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ABSTRACT

Intrinsic uncertainties related to the ill-posedness of the
PET reconstruction problem are investigated in this work.
These uncertainties could lead to artifacts in the reconstructed
images in particular when Deep Learning approaches are
employed. We propose a framework enabling to define a
distinguishability measure between PET images and propose
a local analysis of such a measure in a neighborhood of a
reference image. This approach is numerically tested on
a synthetic experiment using a 3D brain PET phantom de-
rived from a measured [18F]-FDG exam with 100 anatomo-
functional regions extracted. Our analysis allows us to high-
light the key factors impacting the detectability of variations
and to exhibit concrete examples of clinically meaningful
directions along which variations may not be detectable. In
addition, we quantitatively analyze the role played by the in-
jected radiotracer dose and show that low-dose scenarios are
particularly prone to the presence of reconstruction artifacts.

Index Terms— Aleatoric uncertainties, Bayesian infer-
ence, Fisher information, PET reconstruction

1. INTRODUCTION

Positron emission tomography (PET) is a functional and
quantitative medical imaging modality that allows to follow,
in three dimensions, the spatial distribution of a radiotracer
previously injected into the patient. PET imaging can then
provide information on a targeted physiological process (tu-
mor uptake in oncology for example). During a PET scan,
the radiotracer injected into the patient emits positrons which
are annihilated by electrons resulting in the emission of two
back-to-back photons that can be detected in coincidence by
a PET camera located around the patient. The count data
thus measured can be modeled by Poisson random variables
whose parameters are given by the projections of the activity
concentration [1]. The reconstruction of the image of this
activity concentration from these count data constitutes an
ill-posed tomographic inverse problem.

Over the last decades, many algorithms have been pro-
posed to numerically solve this tomographic ill-posed inverse
problem. Recent approaches using Deep Learning [1] open
promising avenues and allow to obtain high-quality PET im-

ages, sometimes even in low-dose scenarios, thus reducing
the patient’s exposure to radiation and/or the cost of the PET
scan [2]. However, the increase in performance over more
traditional inverse problem approaches seems to come at the
cost of poorly understood instability and bias phenomena that
are potentially the source of false positives or false negatives,
impeding clinical use, as illustrated in [3] [4].

These phenomena are related to the uncertainties on the
inverse problem which can be categorized into epistemic and
aleatoric uncertainties [5]. While the former has been widely
studied with techniques such as the so-called Monte-Carlo
dropout [6] and its application in medical imaging [7], we
focus in this work on aleatoric uncertainties, intrinsic to the
PET reconstruction problem and source of instabilities and
biases as shown in [3] in the case of MRI.

Our contribution are as follows. First, from a theoretical
point of view, we propose a framework based on Bayesian
inference, allowing to define a distinguishability measure be-
tween PET images, namely the Bayesian risk. Secondly, from
a numerical point of view, we analyze locally this Bayesian
risk in a neighborhood of a reference image. This local anal-
ysis comes to the study of the Fisher information metric. Our
analysis reveals a non-trivial geometry on the space of PET
images and allows us to understand the key factors influenc-
ing the detectability of variations and the potential presence of
artifacts in the reconstruction. In addition, we investigate dif-
ferent norms for measuring the perturbations produced, and
propose a way of restricting the analysis to the clinically sig-
nificant ones. Along the directions of these particular per-
turbations, we quantitatively analyze the role played by the
injected radiotracer dose in the detectability of variations.

2. METHOD

In the sequel, we denote 6 € R’ a PET image, X € NZ the
acquired data, A € RJLFXJ the forward operator, with lines
(A)i=1,...,0,and b € RJLF* collecting the expectation of scat-
ter and random events. We denote A = A6 + b € Ri the
(deterministic) projection of an image 6. PET reconstruction
consists in estimating 6 from X ~ ZGL@ P(A1), P denoting the

=1
Poisson distribution.



2.1. The Bayesian risk

Let 6 and 0, be two PET images, and X acquired data. Con-
sider the problem of determining which of these two PET
images generated the acquired data. For such problems, the
Bayesian paradigm enables to define optimal decisions, an a
priori distribution and a loss function being specified. The
risk of such decisions, called the Bayesian risk, is a measure
of the intrinsic difficulty of the problem, i.e. a measure of the
irreducible error incurred.
Let us consider the non-discriminative prior :
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The Poisson likelihood being :
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the posterior is given by :
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For the binary loss defined by [(6p,61) = 1g,2¢,, the
Bayesian estimator is the MAP, giving the Bayesian risk
Ro = % [ f(z|60) A f(z|61)dz, which is not smooth with
respect to 6;. In the sequel, we work with the smooth
approximation R = [Egy, [%
Ro < R < 2Ry. This quantity corresponds to the risk
incurred by a Bayesian oracle trying to solve the proposed
discrimination problem, and as such, encodes a notion of
similarity between the PET images.

