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Abstract Modern real-time systems tend to be mixed-critical, in the sense that they integrate on
the same computational platform applications at different levels of criticality (e.g., safety critical and
mission critical). Scheduling of such systems is a popular topic in literature due to the complexity
and importance of the problem. In this paper we propose two algorithms for job scheduling in mixed
critical systems: Mixed Criticality Earliest Deadline First (MCEDF) and Mixed Critical Priority
Improvement (MCPI). MCEDF is a single processor algorithm that theoretically dominates state-
of-the-art fixed-priority algorithm Own Criticality Based Priority (OCBP), while having a better
computational complexity. The dominance is achieved by profiting from a common extension of
fixed-priority online policy to mixed criticality. MCPI is a multiprocessor algorithm that supports
dependency constraints. Experiments show good schedulability results. Also we formally prove that
both MCEDF and MCPI are optimal in a particular class of algorithms.

1 Introduction

Safety critical real-time systems are subject to certification, i.e., they need to assure high dependabil-
ity constraints. Modern standards [Joh92] define different levels of criticality that need to be certified
at different level of assurance. When a system has applications at different criticality levels sharing
the same computational platform, it is called mixed-critical. While designing such systems it is cru-
cial to find a good balance between integration and isolation. On one hand, the integration of several
functions using a common set of resources gives the advantage of reduced cost, weight and power
consumption, which is important for many embedded systems. On the other hand, it leads to major
complications in system design.

Among other aspects, the real-time scheduling of certifiable mixed critical systems has been recog-
nized to be a challenging problem. Traditional techniques require complete isolation between criticality
levels or global certification to the highest level of assurance, which leads to resource waste, thus loos-
ing the advantage of integration. This led to a novel wave of research in the real-time community,
and many solutions have been proposed. Among those, one of the most successful ideas is adapting
Audsley approach to mixed criticality, which was for the first time done by S. Vestal in [Ves07] and
later on by others, notably, [BLS10]. However this method has some limitations, which become more
pronounced in the case of multiprocessor scheduling. For this reason the scheduling algorithms for
multiprocessor mixed-critical systems are not as numerous in literature as those for single processor,
and usually they are built on restrictive assumptions.
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To tackle the complexity problem, we assume a fixed set of jobs as workload model. This model
can represent a hyperperiod of synchronous periodic tasks or servers, removing some fundamental
difficulties of non-synchronous systems (at risk to increase costs in some cases). Fixed job sets allow
us to manipulate their priorities by using the novel concept of priority graph (P-DAG), which defines
the minimal relation between the priorities in a schedule. Based on this formalism we propose two
priority based algorithms. The first algorithm, Mixed Criticality Earliest Deadline First (MCEDF)1,
is a single processor algorithm that dominates state-of-the-art Audsley approach based algorithm Own
Criticality Based Priority (OCBP). The second one is a multiprocessor algorithm, Mixed Criticality
Priority Improvement (MCPI), that, given a global fixed-priority assignment for jobs, can modify it in
order to iteratively improve its schedulability for mixed-criticality setting. Our experiments show an
increase of schedulable instances up to a maximum of 30% if compared to well-established solutions
for this category of scheduling problems. In addition we show that for single-processor problems
MCEDF and MCPI are equivalent and optimal in an important class of algorithms, whereas MCPI
is applicable also in the case of multi-processor problems with precedence constraints, and MCEDF
has better computational complexity.

This paper is structured as follows. Section 2 introduces the scheduling model. In Section 3 we
discuss related work. Then Section 4 introduces the Priority-DAG, a theoretical tool that is useful to
understand how jobs interact with each other, and upon which all the algorithms presented in this
paper are based. In Section 5 we present MCEDF and in Section 6 MCPI. Section 7 shows some
common properties of the two algorithms. Finally in Section 8 we show experimental evaluation of
the scheduling algorithms.

2 Scheduling Model

Firstly we introduce the scheduling problem for the case where the different jobs executed on the
platform are independent. Afterwards, we extend the focus from this independent-jobs case to a
possibly non-empty inter-job precedence relation.

