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Lindenmayer graph languages, first-order theories and
expanders

Teodor Knapik1

1ISEA, Université de la Nouvelle Calédonie,

May 20, 2024

Abstract

Combinatorial generation of expander families and Lindenmayer-style development
models are both parallel in nature. Both can be handled within proposed parallel graph
grammar formalism. Their first-order properties can then be checked by encompassing
the generated graph language into an appropriate automatic structure.
Keywords: parallel graph grammars, 1st order model checking, automatic structures,

expanders.

1 Introduction
Deeply concerned about the ongoing destructive processes that threaten the mankind and the
nature, we advocate for an increased effort toward applications of relevant theories beyond com-
puter science and mathematics. Formal languages, graphs and automata cover several themes
in line with the current emergency. Lindenmayer systems, also known as L-systems, and ex-
panders show promising potential for such applications as generative mechanisms for modelling
structures of interest in materials science. Their connections to logic in computer science in-
clude the following question: “Which properties of expander families can be algorithmically
checked?”

Our contribution
To answer the question above, we introduce 0L graph grammars1 and demonstrate how to
implement the most important constructs for the combinatorial generation of expander fam-
ilies within our formalism. To remain credible, we design it to capture grids, meshes, and
similar multidimensional structures that are essential in physics, chemistry, and biology. This
application-oriented requirement excludes the possibility of checking monadic second-order de-
finable properties. We only consider here those definable at the first order, nevertheless retaining
the quantitative logics for a more in-depth future investigation.

We identify three features of 0L graph grammars that shape the border of the decidable:
edge-determinism, vertex-determinism and completeness. After defining the structure encom-
passing the graph language generated by a 0L graph grammar, we show that its word-automatic

1In the classification of L-systems “0” stands for “context-free” and “L” for Lindenmayer.
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presentation can be constructed in quadratic time. Thanks to our another construction that
makes complete any 0L graph grammar, the completeness is not a restriction at this stage.

Given a first-order sentence in graphs signature [7] and a 0L graph grammar, we ask if the
corresponding 0L graph language includes a graph satisfying the sentence. By checking the
associated automatic structure for a an adequate translation of the input sentence, we have an
answer in the case of deterministic 0L graph grammars. On the other side of the decidability
border, we reduce the acceptance of the empty word by a deterministic Turing machine to
the latter question. The reduction yields a 0L graph grammar that is edge-deterministic and
possesses a unique derivation. With a few satellite undecidability results, we can conclude that
the challenge lies in identifying individual graphs within the structure encompassing the entire
0L graph language.

Significance
Introduced in 1968 by Aristid Lindenmayer [25] and later generalised as graph grammars [20],
L-systems remain an active research area [11]. Their extensions have been widely used for
modelling the growth of living organisms or plant structure [33, 27], often using dedicated
programming languages [31]. However, their applications go beyond life sciences and affect
areas as varied as image synthesis [35, 33], multi-agent simulation [28] or engineering [3].

Later named by Pinsker [32] but introduced by Kolmogorov and Barzdin as early as 1967,
expanders have their origins in Kolmogorov’s interest in the structure of axonal connections
in the brain [2]. Applications of expanders span many areas such as communication networks,
error-correcting codes, pseudorandomnes, cryptography, computational complexity including
the PCP theorem [8], derandomisation, computational group theory or number theory to name
a few (see [19] and [26] for more details).

To our knowledge, parallel graph grammars and expanders2 have been absent from the field
of logic. This paper establishes their link with finite automata and finite [15, 24] as well as
metafinite [14, 4] model theory.

Related work
Parallel graph rewriting has a rich literature (see [10]) from pioneering work of [9] to more
recent developments [37, 36] but all these approaches are context-sensitive. With an undecid-
able emptiness problem, an algorithmic checking of their properties, which is our main concern,
seems very unlikely. Loosely related to that stream of work, our contribution can be seen
as a simplification of formalisms of [20] and [21]. Graphs are considered there up to isomor-
phism which makes difficult referencing vertices or edges, requires long definitions and quite
complicated proofs. With its first order logic-based core, our work extends both approaches.
Additionally, it allows for multiple edges and loops. Several results, extending those of [20],
are a by-product of the (un)decidability of model or language checking problems for 0L graph
languages. Drawing our inspiration in the rich theory of monadic second order logic of graphs
[7], we aim to stimulate an exploration of the connections between parallel graph languages
and logics.

Organisation of this paper
After some preliminaries, in Sect. 3 we review the basics of automatic structures. In Sect. 4 we
introduce 0L graph grammars and state their typical language-theoretic decidability results. In

2except computation theory
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Sect. 5 we review the most prominent combinatorial constructions of expanders and show how
the corresponding deterministic or vertex-deterministic 0L graph grammars can be constructed.
Logic related decidability results are stated in Sect. 6 together with the discussion about the
central problem of this paper: the language checking problem. Most of our positive results follow
from the construction of Sect. 7, namely the embedding of any complete 0L graph grammar into
an automatic structure. In Sect. 8 we show how to simulate any deterministic Turing machine
by an edge-deterministic 0L graph grammar. Short conclusion closes the main part of the paper
and all missing proofs can be found in subsequent appendices.

2 Basic notations
Throughout the paper, placeholder “ ” is often used to avoid specifying inessential parts in a
notation like e.g. writing “let x aÐ→ ” in a more compact way than “let x aÐ→ y for some y” while
y does not matter. As usual [n] stands for {1,2, . . . , n} with [0] = ∅. A tuple of length n ∈ IN
(also called an n-tuple) on a set D is a map t ∶ [n] → D. When t(i) = ei, for i ∈ [n], a usual
notation t = (e1, . . . , en) is often used. The 0-tuple is written (). Instead of D[n], the set of all
n-tuples on D is simply written Dn. A tuple w of symbols from a finite alphabet Γ is called a
word and is written w = a1a2 . . . an where w(i) = ai, ai ∈ Γ and w(≤ i) = a1a2 . . . ai, for i ∈ [n].
The length of w, written ∣w∣, is n and the word of length 0, called the empty word, is written ε
with Γ0 = {ε}. The set of all words is written Γ∗, where Γ∗ ∶= ⋃n∈IN Γn.

Instead of being indexed by numbers in [n], tuples may also be indexed by elements of a
set X . The family of subsets of X of size k is written ℘k(X ). Given X ∈ ℘n(X ), an X-tuple
t of a set D is an element of DX. An X-relation on D is a set of X-tuples. Operations on such
relations are similar to those of relational algebra [22]. Let X ∈ ℘n(X ) and Y ∈ ℘m(X ). For a
(possibly partial) function σ∶X⇀ Y, define an upturn (along σ) of t ∈DY (resp. R ⊆DY) as

σ−1(t) ∶= {s ∈DX ∶ ∀x ∈ dom(σ) s(x) = t(σ(x))},
(resp. σ−1(R) ∶= ⋃t∈R σ

−1(t) ) . (2.1)

The upturn of R along an inclusion X ⊇ Y is called a cylindrification of R up to X and is written
X(R). The upturn along an inclusion X ⊆ Y (resp. Y∖X ⊆ Y) is a projection of R on (resp. out
of) X and is written πX(R) (resp. π∃X(R)).

Let /∈ Γ be an additional symbol called blank and set Γ ∶= Γ ∪ { }. A convolution ⊗w of
an X-tuple of words w ∈ (Γ∗)X is a word u∶ [l]→ ΓX, with l =maxx∈X ∣w(x)∣, on the alphabet ΓX

of X-tuples of letters of Γ , with ⊗w ∶= u defined by

u(j)(x) = { w(x)(j), if 1 ≤ j ≤ ∣w(x)∣,
, if ∣w(x)∣ < j ≤ l.

A hole in word t ∈ (ΓX)∗ is a position i such that t(i)(x) = for some component x ∈ X and
there exists j > i such that t(j)(x) ≠ . A word is hole-free if it has no hole and a language
on (ΓX)∗ is hole-free if it has only hole-free words. Note that the result of a convolution is
always hole-free. Operation ń⊗ż is extended to X-relations : ⊗R ∶= {⊗w ∶ w ∈ R}, for every
R ⊆ (Γ∗)X. The inverse of the convolution ⊗−1 is defined for hole-free words over ΓX in the
usual way.

A (finite) X-automaton [18, 17, 16] on Γ is a (finite word) automaton on ΓX. An X-
automaton A is hole-free if its language L (A ) is hole-free. As the set of hole-free words on ΓX

is a regular language, any X-automaton may be restricted in such a way that it accepts only hole-
free words. In the sequel, all X-automata are assumed to be hole-free. Therefore, every (hole-
free) X-automaton A induces the relation JA K ⊆ (Γ∗)X defined by JA K ∶= ⊗−1(L (A )). When
X is clear from the context or irrelevant, we speak of tuple automata or, more specifically, of pair
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(when ∣X∣ = 2) or triple (when ∣X∣ = 3) automata. The arity ar(A ) of an X-automaton is the arity
of the induced relation: ar(A ) ∶= arJA K. We assume that the reader is familiar with standard
constructions on finite (word) automata notably Boolean operations and concatenation and we
only give one construction specific to tuple automata. For X ∈ ℘n(X ) and Y ∈ ℘m(X ) let
σ∶X ⇀ Y be a (possibly partial) function and let A be an Y-automaton, A = (Q,∆, I,F). An
upturn of A along σ is an X-automaton σ−1(A ) = (Q, σ−1(∆), I,F ), where F and σ−1(∆) are
defined by:

F ∶= {q ∈ Q ∶ ∃ f ∈ F q
( X)∗-- - - -⇢

A
f},

σ−1(∆) ∶= {p aÐ→ q ∶ ∃ b (p bÐ→q ∈∆ ∧ a ∈ σ−1(b))} .

Specific variants of the upturn for Y-automata are written as for Y-relations: X(A ) is a cylin-
drification up to X, πX(A ) (resp. π∃X(A )) is a projection on (resp. out of) X.

Lemma 2.1. For every Y-automaton and every (possibly partial) function σ∶X ⇀ Y, one hasJσ−1(A )K = σ−1(JA K).
3 Logic and structures
A relational signature is a set Π of predicate symbols, each symbol ϱ ∈ Π possessing its arity
ar(ϱ) ∈ IN. A Π-relational structure on a set D is a map D∶Π → ⋃i∈ar(Π) ℘(Di) such that every
predicate symbol ϱ ∈ Π is mapped into a relation D(ϱ) ⊆Dar(ϱ).

First-order formulae on Π are built, from atomic formulae with predicate symbols of Π,
using variables in X , connectives ¬,∧,∨,⊃ and quantifiers ∀,∃. Without loss of generality,
each quantified variable is assumed occurring free in the subformula. The set they form is
written FO(Π). We allow grouping of any sequence of universal or existential quantifiers
Qx1 . . . ,Qxk with Q ∈ {∀,∃} into quantifier block QX where X = {x1 . . . xk}. Every atomic
formula is considered as being of the form ϱ(σ) where σ∶ [ar(ϱ)] → X and X ∈ ℘m(X ) with
m ≤ ar(ϱ). In other words, a tuple of variables of an atomic formula is seen as an explicit
mapping. For instance, assuming x, y ∈ X , the traditional writing r(y, x, y) where r ∈ Π is of
arity 3 is seen as r(σ) where σ∶ [3]→ {x, y} with σ(1) = y, σ(2) = x and σ(3) = y. When X is the
set of free variables of a formula φ, the latter is often written φ(X). As every FO(Π)-formula
can be transformed into an equivalent one without ∧,⊃ nor ∀, we often give definitions or
constructions for FO(Π)-formulae using no other connectives than ¬,∨ and no other quantifiers
than ∃.

Every formula φ(X) ∈ FO(Π) induces on a structure D∶Π → ⋃i∈ar(Π) ℘(Di) an X-relation
D(φ(X)) ⊆DX defined inductively as follows

D(ϱ(σ)) ∶= σ−1 ○D(ϱ), where ϱ ∈ Π, σ∶ [ar(ϱ)]→ X and σ−1 is given by (2.1),
D(¬φ(X)) ∶= DX ∖D(φ(X))

D(∃Zφ(X)) ∶= π∃Z(D(φ(X)))
D(φ(X) ∨ ψ(Y)) ∶= (X ∪ Y)(D(φ(X))) ∪ (X ∪ Y)(D(ψ(Y)))

By an analogy between a structure D and a database, a formula φ(X) may be considered as a
(first-order) query with corresponding relation D(φ(X)) induced on D being the result of the
query.

Automatic structures
An automatic presentation of a relational structure D∶Π → ⋃i∈ar(Π) ℘(Di) is given by a tuple
of automata on Γ, A (D) = (Aδ,Aeq, (A (ϱ))ϱ∈Π) where Aδ is a usual finite automaton, Aeq is
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a pair automaton, and, ar(A (ϱ)) = ar(ϱ), for each ϱ ∈ Π, together with a surjective mapping
g∶L (Aδ)→D such that
• (u, v) ∈ JAeqK if, and only if g(u) = g(v), for all u, v ∈L (Aδ),
• (u1, . . . , uar(ϱ)) ∈ JA (ϱ)K if, and only if (g(u1), . . . , g(uar(ϱ)) ∈ D(ϱ), for all u1, . . . , uar(ϱ) ∈

L (Aδ).
A (D) is also said to be an automatic presentation of D via g. Such a presentation is said
injective when g is so. Then Aeq = A (=) is an automaton realising the identity on L (Aδ).
A structure possessing an automatic presentation is called an automatic structure. Using an
appropriate intersection of automata, every A (ϱ) can be arranged so that JA (ϱ)K ⊆ JAδKar(ϱ).
This is assumed for the sequel. Automatic structures have been introduced in 1976 by Hodgson
[18, 17] and independently by Koussainov and Nerode in 1994 [23] (see also survey [13]).

Construction of query automaton

Perhaps the most prominent property of automatic structures is that the result of every first-
order query is encoded by a regular language. In other words, every relation that is FO-definable
on an automatic structure may be encoded as a relation induced by a tuple automaton.