m(0]z) =

} , which verifies

2.2. Local analysis

Consider now 6 a fixed reference image, and R as a function
of 61. In a neighborhood of 6y, we can compute the Taylor
expansion of R and obtain (with Ay = A6y + b) :

1 1
R (0 + 66) =~ 3 (1 — 460TI(90)69) ,

with I(6p) = ATD(AI—O)A the Fisher information in 6y
(D(5:) denoting the diagonal matrix with coefficients ﬁ)
Thus, locally, the Bayesian risk geometry reduces to the
Fisher-Rao geometry of probabilistic models.
Moving from the space of PET images to the space of

projections, we obtain ( with 0\ = Ad0) :

This formula provides an understanding of the key factors
influencing the detectability of perturbations in the reference
image. To make R(6y + d60) as large as possible, we need to

L 2 . .
make > ;7 % as small as possible which reveals :

* A volume/geometry effect : the more the perturbation 66
is localized in a small/flat region, and the fewer lines of re-
sponse it impacts (or the fewer it impacts lines of response
in the case of a flat region), the smaller Zlel %2, is.

* A relative activities effect : the more the perturbation 60
is localized in a region whose contribution to the lines of
response passing through it is negligible compared to the
contributions of the other regions, the lower the detectabil-
ity of a variation of constrast caused by this perturbation.

* A tomographic effect : the more the perturbation 46 is
localized in a central region, the more the lines of response
passing through it will be impacted by the other regions,
and the more this pertubation will be prone to the relative
activities effect mentioned above.

Finding the least distinguishable local direction (with highest
Bayesian risk) amounts to solve the following problem :

min 50T1(00)00 st |00 =1 (1)

The geometry of the optimization landscape of problem
(1) crucially depends on the choice of the metric on the PET
image space.

In the sequel, we numerically investigate differents norms
for measuring pertubrations §6 with the aim of observing in
practice the three above-mentioned effects in clinically sig-
nificant situations.

3. EXPERIMENTS

3.1. ROIs based pertubations

In order to construct interpretable metrics and to reduce to
dimensionality of the problem, we chose to work with PET
images segmented by anatomo-functional regions of interest
(ROIs). We then consider a parametric model u = (u,.) €
U C RE— 9 = Mu, where U is the parameter space, and
R is the number of ROIs.

While information on the relative activities and locations
of perturbations is preserved by this parameterization of the
PET image space, the volume differences between the regions
impacted by the perturbations considered are very significant,
and the perturbations produced are therefore a priori incom-
parable.

In the sequel, we investigate different ways of taking into
account ROIs volumes to construct comparable perturbations.

3.2. Results

We consider a synthetic experiment derived from a measured
[*®F]-FDG brain exam of a healthy subject. The associ-
ated T1 MRI image was segmented into 100 regions using
FreeSurfer!. The PET signal was measured in a frame be-
tween 30 minutes and 60 minutes after injection in each re-
gion using PETSurfer [8] to generate the anatomo-functional

"https://surfer.nmr.mgh.harvard.edu



phantom. 3-dimensional PET simulations for a Biograph 6
TruePoint TrueV PET system were then generated using an
analytical simulator, including all corrections.

We denote (eq, - - - , epr) the canonical basis of the param-
eter space, and D, = 607 1(0y)60, for 66, = Muw,e, the
distinguishability score of ROI r, where ||w,e,.|| = 1 for dif-
ferent choice of the norm ||.||.

Note that in the following analysis, we will consider abso-
lute variations in activity and not relative variations in contrast
(i.e. the perturbations produced will be independent of the ac-
tivity in the reference image), in order to analyze the volumes
effect independently of the relative activities effects.

Euclidean norm on the parameter space. For du =
SF  Super, |6ul|2 = 3, 6u2. This amounts to comparing
perturbations for which the same variation in mean activity
has been achieved.
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Fig. 1: Correlation between distinguishability score and volumes for
the norm ||.|«.

Figure 1 shows the correlation between the distinguisha-
bility score and ROI volumes in the case of the norm ||.||,.
Naturally, distinguishability is dominated by volume effects
(which is well explained by the volume differences between
ROIs), thus preventing the observation of the relative activi-
ties and location effects mentioned above.

Euclidean norm on the PET image space. For du =
SE  Surer, |0ul|2 = 3, V,6u2, where V,. denotes the vol-
ume of region r. This is the classical metric used in image
processing.

Figure 2 shows that while the volume effect has been par-
tially mitigated, detectability is still largely dominated by vol-
ume differences between ROIs.