2.1 Independent Jobs

The use of computing systems in life-critical applications such as avionics or automotive usually
requires very high reliability and responsiveness. Most tasks in these applications have timing con-
straints, i.e., deadlines, to be satisfied. Generally, real-time tasks are categorized as periodic and
sporadic. In fact, a job is a single instance of a task execution. Periodic tasks are activated repeatedly
in a fixed time interval, called period. Such tasks are usually poll sensors and execute control-loop
subroutines. The activation of sporadic tasks can occur at any time (with certain limitations) and
they are usually triggered by special conditions or operator command. Both type of tasks generate
infinite number of jobs. However in this paper we will mainly focus on a finite set of jobs. This is
motivated by the fact that mixed critical scheduling is a relatively new problem in research, and thus,
even under this simplifying assumption, there is fertile ground for new research. Note that a set of
periodic tasks can be easily modeled as a finite set of jobs, considering only the jobs appearing in one
hyperperiod, i.e., the least common multiple of the task periods. This modeling can, with limitations,
be applied to sporadic tasks, using periodic servers.

In this section we introduce a formalization of the Vestal model [BBD+12b,Ves07] for Mixed-
Critical System (MCS ). Following a common trend [BBD+12b,BF11], in this paper we will focus
on dual-criticality systems, i.e., systems that have only two levels of criticality, the high level, being
denoted as ‘HI’, and the low (normal) level, denoted as ‘LO’. Every job gets a pair of WCET values:
the LO WCET and the HI WCET. The former one is for normal safety assurance, used to assess
the sharing of processor with the LO jobs, and the other one, a higher value, is used to ensure

1 though we use this legacy name, we should admit that there are several other mixed criticality algorithms that
may be considered more intimately related to EDF
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certification [Ves07]. One important remark is that both HI and LO jobs are hard real-time, so both
must terminate their executions before the deadlines. But only HI jobs undergo certification. This
means that the designer is confident that the jobs will never exceed their LO WCET. However, it is
required to prove to the certification authorities that the HI jobs will meet the deadlines even under
the unlikely event that some jobs would execute at their HI WCET.

In Vestal model, a job Jj is characterized by a 5-tuple Jj = (j, Aj , Dj , χj , Cj), where:

– j ∈ N+ is a unique index
– Aj ∈ N is the arrival time, Aj ≥ 0
– Dj ∈ N is the deadline, Dj ≥ Aj

– χj ∈ {LO,HI} is the job’s criticality level
– Cj ∈ N2

+ is a vector (Cj(LO), Cj(HI)) where Cj(χ) is the WCET at criticality level χ.

The index j is technically necessary to distinguish between jobs with the same parameters. The
timing parameters Aj , Dj , Cj are integers that correspond to time resolution units (e.g., clock cycles).
We assume that [BBD+12b]:

Cj(LO) ≤ Cj(HI)

which makes sense, since Cj(HI) is a more pessimistic estimation of the WCET than Cj(LO). We
also assume that the LO jobs are forced to terminate after Cj(LO) time units of execution, so:

(χj = LO)⇒ Cj(LO) = Cj(HI)

An instance of the scheduling problem is a set of jobs J. A scenario of an instance J is a vector
of execution times of all jobs: c = (c1, c2, . . . , cK), where K is the number of jobs. If at least one cj
exceeds Cj(HI), the scenario is called erroneous. The criticality of scenario c = (c1, c2, . . . , cK) is LO
if cj ≤ Cj(LO), ∀j ∈ [1,K], is HI otherwise. A scenario c is basic if:

∀j = 1, . . . ,K cj = Cj(LO) ∨ cj = Cj(HI)

A schedule S of a given scenario c is a mapping:

S : T 7→ Ĵm

where T is the physical time and Ĵm is the family of subsets of J that contains all subsets J′ of
J such that |J′| ≤ m. Every job Jj should start at time Aj or later and run for no more than cj
time units. Note that in this definition we do not include the mapping of jobs to processors, but
a valid mapping, if needed, can be easily obtained from a simulation which assumes that jobs may
migrate from processor to processor if necessary.We assume that the schedule is preemptive and that
job migration is possible, i.e., that any job run can be interrupted and resumed later on the same or
different processor.

A job J is said to be ready at time t iff:

1. it is already arrived at time t
2. it is not yet terminated at time t

The online state of a run-time scheduler at every time instance consists of the set of terminated
jobs, the set of ready jobs, the progress of ready jobs, i.e., for how much each of them has executed
so far, and the current criticality mode, χmode, initialized as χmode = LO and switched to ‘HI’ as
soon as a HI job exceeds Cj(LO). A scheduling policy is feasible for the given problem instance if the
following conditions are met:

Condition 1 If all jobs run at most for their LO WCET, then both high-critical (HI) and low-critical
(LO) jobs must terminate before their deadlines.