Let A (D) = (Aδ,Aeq, (A (ϱ))ϱ∈Π) be an automatic presentation of a relational structure
D∶Π → ⋃i∈ar(Π) ℘(Di). To every formula φ(X) ∈ FO(Π), an automaton H (φ(X)), called a
query automaton of φ(X), is associated inductively as follows

H (ϱ(σ)) ∶= σ−1(A (ϱ)) where ϱ ∈ Π and σ∶ [ar(ϱ)]→ X

H (¬φ(X)) ∶= A X
δ ∖H (φ(X)),

H (φ(X) ∨ ψ(Y)) ∶= (X ∪ Y)(H (φ(X))) ∪ (X ∪ Y)(H (ψ(Y))),
H (∃Zφ(X)) ∶= π∃Z(H (φ(X)))

where A X
δ is an X-automaton such that JA X

δ K = JAδKX, viz., X-indexed free product of ∣X∣
copies of Aδ. The fundamental property of H is that g(JH (φ(X))K) = D(φ(X)), for every
φ(X) ∈ FO(Π). In particular, for a sentence ψ ∈ FO(Π), one has D ⊧ ψ ⇔ L (H (ψ)) ≠ ∅.3
This leads to the well-known result that the FO-model checking (resp. query evaluation) for
automatic structures is decidable (resp. computable), even in the case when FO(Π) is extended
with counting quantifiers saying that “there are k mod m many elements” or “there are infinitely
many elements”. Indeed, the above inductive construction of the query automaton can be
extended with two corresponding cases [4]. The results of our paper remain valid in that
extension.

Remarks on complexity

The construction of query automaton, also known as query evaluation problem, has a reputation
of non-elementary complexity [13]. However, for quantifier-free formula, this construction can
be done in time O(mn) where m is the number of transitions of the largest automaton of
A (D) and n is the number of atoms and their negations in the input formula [4]. In the
general case, input formula can be put in prenex form in linear time. Then the time complexity
is an exponential tower of height k with mn on top of it, where k is the number of quantifier
alternations. Note that this worst-case complexity should not be considered prohibitive for real
life applications. Properties that need four quantifier alternations or more are very uncommon.
Also uncommon is the exponential blow-up of the determinisation. As is observed in [12], it
occurs only in cases similar to the usual example.

3Note that, for a sentence ψ ∈ FO(Π), H (ψ) is an automaton over single letter alphabet {()}.
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4 Lindenmayer graph languages
The grammatical formalism developed in this section subsumes those of graph grammars dis-
cussed in [21]. A 0L graph grammar introduced in the sequel generates (concrete) graphs as
incidence structures of the form (V,E, ℓ, ℷ) where
• V ⊆ Θ+ are the vertices given as words over an alphabet Θ of vertex names,
• E ⊆ Θ∗Ω+ are the edges given as words over an alphabet Ω of edge names, Θ∩Ω = ∅, possibly

with a prefix in Θ∗,
• ℓ∶V → Γ is the labelling of vertices and
• ℷ ⊆ Σ × V ×E × V is the incidence relation given as a set of labelled incidences of the form
a(u,w, v) with u, v ∈ V , w ∈ E and a ∈ Σ, such that {a(u,w, v) ↦ w ∶ a(u,w, v) ∈ ℷ} is a
bijection between ℷ and E.

The set of (concrete) graphs over vertex and edge alphabets Θ and Ω with Γ-labelled vertices
and Σ-labelled edges is written G (Γ,Σ,Θ,Ω). The set of those graphs of G (Γ,Σ,Θ,Ω) that have
their edges and vertices all of length l ∈ IN is written Gl(Γ,Σ,Θ,Ω). This formalism is general
enough to handle unlabelled or undirected graphs too. Undirected incidences a({u, v},w)
(resp. with labels at both extremities ({(a, u), (b, v)},w)) often drawn as u c v (resp. u a b v)
are represented by two opposite directed incidences (resp. with a pair of labels): a(u,w, v) and
a(v,w, u) (resp. (a, b)(u,w, v) and (b, a)(v,w, u)).

A 0L graph grammar over a (finite) set Γ of vertex labels, a (finite) set Σ of edge labels,
a (finite) set Θ of vertex names and a (finite) set Ω of edge names is a triple G = (VG,EG,AG)
where
• AG is the axiom of the grammar representing a graph with no edge and single vertex encoded

by the empty word labelled AG which can but is not necessarily in Γ,
• VG is a finite set of vertex productions of the form A → G, with A ∈ Γ ∪ {AG} and G ⊆

G1(Γ,Σ,Θ,Ω), such that the right hand sides of VG are pairwise disjoint, respectively to
their vertex and edge sets,4

• EG is a finite set of edge productions of the form (A1 → G1)
aÐ→ (A2 → G2) → ℶ, with ℶ

using two disjoint sets of edge labels
Ð→
Σ and

←Ð
Σ , each one in bijection with Σ, where

a ∈ Σ,
A1 → G1, A2 → G2 ∈ VG, with G1 = (V1, , , ) and G2 = (V2, , , ),

and ℶ ⊆ (Σ × V1 ×Ω × V2) ∪ (Σ × V2 ×Ω × V1) are production’s incidences
such that every edge name of Ω appears at most once in the right hand sides of grammar’s
productions VG ∪ EG.4The set of such grammars is written 0L(Γ,Σ,Θ,Ω). The edge label from
Ð→
Σ (resp.

←Ð
Σ ) corresponding to a ∈ Σ is written Ð→a (resp. ←Ða ). For every production P ∈ VG ∪ EG

let lhs(P ) (resp. rhs(P )) stands for its left (resp. right) hand side, viz., for vertex production
P1 = A → G, lhs(P1) = A (resp. rhs(P1) = G) and for edge production P = P1

aÐ→ P2 → ℶ,
lhs(P ) = P1

aÐ→ P2 (resp. rhs(P ) = ℶ). As every symbol i ∈ Θ ∪ Ω appears at most once in
rhs(VG ∪EG), we denote by prd(i) the production P ∈ VG ∪EG where i appears in rhs(P ). When
AG ∉ Γ, a vertex production with the axiom on its left hand side is called an axiom production.
A vertex (resp. edge) production of the form A → (∅, , , ) (resp. P aÐ→ P ′ → ∅) is called
erasing. A grammar with no erasing productions is called non-erasing.

Every 0L graph grammar G = (VG,EG,AG) can be seen as a graph with vertices VG labelled
in Γ and edges lhs(EG) labelled in Σ together with an additional information in rhs(EG). Every
vertex production A→H is an A-labelled vertex of graph G. Every edge production (A→H) aÐ→
(A′→H ′) → ℶ defines an a-labelled edge (A→H) aÐ→ (A′→H ′) of graph G. With this view of G,
from a (concrete) graph G = (V,E, ℓ, ℷ) ∈ Gl(Γ,Σ,Θ,Ω) with vertices and edges of length l, one

4This requirement is not necessarily respected in examples in order to keep them simple.
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derives in a single step a (concrete) graph G′ = (V ′,E′, ℓ′, ℷ′) ∈ Gl+1(Γ,Σ,Θ,Ω) upon selecting a
graph homomorphism h∶G → G satisfying h(v) = ℓ(v)→ for every vertex v ∈ V and, for every
edge w ∈ E such that a(u,w, v) ∈ ℷ, satisfying h(w) = h(u) aÐ→h(v) → . Resulting graph G′ is
said to be produced by h from G, written G hÐ→

G
G′, or derived (in a single step) from G, written

GÐ→
G
G′ and is obtained as follows:

ℓ′ ∶= ⋃v∈V {vi↦ ℓv(i) ∶ h(v) = →(Vv, , ℓv, ) ∧ i ∈ Vv},
V ′ ∶= ⋃A∈Γ(ℓ′)−1(A),
ℷ′ ∶= { b(ui,wj, vk) ∶ (h(w) = h(u) aÐ→ h(v)→ ℶ ∧

Ð→
b (i, j, k) ∈ ℶ) } ∪

{ b(vk,wj, ui) ∶ (h(w) = h(u) aÐ→ h(v)→ ℶ ∧
←Ð
b (i, j, k) ∈ ℶ) } ∪

{ b(ui, uj, uk) ∶ h(u) = →( , , , ℷu) ∧ b(i, j, k) ∈ ℷu},
E′ ∶= {w′ ∶ b( ,w′, ) ∈ ℷ′} .

In the above definition of ℷ′, incidences and corresponding edges in the 1st or 2nd (resp. in
the 3rd) member of the union are called inherited (resp. innate). Every ui ∈ V ′ ∪ E′ derives
(in a single step) from u ∈ V ∪ E via P , written v

PÐ→
G
vi, where P ∈ VG ∪ EG is a production

such that h(u) = P . If u0
P1Ð→
G

⋯ PnÐ→
G

un, we write u0
P1...PnÐÐÐ→
G

un and say that un derives from
u0 via (sequence of productions) P1 . . . Pn. The transitive closure of the single-step derivation
relation over graphs is the derivation relation, written “ +Ð→

G
”, and the language of G, viz., the set

of graphs derived or generated by G is defined as usual: L (G) ∶= {G ∶ AG
+Ð→
G
G}.

A slight generalisation of L (G), written L (G)N , arises when one distinguishes a subset of
non-terminal labels N ⊆ Γ∪Σ not to appear in the final result: L (G)N ∶=L (G)∩G (Γ∖N,Σ∖
N,Θ,Ω). A label in Γ∪Σ (resp. production of G) is accessible in (resp. is useful for) G, if it ap-
pears in (resp. is used in a derivation of) a graph of L (G). A graph grammar is trimmed if it has
only useful productions.A 0L graph grammar is edge-deterministic (resp. vertex-deterministic)
and called a eD0L (resp. vD0L) graph grammar if, for every triple (A1, a,A2) ∈ Γ×Σ×Γ (resp.
vertex label A ∈ Γ), it has at most one edge (A1 → ) aÐ→ (A2 → ) → ∈ EG (resp. one vertex
A → ∈ VG). A 0L graph grammar is deterministic and is called D0L graph grammar if it is
both vD0L and eD0L. The subset of 0L(Γ,Σ,Θ,Ω) that consists of D0L graph grammars is
denoted by D0L(Γ,Σ,Θ,Ω). A 0L graph grammar is unix if for every l ∈ IN it has at most one
derivation of length l. Obviously, every D0L graph grammar is unix.

We say that G is complete, if it satisfies the following two conditions:
(1) for every edge label a ∈ Σ and all vertices A1 → H1,A2 → H2 ∈ VG such that AG ∉ {A1,A2}

and an incidence a(u, , v) with u labelled A1 and v labelled A2 appear a right hand side
of a production, there exists an edge (A1 →H1)

aÐ→ (A2 →H2)→ ∈ EG,
(2) for every isolated vertex with label A ∈ Γ appearing in a right hand side of a production,

there exists a vertex A→ ∈ VG.
Derivations according to a complete 0L graph grammar are “easy”, in the sense that every

choice of vertex productions to apply on some graph G, for deriving in a single step a “child”,
can be completed with a compatible choice of edge productions. This is formalised in the
following lemma.

Lemma 4.1. Let G = (AG,VG,EG) be a complete graph grammar in 0L(Γ,Σ, , ) and let
G = (V,E, ℓ, ℷ) be a graph in L (G). Every labelling preserving map h∶V → VG extends into a
homomorphism from G into G.

The following proposition asserts that the completeness can be bypassed with the help of one
non-terminal vertex label and one non-terminal edge label.
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Proposition 4.2. For every 0L graph grammar G = (VG, , ) one can construct in time
O(∣VG ∣2) using additional non-terminal vertex label “ ¡” and non-terminal edge label “ !” com-
plete 0L graph grammar G ¡! such that L (G) = L (G ¡!){¡,!}. If G is vD0L or eD0L, then G ¡! is
so.

Note that, in general, the construction does not preserve the property of being unix, even for
unix eD0L graph grammars.

The following graphical formalism is used in subsequent examples. Every edge production
(A1 → H1)

aÐ→ (A2 → H2) → ℶ in EG is drawn separately using colours as an (abstract) edge
A1

aÐ→ A2 on the left hand side and H1 ∪H2 augmented with ℶ on the right hand side. Vertex
productions A1 → H1 and A2 → H2 are implicit form colour codes and are not listed unless
they cannot be inferred, notably when the axiom uses an extra label not in Γ. Incidences ℶ
are drawn as black edges. In addition, vertex or edge names from Θ ∪ Ω can be mentioned
in parentheses. During a rewriting step of a graphical representation of a graph (V,E, ℓ, ℷ),
every incidence in ℷ together with corresponding vertex labels is matched to a left hand side
of a graphical representation of an edge production so that the matching agrees on common
vertices. In other words, for each pair of incident edges drawn as e.g. A aÐ→ B

bÐ→ C, the vertex
production used at B must be common to both edge productions applied on A aÐ→ B and B bÐ→ C

(and similarly for other orientations of edges like A
a←Ð B

bÐ→ C or A aÐ→ B
b←Ð C). This is a

graphical counterpart of the homomorphism condition in the definition of derivation.
Note that arrows of

Ð→
Σ and

←Ð
Σ are not needed in a graphical representation. Moreover,

even a formal statement of G can be simplified by removing arrows of
Ð→
Σ and

←Ð
Σ in every edge

production, the left hand side of which is not a loop. If however it is a loop, like in e.g.
(A → H) aÐ→ (A → H) → ℶ, when homomorphism h∶G → G producing G′ from G maps to it
an edge between two distinct vertices of G, then

Ð→
Σ and

←Ð
Σ are necessary to avoid a confusion

about the direction of edges created by ℶ in G′ between the two copies of H. Now, in the
corresponding graphical representation of G we draw an edge A aÐ→ A at the left hand side and
there is no ambiguity about the direction of edges added on the right hand side between the two
copies H and H. Nevertheless, in such a case, one needs to keep in mind that, in a graphical
representation of the above edge production, A aÐ→ A corresponds to a loop of G which can be
matched by loop of G over one of its vertices, say v. Then, in produced G′, there is single copy
of H corresponding to v (instead of two copies of H, in case the matched edge of G is not a
loop) and edges created by ℶ for that copy are loops.

