finite-state models is hindered by the state ex-
plosion problem. We try to reduce its magnitude by using
static analysis techniques in order to obtain smaller but
equivalent models.
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1 Introduction

Conformance testing is a well-established technique for
the validation of telecommunication protocols. Currently,
it is still the main validation technique used at an indus-
trial scale, given the inherent complexity of more ambi-
tious techniques such as formal verification. In the case of
protocols, conformance testing has been completely for-
malized by [8,34,18] and is also standardized within [17].
Test cases can be automatically generated from formal
specifications and several tools such as TGV [12], TVEDA-
2 [25], TESTCOMPOSER [22], AUTOLINK [29] or TORX [2]
are now fully operational.

Conformance test cases are automatically constructed
by exploring a synchronous product between a model
obtained from the specification and some test purpose,
both represented as labeled transition systems. A test
purpose is used to select interesting test cases within
the specification model.

* This work was supported in part by the European Commis-
sion (IST project ADVANCE, contract No IST-1999-29082 and
IST project AGEDIS, contract No IST-1999-20218) and by Région
Rhone-Alpes, France
** VERIMAG is a joint laboratory of CNRS, UJF and INPG
Grenoble

The central problem arising here is the well known
state explosion. There are mainly two reasons: concur-
rency, which is usually flattened using an interleaving
semantics and data, which are also evaluated to all pos-
sible, distinct values. Various solutions exist and have
been implemented to deal with state explosion. For in-
stance, on-the-fly techniques attempt to explore only a
part of the model e.g, guided by the test purpose. Sym-
bolic techniques rely on symbolic and compact represen-
tations of sets of states instead of individual states. In
this context, we propose a solution relying on the use of
static simplifications of specifications depending on test
purposes, before model generation. This approach can
be used in combination with the above reduction tech-
niques. Moreover, it is not limited to test generation, but
it can be applied to model-checking in general.

Our contribution

We propose to simplify specifications by means of dif-
ferent slicing methods with respect to information from
test purposes. We consider specifications as being asyn-
chronously communicating extended finite-state automata
and test purposes as extended finite-state automata with
constraints.

A first slicing method takes into account the set of
interactions between specification components, starting
from inputs enabled in the test purpose. We obtain a
first reduction of the specification, consisting of the part
which is statically reachable, given the inputs of the test
purpose. A second slicing, computes variables and pa-
rameters which may be relevant to outputs observed by
the test purpose. All other, irrelevant variables and as-
sociated actions are safely discarded. Finally, the speci-
fication is sliced with respect to constraints on data at-
tached to the test purpose. The constraints we consider
are either constants (i.e, variable equals some value at
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a control point) or intervals (i.e, for numerical variables
only, restriction to intervals of values).

All these analyses transform specifications without
loss of information with respect to the test purpose.
Moreover, they are independent and can be implemented
separately. Furthermore, they can be applied iteratively,
in any order, until no more reduction is obtained — a
fixpoint is always reached given that specifications are
statically finite.

We have implemented all these analysis methods in
the context of the IF tool-set [6], a platform for the
validation of distributed real-time systems developed at
Verimag. We have already experimented them in sev-
eral industrial case studies and have obtained very good
results.

Related work

Static program slicing has been introduced by Weiser [35]
as a technique for analyzing program dependencies. Given
a slicing criterion (s,V'), where s is a control point and
V' a set of program variables, a program slice consists of
a subset of statements that affect (backward slicing) or
are affected by (forward slicing) the values of variables
at s. Korel and Laski [24] introduced the notion of dy-
namic slicing. In this case, only the dependencies that
occur in a specific execution of the program are taken
into account. A dynamic slicing criterion specifies not
only a a set of variables and a statement, but the dif-
ferent occurrences in the execution history. A survey of
algorithms for program slicing can be found in [32]. In
our work, we consider only static slicing.

In general, slicing is used to automate work on soft-
ware debugging, testing and maintainance and we men-
tion here just a few typical examples of its use. In [14] the
authors present an approach for selective regression test-
ing using slicing. Regression testing identifies the parts
of the program that are affected by some change. In [28],
the authors present a testing and debugging methodol-
ogy for Spreadsheet languages based on program slicing.
In [30], slicing is defined on interprocedural control flow
in order to be applicable to large software. TVEDA-2 [25]
produces test cases from SDL specifications by perform-
ing simple syntactic transformations on them. A differ-
ent application is given in [15], where slicing is used for
verification purposes, in order to extract finite-state ma-
chines from multi-threaded programs.

Outline

The remainder of the paper is structured as follows. Sec-
tion 2 briefly reviews the notions of conformance testing
and presents the underlying model. In section 3, we in-
troduce and formalize the slicing techniques of the spec-
ification with respect to the test purpose. We give some
experimental results in section 4 showing the interest of

Specification (SP) Test purpose (TP

J

Implementation under test (IUT)

Fig. 1. Test architecture

our simplifications on complex specifications. We con-
clude in section 5.