Condition 2 If at least one job runs for more than its LO WCET, then all high-critical (HI) jobs
must terminate before their deadlines, whereas low-critical (LO) jobs may be even dropped.
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An instance J is clairvoyantly schedulable if for each non-erroneous scenario, when it is known
in advance (hence clairvoyantly), one can specify a feasible schedule. This property is of purely
theoretical interest, as in reality the execution time of every job Jj is only discovered when Jj signals
its termination. Hence, whether the LO job timely termination is required is not known as long as no
HI job has shown an execution time exceeding its Cj(LO).

Based on the online state, a scheduling policy deterministically decides which ready jobs are
scheduled at every time instant on m processors. A scheduling policy is correct for the instance J if
for each non-erroneous scenario it generates a feasible schedule. A mode-switched scheduling policy
uses χmode in the scheduling decisions, e.g., to drop the LO jobs, otherwise it is mode-agnostic. A
policy is said to be work-conserving if it never idles the processor if there is pending workload.

An instance J is MC-schedulable if there exists a correct scheduling policy for it.

2.1.1 Correctness and Sustainability

To verify the correctness of a scheduling policy one usually tests it for the scenario with maximal
execution times for all jobs, which in our case corresponds to HI WCET’s. However, to justify this
test a scheduling policy must be sustainable, which means that reducing execution time of any job A
(while keeping all other execution times the same) should not delay the termination of any other job
’B’ [BB06]. In other words, sustainability means that the termination times must be monotonically
non-decreasing functions of execution times.

For mixed-critical scheduling the sustainability requirement is too restrictive, as it does not take
into account that an increase of an execution time of a HI job to a level that exceeds its LO WCET
may lead to a mode switch and hence to dropping the LO jobs, which, in turn may lead to an
earlier termination of another HI job, and hence non-monotonic dependency of termination times.
Therefore, a weaker property is adopted in this case, which we call sustainable per mode. This property
poses almost the same requirement of non-increasing termination time of a job B, but now it is not
required anymore to hold under arbitrary execution time reduction of a job A. Now the non-delayed
B is required only if the reduction of A does not lead neither to a change of the mode in which B
terminates nor to preventing job A from switching. This implies that either A executed for less than
LO WCET both before and after the reduction, or that the reduction keeps the execution time of A
higher than its LO WCET.

The sustainability-per-mode is studied in [KPSB18a], where it is introduced as ‘weak predictabil-
ity ’. Predictability is the special case of sustainability when the correctness test is based on simulation
of a given set of jobs for the worst-case scenario. In this paper we prefer the term sustainability.

The generalization of sustainable policies to sustainable-per-mode ones raises the problem of how
to test the correctness of such policies, as we cannot anymore rely on the traditional method and just
test the scheduling using one maximal scenario. It turns out that in this case it suffices to test the
scheduling policies for H + 1 basic scenarios, where H is the total count of HI jobs in the problem
instance.

Consider a LO basic scenario schedule SLO and select an arbitrary HI job Jh. Let us modify this
schedule by assuming that at time th when job Jh reaches its LO WCET (Ch(LO)) it has not yet
signalled its termination, thus provoking a mode switch. Then, by Condition 2, we should ensure that
Jh and all the other HI jobs that did not terminate strictly before time th will meet their deadlines
even when continuing to execute until their maximal execution time – the HI WCET. Note that in
multiprocessor scheduling multiple jobs may also terminate exactly at time th in SLO, and they are
conservatively assumed to also continue their execution after time th in the modified schedule. The
behavior described above is formalized to a basic scenario where all HI jobs that execute after time
th have HI WCET.

Definition 1 (Job-specific Basic Scenario) For a given problem instance, LO basic-scenario
schedule SLO and HI job Jh, the basic scenario defined above is called ‘specific’ for job Jh and
is denoted HI-Jh, whereas its schedule is denoted SHI-Jh .

Note that SHI-Jh coincides with SLO up to the time when job Jh switches, and after the switching
time it starts using HI execution times for the jobs that did not terminate before the switch.
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Fig. 1 The Gantt charts for Example 6 with PT = (2, 4, 3, 5, 1)

Example 2 Fig. 1 shows Gantt charts for the job-specific scenarios of the following single-processor
problem instance:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12
2 2 10 HI 2 8
3 1 8 LO 2 2
4 8 17 HI 2 7
5 7 11 LO 2 2

We see, for example that in the LO scenario job J2 terminates at time 4, but in the HI-J2
scenario job J2 switches at time 4 and continues to execute, because, apparently, it has a HI WCET
larger than the LO WCET. In fact, these schedules are obtained for a particular scheduling policy
and demonstrate that this policy is correct for the given problem instance, as explained later in
Example 6.