Another difference between a formal statements and a graphical formalism concerns the
meaning of “right hand side”. For edge production P = (A1 → H1)

aÐ→ (A2 → H2) → ℶ, rhs(P )
appears only as a portion of the right hand side of the graphical representation of P . Indeed, the
latter includes drawings of H1 and H2 whereas the former is rhs(P ) = ℶ. The following example
illustrates the differences between the graphical representation and the formal statement of a
0L graph grammar.
Example 4.3
Consider Γ ∶= {A}, Σ ∶= {a}, Θ ∶= {0,1,2,3,4}, Ω ∶= {α,β, γ, δ} and (Ax,V,E) ∈ 0L(Γ,Σ,Θ,Ω)
where V ∶= {Ax → G0, A→ G1, A→ G2},

E ∶= {(A→ G1)
aÐ→ (A→ G1)→ ℶ1, (A→ G2)

aÐ→ (A→ G2)→ ℶ2}
with G0 ∶= ({0,1,2},{α,β},{0↦ A,1↦ A,2↦ A,},{a(0, α,1), a(1, β,2}),

G1 ∶= ({3},∅,{3↦ A,},∅), ℶ1 ∶= {Ð→a (3, γ,3)},
G2 ∶= ({4},∅,{4↦ A,},∅), ℶ2 ∶= {←Ða (4, δ,4)} .
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(Ax,V,E) is represented graphically on
the right. It consists of the axiom produc-
tion and the two edge productions. Re-
maining vertex productions, namely A →
A(3) and A→ A(4), are omitted, as these
can be inferred from the two edge produc-
tions.
The first two steps of possible derivations
are depicted on the right-below.

Ax Ð→ A(1)

A(0)

A(2)

a(α)

a(β)

A

A

Ð→

A(3)

A(3)

a a(γ)

A

A

Ð→

A(4)

A(4)

a a(δ)

A(1)

A(0)

A(2)

Ax

←ÐA(13)

A(03)

A(23)

Ð→ A(14)

A(04)

A(24)

↓

a(α)

a(β)

a(αγ)

a(βγ) a(βδ)

a(αδ)

Seen as a graph, this 0L graph grammar consists of three
isolated vertices forming V, two of which are equipped
with a loop, as depicted on the right. The additional
information about E mentioned in the definition of 0L
graph grammar is put in brackets.

Ax → G0 A→ G1 A→ G2

a[ℶ1] a[ℶ2]

This grammar is not complete. It lacks edges between the two above A-labelled vertices (in
each direction). It is neither vD0L nor eD0L.
Example 4.4
By extending Example 4.3 with an additional edge production (A → G1)

aÐ→ (A → G2) → ℶ3

where ℶ3 ∶= {Ð→a (3, ζ,4)} which can be depicted as A aÐ→ A Ð→ A(3)
a(ζ)
ÐÐ→ A(4), two more

graphs derive from G0 in a single step: A(03)
a(αζ)
ÐÐÐ→ A(14)

a(βδ)
←ÐÐÐ A(24)

A(03)
a(αγ)
ÐÐÐ→ A(13)

a(βζ)
ÐÐÐ→ A(24) .

Observe that these graph share their vertices with graphs derived in Example 4.3. Also, each
new graph shares one edge with a graph from the latter example.
Example 4.5
D0L grammar generating a language of 2n × 2n grids, for n ≥ 1.

A A
a Ð→

A A

A A

A A

A A

a

aa
b

a

b
a

b

a

b

A

A

b Ð→

A A

A A

A A

A A

b b

a
b

a

b

a
b

a

b

Note that the unique vertex production is easily inferred from the two edge
productions. As it is not explicitly specified, the axiom carries the unique
vertex label A.
Example 4.6
D0L grammar for undirected unlabelled graphs (formally ∣Γ∣ = ∣Σ∣ = 1)
generating all hypercubes via its unique derivation depicted below.

●

●
→

●

●

●

●
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● →
●

●
→

●

●

●

●
→

●

●

●

●
●

●

●

●

→
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

Observe that by definition, a 0L graph grammar cannot be ambiguous. Indeed, every graph
in L (G) has a unique derivation. If, two distinct derivations lead to isomorphic graphs, say
(V1,E1, , ) and (V2,E2, , ), then V1 ∪E1 ≠ V2 ∪E2 (see Example 4.3). However, two distinct
graphs need not to be disjoint as pointed out in Example 4.4.

As L (G) is in one-to-one correspondence with the set of derivations of G, one can stratify
L (G) according to derivation length. For l ∈ IN, an l-layer of L (G) is the set, written Ll(G),
of graphs having derivations of length l according to G. With that respect, the following two
lemmas are as obvious as important.

Lemma 4.7. Ll(G) ⊆ Gl(Γ,Σ,Θ,Ω), for every l ∈ IN and every G ∈ 0L(Γ,Σ,Θ,Ω).

Lemma 4.8. For every unix 0L graph grammar G and every l ∈ IN
(1) ∣Ll(G)∣ ≤ 1 and
(2) if ∣L (G)∣ = ω, then ∣Ll(G)∣ = 1.

We now turn to a few typical language-theoretic decision problems.

Theorem 4.9. The following problems
Instance: 0L graph grammar G, label λ of G and production P of G.
Finiteness: Is L (G) finite ?
Emptiness: L (G) = ∅ ?
Accessibility: Is λ accessible in G ?
Usefulness: Is P useful for G ?

are
(i) decidable for complete 0L graph grammars without non-terminals and for D0L graph gram-

mars even with non-terminals,
(ii) undecidable for unix eD0L graph grammars, with non-terminals in the case of emptiness.

For every 0L graph grammar G, by enumerating Ll(G), one can decide if a concrete graph
G ∈ Gl(Γ,Σ,Θ,Ω) is in L (G). The membership up to isomorphism considered in the next
statement is a bit more challenging.

Proposition 4.10. The (abstract) membership problem is decidable for D0L graph grammars
even with non-terminals. It is undecidable for unix eD0L graph grammars.

We let V(G) ∶= ⋃(V, , , )∈L (G) V (resp. E(G) ∶= ⋃( ,E, , )∈L (G)E, I(G) ∶= ⋃( , , ,ℷ)∈L (G) ℷ)
denote the sets of all vertices (resp. edges, incidences) generated by G. We write V(G)N , E(G)N
and I(G)N , when generating is restricted to L (G)N for some set N of non-terminals. The sets
so defined are stratified, with layers Vl(G) ∶= {v ∈ V(G) ∶ ∣v∣ = l}, El(G) ∶= {v ∈ E(G) ∶ ∣v∣ = l}
and Il(G) ∶= {a(u,w, v) ∈ I(G) ∶ ∣u∣ = ∣v∣ = ∣w∣ = l} for l ∈ IN. Similarly for Vl(G)N , El(G)N and
Il(G)N .

The incompatibility relation (of G), written “�”, is defined on (Θ ∪Ω)∗ as
� ∶= �0 ∪ �1 ∪ �−1

1 ∪ �2 ∪ �−1
2

where
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�0 ∶= {(uis, ujt) ∈ (Vl(G) ∪ El(G))2 ∶ l ∈ IN+ ∧ lhs(prd(i)) = lhs(prd(j)) ∧ prd(i) ≠ prd(j)}
�1 ∶= {(us,wt) ∈ (Vl(G) ∪ El(G))2 ∶ l ∈ IN+ ∧ ∃a ∈ Σ ∃u1, u2 ∈ V(G) (a(u1,w, u2) ∈ I(G) ∧

(u�0 u1 ∨ u�0 u2))}
�2 ∶= {(ws,w′t) ∈ El(G)2 ∶ l ∈ IN+ ∧ ∃a ∈ Σ ∃u1, u2 ∈ V(G) (a(u1,w, u2) ∈ I(G) ∧

(u1 �1w
′ ∨ u2 �1w

′))}
The incompatibility relation is intended to capture the impossibility of two elements, vertices
or edges, of the same layer, belonging to the same graph. Indeed, �0 says that applying two
different productions on the same vertex or edge results in two sets (of vertices or edges) that
cannot belong to the same graph. A bit more subtle is the impossibility related to inherited
edges as defined by �1 and �2. The former says that an inherited edge is incompatible with
every vertex or edge which is incompatible with its source or its target. The latter says that
two inherited edges are incompatible if one is incident to a vertex incompatible with the other.
Note that � is irreflexive and, as �0 = �−1

0 , it is also symmetric. The layerwise complement of
� is the compatibility relation, written � and defined by:

� ∶= ⋃
l∈IN
((Vl(G) ∪ El(G))2 ∖ �) .

A set S ⊆ Vl(G) ∪ E(G) is compatible (resp. maximal compatible) if its elements are pairwise
compatible, viz., S2 ⊆ � (resp. and is ⊆-maximal among compatible sets). Note that � is reflexive
and symmetric but not transitive. The relevance of this notion is highlighted by the following
lemma closing this section.

Lemma 4.11. If G is a complete 0L graph grammar, then
{S ⊆ Vl(G) ∪ El(G) ∶ S is maximal compatible} = {V ∪E ∶ (V,E, , ) ∈Ll(G)} .

5 Expanders
In this section we focus on families of efficiently connected graphs. Such families called ex-
panders (see [19] and [26] for more details) have been studied mostly in the case of undirected
graphs of uniform degree, also called d-regular, where all members of a family have its vertices
of the same degree d. This section is written assuming such setting.

Intuitively, an expander is a large graph which is sparse but efficiently connected relatively
to its degree. This paradigm can be formalised using the Cheeger constant also known as the
isoperimetric number, written h(G) for graph G = (V,E) and defined by

h(G) ∶= min{∣∂S∣
∣S∣

∶ S ⊂ V ∧ 0 < ∣S∣ ≤ 1
2 ∣V ∣} where ∂S ∶= {{u, v} ∈ E ∶ u ∈ S ∧ v ∈ V ∖ S} .

An infinite family {Gi ∶ i ∈ I} is called an expander family if all its members have the same
degree and there exists ϵ ∈ IR+ such that h(Gi) > ϵ for all i ∈ I. Although among graphs with n
vertices the maximum value of the Cheeger constant is obtained for clique h(Kn) = n/2, because
the degree of cliques grows with their size, {Kn ∶ n ∈ IN} is not an expander family. As the
problem of computing the Cheeger constant is NP-hard, one uses the isoperimetric inequalities
of [1]

d − λ2

2
≤ h(G) ≤

√
2d(d − λ2)

where d is the degree of G and λ2 stands for the second largest eigenvalue of the normalised,
by factor 1/d, adjacency matrix of G. Because λ2 > 0 one looks for graph families where
all members have the second eigenvalue as small as possible. The smallest values are hit by
Ramanujan graphs where λ2 ≤ 2

√
d − 1. Efficient construction of expanders is a challenging

research topic. In this section we review a few graph operations used in the most elementary
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combinatorial constructions of expanders and show how these can be implemented within 0L
graph grammar framework. Algebraic constructions (extensively covered in survey [26]) where
expanders occur as Cayley graphs are beyond the scope of this paper.

5.1 2-lifts
●

●
Ð→

● ●

● ●

●

●
Ð→

● ●

● ●
As established in [29] and [30], starting from an arbitrary bipartite Ramanujan graph, the above
very simple two rules let generate an infinite family of bipartite Ramanujan graphs. These two
edge productions together with vertex production ● → ● ● and another one, which from
the axiom yields the starting bipartite Ramanujan graph, say B, form a complete vD0L graph
grammar, say GB. However, only a strict subset of L (GB) is Ramanujan. Indeed, it is shown
in [29] that there exists a derivation along which encountered graphs form the desired family.5
As it requires a nondeterministic choice among the above two vertex productions, the n-th
graph of the family is obtained in time o(2n). However, an independently discovered essential
improvement of this method leads to a polynomial time construction [6]. A family obtained is
not limited to d-regular graphs. Indeed, the construction lets derive a family of (c, d)-biregular
Ramanujan graphs starting from one such graph. A bipartite graph is (c, d)-biregular if all
vertices in one part have degree c and those in the remaining part have degree d.

5.2 Shift 4-lifts
●

●
→
● ● ● ●

● ● ● ●

●

●
→
● ● ● ●

● ● ● ●

●

●
→
● ● ● ●

● ● ● ●

●

●
→
● ● ● ●

● ● ● ●
The construction using 2-lifts is further improved in [5] by using shift 4-lifts (or shift 3-lifts
defined similarly). This operation can be written as the above four edge productions and one
vertex production ● → ● ● ● ● . Together with an axiom, we get a complete vD0L graph
grammar. As in the example of 2-lifts, by selecting an appropriate derivation, one obtains an
infinite family of bipartite Ramanujan graphs, provided that from the axiom one starts with
its smallest member.

5.3 Graph operations using rotation maps
In this subsection we review graph operations introduced in [34] together with rotation maps.
The latter equip an undirected graph with an additional structure : every vertex has its num-
bering of incident edges. Thus, every edge is equipped with two numbers. Such an enriched
edge between vertices u and v can be written {(u, i⟩, (v, j⟩}, where i, j ∈ [d] for a d-regular
graph, to mean that v is the i-th neighbour of u and u is the j-th neighbour of v. In [34] it is
denoted by Rot(u, i) = (v, j), or, equivalently, by Rot(v, j) = (u, i). To make it sound, one re-
quires that for all enriched edges {(u, i⟩, (v, l⟩} and {(u, j⟩, (w,k⟩}, if i = j then v = w and l = k.
Note that with this notation multiple edges between a pair of vertices arise naturally without a
need of declaring an explicit set of edges. Rotation maps can be drawn using undirected edges
with labels at each extremity, u i j v, and implemented in a 0L graph grammar by two opposite
directed incidences with a pair of labels drawn as u

(i,j)
ÐÐ→ v and v

(j,i)
ÐÐ→ u. One might suggest

simplifying the numbering of the neighbours of each vertex so that i = j for every enriched edge
{(u, i⟩, (v, j⟩} and represent it as u i v but this is not possible in general as it can be quickly
checked on K3.

For the reminder of this section G (V, d, λ) stands for the set of d-regular graphs with vertices
V and the second largest eigenvalue of the normalised adjacency matrix at most λ. The set of
enriched edges of graph G is written E(G).