2 Conformance test case generation

According to the classification of test architectures from
[17,27], we consider a local single-layer test method with
synchronous communication between the tester and the
implementation under test (1UT). It is local because all
the events from the environment to the 1UT are under
the control of the tester. It is single-layer because we
test implementations of specifications organized in one
layer. The tester interacts with the IUT via some points
of control and observation (PCOs). The communication
at the PCOs is synchronous (by rendez-vous). The archi-
tecture is shown in Figure 1.

2.1 Specification

We consider specifications consisting of concurrent pro-
cesses, communicating through signal passing via a set
of unbounded queues. We distinguish between internal
queues (communications inside the system) and exter-
nal queues (communications between the system and its
environment). Processes are represented by finite-state
automata extended with actions on queues and local
variables. Without loss of generality, actions are simple
guarded commands and signals carry a single parameter.

Definition 1 (syntax). A specification SP is a tuple
(S,C, P) where S is the set of signals, C = C™"* U C®**
is the set of queues (internal and external ones) and
P is the set of processes. A process p € P is a tuple
(Xp, Qp, T, qg) where X, is a set of local variables, Q)
is a set of control states, X, is a set of actions which
can be performed by p, and T, C Q, x X, x Qp ts a set
of control transitions. An action can be either a guarded
assignment [ b ]| © := e, a guarded input [ b | ¢?s(x),
or a guarded output [ b ] cls(e). b and e are expres-
sions, x € X, is a variable, ¢ € C is a queue and
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= (].)
qu € QSP
-~ [b] z:=e ,
(070-7 p) € QSP qp — qp O'(b) = t 0'(6) =0 (2)
(0',0',0") = (Olay/ap,olv/a],p) € Qsp  (0,0,p) = (6',0",p") € Ty
(0,0,0) €EQu _ap "3 q), c€C™ ob)=t ole)=0v )
0,0, p') = (0ldy/a), 0 0) € Qup  (8,0,0) = (8/,0",p') € Ty
® ~ [b] cls(e) int _ _ _
707P)EQSP dp — dp CEC U(b)_t 0'6)—’0 p(c)—w (4)
@',0",0") = (Olap/ap), 0, plw.s(v)/c]) € Qsp  (8,0,p) = (¢',0",p) € Tep
(0,0,0) €Qu gy "7 qy ceC™ o(h)=t veD\{L} )
-~ c?s(v) =
(0",0',0") = Blap/an), o[v/T],p) € Qsp (8,0,p) — (0',0",p") € Ty
6,0,p) € Qo ap o) c73(@) g ceC™ gb)=t veD p(c)=s(v)w (©)

@',0",p') = (Blah/ap), olv/z], plw/c]) € Qsp

(0,0’,p) L> (olao'lap) € ﬁp

Table 1. Semantic rules for specifications.

s € S is a signal. We denote by g, = q;, a transi-
tion (qp>a7Q;;) € TP'

We give the semantics of specifications in terms of
basic labeled transition systems (without variables). We
assume the existence of a universal domain D which con-
tains the values of variables and signal parameters. The
boolean values {t,f} and the special undefined L value
are contained in D. We define variable contexts as total
mappings o : Upe pXp — D from variables to values.
We extend these mappings to expressions in the usual
way (in the case of a variable  and an expression e such
that z € vars(e) and o(z) = L we have o(e) = L).

We define queue contexts as total mappings p : C'™* —
(S x D)* which associate with each internal queue ¢ a
sequence of messages. Messages are pairs (s,v) denoted
also by s(v), where s is a signal and v the carried pa-
rameter value. The empty sequence is denoted as e.

Definition 2 (semantics). The semantics of a speci-
fication SP is given by a labeled transition system SP =
(Qsps Tsp, qu). States Gsp of this system are triples of the
form (0,0, p), where o is a variable context, p is a queue
context and 0 = (q1,...qn) € XpecpQp is a global control
state. Transitions are either internal and labeled with T
(they correspond to assignments or internal communica-
tion) or visible and labeled with the corresponding action
(on external communication). The set of transitions is
the smallest set obtained by the rules given in table 1. In
the initial state qu € Qsp internal queues are empty and

processes are at initial control states, and all variables
have some default initial values.

2.2 Test purpose and consistency

A test purpose is an extended finite-state automaton
which describes a pattern of interactions between the
tester and the 1UT. It is usually described from the per-
spective of the implementation i.e, inputs and outputs of
the test purpose mean respectively inputs and outputs
of the implementation.

In our setting, inputs of the test purpose have con-
straints attached to the parameter value. Constraints re-
strict the allowed values of the parameter to some sub-
set of its domain, for example, to some constant (unique,
fixed) value, or to an interval of values, etc. Contrarily
to inputs, output parameters are always unconstrained.