Theorem 3 (Correctness Verification by Job-specific Scenarios) Suppose that the HI jobs
satisfy the following (quite general) requirement: CHI > CLO, i.e., we exclude the possibility of CHI=CLO.

Then to ensure correctness of a scheduling policy that is sustainable per mode it is enough to test
it for the LO scenario and the scenarios HI-Jh of all HI jobs Jh.

Proof See [KPSB18a].
⊓⊔

This theorem holds not only on single processor but also on multiple processors, and not only
for independent but also for precedence-constrained jobs, under the requirements that the policy be
sustainable per mode and that the HI jobs have strictly larger execution times in the HI mode. The
latter requirement is introduced in order to avoid certain ‘anomalies’ that may appear if it is not
satisfied, as shown in [KPSB18b].

Unfortunately, as we will see in the next section, priority-based policies that are sustainable
in the ordinary scheduling may loose this property when generalised to mode-switched policies for
mixed criticality. Still, priority-based policies are very attractive, as they are well studied and thus
offer various useful heuristics for generating efficient schedules. Fortunately, there is an important
observation that extends the utility of Theorem 3 to policies that are not sustainable per mode.
Lemma 1 in [BBD+12b] proposes a useful transformation of any scheduling policy to a new policy
which preserves correctness in the basic scenarios, while, by construction, ensuring sustainability. We
call the new policy thus obtained the ‘sustainability replacement ’ of the original one. The sustainability
replacement can be introduced as follows. The original policy is transformed into time-triggered policy
with mode switching, which we call Static Time-Triggered per Basic Scenario (STTBS). This policy
specifies a static time-triggered table for the LO and all job-specific HI scenarios. The policy switches
the table upon a mixed-criticality mode switch. The Gantt charts in Figure 1 give, in fact, an example
of a complete set of such static tables for the given problem instance. The tables are obtained by
simulation of the original policy in the respective scenarios. The execution of STTBS policy starts in
the LO static table. If a job finishes earlier than the allocated time, the processors are idled in the
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remaining slots of that job. If while executing in the LO static table a HI job switches the criticality
mode then the STTBS policy switches to the static table specific for that job.

In our algorithms, we use the sustainability replacement as online policy only in the case of multiple
processors – i.e., for the MCPI algorithm. For single-processor case, i.e., for the MCEDF algorithm,
this is not required, as we will see in the next section. It should be noted that the behavior of the
replacement policy is identical to the behavior of the original policy whenever the simulated scenario
is a basic LO scenario or a HI-job specific scenario. To define the proposed algorithms and analyse
their properties we need to consider only those scenarios. Therefore, for simplicity and without loss
of correctness, in our presentation we will reason exclusively in terms of the original policy, even
in the cases where replacement has to be applied for sustainability. The original policy of both our
algorithms is ‘fixed priority per mode’, introduced in the next section.

2.1.2 Fixed Priority and Fixed Priority per Mode

A fixed-priority (FP) scheduling policy is a mode-agnostic policy that can be defined by a priority
table PT , which is a K-sized vector specifying all jobs (or, optionally, their indexes) in a certain
order. The position of a job in PT is its priority, the earlier a job is to occur in PT the higher the
priority it has. Among all ready jobs, the fixed-priority scheduling policy always schedules the m
highest-priority jobs in PT . Fixed priority is a work-conserving policy, which means that it never
idles a processor when there is a ready job that is not running on another processor. A priority table
PT defines a total ordering relationship between the jobs. If job J1 has higher priority than job J2
in table PT , we write J1 ≻PT J2 or simply J1 ≻ J2, if it is clear from the context to which priority
table we are referring to.

We introduce fixed priority per mode (FPM), a natural extension of fixed-priority for MCS. FPM
is mode-switched policy with two tables: PTLO and PTHI. The former includes all jobs. The latter
needs to include only the HI jobs. As long as the current criticality mode χmode is LO, this policy
performs the fixed priority scheduling according to PTLO. After a switch to the HI mode, this policy
drops all pending LO jobs and applies priority table PTHI. Suppose that after removing the LO jobs
from PTLO while keeping the same relative order of the HI jobs we obtain the PTHI table. In this
case one can just keep using the same priority table, PTLO, after a switch to the HI mode with
exactly the same result. Therefore in this particular case we say that we have FPM-equivalent tables:
‘PTLO ∼ PTHI’.