5The original statement of [29] does not use graph grammars terminology.
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Replacement product

The replacement product takes two graphs G1 ∈ G ([n1], d1, λ1) and G2 ∈ G ([d1], d2, λ2) and
outputs G1◯r G2 ∈ G ([n1]× [d1], d2 +1, λ) with the following bound on λ as established in [34] :

λ ≤ ( d3
2

d3
2 + 1

+ (1 − d3
2

d3
2 + 1
)(1

2
(1 − λ2

2)λ1 +
1
2
√
(1 − λ2

2)λ2
1 + 4λ2

2 ))
1
3
.

Enriched edges defining G1◯r G2 are
E(G1◯r G2) ∶= {{((u, k), i⟩, ((u, l), j⟩} ∶ u ∈ [n1] ∧ {(k, i⟩, (l, j⟩} ∈ E(G2)}

∪ {{((u, k), d2 + 1⟩, ((v, l), d2 + 1⟩} ∶ {(u, k⟩, (v, l⟩} ∈ E(G1)} .
For all graphs G0 ∈ G ( , d + 1, ) and H ∈ G ([d + 1], d, ) we can write D0L graph grammar
G◯r H,G0 with axiom production A → G0, another vertex production ● → H and the set of edge
productions {Pk,l ∶ k, l ∈ [d + 1]} where each Pk,l has the following form

● k l ● Ð→ ●kH ●l Hd+1 d+1 .

Note that k and l label the edge of lhs(Pk,l) whereas in either copy of H in Pk,l they name its
vertices. This grammar rewrites any graph G ∈ G ( , d + 1, ) into G ◯r H ∈ G ( , d + 1, ).
When G0 is a good expander and H is an odd cycle, L (G◯r H,G0) is an expander family of
degree three [34]. However, in general, the expansion due to replacement product is not always
satisfactory.

Balanced replacement product

A slight improvement of expansion is obtained with the balanced replacement product. It
takes two graphs G1 ∈ G ([n1], d1, λ1) and G2 ∈ G ([d1], d2, λ2) and outputs G1◯b G2 ∈ G ([n1] ×
[d1],2d2, λ) with the following bound on λ as established in [34] :

λ ≤ (7
8
+ 1

16
(1 − λ2

2)λ1 +
1
16
√
(1 − λ2

2)λ2
1 + 4λ2

2 )
1
3
.

Enriched edges defining G1◯b G2 are
E(G1◯b G2) ∶= {{((u, k), i⟩, ((u, l), j⟩} ∶ u ∈ [n1] ∧ {(k, i⟩, (l, j⟩} ∈ E(G2)}

∪ {{((u, k), i⟩, ((v, l), i⟩} ∶ {(u, k⟩, (v, l⟩} ∈ E(G1) ∧ d2 < i ≤ 2d2} .
Observe that the balanced replacement product differs from the former replacement product
only by the multiplicity of edges between two copies of G2 which is 1 in the former and d2 in the
present product. Thus, a vertex has equal number of neighbours within and outside each copy
of G2. The construction of D0L graph grammars is similar to those from the latter subsection
except for multiple edges. For all graphs G0 ∈ G ( ,2d, ) and H ∈ G ([2d], d, ), one can write
D0L graph grammar G◯b H,G0 . Expander families are obtained as for the former replacement
product. In particular, the degree is kept constant because any graph G ∈ G ( ,2d, ) rewrites
in a single step into G ◯b H ∈ G ( ,2d, ).

Zig-zag product

An even better expansion is obtained with the zig-zag product. It takes two graphs G1 ∈
G ([n1], d1, λ1) and G2 ∈ G ([d1], d2, λ2) and outputs G1 ◯z G2 ∈ G ([n1] × [d1], d2

2, λ) with the
following bound on λ as established in [34] :

λ ≤ (1
2
(1 − λ2

2)λ1 +
1
2
√
(1 − λ2

2)λ2
1 + 4λ2

2 )
1
3
.
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The “number” of a neighbour in G1◯z G2 is a pair in [d2]2 according to the original definition.
Enriched edges defining G1◯z G2 are
E(G1◯z G2) ∶= {{((u, k), (i, j)⟩, ((v, l), (j′, i′)⟩} ∶

∃k′, l′ ∈ [d1] ({(k, i⟩, (k′, i′⟩},{(l, j′⟩, (l′, j⟩} ∈ E(G2) ∧

{(u, k′⟩, (v, l′⟩} ∈ E(G1))} .

An enriched edge u k′ l′ v of G1 gives raise to d2
2 such new enriched edges between copies {u}×V2

and {v} × V2 of vertices V2 of G2. Label k′ (resp. l′) determines the vertex that is “the entry
point” of copy {u}×V2 (resp. {v}×V2). There is an edge between vertex (u, k) in copy {u}×V2
and vertex (v, l) in copy {v} × V2 if one can take an edge k i i′ k′ in G2 from k to entry point
k′ and an edge l j′ j l′ in G2 from l to entry point l′. Because of edge u k′ l′ v in G1, these
entry points allow to “jump” between copies {u} × V2 and {v} × V2. The label on (u, k)’s side
of created enriched edge (u, k) (i,j) (j′,i′) (v, l) describes the corresponding “route with jump”
from (u, k) to (v, l) as follows. From k take direction i to get to the entry point of current copy.
Jump and you land at the entry point of v’s copy. From there, take direction j and you are
there. Label (j′, i′) on (v, l)’s side describes the same route in the reverse direction.

In order to implement the zig-zag product in D0L graph grammar so that it can be iterated,
the set of labels used for neighbours numbering must be kept constant at every derivation step.
The choice we made is to take, as the right hand side of the axiom production, G0 ∈ G ( , d2, ),
where each edge has at either extremity a pair in [d]2 as label. With H ∈ G ([d]2, d, ), one can
complete the construction of D0L graph grammar G◯z H,G0 suitable for such iteration. Besides
the axiom, G◯z H,G0 has one vertex production ●→ V where V is the edgeless version of H. The
set of edge productions {Pk′,l′ ∶ k′, l′ ∈ [d]2} is defined so that each lhs(Pk′,l′) has ● k′ l′ ● and
the corresponding rhs(Pk′,l′) creates edges between each pair {k, l} of neighbours of k′ and l′

in their respective copies of V . Every such edge of rhs(Pk′,l′) can be drawn as

●k
′

●k ●l ●l
′

i′ i (i, j) (j′, i′) j′ j

without dashed edges which serve here only as explanation. Remember that k, l, k′, l′ are pairs
in [d]2 whereas i, j, i′, j′ are numbers in [d].
Example 5.1
In this example d = 2. We use {0,1} for neighbours numbering in H (depicted
on the right) and {0,1}2 for naming its vertices and for neighbours numbering of
G0 ∶=K5. We have the following edge productions that apply on K5 below.

H

00 01

1110

0 1

0
1

01

0
1

00
01

10

11

00 01
10

11

00

01
10

11

00
0110

11

0001
10

11
G0

●

●

00

11
Ð→

00 01 11 10

00 01 11 10

11

00

10

10

01

01

00

11

●

●

01

01
Ð→

00 01 11 10

00 01 11 10

01

01

00

11

11

00

10

10

●

●

01

10
Ð→

00 01 11 10

00 01 11 10

00

11

01

01

10

10

11

00

●

●

10

10
Ð→

00 01 11 10

00 01 11 10

10

10

11

00

00

11

01

01

For more clarity, the names of vertices are written in the right hand sides of edge productions.
Although the number of possible edge labellings is ∣{{ab, cd} ∶ a, b, c, d ∈ {0,1}}∣ = 10, but only
four appear in G0 and these form the left hand sides of the above edge productions. Moreover,
their right hand sides only introduce three types of enriched edges among those of G0. Thus,
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this D0L graph grammar is like G◯z H,G0 except that it has no useless productions. Consequently
the language generated here is as expected {Gn ∶ n ∈ IN} where Gi+1 = Gi◯z H.

To close this section, we need to mention that the most efficient construction of expanders
of [34] with the zig-zag product requires an additional operation of squaring. It consists in
replacing an incident pair of edges u v w by a single edge u w. Within Lindenmayer
graph grammars, squaring can be handled in 1L (instead of 0L) framework, unfortunately, at
the expense of most decidability results.

6 0L graph languages as models
We start this section by fixing first order language FO(Γ ∪ Σ) and its extension FO(Υ) for
expressing properties or queries concerning 0L graph languages. Before focusing on FO(Γ∪Σ),
questions one would like to ask are conveniently qualified in a more general scope than graph
languages, namely that of arbitrary family of structures S together with adequate logic L. We
consider the

language L-checking problem for family S of structures
Instance: a countable set of countable structures S ∈S and an L-sentence φ
Question: ∃S ∈ S S ⊧ φ ?

Replacing the existential quantifier in the question by the universal one leads to an equivalent
checking problem. Consequently, any finite Boolean combination of existential and universal
questions leads to an equivalent checking problem too. The reader should note the difference
of the above problems with the well-known

model L-checking problem for class S of structures
Instance: a countable structure S ∈ S and an L-sentence φ (resp. L-formula φ(X)),
Question: S ⊧ φ ?

Whereas the instances in the latter problem range over individual structures, they range over
sets of structures in the former. Both can be confused when the set of sentences is, up to logical
equivalence, in one-to-one correspondence with family S , like for instance in the case of MSO
and the family of regular sets.

In the present paper, we are interested in the following case of the former generic problems:
the language FO(Γ∪Σ)-checking (resp. FO(Γ∪Σ)-querying)problem for the family of 0L graph
languages. Given a 0L grammar G and an FO(Γ ∪ Σ) sentence φ, we ask whether a graph
in L (G) satisfies φ. Sentence φ can for instance express the property that a graph has a
clique of a given fixed size as induced subgraph. To establish the decidability of the above
problem, we proceed by reduction of the language FO(Γ ∪Σ)-checking problem for the family
of 0L graph languages to the model FO(Υ)-checking problem for a class of infinite structures
associated with those languages, where the sentences are written using relational signature Υ
extending Γ∪Σ. By representing L (G) as an adequate single structure, say G↑, given 0L graph
grammar G and sentence φ ∈ FO(Γ∪Σ), under certain assumptions, one can reduce a question
“∃G ∈ L (G) G ⊧ φ ?” to a question “G↑ ⊧ ψ ?” with ψ ∈ FO(Υ). In doing so, one needs to
separate somehow individual graphs within G↑ using an appropriate sentence ψ associated to
φ. Indeed, as pointed out in Example 4.4. two graphs in L (G) need not be disjoint.

Variables from a countable set X are used for writing FO(Γ ∪ Σ) formulae expressing
properties of a graph in G (Γ,Σ, , ). Atomic formulae of FO(Γ ∪Σ) are
• “x is an A-labelled vertex”: A(x), for A ∈ Γ and x ∈X ,
• “y is an a-labelled edge from vertex x1 to vertex x2”: a(x1, y, x2), for a ∈ Σ, x1, y, x2 ∈X ,
• equalities x = y, for x, y ∈X ,
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• and those for discriminating vertices and edges: vrt(x), edg(x), for x ∈X .
The closure of the atomic formulae under connectives ¬, ⊃, ∨, and quantifiers ∃, ∀ yields the
set of FO(Γ ∪Σ) formulae.

Additional symbols in FO(Υ) ∖ (Γ ∪Σ) are used for writing the following atomic formulae:
• “vertex (resp. edge) y is in a graph which derives from vertex (resp. or edge) x”: x ⊑ y for
x, y ∈X ,

• “vertices or edges x and y are compatible”: x � y for x, y ∈X ,
• “vertices or edges x and y belong to graphs of the same layer” x ≙ y for x, y ∈X .
The structure, written G↑, underlying the language L (G) of 0L graph grammar G is a relational
structure over signature Υ. G↑ consists of the universe of vertices and edges V(G)∪E(G) where
predicate symbols of Υ are interpreted in the following way:
• A ∈ Γ as unary relation

G↑(A) = {v ∈ V(G) ∶ ∃ (V, , ℓ, ) ∈L (G) ℓ(v) = A},
• a ∈ Σ, as ternary relation

G↑(a) = {(u,w, v) ∶ ∃ ( , , , ℷ) ∈L (G) a(u,w, v) ∈ ℷ},
• “�”, as the compatibility relation defined in Sect. 4,
• “⊑”, as prefix ordering on V(G) ∪ E(G),
• G↑(≙) = ⋃l∈IN(Vl(G) ∪ El(G))2, and,
• G↑(vrt) = V(G) and G↑(edg) = E(G).
For a set N of non-terminals, G↑∖N is a restriction of G↑ onto V(G)N ∪ E(G)N .

In Sect. 7 we give a construction that yields an automatic presentation of G↑ for every
complete 0L graph grammar G. Our construction brings the following result.

Theorem 6.1. G↑ (resp. G↑∖N) has a decidable FO(Υ) theory for every 0L graph grammar G
which is complete (resp. deterministic with non-terminals N).

The following theorem is essential for FO(Γ ∪Σ)-language checking.

Theorem 6.2. There is a translation τ ∶FO(Γ ∪ Σ) → FO(Γ ∪ Σ ∪ {≙}) in time O(nk +m),
where m is the length of the input formula, n is its alternation rank and k is the number of
its variables, such that for every unix 0L graph grammar G ∈ 0L(Γ,Σ, , ) and every formula
φ(X) ∈ FO(Γ ∪Σ), one has

G↑(τ(φ(X)) = ⋃
G∈L (G)

G(φ(X)) .

In particular, when X = ∅, there exists G ∈L (G) such that G ⊧ φ, if, and only if, G↑ ⊧ τ(φ).

Additional translation steps can be done using the following proposition.

Proposition 6.3. For every set of non-terminals N ⊆ Γ∪Σ, there is a translation τ of FO(Γ∪Σ)
in time O(∣N ∣), such that for every graph grammar G ∈ 0L(Γ,Σ, , ) and every formula
φ(X) ∈ FO(Γ ∪Σ), one has G(τ(φ(X))) = G(φ(X)) for every G ∈L (G)N

and G(τ(φ(X))) = ∅ for every G ∈L (G) ∖L (G)N .
In particular, when X = ∅, there exists GN ∈ L (G)N such that GN ⊧ φ, if, and only if, there
exists G ∈L (G) such that G ⊧ τ(φ).
Proof. The translation if obvious: τ(φ(X)) = φ(X) ∧ ¬∃x⋁

A∈N∩Γ
A(x) ∧ ¬∃xyz⋁

a∈N∩Σ
a(x, y, z).