This definition has been inspired by TTcN! and has
the following intuition: it is possible to constrain values
sent to the implementation (because the signal is sent by
the tester and thus controlled) but one can only observe
values received from the 1UT (because the implementa-
tion cannot be controlled by the tester).

Definition 3 (test purpose). A test purpose TP is

a tuple (Qup, Tip, qu, Qi5°) where Qyy, is a set of states,

Tip € Qip X Zip X Qp 15 a set of transitions and Q?f,c -

Qip s a set of accepting states, without successors by
Tip-

! Tree and Tabular Combined Notation [17]
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Xip 18 the set of interactions oy, which are controlled
or observed by the test purpose. This set is partitioned
into the set of feeds Xr containing the constrained signal
inputs ¢?s(C) and the set of observations X, containing
the unconstrained signal outputs cls(x). We denote by
c € C®* an external queue, s € S a signal, € a constraint
and * any value.

In order to ensure the feasibility of the test generation
method, we rely on a notion of consistency between the
test purpose and the specification. Consistency ensures
that the set of behaviors described by the test purpose
is included in the set of behaviors described by the spec-
ification. More precisely, a test purpose TP is said to
be consistent with respect to a specification SP if there
exists a consistency preorder relating them.

Definition 4 (consistency preorder). Let SP = (@Sp,

fsp, qu) be the semantic model of the specification, and

TP = (Qip, Tip, q?p, Q) be the test purpose. A bi-

nary relation R C Qgp X Qip s a consistency preoder
if and only if for all (Gsp, gtp) € R whenever qtpi>q€p
then ezists g’ sp> Geps Such that g%, is reachable from Gs,

by a trace which does not contain o, and (j;’piﬂj;p and
(Gép> aip) € R-

The notion of consistency of a test purpose with re-
spect to a specification is different of the notion of con-
formance relation relating the implementation and its
specification [33,25]. The conformance relation states
that inputs which are not accepted by the specification
may be accepted by the implementation but outputs pro-
duced by the implementation must also be produced by
the specification.

2.8 Synchronous product

Test cases are automatically constructed by exploring
the synchronous product between the model of the spec-
ification SP = (Qsp, Tsp, G3,) and the test purpose TP =
(Qtp, Tip, q,?p, Qg“gc). We formally define the synchronous
product since all of the preservation results rely on it.
However, we do not describe how tests are selected from

the product, for this aspect see [21].

Definition 5 (synchronous product). We define the
synchronous product [[(SP,TP) as the labeled transition

system (Qnx, T, q2), with Q, C @Sp X Qip, where Q and
T, are the smallest sets obtained by the application of the
following rules:

(6% a5p) € Q@

(7)

(qupa Qtp) € Qr éspL)éép dtp ¢ Q?;C
((jépa qtp) € Q‘fr (qupa qtp)L)(qAépa Qtp) € T‘rr

(v)

. . c?s(v 7s(C
(QSpaQtp) S Q1r Qsp —

) )
&y o — dp C(v)

9)

N N c?s(v), .
(@hpr ahp) € Qn (Gsp> @tp) — (s ahp) € T

. c?s(v)

(QSpaQtp) € Q'/r gsp — ﬁép C?S(e) € X e('U)

. . ?s(v), .
(qu,Qtp) € Q‘rr (QSpaqtp)Ci; (qép’ Qtp) € T‘rr

(10)

. cls(v) . cls(x*)
dsp — sy, a

(qASpa qtp) € Qx Qtp — Gyp

- ; (),
(@ @lp) € Qr (dsps i) — (s @lp) € T

(11)

. cls(v) M

(qupa qtp) € Qw gsp — 9sp

(dépv q‘ﬁp) € Q7r

12
cls(v) ( )

(dspa qtp) — (qAépa qtp) € T”r

3 Static analysis for testing

The purpose of static analysis is to compute the (min-
imal) part of the specification which is relevant for the
test purpose. We present three distinct analyses:

1. the relevant control analysis restricts the processes
to the sets of control states and control transitions
which are reacheable via the transition relations 7}, of
SP, given the feeds of the test purpose; this analysis
corresponds to a forward static slicing method based
on control dependencies,

2. the relevant variables analysis computes and sim-
plifies processes with respect to variables which are
used to compute values needed for observations of the
test purpose; this analysis corresponds to a backward
static slicing method based on data dependecies,

3. the constraint propagation aims to further simplify
processes, given the constraints attached to feeds of
the test purpose.

Each analysis takes as input a specification and pro-
vides an transformed (smaller) one, but still equivalent
with respect to the synchronous product operation. The
three analyses are completely independent and can be
applied in any order. Moreover, they can be applied it-
eratively because the reduction obtained by one analysis
can be further exploited by another and so on, until no
more reduction is possible.