The following [HL94] states a very useful property for which [KPSB18a] proves an important
corollary:

Lemma 4 Fixed-priority policy is sustainable for independent jobs or for single-processor case.

Corollary 5 For dual-critical independent-job instances FPM policy is sustainable per mode on single
processor under (quite general) Requirement (i): for all HI jobs CHI > CLO. It is also sustainable
both for single- and multi-processor case under the following (quite restrictive) Requirement (ii):
PTLO ∼ PTHI.

Though we do not really exploit the general condition – Requirement (i) – in our algorithms, we
mention it here to show that sustainability per mode is, in fact, inherent in single-processor FPM
scheduling encountered in the literature, e.g., EDF-VD policy [BBD+12a], even if it may modify the
relative priorities of HI jobs upon a mode switch. Note that Requirement (i) is, in fact, also present in
Theorem 3, and thus it ensures single-processor FPM policies can be tested for correctness using the
job-specific basic scenarios. Though in our algorithms we apply the corollary only in independent-job
case, we conjecture that this result can be extended to jobs with precedence constraints, because on
a single processor the job dependencies can be modeled by priorities.

Unfortunately, in the multiprocessor case, as demonstrated in [KPSB18a], the per-mode sustain-
ability of FPM cannot be asserted under a general condition such as Requirement (i). Moreover, if
precedence constraints are present then even in the ordinary non mixed-critical case sustainability
does not hold on multiprocessors and Lemma 4 does not apply.
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As for Requirement (ii), it is, in fact, inherent property of our proposed algorithms in single-
processor case, as we will see later. Though we could have imposed it also for the multiprocessor case,
it would, however, impair the quality of the results of the algorithm, as ‘good’ multiprocessor priority
tables should take into account the current job WCETs, and hence also the current criticality mode.
Another reason for not having imposed this requirement is that in our multiprocessor algorithm we
preferred to support precedence constraints, and then, as explained above, this requirement would not
help to ensure sustainability anyway. Therefore, for the multiprocessor and precedence constraints
case we assume that the solutions generated in FPM policy for the basic scenarios are executed using
the sustainability replacement policy.

Example 6 Consider single-processor independent-job problem instance J defined in Example 2. For
a given priority table PTLO = PTHI, the Gantt chart in Figure 1 shows the execution of FPM policy on
single processor in all scenarios required by Theorem 3. In the presented scenarios, as the reader may
verify, all jobs meet their deadlines. Since for this instance the corollary Requirement (i) holds (by the
way, Requirement (ii) holds as well)), FPM is sustainable, and hence Theorem 3 is indeed applicable.
Therefore the FPM policy with given priority table is correct for the given problem instance.

If a scheduling policy cannot be defined by a static priority table, it is referred to as a dynamic-
priority policy. Such policies are, in general, more powerful than the fixed-priority policy, but they are
generally more complex and they usually require heavier run-time computations. Also, they are not
necessarily sustainable. Fixed-priority scheduling is popular thanks to the fact that it is sustainable
and easier to implement. Also, it is natively supported by many operating systems and libraries for
programming real-time systems.

Theorem 7 The schedulability of FPM policy on a single processor (for independent as well as
precedence-constrained jobs), under the assumption that it satisfies the requirements for sustainability
per mode, can be checked with the same computational complexity as checking a single basic scenario
under FP policy, which is O(K logK) in the independent-job case.

The above theorem is proved in [KSPB18,SPBB15c,Soc16], where we show that in the specified
case checking all job-specific scenarios as in Theorem 3 is not necessary. It is enough to check the
basic LO scenario and a specially ‘transformed’ HI scenario.

2.1.3 Characterization of Problem Instance

To characterize the performance of scheduling algorithms one typically uses ‘utilization’ and related
demand-capacity ratio metrics, i.e., the maximal ratio between demand and capacity of the system.
For a job set J = {Ji} and a scenario c the appropriate metric is load [Liu00]:

ℓoad(J, c) = max
0≤t1<t2

∑
Ji∈J: t1≤Ai∧Di≤t2

ci

t2 − t1

For a multiprocessor system there does not exist a necessary and sufficient schedulability bound
on load, whereas it exists for uniprocessor systems:

ℓoad ≤ 1

For m-processor system the corresponding bound is only necessary, but not sufficient [BF05]:

ℓoad ≤ m

Baruah et al. [LB10] applied the load metric for mixed-critical scheduling with fixed-priority
policy, wherefore they defined the LO- and the HI-mode load as shown below:

LoadLO(J) = max
0≤t1<t2

∑
Ji: t1≤Ai∧Di≤t2

Ci(LO)

t2 − t1
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LoadHI(J) = max
0≤t1<t2

∑
Ji: χi=HI ∧ t1≤Ai∧Di≤t2

Ci(HI)

t2 − t1

An instance can only be schedulable if the processors are not overloaded. Hence, a necessary
condition for MC schedulability is [LB10]:

LoadLO(J) ≤ m ∧ LoadHI(J) ≤ m (1)

This is also a sufficient condition for single processor clairvoyant scheduling, but not for practically
realizable policies [LB10].