Applied to Prop. 4.2, the above proposition allows for extending the translation of Thm. 6.2.
Then, using Thm. 6.1, we conclude this section with the following result.
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Corollary 6.4. FO(Γ ∪Σ)-language checking problem is decidable D0L graph grammars even
with non-terminals.

It is important to note that the corollary does not extend to unix graph grammars. The essential
step of the proof uses Prop. 4.2 for transforming the input grammar into a complete grammar
so as to benefit from Thm. 6.1. However, the grammar resulting from that step is not unix in
general.

7 Automatic presentation of Lindenmayer languages
In this section we build an injective automatic presentation of G↑, where the corresponding
injection is in fact an identity map. The reader is supposed to be familiar with standard
constructions on finite automata such as Boolean operations, concatenation or projection. The
following additional constructions are used in the sequel.
• For a tuple automaton B we denote by B= the tuple automaton which differs from B by

labelling of transitions: each transition p
aÐ→ q of B is replaced in B= by p

aaÐ→ q. ThusJB=K = {(u,u) ∶ u ∈ JBK} with ar(B=) = 2ar(B).
• The loose product of tuple automata A1 = (Q1,∆1, I1,F1) and A2 = (Q2,∆2, I2,F2) is A1×A2 =
(Q1 ×Q2,∆1 ×∆2, I1 × I2,F1 × F2) where

∆1 ×∆2 ∶= {(p, q)
abÐ→ (p′, q′) ∶ p aÐ→ p′ ∈∆1 ∧ q

bÐ→ q′ ∈∆2}.
Thus L (A1 ×A2) = ⋃

l∈IN
Ll(A1) ×Ll(A2).

• For A1 and A2 as above and ∆ ⊆ Q1 ×Π ×Q2, where Π is an alphabet, the concatenation of
A1 and A2 via ∆, written A1

∆Ð→ A2 is the automaton (Q1 ∪Q2,∆1 ∪∆ ∪∆2, I1,F2).
Each predicate symbol ϱ of the signature of G↑ has the corresponding automaton A (ϱ) of arity
ar(A (ϱ)) = ar(ϱ) given as quadruple A (ϱ) = (Qϱ,∆ϱ, ιϱ,Fϱ), where Qϱ is a finite set of states,
∆ϱ ⊆ Qϱ × (Θ ∪Ω)ar(ϱ) ×Qϱ is a transition relation, ιϱ is the initial state of A (ϱ) and Fϱ ⊆ Qϱ is
its set of final states. The relevant predicate symbols are

● the equality, ● A, with ar(A) = 1, for A ∈ Γ,
● unary vrt and edg, ● a, with ar(a) = 3, for a ∈ Σ,
● binary �, ≙ and ⊑.

Automata for ≙, ⊑ and for the equality are obvious. Besides direct constructions, we also
consider automata for FO-definable predicates without providing their construction. Indeed,
such automata can be constructed in standard way from the corresponding formula as query
automata (see Subsect. 3).

Here are the details of main automata, starting with vertex related ones.
• A (vrt) ∶= (Qvrt,∆vrt, ιvrt,Fvrt) is a deterministic automaton on Θ where

Qvrt ∶= Θ ∪ {ιvrt} is its set states,
ιvrt ∉ Θ is its initial state,
Fvrt ∶= Θ is its set of final states,
∆vrt ⊆ Qvrt ×Θ ×Qvrt is its set of transitions defined by

∆vrt ∶= {i jÐ→ j ∶ prd(j) = ℓ(i)→ } ∪ {ιvrt
jÐ→ j ∶ prd(j) = AG → } .

As A (vrt) is deterministic, ∆vrt is implemented as a table with rows indexed by Qvrt and
columns indexed by input symbols Θ. Filling this table is done in time O(∣Θ∣2).

Lemma 7.1. If G is complete, then JA (vrt)K = G↑(vrt).
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• For every A ∈ Γ automaton A (A) over Θ is like vrt except for its final states, namely
A (A) ∶= (Qvrt,∆vrt, ιvrt,FA) where FA ∶= {i ∈ Fvrt ∶ ℓ(i) = A}. It is built on-the-fly when
constructing A (vrt). It shares its transition table with A (vrt) and needs only different
marking of final states. Such marking requires linear time with respect to the number of
states.

Corollary 7.2. If G is complete, then JA (A)K = G↑(A) for every A ∈ Γ.

• Let Σ◇ ∶=
Ð→
Σ∪
←Ð
Σ∪{◇} with ◇ ∉ Σ and Ω◽ ∶= Ω∪{◽} with ◽ ∉ Ω. We define AI ∶= (QI,∆I, ιI,FI),

running over incidences, where QI ∶= Σ◇ ×Qvrt ×Ω◽ ×Qvrt,
ιI ∶= (◇, ιvrt, ◽, ιvrt),
FI ∶= (

Ð→
Σ ∪
←Ð
Σ) × Fvrt ×Ω × Fvrt,

and ∆I ⊆ QI ×Θ × (Θ ∪Ω) ×Θ ×QI is defined assuming the following shorthands :

◆ prd(i)
←→
bÐ→ prd(k)→ ℶ stands for prd(i) bÐ→ prd(k)→ ℶ when

←→
b =
Ð→
b and for

prd(k) bÐ→ prd(i)→ ℶ when
←→
b =
←Ð
b ,

◆ [←→a , i, j, k]I means (Ð→a , i, j, k) and one has {a(i, j, k),Ð→a (i, j, k),←Ða (k, j, i)} ∩ℶ ≠ ∅, or it
means (←Ða , i, j, k) and one has {a(k, j, i),Ð→a (k, j, i),←Ða (i, j, k)} ∩ℶ ≠ ∅.

Using these shorthands, ∆I is defined as follows:

∆I ∶= {(
←→
b , i′, j′, k′)

(i,j,k)
ÐÐÐ→ [←→a , i, j, k]I ∶ prd(j) = prd(i)

←→
bÐ→ prd(k)→ ℶ ∈ EG ∧

prd(i) = ℓ(i′)→ ∈ VG ∧ prd(k) = ℓ(k′)→ ∈ VG } ∪
{(◇, i′, ◽, i′)

(i,j,k)
ÐÐÐ→ (Ð→a , i, j, k) ∶ ℓ(i′)→ ( , , , ℷ) ∈ VG ∧ a(i, j, k) ∈ ℷ} ∪

{(◇, i′, ◽, i′)
(i,i,i)
ÐÐÐ→ (◇, i, ◽, i) ∶ i′ iÐ→ i ∈∆vrt} ∪

{ιI
(i,i,i)
ÐÐÐ→ (◇, i, ◽, i) ∶ ιvrt

iÐ→ i ∈∆vrt} ∪
{ιI

(i,j,k)
ÐÐÐ→ (Ð→a , i, j, , k) ∶ AG → ( , , , ℷ) ∧ a(i, j, k) ∈ ℷ} .

As AI is deterministic and every accessible state (←→c , , , ) ∈ QI is in FI, the following
notation makes sense LAIM ∶= {←→c (u,w, v) ∶ ιI

⊗(u,w,v)- - - - - - --⇢(←→c , , , )}, with dashed arrow rep-

resenting a path of AI. By considering that every ←→c ∈
Ð→
Σ ∪
←Ð
Σ represents an operation mapping

triples to incidences, Ð→c ∶ (u,w, v)↦ c(u,w, v) and ←Ðc ∶ (u,w, v)↦ c(v,w, u), the soundness of the
construction of AI is stated as follows.

Lemma 7.3. If G is complete, then LAIM = I(G), where I(G) is the set of incidences of G↑.

For understanding the time complexity of the construction of AI, remember that E(G) is in
bijection with I(G). Although QI = Σ◇ × Qvrt × Ω◽ × Qvrt, for every j ∈ Ω, there is exactly one
state ( , , j, ) ∈ QI. Indeed, for subset Σ◇ × Qvrt ×Ω × Qvrt of QI, its components other than
Ω aim only at keeping their track for making the definition and the proof simple. Thus, the
transition table storing ∆I for this subset of QI, can be thought as having its rows indexed
by Ω. For subset Σ◇ × Qvrt × {◽} × Qvrt of QI, ∆I is isomorphic to ∆vrt. We do not need to
construct this part of ∆I explicitly. We can plug ∆vrt into ∆I via transitions corresponding to
the second member of the union in the above definition of ∆I. When so plugging A (vrt) into
the optimised version of AI, we only need to “triple” the input word of A (vrt), say u. We
consider that ⊗(u,u, u) instead u is being read when switching from A (vrt) to the optimised
version of AI. Thus, when constructing this version, we only need to build from scratch the
portion of ∆I with rows indexed by Ω. Although the columns for this portion are indexed by
triples in Θ × Ω × Θ, only those triples that correspond to incidences in rhs(VG) are relevant.
The number of such incidences is bound by ∣Ω∣. Consequently, the time complexity of this
construction is in O(∣Ω∣2).
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Edge related automata are obtained from auxiliary automaton AI. For every ←→a ∈
Ð→
Σ ∪
←Ð
Σ ,

we define A (←→a ) which is like AI, except for its final states F←→a ∶= {←→a } × Fvrt ×Ω × Fvrt. Then
• for every a ∈ Σ, we define A (a) ∶= A (Ð→a ) ∪ swap1↔3(A (←Ða )) where swap1↔3 only modifies

transitions’ labels by exchanging their 1st and 3rd components:
swap1↔3(∆←Ða ) ∶= {p

(i,j,k)
ÐÐÐ→ q ∶ p

(k,j,i)
ÐÐÐ→ q ∈∆←Ða }.

• A (edg) is obtained by projecting AI on the second component: A (edg) = π2(AI). Note
that this projection preserves the determinism, again, thanks to the bijection between edges
and incidences.

All these automata share their transition table with AI and are derived from the latter in linear
time.

Corollary 7.4. If G is complete, then JA (a)K = G↑(a) for every a ∈ Γ and JA (edg)K = E(G).
Since the compatibility relation comes as a bonus that is not essential for the other results,

before focusing on it, we summarise the complexity of the basic construction.

Theorem 7.5. For every complete graph grammar G ∈ 0L( , ,Θ,Ω), one can construct in
time O(∣Θ∣2 + ∣Ω∣2) an automatic presentation of G↑ without the compatibility relation.

It remains to define A (�). Although its direct construction has a better complexity, to keep
this presentation simple, we get A (�) as the complement A (�) which in turn is obtained as
an adequate query automaton. We start with A (�0). Observe first that, as AI mimics A (vrt)
before reaching its accepting states, if we modify its projection A (edg) by making accepting
all its states but ιI, we get previsely Aδ: JAδK = V(G)∪E(G). Let then B1 ∶= A =

δ and B2 ∶= A 2
δ

be the loose product of Aδ by itself. Observe that JB1K is the equality on V(G) ∪ E(G) andJB2K = ⋃l∈IN(Vl(G) ∪ El(G))2. Note also that B1 and B2 have disjoint sets of states. Then, we
define A (�0) as their concatenation A (�0) ∶=B1

∆Ð→B2where ∆ switches the control from B1
to B2 when two distinct productions apply on a same state. Assuming that ∆1 is the set of
transitions of B1, the switch is defined as follows:

∆ ∶= {p
(i,j)
ÐÐ→ (q, r) ∶ {p iÐ→ q, p

jÐ→ r} ⊆∆1 ∧ lhs(prd(i)) = lhs(prd(j)) ∧ prd(i) ≠ prd(j)} .
The following lemma attests the soundness of this construction.

Lemma 7.6. If G is complete, then JA (�0)K = �0.

Observe that, B1 is derived from AI in linear time. However B2 is quadratic with respect to AI.
Therefore, A (�0) is built in time O(∣Θ∪Ω∣4), because the time of making ∆ is in O(∣Θ∪Ω∣2).

Finally, observe that � is FO definable using relations so far defined by automata :
x� y ∶⇔ x�0 y ∨ ∃x1 x2 x3 y1 y2 y3 ((x1, x2, x3) ∈ I(G) ∧ (y1, y2, y3) ∈ I(G) ∧ (⋁

i,j∈{1,3}
xi�0 yj) ∧

(((⋁
i∈[3]
xi ⊑ x) ∧ y2 ⊑ y) ∨ ((⋁

i∈[3]
yi ⊑ y) ∧ x2 ⊑ x))),

where (x, y, z) ∈ I(G) is a shorthand for ⋁a∈Σ a(x, y, z). The corresponding query automaton
A (�) is built from A (�0), AI and A (⊑). Then A (�) is obtained as the complement of A (�).

The overall soundness of the automatic presentation of G↑ developed in this section is stated
in the following theorem.

Theorem 7.7. For every complete 0L graph grammar G, the result of every FO(Υ) query on
G↑ is effectively given by a finite automaton.

Thm. 6.1 is a direct consequence of the above construction. Corollary 6.4 derives from the
latter and from Thm. 6.2.
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8 Undecidablility of language FO-checking for 0L graph
languages

Unfortunately, in the unrestricted case, most of decision problems for 0L graph languages
considered so far turn out to be undecidable. In this section, we construct a 0L graph grammar
simulating a deterministic Turing machine. The resulting grammar is edge-deterministic and
unix. All undecidability results of this paper follow either directly from the construction or
from its variants.

A transition rule pA→Ð→q B (resp. pA→←Ðq B) of a Turing machine means “in state p when
the symbol read is A, overwrite it with B, move the head to the next (resp. previous) cell and
change the state from p into q”.