FEzxample 1. In order to illustrate all three analyses let us
consider the toy example presented in Figure 2. It con-
sists of two processes communicating through an internal
queue cl € C'™, The external queues are ci,co € C°*t,
We want to generate some test case containing the input
ci?sr(z), with z € [1,10] followed by the output colsa.
Therefore, the set of feeds is Xy = {ci?sr([1,10])} and
the set of observations is X, = {co?sa(*)}.
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[ N

ci?sr(n)

clls(n)

C’L?ST‘([I,IO]) Ci?sr([],]O])

colsa(*)

Fig. 2. Example

3.1 “Relevant control” analysis

This analysis restricts each process to the set of con-
trol states and control transitions that may be reached
given the feeds. Intuitively, it can be seen as building
the largest sub-processes, after the removal of external
inputs uncovered by feeds, and subsequently the inter-
nal inputs uncovered by internal outputs. This analysis
corresponds to a forward static slicing method based on
control dependencies.

Definition 6 (slicing wrt feeds). We define the slice
of a specification SP = (S,C, P) with respect to a set
of feeds X of a test purpose TP to be the specification
SP \¢ Xr = (S,C,P \¢ Xt), where P\t Xt contains a
sliced process p' for each process p € P. The slice for a
process p = (Xp, Qp, Tp, qg) € P is defined as the process
p = (X, ;,T;,qg), with the same sets of variables.
The sets of states Q, C Q, and transitions T, C T), are
defined as the smallest sets satisfying the following rules:

®€Q,

(13)

[b] z:=e
HweEQ, &% — g
[b] z:=e
BeEL & — HEI

(14)

, [6] cls(e) ,
BEQR, @& — q (15)
[b] c!s(e)
3, €Q, @ — q €T,
b] c?s(z
pE€EQ, g o] c?s(=) q, c?s(C) € Xk (16)
b] c?s(x
Ge@ o qeT
b] c?s(z . b'] c!s(e
qpeQ; q,,”—)”qz’, c € Cmt Elr.qr[ 1—)”qi,GTzé
b] c?s(x
GheQ, 0 e

(17)

We mention here the input/output propagation be-
tween processes. That is, an input transition is part of
the slice if there exists at least one corresponding output
transition which is already part of the slice.

The algorithm computing the sliced system proceeds
in an iterative manner. It maintains the sets of control
states and control transitions reached for each process.
Initially, the sets of states contain the initial states of the
processes, and the sets of transitions are empty. Then, at
each step, one of the rules is applied and sets of reached
states and transitions are updated accordingly. The al-
gorithm stops when no rule is applicable any more. The
complexity of this algorithms is O(3_, |Qp|+[Tp]), linear
with respect to the number of control states and control
transitions in the specification.

Ezample 2. Slicing wrt feeds applied on the specifica-
tion from Figure 2, results in the specification shown in
Figure 3. The external input ci?pr(n) is uncovered by
the feeds and therefore it is eliminated; in turn, this in-
duces the elimination of cl!lp(n) and thus cl?p(n) is no
more covered by an internal output so it is eliminated
together with br :=f.

Slicing with respect to feeds preserves the synchronous
product.

Theorem 1 (correctness of slicing wrt feeds). Let
SP = (S,C,P) be a specification, TP a test purpose
and Xy the set of feeds of TP. The synchronous products
between the models of SP respectively SP \¢ Xt and the
test purpose TP are the same:

T1(SP, TP) = [[(SP \s &, TP) .

Proof. In one direction, it is obvious that the initial
product (between the specification and the test purpose)
contains the sliced product (between the sliced specifi-
cation and the same test purpose) because slicing may
only eliminate some parts of the specification. In the
other direction, the inclusion is proved by induction. By
definition, both products contain the same initial state.
If some state is present in both products, all its succes-
sors in the global product can be also found in the sliced
product. More exactly, if some successor is reached (cf.
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[ N

ci?sr(n)

clls(n)

ci?sr([1,10]) ci?sr([1,10])

colsa(*)

Fig. 3. Example slicing wrt feeds

some of the rules 7-12) in the global product, then the
corresponding (control) state and transition are also in
the sliced specification (cf. the equivalent rule in 13-17),
and therefore it can also be reached in the sliced product.
O

3.2 “Relevant variables” analysis

This analysis is an extension of live variable analysis [4].
It attempts to compute, for each process, the set of rele-
vant variables in each control state. The relevance is de-
fined with respect to test purpose observations: a vari-
able is relevant in a control state if its value in that
state might influence the parameter value of some signal
output occurring in the test purpose. Or, similar to the
definition of live variables, we consider a variable to be
relevant in a control state if and only if there exists a
path starting at that state such that the variable is used
before being redefined on the path. But here, we consider
a variable to be used only when it is used in external out-
puts observed by the test purpose, or in assignments to
relevant variables (possibly via internal inputs).

Definition 7 (variables relevant wrt observations).