Normalized for volumes norm on the parameter space.
For u = Y. Sue,, |0ul|? = 3, V;26u2. This amounts
to comparing perturbations for which the same variation in
total dose was achieved.

Figure 3 shows that the normalization induced by the use
of the norm ||.||y has reversed the influence of volumes on
detectability: the variations in mean activity permitted in the
largest regions by the norm ||.||y are so insignificant that these
become the least distinguishable regions, and vice versa for
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Fig. 2: Correlation between distinguishability score and volumes for
the norm ||.|2.
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Fig. 3: Correlation between distinguishability score and volumes for
the norm ||.||v.

the smallest regions.

The conclusion of this empirical study is that it is highly
non-trivial to take appropriate account of ROIs volumes : this
would involve tuning normalization coefficients (Vf here)
that are likely to depend on ROIs geometries and whose tuned
value can no longer be interpreted in terms of injected radio-
tracer dose.

In the sequel, we propose to restrict ourselves to a particu-
lar perturbations model, allowing us to intrinsically normalize
volumes and geometries effects, and thus consider compara-
ble perturbations.

3.3. Functional subregions based perturbations

The proposed perturbation model consists in restricting the
perturbations considered to impact a functional sub-region of
each ROI. These functional subregions are centered in each
ROI and have a volume of the order of 2 cm3, which corre-
sponds to real cases of cerebral lesions. Regions with smaller
volumes are not considered. This restriction is used to nor-
malize the perturbations in terms of volumes and geometries
leading to a new perturbation model: 60 = M’u.

Note that, since the effects of volumes and geometries



have been mitigated, we can now work with a relative met-
ric to measure variations in contrast (which is clinically more
significant).

3.4. Results

As above, D, = 601 1(0y)60,. for 50, = M'w,.e, the distin-
guishability score of ROI r, where w,. is the variation of mean
activity in the functional subregion of ROI r and ||w,e,|| =1
for the relative norm on the parameter space.

Relative norm on the parameter space. For ju =
SE  Super, ||6ul? = Zr(%)? This amounts to com-
paring perturbations for which the same contrast w.r.t the
reference has been achieved.

In figure 4 below, we show concrete examples of such
perturbations (the functional subregions shown correspond to
three of the five worst cases, the other two being cortical re-
gions and therefore difficult to represent in two dimensions).

Axial plane

Sagittal plane

Coronal plane

Fig. 4: Concrete examples of three of the five less distinguishable
perturbations (in red).

Along these particular directions, we can perform a quan-
titative analysis of the role played by the injected radiotracer
dose in the detectability of the perturbations produced. In-
deed, by fixing the Bayesian risk to a constant value, for ex-
ample 30 %, we can study the maximum contrast achievable
along these particular directions w.r.t the injected radiotracer
dose.
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Fig. 5: Maximum relative change in particular functional subregions
w.r.t the injected radiotracer dose at R = 30%.

Thus, according to our study, it is possible, in a low-dose
scenario (with a total of three million events detected), to per-
turb the reference image by creating a contrast of more than
thirty percent in the vermis, for example, while keeping a
probability of not being able to distinguish this perturbation
in the acquired data of more than thirty percent.

Note that the worst case in problem (1) corresponds to
the eigenvectors of I(6y) associated with the lowest eigen-
values. The orthogonal nature of these eigenvectors implies
that they are made up of mixtures of (functional subregions
of) ROIs, which may not give rise to clinically relevant inter-
pretation and is therefore not considered here. In particular,
we restricted the analysis to directions given by the canonical
basis of the parameter space (which correspond to localized
perturbation of the reference image). It should be noted, how-
ever, that the point of view adopted here is optimistic in the
sense that perturbations even less distinguishable than those
proposed can be constructed by following the directions given
by these eigenvectors.

4. CONCLUSION

This paper proposes a framework, based on a Bayesian infer-
ence problem, for investigating aleatoric uncertainties in the
PET reconstruction problem. This framework allows us to de-
fine a distinguishability measure between PET images, which
we have analyzed locally in the neighborhood of a reference
image, which naturally amounts to the analysis of the Fisher
information metric. This framework is quite general and ap-
plies beyond the particular PET reconstruction problem. This
analysis has enabled us to identify the key factors control-
ling the detectability of a perturbation of the reference image,
and to propose a perturbation model to illustrate them while
avoiding undesirable effects. Along these particular pertur-
bations, we analyzed the role of the injected radiotracer dose,
and highlighted that low-dose scenarios are particularly prone
to the presence of reconstruction artifacts.



5. COMPLIANCE WITH ETHICAL STANDARDS

This is a numerical simulation study for which no ethical ap-
proval was required.
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