Consider a deterministic Turing machine T = (Q,∆, ι, f) on some alphabet Ξ and let Ξ ∶=
Ξ∪{ }. To T , we associate eD0L graph grammar GT with vertex labels Γ ∶= Ξ ∪{▷,◁}∪{pA ∶
p ∈ Q ∧A ∈ Ξ } and unlabelled edges in such a way that

ε ∈L (T ) ⇔ ∃G ∈L (GT ) G ⊧ ∃x f(x) . (8.1)

We list the elements of Ξ (resp. Ξ ,▷ ∶= Ξ ∪ {▷}) as Ξ = {C1, . . . ,Cn} (resp. Ξ ,▷ =
{D1, . . . ,Dn+1}). Grammar GT has the following vertex productions

VGT ∶= {◁→ ( →◁)} ∪ {C → C ∶ C ∈ Ξ } ∪ {pA→ A ∶ pA→ ∈∆} ∪
{C → qC ∶ C ∈ Ξ ∧ →←→q ∈∆} ∪ {AGT → (▷→ ι → →◁)}

with axiom AGT . Note that GT is not vD0L. Instead of an exhaustive listing of edge produc-
tions in EGT , GT is given using the graphical formalism introduced in Sect. 4, except that, for
better readability, vertex production are explicit and use dashed arrows in this representation.
Moreover, every matching edge is drawn in blue and the inherited edge is drawn in magenta.
• The following edge production “extends” the tape of T to the right

◁

◁
so that the simulated head of T cannot reach ◁.

• For all D ∈ Ξ ,▷ and C ∈ Ξ , we have edge productions
D

D

C

C

• For each rule pA→Ð→q B ∈∆, we have edge productions

pA

B

qC1

C1

Cn

qCn

D1

D1

Dn+1

Dn+1

• For each rule pA→←Ðq B ∈∆, we have edge productions
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pA

B

C1

C1

Cn

Cn

qC1

C1

Cn

qCn

Observe that every pA in the left hand side of ∆ uniquely determines a vertex production of
VGT because T is deterministic. Then, that vertex production falls into one and only one of the
two latter diagrams of edge productions. We get eD0L graph grammar GT where every derived
graph is a word with the corresponding successor represented by unlabelled edges. Moreover,
each such word represents a reachable configuration of T possibly padded with some blanks on
the right and ended by ◁. Indeed, by rewriting the graph given by the axiom, there is always
only one vertex with a label of the form pA and all other vertices have a label in Ξ except the
leftmost one labelled ▷ and rightmost one labelled ◁. Therefore, (8.1) holds. Note that GT is
not complete. However it is unix. Consequently, we have the following:

Proposition 8.1.
(1) The model FO(Γ ∪Σ)-checking problem is undecidable for the class of structures

{G↑ ∶ G is eD0L and unix} .
(2) The language FO(Γ∪Σ)-checking problem is undecidable for graph languages generated by

unix eD0L graph grammars.

Many other undecidability results derive from this construction. Here is an example.

Proposition 8.2. The following problems
Instance: graph grammar G.
Connectedness: Are all graphs in L (G) (strongly) connected?
Hamiltonicity: Do all graphs in L (G) have a Hamiltonian path?
are undecidable for unix eD0L graph grammars.
Proof. We extend the construction of GT by adding erasing productions for vertex labels in-
volving the final state of T . Then both connectedness and Hamiltonicity are equivalent to
ε ∉L (T ).

A slightly different consequence of the construction of GT is stated in the following.

Proposition 8.3. The language FO(Γ∪Σ)-checking problem is undecidable for graph languages
generated by complete eD0L graph grammars
Proof. Let G ¡!

T be the completion of GT stipulated by Prop. 4.2. Observe that translation τ¡!
from the proof of Corollary 6.4, allows reducing the question “ε ∈L (T ) ?” via the construction
of GT to the question whether there exists G ∈L (G ¡!

T ){¡,!} such that G ⊧ τ¡!(∃x f(x)).

From this proposition and Thm. 6.1, we conclude that the decidability of FO(Γ ∪Σ)-theory of
complete 0L grammars is not sufficient for the decidability of the FO(Γ∪Σ)-language checking
problem for complete eD0L graph grammars. In the presence of vertex nondeterminism, it is
not possible in general to “separate” graphs of the same layer sharing some vertices.
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9 Conclusion
Although this work only addresses first-order logic, its application potential beyond mathemat-
ics and theoretical computer science would benefit from extending our approach to quantitative
logics. Such extensions also seem desirable for automatic structures. To our knowledge, ex-
amples of application of automatic structures outside of mathematics are still awaited. We
hope that the connection of this field of scientific achievements with expanders and Linden-
mayer graph grammars proposed in this paper can stimulate even more relevant theoretical
developments that would enable such applications.
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Appendices
The statements without proof in the main part appear with their original numbers in the
following appendices.

A Fundamental facts on complete and incomplete 0L
graph grammars

In this appendix, the reader will find complete proofs of statements of Sect. 4.

Lemma 4.1. Let G = (AG,VG,EG) be a complete graph grammar in 0L(Γ,Σ, , ) and let
G = (V,E, ℓ, ℷ) be a graph in L (G). Every labelling preserving map h∶V → VG extends into a
homomorphism from G into G.
Proof. Let h∶V → VG be such that h(v) = ℓ(v)→ for every v ∈ V . In order to extend h into a
homomorphism from G to G, consider w ∈ E and the corresponding a(u,w, v) ∈ ℷ. Set h(w) ∶= P
for some P = h(u) aÐ→ h(v) → . Observe that P ∈ EG because G is complete. Clearly, h so
extended onto edges is a homomorphism from G to G.

Proposition 4.2. For every 0L graph grammar G = (VG, , ) one can construct in time
O(∣VG ∣2) using additional non-terminal vertex label “ ¡” and non-terminal edge label “ !” com-
plete 0L graph grammar G ¡! such that L (G) = L (G ¡!){¡,!}. If G is vD0L or eD0L, then G ¡! is
so.
Proof. Let G = (VG,EG,AG) be a 0L graph grammar in 0L(Γ,Σ,Θ,Ω). Consider bijection
g1∶Θ′ → Γ′ ∪ {¡} where Θ′ is a new set of vertex names Θ′ ∩Θ = ∅, ¡ ∉ Γ is a new vertex label
and Γ′ consists of labels missing in lhs(VG) but labelling isolated vertices in rhs(VG). Let then
G ¡ ∶= (VG ∪V¡,EG,AG) where V¡ ∶= {g1(i)→ ({i},∅,{i↦ ¡},∅) ∶ i ∈ Θ′}. Every right hand side of
V¡ is a graph with a single ¡-labelled vertex with no loop. Observe that a possible incompleteness
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of G ¡ can only be due to edge productions but no more to vertex productions. Observe also
that if G is vD0L or eD0L, then G ¡ is so.

Next, we transform G ¡ into the target grammar G ¡! by completing EG. Let M be the set of
all triples in VG ×Σ×VG that are not among left hand sides of EG but which could be matched
by incidences appearing in right hand sides of productions of G. In symbols
M ∶= {P1

aÐ→ P2 ∈ VG ×Σ ×VG ∖ lhs(EG) ∶ ∃a(i, k, j) ∈ ℶG ℓG(i) = lhs(P1) ∧ ℓG(j) = (lhs(P2)}
where ℶG ∶= ⋃π4(rhs(VG)) ∪⋃ rhs(EG) and ℓG ∶= ⋃π3(rhs(VG)). Consider bijection g2∶Ω′ →M
for some set of new edge names Ω′ such that Ω′ ∩ (Θ ∪ Θ′ ∪ Ω) = ∅ and injective mapping
f ∶VG → Θ such that f(A→ (V, , , )) ∈ V for every A→ (V, , , ) ∈ VG. Set

E ∶= {P1
aÐ→ P2 → {!(f(P1), i, f(P2))} ∶ i ∈ Ω′ ∧ g2(i) = P1

aÐ→ P2} .
As every triple in M witnesses the incompleteness of G ¡, E form a partial completion of G ¡.
Indeed, all incidences of ℶG have a match in EG∪E. However, adding E alone to EG is not enough
because now we have new incidences with label ! that have no matching edge productions in
EG ∪ E. Consider therefore bijection g!

2∶Ω! → VG × VG for some yet newer set of edge names Ω!

such that Ω! ∩ (Θ ∪Θ′ ∪Ω ∪Ω′) = ∅ and set
E! ∶= {P1

!Ð→ P2 → {!(f(P1), i, f(P2))} ∶ i ∈ Ω′ ∧ g!
2(i) = (P1, P2)} .

Let then G ¡! ∶= (VG ∪V¡,EG ∪ E ∪ E!,AG) .
Observe that G ¡! ∈ 0L(Γ∪{¡},Σ∪{!},Θ∪Θ′,Ω∪Ω′∪Ω!) is complete and that L (G) =L (G ¡!){¡,!}.
Note also that G ¡! has the same vertex production as G ¡. Thus, if G ¡ is vD0L, G ¡! is so. To see
that the transformation from G ¡ to G ¡! preserves the property of being eD0L, observe first that
lhs(E∪E!)∩lhs(EG) = ∅. Obviously also lhs(E)∩lhs(E!) = ∅. Moreover, two distinct productions
of E ∪ E! never share their left hand sides as both g2 and g!

2 are bijections. Consequently, G ¡! is
eD0L when G1 is so. Hence, the transformation from G is both vD0L and eD0L preserving.

Theorem 4.9. The following problems
Instance: 0L graph grammar G, label λ of G and production P of G.
Finiteness: Is L (G) finite ?
Emptiness: L (G) = ∅ ?
Accessibility: Is λ accessible in G ?
Usefulness: Is P useful for G ?

are
(i) decidable for complete 0L graph grammars without non-terminals and for D0L graph gram-

mars even with non-terminals,
(ii) undecidable for unix eD0L graph grammars, with non-terminals in the case of emptiness.
Proof.

(i) Except for the emptiness, the decidability of each problem results from Thm. 6.1 by
reduction to the model checking of G↑ or G↑∖N .

Accessibility For complete 0L graph grammar G and λ ∈ Γ (resp. λ ∈ Σ) we check
if G↑ models ∃xλ(x) (resp. ∃xyz λ(x, y, z)). For D0L graph grammar G with
non-terminals N we similarly check G↑∖N .

Usefulness We modify P by introducing an extra label to rhs(P ) and ask if the new
label is accessible.

Finiteness Depending on whether G is complete or deterministic with non-terminals
N , we check G↑ or G↑∖N against the negation of the following formula

∀x∃y (x ≙ y⇒ ∃z (y ≠ z ∧ y ⊑ z)) .
The formula says that every layer has an element which is a strict prefix of another
element. Hence, the formula requires an infinite number of layers to hold. This
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is equivalent to having L (G) (resp. L (G)N) infinite when G is without non-
terminals (resp. with non-terminals N).

Emptiness For 0L graph grammar G = (VG,EG,AG) without non-terminals, we have
L (G) = ∅ if and only if AG ∉ lhs(VG). If G is D0L with non-terminals N , the empti-
ness is equivalent to language checking L (G)N against a tautology, for instance
∀x x=x. The decidability follows from Corollary 6.4.

(ii) The undecidability of each problem results from the construction, given in Sect. 8, of unix
eD0L grammar GT associated to arbitrary deterministic Turing machine T running on
an empty tape, viz., with input word ε.

Accessibility We ask, for each vertex label fC formed with accepting state f of T ,
if it is accessible in GT . The disjunction of all answers is equivalent to ε ∈L (T ).

Usefulness We ask, for each vertex production introducing f , if it is useful. The
disjunction of all answers is equivalent to ε ∈L (T ).

Finiteness As GT has a unique derivation, the halting of T is equivalent to the
finiteness of L (GT ).

Emptiness This problem is trivially decidable for 0L graph grammars without non-
terminals (see the decidability of the emptiness above). To establish the undecid-
ability of the emptiness for unix eD0L graph grammars with non-terminals, the
construction of Sect. 8 is adapted as follows. We consider all vertex and edge labels
of GT as non-terminals, say N , and we add one terminal vertex label ⧫ together
with vertex productions {fC → ⧫ ∶ C ∈ Ξ } ∪ {C → ⧫ ∶ C ∈ Ξ▷, ,◁}. Moreover

• for all D ∈ Ξ ,▷ and C ∈ Ξ ,◁, we add edge productions
D

⧫

C

⧫
• for all C ∈ Ξ and D ∈ Ξ ,◁, we add edge productions

fC

⧫

D

⧫
• and for all C ∈ Ξ ,▷ and D ∈ Ξ , we add edge productions

C

⧫

fD

⧫
Let G′T be the grammar so extended. Observe that (see Sect. 8) reaching f by
T is reflected on GT by the unique derivation ending with a graph representing
an accepting configuration with exactly one vertex labelled fC for some C ∈ Ξ .
For G′T , the presence of such vertex triggers the simultaneous application of new
productions. The resulting graph ⧫ → ⋯ → ⧫ has the terminal label everywhere
and is the unique graph in L (G′T )N . If, however, T cannot reach an accepting
configuration, then L (G′T )N = ∅.

Proposition 4.10. The (abstract) membership problem is decidable for D0L graph grammars
even with non-terminals. It is undecidable for unix eD0L graph grammars.
Proof. For the undecidability claim we modify the adaptation of the construction of Sect. 8
considered in the proof of Thm. 4.9 for establishing the undecidability of the emptiness problem.

26



The starting step of the present modification is that all labels have now the same status without
distinguishing non-terminals. We take two additional vertex labels ▸ and ◂ and replace
vertex productions ▷ → ⧫ and ◁ → ⧫ by ▷ → ▸ and ◁ → ◂ in the above adaptation. Edge
productions are modified accordingly, so that we can derive graph ▸ → ⧫ → ⋯ → ⧫ → ◂
(instead of ⧫ → ⋯ → ⧫ of the above adaptation), if, and only if, ε ∈ L (T ). We further
extend the construction by adding two vertex productions ▸→▸, ◂→◂, one erasing vertex
production ⧫→ ∅ and three erasing edge productions

▸

▸

⧫

∅

⧫

∅

⧫

∅

⧫

∅

◂

◂
These let derive in one step from▸→ ⧫→ ⋯→ ⧫→◂ the graph which consists of two isolated
vertices only: ▸ ◂. The membership of this graph in the language of the modified graph
grammar, which still remains unix and eD0L, is equivalent to the membership of ε in L (T ).

The decidability claim follows from the fact that, for every finite graph H, we can write a
sentence φH such that {G ∶ G ⊧ φH} is the isomorphism class of H. Consequently, H belongs
up to isomorphism to L (G)N , if language checking of L (G)N against φH answers yes. This is
decidable by Corollary 6.4.