Let SP = (S, C, P) be a specification and TP = (Qyp,Ttp,

qu, Qﬁ;c) be a test purpose. The relevant variables are

defined for each process p = (Xp,Qp,Tp,qg) € Pbya

function Rlv, : Q, — 2%» mapping states to subsets of
variables. The sets Rlv,(q,) for states g, € Q, are de-
fined as the least fixed point of the following equation
system:

Rh’p(qz)) = U Rlv(q;) \ Defp(tp) U Usep(tp)
15;,:qpi>q£7
where
{z} if tp =0p [b]i;e q; or
_ [b] c?s(z) ,
Def ,(tp) = h=a —

0 otherwise
vars(b) U vars(e)

if tp = qp ] 7isse q, and x € Rlv,(q;,)
_ [b] cls(e) ,
ort,=¢q, — " gq,and
ex cls(x)
Usep(tp) = c € C*™ and gy E) ?qé(p)e Tip or
ce O gnd Irg, | —3° q. €T, and

z € Rlv,.(q))

vars(b)

otherwise

The relevant variables are computed simultaneously
for all processes. The algorithm operates in a backward
manner on the control graphs. It starts with empty sets
of variables for each state, and at each step one transition
is analyzed: the set of used variables is recomputed in the
current context and then, the set of relevant variables for
the source state is updated. The algorithms ends and the
least fixed point is reached when no more change in the
relevance sets occurs for any transition.

Also in this analysis, the relevance of variables is
propagated between processes. In fact, variables used in
expressions sent through internal communication chan-
nels are relevant at the sender side if there exists at least
one possible destination in which their value is relevant.

Slicing with respect to observations attempts to re-
duce the number of variables used inside processes. Con-
cretely, we eliminate assignements of irrelevant variables.
Irrelevant variables used in inputs are replaced by some
don’t care variable T,. Finally, expressions occurring in
unused outputs are replaced by the undefined value L.
This transformation is formally described below.

Definition 8 (slicing wrt observations). Let SP =
(S, C, P) be a specification and TP be a test purpose. We
define the slice of the specification SP given the relevant
variables computed wrt observations to be the specifica-
tion SP \o, Xy = (S,C, P \o X,), where P\, X, con-
tains a sliced process p' for each process p € P. The slice
for a process p = (Xp, Qp, Tp, qg) is defined as a process
p = (X{ﬂQp,T,i,qS) which has the same set of states
and the same initial state, but operates only on relevant
variables. We put X, = quer Rlv,(gp) and transitions
TI; are constructed from T, such that they do not define
irrelevant variables anymore:
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[b] z:=e
@& — qzl; mGRlvp(qI’)) (18)
(0] z:=e , T
B — G Eip
[b] z:=e
@& — qzl; ngh’p(qzl)) (19)
oz, ’
a9 — q, €T},
[b] c?s(z)
4 — ‘I;’; T e Rl”p(‘];’;) (20)
[b] c?s(z) , ,
®» — 4, €T,
[b] c?s(z)
@& — qz’; zd Rlvp(‘];’;) (21)
[b] e?s(Tp) , ,
ap 7, €T,
[b] cls(e)
p — g, Use(cls) (22)
[b] cls(e) , ,
» — 4, €T,
[b] cls(e)
@p — g, ~—Use(cls) (23)
[b] cls(L) , ,
®» — q, €T,
_ cls(x) [b'] c?s(z)
where Use(cls) = g, — qip, € Tip or Irgy - —

q. € T, and = € Rlv,(q.) denotes the global utility of
outputs of the form cls.

The complexity of slicing with respect to outputs is
02, |Qpl|Xp|), linear with respect to the product of the
number of variables and the number of control states for
each process.

Ezxample 3. Slicing wrt observations applied to the spec-
ification and the test purpose from Figure 3, produces
the specification shown in Figure 4. The transitions la-
beled y := 1 and y := y * ¢ are relabeled by 7 and the
output colpa(y) becomes colpa(L) because —Use(colpa).

Intuitively, slicing wrt observations preserves the model

of the specification up to the concrete values carried by
signals not observed in the test purpose. We define the
renaming of the specification model SP with respect to
the set of output actions X, in the following way: each
output c!s(v) which is not specified by the test purpose
i.e., cls(x) € X, is renamed into cls(L). The other ac-
tions are left unchanged.

cls(v)

P —q 'c!S(*) ¢ o (24)
cls(L)
p — q

In this way, we abstract from the exact parameter
values for outputs, other than those occurring in the test
purpose. We note the renamed model by SP | X,. The
following theorem holds.

(. M

cl?s(n) ci?sr(n)

clls(n)

ci?sr([1,10]) i2sr([1,10])
colsa(*) |

Fig. 4. Example slicing wrt observations

Theorem 2 (correcteness of slicing wrt observa-
tions). Let SP = (S, C, P) be a specification and TP =
(Qips Tip, by, Q3°). The model of SP renamed with
respect to the observable outputs X, and the model of
SP\, X, are strongly bisimilar. In turn, the synchronous
product H(§1\3, TP) and H(SP/\O\EO, TP) are strongly
bisimilar.

Proof. Let us consider the following relation between
initial and sliced model states: a state (6, o, p) of SP is
related to some state (6',0",p') of SP\, X, if and only
if for each process p, the control states are identical in
both model states i.e 8(p) = 0'(p), all relevant variables
have the same values o(x) = o'(z) V& € Rlv,(0(p)) and
all queue contents are identical up to values attached to
irrelevant signals p(c) ~ p'(c) Ve € C™ — a signal s
is irrelevant if none of the processes uses the values of
its parameter (that is = Use(c!s)). It is easy to see that
the relation above is a bisimulation between these two
models, that is, starting from related states, the same
transitions are enabled in both models and they lead
again to related states. In addition, given that the initial
states of both models are also related it turns out that
the two models are strongly bisimlar. 0O

Notice also the possibility of a more general appli-
cation of relevant variables. In fact, we exploit them at
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a purely syntactic level for example, by eliminating the
irrelevant variables and their dependencies in the specifi-
cation. However, it is possible to take them into account
in a different manner: one can reinitialize them by some
default value as soon as they become irrelevant and still
obtain a bisimilar reduced model.

3.8 Constraint propagation

This section provides an approach to simplify the spec-
ification using the constraints imposed on the inputs
of the test purpose. Currently, the constraints we con-
sider have the form of constants ([23]) or integer inter-
vals ([9]). First, these constraints can be attached to pos-

sible matching inputs. Then, using some intra/interprocesses

data flow analysis algorithms, the constraints are propa-
gated through the specification. For each control state, a
conservative approximation of the set of possible values
for each variable is computed. Finally, this information is
used to evaluate the transitions guards and to eliminate
those never firable.

We sketch the constraint propagation problem and a
possible solution. Again, it is a data flow analysis prob-
lem whose basic components are:

1. the flow graph is composed of the (control) states and
(control) transitions of each process and some aux-
iliary constructions in order to simulate the internal
queues,

2. the constant lattice Cp of values of the domain D,
the interval lattice Ip of intervals of values of the
domain D and respectively the lattice L representing
the disjoint union C'p & Ip,

3. the class of transfer functions Transfer, : (X, — L)

. b
— (X, — L), for each transition t, : ¢, o ¢ qQ,:

(a) if o is z := e then
Transfer, (f)(z') = { fle)ifz £z

fle) ifz' ==z
(b) if a is ¢?s(z) then
fl@)if 2" #x
Clz)if /=2 A
ceC™ A
c?s(C) €¢
T  otherwise
(c) if o is cls(e) then Transfer, (f) = f
One can observe that in the definition of Transfer,
functions guards are ignored. In fact, they are taken
into account only later, in order to enable the applica-
tion of a transfer function (see fixpoint equation 25).
4. the confluence functions | |, one for each state.

Transfer,, (£)(x') =

By choosing the constraints to be the elements of L
we ensure the possibility to test the emptiness of a con-
straint and to have a partial order among them. Also,
in order to define the transfer functions for transitions,
one has to ensure that the actions of transitions (as-
signments and arithmetic operations) can be realized

with constraints. This requirement is fulfilled by defining
the operations with set of values similarly as in interval
arithmetic [26].

Having seen what are the basic requirements and
an approach to fulfill them, the definition of constraint
propagation problem follows.

Definition 9 (constraint propagation). Let SP =
(S, C, P) be a specification and X the set of feeds of the
a test purpose TP. Constraints are represented, for each
process by functions Val, : Qp — (Xp — L) (extended
to expressions, as usually). With the notations presented
before, the constraint propagation problem is defined as
finding the least fix point of the following equation sys-
tem:

Valp(q;) = L] Transfertp( Val, (gp))
tP:qP[Mq;)
if Val(gp)(b) # false

(25)

The algorithm used for solving the constraint prop-
agation problem in the case of the lattice of constants
is the classical iterative algorithm from [23] with an in-
terprocesses variant such as [11]. When we consider the
lattice of intervals, which has an infinite height, we use
for each process a widening technique as in [3] in order
to guarantee convergence.

The results of the constraint propagation problem are
used again to simplify the specification. They also allow,
for the outgoing output transitions of a control state, to
have a conservative approximation of the parameters of
the signals, thereby enabling generation of symbolic test
cases.