B When graphs’ elements form maximal compatible sub-
sets of V(G) ∪E(G)

This appendix is devoted to the proof of the the following lemma.

Lemma 4.11. If G is a complete 0L graph grammar, then
{S ⊆ Vl(G) ∪ El(G) ∶ S is maximal compatible} = {V ∪E ∶ (V,E, , ) ∈Ll(G)} .

With the help of subsequent lemmas, the proof goes as follows.

Proof. Let G be a complete 0L graph grammar.
(⊆) Let S ⊆ Vl(G)∪El(G) be a maximal compatible set. By Lemma B.2, there exists (V,E, , ) ∈
Ll(G) such that S ⊆ V ∪ E. By definition of derivation, (V ∪ E)2 ⊆ �. In other words, it is
a compatible set, say S′ = V ∪ E. But as S is maximal compatible, whereas S ⊆ S′, we have
S = S′ = V ∪E.
(⊇) Let (V,E, ℓ, ℷ) ∈ Ll(G). As observed above, V ∪ E is a compatible set. To see that it is
maximal compatible, consider a compatible set S ⊆ Vl(G) ∪ El(G) such that V ∪ E ⊆ S. By
Lemma B.2, there exists (V ′,E′, ℓ′, ℷ′) ∈ Ll(G) such that S ⊆ V ′ ∪ E′. Consequently V ∪ E ⊆
V ′ ∪ E′. As Θ ∩ Ω = ∅, the latter inclusion splits into V ⊆ V ′ and E ⊆ E′. Observe also
that for a vertex (resp. edge), say si in Vl(G) (resp. in El(G)), where i ∈ Θ (resp. i ∈ Ω), its
label is uniquely determined within the corresponding production prd(i). Moreover, when si
is an edge, prd(i) also uniquely determines the incidence of si. Consequently, from inclusions
V ⊆ V ′ and E ⊆ E′, we obtain ℓ ⊆ ℓ′ and ℷ ⊆ ℷ′. As (V,E, ℓ, ℷ) ⊆ (V ′,E′, ℓ′, ℷ′), by Lemma B.1,
(V,E, ℓ, ℷ) = (V ′,E′, ℓ′, ℷ′). Hence, S ⊆ (V,E, , ) and we conclude that V ∪ E is maximal
compatible.

Lemma B.1. For every 0L graph grammar G and all G,G′ ∈Ll(G), if G ⊆ G′ then G = G′.
Proof. By induction on l ∈ IN>0. Let G = (AG,VG,EG) be a 0L graph grammar and let G1 =
(V1,E1, , ) ∈Ll(G) and G2 = (V2,E2, , ) ∈Ll(G) be such that V1 ⊆ V2 and E1 ⊆ E2.
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(l = 0) Assume by contradiction that G1 ≠ G2. Then G has productions AG → G1 and AG → G2
but the definition of 0L graph grammar requires that (V1∪E1)∩(V2∪E2) = ∅ which contradicts
V1 ⊆ V2 and E1 ⊆ E2.
(l > 0) By definition of derivation, there exist G′1,G′2 ∈Ll−1(G) and homomorphisms h1∶G′1 → G,
h2∶G′2 → G such that G′1

h1Ð→
G

G1 and G′2
h2Ð→
G

G2. As G1 ⊆ G2, also G′1 ⊆ G′2. By induction
hypothesis G′1 = (V ′,E′, , ) = G′2 for some V ′ ⊆ Vl−1(G) and E′ ⊆ El−1(G). To show that
h1 = h2, assume by contradiction that there exists w ∈ V ′∪E′ such that h1(w) = P1 ≠ P2 = h2(w)
for some productions P1, P2 ∈ VG ∪ EG. By definition of 0L graph grammar, the set of vertex
or edge names appearing in rhs(P1) is disjoint from that appearing in rhs(P2). Then also
{s ∈ V1 ∪E1 ∶ w

P1Ð→
G
s} ∩ {s ∈ V2 ∪E2 ∶ w

P2Ð→
G
s} = ∅ which contradicts G1 ⊆ G2.

Lemma B.2. Let G ∈ 0L(Γ,Σ,Θ,Ω) be complete and S ⊆ Vl(G) ∪ El(G) be such that S2 ⊆ �.
Then S ⊆ V ∪E for some (V,E, , ) ∈Ll(G).
Proof. By induction on product order (IN,≤)2 over pairs (l,m) withm = ∣S∣. Let G = (VG,EG,AG).
(l = 1) Then S ⊆ V ∪E for some production AG → (V,E, , ) ∈ VG.
(m = 0) Trivial case.
(l > 1) S can be written as S = {sjij ∶ j ∈ [m]} with S′ = {sj ∶ j ∈ [m]} ⊆ Vl−1(G) ∪ El−1(G) and
{ij ∶ j ∈ [m]} ⊆ Θ ∪Ω. Let si ∈ S with s ∈ S′ and let S1 ∶= S ∖ {si}. As si ∈ Vl(G) ∪ El(G), there
exists a graph, say G2 = (V2,E2, , ) ∈ Ll(G), such that si ∈ V2 ∪ E2. By definition of � we
have S2

1 ⊆ � and as ∣S1∣ < m, by induction hypothesis, there exists G1 = (V1,E1, , ℷ1) ∈ Ll(G)
such that S1 ⊆ V1∪E1. Observe that (S′)2 ⊆ �, by definition of �. As also S′ ⊆ Vl−1(G)∪El−1(G),
by induction hypothesis, there exists G′ = (V ′,E′, , ℷ′) ∈ Ll−1(G) such that S′ ⊆ V ′ ∪E′. By
definition of derivation, there exist homomorphisms h1, h2∶G′ → G such that G′ h1Ð→ G1 and
G′

h2Ð→ G2. If h2(s) = h1(s), then si ∈ V1 ∪ E1 and we are done because S ⊆ V1 ∪ E1. Assume
therefore that h2(s) ≠ h1(s). For any t ∈ V ′, we denote by E′t the set of edges of E′ incident to
t:

E′t ∶= {w ∈ E′ ∶ { (t,w, ), ( ,w, t)} ∩ ℷ′ ≠ ∅} .
Using this notation, we construct homomorphism h∶G′ → G setting h(s) ∶= h2(s) and such that
G′

hÐ→ G for some G = (V,E, , ) ∈ Ll(G) satisfying S ⊆ V ∪ E. The construction has two
cases.

(s ∈ V ′) Observe that E′s ∩ S′ = ∅. If instead sk ∈ E′s for some k ∈ [m], then we would
have { (s, sk, ), ( , sk, s)} ∩ ℷ′ ≠ ∅ and { (si′, skik, ), ( , skik, si′)} ∩ ℷ1 ≠ ∅ for
some vertex name i′ such that prd(i′) = h1(s). We would then conclude that si′�0 si
because h1(s) ≠ h2(s) whereas lhs(h1(s)) = lhs(h2(s)), and consequently we would get
si�skik since si′ is an extremity of skik in G1. As both si and skik are in S, the latter
would contradict S2 ⊆ �. Now, as E′s ∩S′ = ∅, for every loop w′ ∈ E′s with corresponding
incidence a(s,w′, s), we pick P ′ ∈ EG such that lhs(P ′) = h2(s)

aÐ→ h2(s) and we set
h(w′) ∶= P ′. For every edge w ∈ E′s, with corresponding incidence a(s,w, v) ∈ ℷ′ (resp.
a(v,w, s) ∈ ℷ′) and s ≠ v, we pick P ∈ EG such that lhs(P ) = h2(s)

aÐ→ h1(v) (resp.
lhs(P ) = h1(v)

aÐ→ h2(s)) and we set h(w) ∶= P . The existence of picks P and P ′

results from the completeness of G. Finally, for every t ∈ (V ′ ∖ {s}) ∪ (E′ ∖E′s), we set
h(t) ∶= h1(t). Hence G′ hÐ→ G for some G = (V,E, , ) ∈Ll(G) such that S ⊆ V ∪E.

(s ∈E′) Let a(u, s, v) ∈ ℷ′ be the incidence of s. Observe that if there were sk ∈ ({u, v} ∪
E′u∪E′v)∩(S′∖{s}) for some k ∈ [m] then we would have si�skik (by a reasoning similar
to the above case of s ∈ V ′) contradicting S ⊆ �. As ({u, v} ∪ E′u ∪ E′v) ∩ S′ = {s}, for
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every edge w ∈ E′u ∖ {s} with corresponding incidence b(u,w, t) ∈ ℷ′ (resp. b(t,w, u) ∈ ℷ′),
we pick P ∈ EG with lhs(P ) = h2(u)

bÐ→ h1(t) (resp. lhs(P ) = h1(t)
bÐ→ h2(u)) and we

set h(w) ∶= P . Similarly, for every edge w ∈ E′v ∖ {s} with corresponding incidence
c(v,w, t) ∈ ℷ′ (resp. c(t,w, v) ∈ ℷ′), we pick P ∈ EG with lhs(P ) = h2(v)

cÐ→ h1(t) (resp.
lhs(P ) = h1(t)

cÐ→ h2(v)) and we set h(w) ∶= P . Thanks to the completeness of G, all
those picks are possible. To close the construction, we set h(u) ∶= h2(u), h(v) ∶= h2(v)
and, for every t ∈ (V ′ ∖ {u, v}) ∪ (E′ ∖ (E′u ∪E′v)), we set h(t) ∶= h1(t).

C Theorems of Section 6
Theorem 6.1. G↑ (resp. G↑∖N) has a decidable FO(Υ) theory for every 0L graph grammar G
which is complete (resp. deterministic with non-terminals N).
Proof. For a complete 0L graph grammar, the result follows directly from Thm. 7.7. Let then
G be a D0L graph grammar with non-terminals N and consider its completion G ¡! according
to Prop. 4.2. It is easy to see that G↑∖N can be interpreted within (G ¡!)↑ by means of an
FO(Υ)-interpretation. Then, the result is obtained using the standard backwards translation
associated to the interpretation. The interpretation leaves unchanged atomic predicates other
than vrt and edg. Formula θvrt(x) selecting V(G)N within (G ¡!)↑ brings together all vertices
from layers where no labels from Γ′ ∶= {¡} ∪ (N ∩ Γ) nor Σ′ ∶= {!} ∪ (N ∩Σ) appear

θvrt(x) ∶⇔ vrt(x) ∧ ∀y (x ≙ y⇒ ¬(⋁
λ∈Γ′

λ(y) ∨ ∃xz⋁
λ∈Σ′

λ(x, y, z))) .

Formula θedg(x) selecting E(G)N within (G ¡!)↑ is similar. Finally, formula δ(x) selecting the
interpretation domain is obvious: δ(x) ∶⇔ θvrt(x) ∨ θedg(x) .

Theorem 6.2. There is a translation τ ∶FO(Γ ∪ Σ) → FO(Γ ∪ Σ ∪ {≙}) in time O(nk +m),
where m is the length of the input formula, n is its alternation rank and k is the number of
its variables, such that for every unix 0L graph grammar G ∈ 0L(Γ,Σ, , ) and every formula
φ(X) ∈ FO(Γ ∪Σ), one has

G↑(τ(φ(X)) = ⋃
G∈L (G)

G(φ(X)) .

In particular, when X = ∅, there exists G ∈L (G) such that G ⊧ φ, if, and only if, G↑ ⊧ τ(φ).
Proof. The input formula is first put into prenex form: Q1X1 . . .QnXnψ(Y) where ψ(Y) is
quantifier-free and every QiXi with Qi ∈ {∃,∀}, Xi = {xi1 . . . xiki

} and Qi ≠ Qi+1 is a quantifier
block replacing Qi xi1 . . . ,Qi xiki

. Next, every universal block ∀Xj is replaced with ¬∃Xj¬. For
this transformation, we need first to parse the input formula. This is done in linear time as the
set of formulae is deterministic context-free. Once parsed, putting it into prenex form is done
in linear time too.

For any Z = {z1, . . . , z∣Z∣}, we set Z≙ ∶= z1 ≙ z2 ≙ ⋯ ≙ z∣Z∣. With this notation τ is defined
inductively as follows for every formula φ(X) ∈ FO(Γ ∪Σ) in prenex form:

τ(φ(X)) = X≙ ∧ φ(X), for any quantifier-free φ(X),
τ(∃ Yφ(X)) = ∃ Y τ(φ(X)),
τ(¬φ(X)) = X≙ ∧ ¬ τ(φ(X)) .

Observe that, as the translation stops after the prefix with quantifiers, there is no need to
deal with binary connectives. For the quantitative claim, observe that nk term in the time
complexity O(nk +m) of the translation comes from the alternation of quantifiers. Every such
alternation brings a linear size formula Z≙ where Z is the set of free variables in the subfor-
mula under the quantifier block. The qualitative claim is established as follows by structural
induction.
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(φ(X) is quantifier-free) Using Lemma 4.8, we have G↑(τ(φ(X)) = G↑(X≙ ∧ φ(X)) =
= G↑(X≙) ∩ G↑(φ(X)) = ⋃

G∈L (G)
G=(V,E, , )

(V ∪E)X ∩ G↑(φ(X)) =⋃
G∈L (G)

G(φ(X)).

(∃Xφ(X)) We have We have G↑(τ(∃ Yφ(X)) = G↑(∃ Y τ(φ(X))) =
= π∃Y(G↑(τ(φ(X))))

i.h.= π∃Y(⋃
G∈L (G)

G(φ(X))) =⋃
G∈L (G)

π∃Y(G(φ(X))) =⋃
G∈L (G)

G(∃ Yφ(X)).