Definition 10 (slicing wrt constraints). Let SP =
(S, C, P) be a specification and X a set of feeds. We de-
fine the slice of the specification SP given the constraints
computed wrt feeds to be the specification SP \. Xy =
(S,C, P \. X%), where P\ Xt contains a sliced pro-
cess p' for each process p € P. The slice for a pro-
cess p = (Xp,Qp,Tp,qg) 1s defined as a process p' =
(Xp, Qs T qg), which operates on the same set of vari-
ables X,,. The sets of states Q; C Qp and transitions
T, C T, are the smallest sets satisfying the following
rules:

—_ 26
Lea (26)
(b] o
W EQ, @ — q, €T, Valp(gy)d) # {f} 27)
(b] o
B EQ, @& —q €T,

Ezxample 4. Slicing wrt constraints applied to the spec-
ification and the test purpose of Figure 4, produces the
specification shown in Figure 5. The value t for br is
propagated to the source state for the transition with the
guard [—br] which guarantee that this transition and the
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[ N

ci?sr(n)

clls(n)

colsa(z)

ci?sr([1,10]) i?sr([1,10])
colsa(*) ’

Fig. 5. Example slicing wrt constraints

following colpa(L) are never fired. These transitions are
eliminated from the specification. The constraint propa-
gation provides, given the feed ci?sr([1, 10]), for the out-
put parameter x in the transition co!sa(x) the interval
[1, 100].

We have the following correctness result:

Theorem 3 (correctness of slicing wrt constraints).

Let SP = (S,C, P) be a specification, TP = (Qip, Tip,
qu, Qi‘gc) a test purpose and Xt the set of feeds of TP.
The synchronous product between the models of SP and

SP \. X¢ with the test purpose are the same, that is
[1(SP, TP) = [1(SP \c &, TP) .

Proof. Constraint propagation and abstract interpreta-
tion in general, are a means to overapproximate the set of
reachable values of variables at different control points.
The slicing we consider, removes only unreachable (dead)
code with respect to constraints.

Formally, we check inclusion in both directions. In
one direction, it is obvious: slicing with respect to con-
straints removes states and transitions from the initial
specification, and therefore the sliced product is included
in the initial product. In the other direction, the proof is
by induction: the initial state is the same in both prod-
ucts, then, each successor in the global product (cf. rules

7-12) has its equivalent in the sliced product (i.e, the cor-
responding control transition is preserved cf. rule 27).
O

4 Experimentation

The three slicing techniques have been experimented in
the context of the IF tool-set [6], an experimental plat-
form for the validation of distributed real-time systems
developed at Verimag. This platform is built upon the so-
called 1F intermediate language, an extended automata-
based representation which allows:

— to represent significant subsets of specification for-
malisms for real-time systems, such as SDL [20], LO-
TOS [16], and currently UML/RT [31];

— to provide an open wvalidation framework, able to in-
terconnect verification and test-generation tools, both
from the industry or the academia;

— an efficient implementation of static analysis tech-
niques.

Currently, the 1F platform has a number of compo-
nents, including compilers, static analysers, code genera-
tors, model-checkers, and front-ends to several validation
platforms. We focus below on the static analysis compo-
nents, which implement several analysis ranging from
the most classical ones used in compiler optimisation, to
more ellaborate ones used in program verification:

— live analysis consists in finding live and dead vari-
ables in a specification, for each control state: ex-
plicit resets are added for dead variables in order to
reduce redundancy at state-space generation time.
This technique is described in [4] and extends the
standard live analysis introduced by [1] to queue con-
tents.

— constant propagation consists in finding locally con-
stant variables in a specification, for each control
state. This is a simple form of the constraint propa-
gation problem presented in section 3.3;

— clock reduction is an application of constant propa-
gation for finding constant clock differences in timed
automata. It extends the algorithms of [10] and al-
lows the reduction of the number of clocks and timers
used in the program, given the functional dependen-
cies which exist between them;

— slicing as presented in the previous sections.

In the remainder of this section we give a short overview

on the concrete results obtained in several case studies.

4.1 SSCOP Protocol

The first case study is SSCOP (Service Specific Connec-
tion Oriented Protocol), a part of the ATM Adaption
Layer normalized in [19]. We have considered an SDL
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specification of the protocol developed by France Tele-
com R&D. Tt consists of about 2000 lines of SDL code
and describes a single SDL process. It has been translated
automatically into an IF specification, with 1075 control
states, 1291 control transitions and 134 variables. We
consider 10 test purposes concerning different phases of
the protocol (connection establishment, disconnection,
data transmission, error recovery, etc).

By iterated application of the three slicing techniques
the SSCOP specification is statically reduced by 50% to
80% for all considered test purposes. Such an important
reduction factor is typical for this kind of protocols. In
fact, the sSCOP specification integrates multiple func-
tionalities, in a single description, and testing usually
focuses on a single functionality at a time. It is possible
to slice away a large part of the specification, once the
test purpose is fixed. For example, all the parts of the
sscoP specification (e.g, states, transitions, variables)
involved in data transfer can be removed when the test
purpose concerns the connection establishment.

4.2 MASCARA Protocol

The second case study is MASCARA (Mobile Access Scheme
based on Contention and Reservation for ATM), a medium
access control for wireless ATM. This protocol was pro-
posed by the WAND Consortium ( Wireless ATM Network
Demonstrator) as a case study in the VIRES European
Project. The MASCARA case study is reported in [13].

We start with an SDL specification of MASCARA which
consists of many interacting processes. The complete de-
scription is huge: about 300 pages of SDL textual code.
In the VIRES project, we focus on formal verification
rather than test case generation. Nevertheless, most of
the properties to be verified were reachability proper-
ties. In this particular case, both problems, verification
and test generation, are equivalent: the satisfaction of a
property amounts to the existence of a test case for it
and vice-versa.

We were not able to check any of the properties with-
out static simplifications. Any attempt to traverse the
complete state space failed because of memory limita-
tions. Using slicing, combined with partial order reduc-
tions and compositional verification, we manage to ver-
ify all the considered properties of the protocol. In this
case too, each property concerns one functionality and
significant part of the specification can be sliced away
prior to verification. For example, in order to verify the
association establishment property on access points, one
needs to explore a model of 4,500 states and 12,000 tran-
sitions, if slicing is applied, instead of 7,000,000 states
and 30,000,000 transitions, without slicing. All the re-
sults can be found in [13].

4.8 Ariane-5 Flight Program

The third case study concerns the Ariane-5 2 flight pro-
gram — the embedded software which controls the Ariane-
5 launcher during its flight. This work has been initiated
by the EADS Launchers company to evaluate the appli-
cability of formal methods in softare validation, meaning
both formal verification and testing.

The starting points is an SDL specification of the
flight program, developed by reverse engineering from
the actual code and a set of safety requirements the flight
program must fulfill. Our aim was on one hand to ver-
ify these requirements on the formal specification and,
on the other hand, to generate corresponding test cases
to be executed on implementations. The main difficul-
ties are the high degree of concurrency (the initial SDL
specification contains not less than 31 parallel processes)
and the timing constraints (the initial SDL specifications
contains 141 timers).

In this case too, we benefit from the slicing techniques
presented above, and from static analysis techniques in
general. For example, using slicing with respect to feeds
we detect (and remove) automatically passive processes
i.e, not involved at all in the verification or test gen-
eration for some fixed requirement. Moreover, using an
adapted implementation of constraint propagation for
timers, we detect local dependencies between values of
timers, for example, t; = t5 + k where t1, t5 are timers
and k is a constant holds in some state of a process.
Such a dependency is used to reduce the overall number
of timers needed to express the timing constraints. On
Ariane-5 flight program specification, this technique al-
lows to divide the number of timers by 3 i.e, to reduce
them from 141 at 55.

All these static simplifications combined with stan-
dard techniques like on-the-fly exploration and partial-
order reductions allow to completely verify and to gener-
ate test cases for all requirements. The results obtained
are completely described in [7].

5 Conclusion and future work

In this paper, we show how automatic test generation
can take advantage of static analysis. The test genera-
tion method we consider is derived from on-the-fly model
checking and consists in traversing a synchronous prod-
uct defined between the specification and a test purpose.
Simplifications on the specification may be applied be-
fore test generation, by exploiting information on test
purposes.

We have considered specifications represented by ex-

tended finite-state automata, communicating asynchronously

via message queues. Test purposes have been represented

2 Ariane-5 is an European Space Agency Project delegated to
CNES France.
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by finite-state automata with constraints. We have pro-
posed three static analyses methods which reduce spec-
ifications without loss of information with respect to a
test purpose. The first one consists in eliminating from
each automaton of the specification, the control states
and control transitions which are not reachable given
the set of inputs controlled by the test purpose. The sec-
ond analysis computes the set of variables necessary to
compute values observed by the test purpose. All other
variables, are safely discarded. The last analysis is con-
straint propagation.

We have implemented these analyses in the context
of IF toolset [6]. We experimented them on several in-
dustrial case studies such as SSCOP [5], MASCARA [13]
and ARIANE-5 [7] and we obtained very good results.

We plan to extend the static analysis to 1) more gen-
eral specifications and 2) more general test purposes.
For instance, with slight modifications, the slicing meth-
ods still apply to specifications combining synchronous
(rendez-vous) and asynchronous communication (mes-
sage passing or shared variables). Moreover, they can
be adapted to work on timed specifications. In practice,
generated test cases depend on timers, which are set and
tested against more or less arbitrary values in order to
detect deadlocks or livelocks in the implementation. Nev-
ertheless, a finer analysis can be applied to timed speci-
fications to obtain relevant values to be used.

Another investigation point concerns the generation
of symbolic tests. Here we have considered test cases
without variables. We are currently studying an appro-
priate extension of the test purposes concept. For in-
stance, the explicit use of variables in addition to con-
straints can make them much more expressive. Moreover,
it may be interesting to reconsider the definition of the
synchronous product at a symbolic level (i.e, of extended
automata) such that it allows for the generation of sym-
bolic test cases.
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