(¬φ(X)) Using Lemma 4.8 at (÷×), we have G↑(τ(¬φ(X)) =
= G↑(X≙ ∧ ¬ τ(φ(X)))
= G↑(X≙) ∩ G↑(¬ τ(φ(X)))
= G↑(X≙) ∩ ((V(G) ∪ E(G))X ∖ G↑(τ(φ(X))))
= (G↑(X≙) ∩ (V(G) ∪ E(G))X) ∖ (G↑(X≙) ∩ G↑(τ(φ(X))))
= G↑(X≙) ∖ (G↑(X≙) ∩ G↑(τ(φ(X))))
= G↑(X≙) ∖ G↑(τ(φ(X)))
i.h.= G↑(X≙) ∖⋃

G∈L (G)
G(φ(X))

(÷×)= ⋃
G∈L (G)
G=(V,E, , )

(V ∪E)X ∖⋃
G∈L (G)

G(φ(X))

(∗)= ⋃
G∈L (G)
G=(V,E, , )

((V ∪E)X ∖G(φ(X)))

= ⋃
G∈L (G)

G(¬φ(X)) .

Note that equality (∗) is due to inclusions G(φ(X)) ⊆ (V ∪ E)X, for every G = (V,E, , )
in L (G), whereas the uniqueness of derivation guarantees that that every pair of distinct
graphs G1 ≠ G2 of L (G) is disjoint, viz., (V1 ∪E1) ∩ (V2 ∪E2) = ∅ for G1 = (V1,E1, , ) and
G2 = (V2,E2, , ).

Corollary 6.4. FO(Γ ∪Σ)-language checking problem is decidable D0L graph grammars even
with non-terminals.
Proof. Let φ be a sentence in FO(Γ ∪Σ) and G be a D0L graph grammar possibly using non-
terminals labels in M . Consider G ¡! obtained by completing G according to Prop. 4.2 and let τ¡!
be the translation of Prop. 6.3 for N = {¡, !}, namely τ¡!(φ) ∶= φ ∧ ¬∃x ¡(x) ∧ ¬∃xyz !(x, y, z),
where ¡ is a vertex label and ! is an edge label. Let τM be the translation of Prop. 6.3 for N =M .
Let τ0 be the translation of Thm. 6.2. Then
there exists G ∈L (G)M such that G ⊧ φ

iff there exists G ∈L (G) such that G ⊧ τM(φ) by Prop. 6.3
iff there exists G ∈L (G ¡!){¡,!} such that G ⊧ τM(φ) as L (G) =L (G ¡!){¡,!} by Prop. 4.2
iff there exists G ∈L (G ¡!) such that G ⊧ τ¡!(τM(φ)) by Prop. 6.3
iff (G ¡!)↑ ⊧ τ0(τ¡!(τM(φ))) by Thm. 6.2.

D Automatic presentation of G↑ in Section 7 is correct
for complete grammars

This appendix brings together missing proofs of Sect. 7.

Lemma 7.1. If G is complete, then JA (vrt)K = G↑(vrt).
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For facilitating the proof of this lemma, we need one additional lemma. We also recall the
following notation: w(≤ i) = a1a2 . . . ai when w = a1a2 . . . an is a word over an alphabet, say Ξ,
and ai ∈ Ξ for i ∈ [n]. Note that we omit subscript G in derivation related notations and that
the dashed arrow represents the existance of a derivation of specified length.
Lemma D.1. For all (V ′,E′, , ) ∈Ll(G) and n ∈ [l − 1]
(1) there exists a unique (V,E, , ) ∈Ll−n(G) such that AG

l−nÐ→ (V,E, , ) nÐ→ (V ′,E′, , ),
(2) u′(≤ l − n) ∈ V ∪E for every u′ ∈ V ′ ∪E′ and u′(≤ l − n)

prd(u′(l−n+1))...prd(u′(l))
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ u′,

(3) in particular, ε
prd(u′(1))...prd(u′(l))
ÐÐÐÐÐÐÐÐÐÐÐ→ u′ where prd(u′(1)) = AG → ,

(4) for every u ∈ V ∪E there exists v ∈ (Θ ∪Ω)n such that uv ∈ V ′ ∪E′.
Proof. Follows directly from the definition of the derivation according to G.

With the help of the above lemma, the proof of Lemma 7.1 goes as follows.
Proof of Lemma 7.1. Let G ∈ 0L(Γ,Σ,Θ,Ω) be a complete graph grammar. Because ar(vrt) = 1
and is not used in ∆vrt, one has JA (vrt)K =L (A (vrt)).
(⊆) Let v ∈ JA (vrt)K. We show by induction on l = ∣v∣ that there exists (Vl, , , ) ∈ Ll(G)
such that v ∈ Vl. The inclusion follows then from Vl ⊆ V(G) = G↑(vrt).

(l = 1) Then ιvrt
vÐ→ v ∈∆vrt for some AG → (V1, , , ) ∈ VG such that v ∈ V1.

(l > 1) Let uij = v for some i, j ∈ Θ. By construction of A (vrt), there is a path ιvrt
ui--⇢ i

in A (vrt). Then ui ∈L (A (vrt)) because i ∈ Fvrt. By induction hypothesis there exists
Gl−1 = (Vl−1,El−1, ℓl−1, ℷl−1) ∈ Ll−1(G) such that ui ∈ Vl−1. As uij ∈ L (A (vrt)), there
is a transition i

jÐ→ j ∈ ∆vrt such that prd(j) = P = ℓ(i) → . Then, one can consider
label preserving map h∶Vl−1 → VG such that h(v) = P . According to Lemma 4.1, this
map extends into homomorphism h∶Gl−1 → G. The latter produces from Gl−1 a graph in
Ll(G), say (Vl, , , ), such that v = uij ∈ Vl.

(⊇) Let v ∈ Vl(G) ⊆ G↑(vrt). Thus, there exists (Vl, , , ) ∈ Ll(G) such that v ∈ Vl. By (2)
and (3) of Lemma D.1, we have ε

prd(v(1))...prd(v(l))
ÐÐÐÐÐÐÐÐÐÐ→ v where prd(v(1)) = AG → and, for every

k ∈ [l − 1], we have v(≤ k)
prd(v(k+1))
ÐÐÐÐÐÐ→ v(≤ k + 1) where prd(v(k + 1)) = ℓ(v(k)) → . Then,

the construction of A (vrt) allows us to affirm that ιvrt
v(1)
ÐÐ→ ⋯

v(l)
ÐÐ→ v(l) is an accepting path of

A (vrt). Hence, v ∈L (A (vrt)).

Lemma 7.3. If G is complete, then LAIM = I(G), where I(G) is the set of incidences of G↑.

Remember that I(G) is defined in Sect. 4 as I(G) ∶= ⋃( , , ,ℷ)∈L (G) ℷ. Notation LAIM is intro-
duced in Sect. 7 just above Lemma 7.3 together with a view of

Ð→
Σ ∪
←Ð
Σ as a family of mappings.

To keep the proof simple, all orientations of ←→a and
←→
b are taken as in the construction of AI

without being explicitly mentioned. If instead orientations were set explicitly, there would be
four similar cases to consider in the proof.

Proof. Let G ∈ 0L(Γ,Σ,Θ,Ω) be a complete graph grammar. Observe that is not used in
∆I. Consequently every path of length n of AI is labelled by some ⊗(s1, s2, s3) such that
s1, s2, s3 ∈ (Θ ∪Ω)n.
(⊆) Let ←→a (u,w, v) ∈ LAIM. We show by induction on l = ∣u∣ = ∣v∣ = ∣w∣ that there exists
( , , , ℷl) ∈Ll(G) such that ←→a (u,w, v) ∈ ℷl. The inclusion follows then from ℷl ⊆ I(G).

(l = 1) Then ιI
(u,w,v)
ÐÐÐ→ (Ð→a , u,w, v) ∈ ∆I for some AG → ( , , , ℷ1) ∈ VG such that

a(u,w, v) ∈ ℷ1.
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(l > 1) Let (u′i′i,w′j′j, v′k′k) = (u,w, v) for some i, i′, k, k′ ∈ Θ, j ∈ Ω and j′ ∈ Θ ∪ Ω. By
construction of AI, there is a path ιI

⊗(u′i′,w′j′,v′k′)-- - - - - - - - - - - - -⇢ (β, i′, q, k′) in AI where q = ◽ and

β = ◇ or, q = j′ and β =
←→
b , viz., β ∈ {

Ð→
b ,
←Ð
b }, for some b ∈ Σ.

• If q = ◽ then the above path can be more precisely written as

ιI
(r1,r1,r1)ÐÐÐÐÐ→ (◇, r1, ◽, r1)

(r2,r2,r2)ÐÐÐÐÐ→ ⋯
(rl−1,rl−1,rl−1)ÐÐÐÐÐÐÐ→ (◇, rl−1, ◽, rl−1) (∗)

where i′ = j′ = k′ = rl−1 and u′ = v′ = w′ = r1 . . . rl−2 with {r1, . . . , rl−1} ⊆ Θ. This path
mimics path ιvrt

r1Ð→ r1
r2Ð→ ⋯ rl−1ÐÐ→ rl−1 of A (vrt). By Lemma 7.1, this is an accepting

path. Thus u′i′ = w′j′ = v′k′ = r, where r ∶= r1 . . . rl−1, is in Vl−1(G). As AI is
deterministic and ←→a (u,w, v) ∈ LAIM, path (∗) extends in AI into the path accepting
⊗(u,w, v). Consequently, there is (◇, rl−1, ◽, rl−1)

(i,j,k)
ÐÐÐ→ (Ð→a , i, j, k) ∈ ∆I such that

ℓ(rl−1)→ ( , , , ℷ) ∈ VG and a(i, j, k) ∈ ℷ. By definition of the derivation, there exists
Gl = (Vl,El, ℓl, ℷl) such that a(ri, rj, rk) ∈ ℷl. Hence, a(u,w, v) = (ri, rj, rk) ∈ Il(G).

• If q = j′, then ιI
⊗(u′i′,w′j′,v′k′)-- - - - - - - - - - - - -⇢ (

←→
b , i′, j′, k′) is an accepting path of AI, viz.,

←→
b (u′i′,w′j′, v′k′) ∈LAIM. By induction hypothesis there exists Gl−1 = ( , , ℓl−1, ℷl−1) ∈Ll−1(G) such that

←→
b (v′k′,w′j′, u′i′) ∈ ℷl−1. As ⊗(u,w, v) ∈L (AI), there is a transition (

←→
b , i′, j′, k′)

(i,j,k)
ÐÐÐ→

(←→a , i, j, k) ∈ ∆I. By construction of AI, there exist prd(i) = ℓl−1(i′) → ,prd(k) =

ℓl−1(k′) → ∈ VG and prd(j) = prd(i)
←→
bÐ→ prd(k) → ℶ ∈ EG such that ←→a (i, j, k) ∈ ℶ.

Then, one can consider label preserving map h∶Vl−1 → VG such that h(u′i′) = prd(i),
h(v′k′) = prd(k). Observe that this homomorphism can be chosen so that h(w′j′) =
prd(j). Consequently, h produces from Gl−1 a graph in Ll(G), say ( , , , ℷl), such
that ←→a (u,w, v) ∈ ℷl.

(⊇) Let ←→a (u,w, v) ∈ Il(G). Thus, there exists ( , , , ℷl) ∈ Ll(G) such that ←→a (u,w, v) ∈ ℷl.
We show by induction on l ∈ IN>0 that ιI

⊗(u,w,v)- - - - - - --⇢(←→a , , , ) is a path in AI. Note that such
a path is accepting.

(l = 1) As ←→a (u,w, v) ∈ ℷ1 for some G1 = ( , , , ℷ1) ∈ L1(G), there is production AG →
G1 ∈ VG. Then more precisely, Ð→a (u,w, v) = a(u,w, v) ∈ ℷ1. Consequently, ιI

(u,w,v)
ÐÐÐ→

(Ð→a , u,w, v)) ∈∆I.
(l > 1) As ←→a (u,w, v) ∈ ℷl for some Gl = ( ,El, , ℷl) ∈ Ll(G), by Lemma D.1(1), there

exists Gl−1 = (Vl−1, , ℓl−1, ℷl−1) ∈Ll−1(G) such that Gl−1
hÐ→ Gl for some homomorphism

h∶Gl−1 → G. As w ∈ El is either innate or inherited, we have two cases.
• (u,w, v) = (si, sj, sk) for some i, k ∈ V0, j ∈ E0 and s ∈ Vl−1 such thatG0 = (V0,E0, , ℷ0)

is the right hand side of vertex production h(s) = ℓl−1(s) → G0. Moreover a(i, j, k) ∈
ℷ0. By Lemma 7.1, ιvrt

s-⇢ i′ = s(l−1) is an accepting path in A (vrt). It is mimicked in

AI by ιI
⊗(s,s,s)- - - - - --⇢(◇, i′, ◽, i′). From there one more step can be done as, by construction,

{(◇, i′, ◽, i′)
(i,j,k)
ÐÐÐ→ (Ð→a , i, j, k) ∈∆I. Consequently, Ð→a (u,w, v) =Ð→a (si, sj, sk) ∈ LAIM.

• (u,w, v) = (u′i,w′j, v′k) where
←→
b (u′,w′, v′) ∈ ℷl−1 and ←→a (i, j, k) ∈ ℶ for some edge

production h(w′) = prd(i)
←→
bÐ→ prd(k) → ℶ. By induction hypothesis,

←→
b (u′,w′, v′) ∈LAIM. Consequently, ιI

⊗(u′,w′,v′)-- - - - - - - -⇢
AI

(
←→
b , i′, j′, k′) where i′ = u′(l−1), j′ = w′(l−1) and k′ =

v′(l − 1). By construction, (
←→
b , i′, j′, k′)

(i,j,k)
ÐÐÐ→ (←→a , i, j, k) ∈ ∆I. Therefore, the above

path extends into ιI
⊗(u′i,w′j,v′k)- - - - - - - - - - - -⇢

AI

(←→a , i, j, k). Hence, Ð→a (u,w, v) = Ð→a (u′i,w′j, v′k) ∈LAIM.
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Lemma 7.6. If G is complete, then JA (�0)K = �0.
Proof. Since B1 accepts all elements of V(G)∪E(G) duplicated, after switching via ∆ into B2
every pair (w,w) ∈ JB1K extends into pair (wu,wv) such that (u, v) ∈ JB2K, where (u, v) is any
pair in (Vl(G) ∪ El(G))2, for l ∈ IN. However, the switch is activated by any pair of distinct
productions sharing the same left hand side. This behaviour matches precisely the definition
of �0.
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