The characterization above proved useful for the fixed-priority policy. Note, however, that a short-
coming of LoadLO and LoadHI is that they ignore a phenomenon which we call the WCET uncertainty.
This phenomenon makes a practically realizable policy inferior to a clairvoyant scheduler. The latter
‘knows for certain’ whether and when a mode switch will occur at runtime, whereas an ordinary policy
is ‘uncertain’ about this and may ‘learn’ it online. By definition, this online information is taken into
account only by mode-switched policies. The WCET uncertainty of a job can be measured as:

∆Cj = Cj(HI)− Cj(LO) (2)

In [PK11] it is proposed to consider a new set of job deadlines for the LO scenario: D′
j = Dj−∆Cj . It

was noticed in [PK11] that in the LO scenario the jobs should meet deadlines D′
j , otherwise deadlines

Dj are missed in a HI scenario. A new metric, LoadMIX is thus defined by modifying LoadLO by
substituting D′

j into Dj [PK11]:

LoadMIX(J) = max
0≤t1<t2

∑
Ji:t1≤Ai∧D′

i≤t2

Ci(LO)

t2 − t1

The necessary condition (1) can be refined to the following proposition.

Lemma 8 (Necessary condition for schedulability) A mixed-critical job set J is schedulable
only if

LoadMIX(J) ≤ m ∧ LoadHI(J) ≤ m (3)

whereby, in addition, for all jobs in LO mode it must hold:

Ai + Ci(LO) ≤ D′
i (4)

and HI jobs in HI mode must also respect the following condition:

Ai + Ci(HI) ≤ Di (5)

Note that by default (5) can be implied from (4) by applying the definition of D′, but in Section 2.2
we refine this lemma to precedence constraints, whereby the arrival times and deadlines become
mode-dependent, which makes it necessary to distinguish (5) from (4).

LoadMIX is a better indicator of schedulability than LoadLO. This is shown in Section 5.4, where
we introduce splitting, a transformation that modifies one instance into another with equal LoadLO,
but lower LoadMIX. The instance thus generated is more likely to be schedulable by FPM policies.

The Load metric is a very powerful means to profile single processor problem instances. On
multiprocessors, however, its effectiveness reduces. This is due to the fact that in a multiprocessor it
is not always possible to use all the available resources for the available workload, due to the fact that
apriori we cannot parallelize the execution of a single job. For example, if we consider an instance
composed of only one job J1 such that C1 = D1−A1, then we will have Load = 1. If we decrease the
speed of the processor by a factor ϵ it will not be possible to schedule this instance. However, if we
have, for example, 4 processors, the Load metric will tell us in this case that we have only a little bit
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more than 1/4 of the resources busy. This shows the weakness of Load metric. To compensate this
issue, we introduce the Stress metric:

stressLO(J) = max
0≤t1<t2


m

min{|J′|,m}
·

∑
Ji∈J′

Ci(LO)

t2 − t1


where J′ = {Ji | t1 ≤ Ai ∧Di ≤ t2}.

The m/|min{|J′|,m}| scale factor is used to consider the fact that if there are j < m ready jobs
then only j processors can be used to schedule them. In the example given above, in fact, we will
have that m/|J′| = 4, thus giving stress > 4, coherently with the non-schedulability of the instance.
Metrics stressHI and stressMIX are defined in a similar way.

In the context of Lemma 8, one can rewrite the necessary condition (3) using stress, but this would
not make the lemma stronger, due to additional conditions (5) and (4). Nevertheless, in general we
have stress ≥ ℓoad , therefore we use it as a more ‘realistic’ metric of ‘complexity’ of the scheduling
problem, as for the problem instances of growing complexity it approaches the critical bound m faster
than the load.

2.2 Precedence Constraints

2.2.1 Problem Definition

In this section we generalize the previously presented scheduling problem for the case of precedence-
constrained jobs.

A task graph is T = (J,→), where is J is a set of jobs with unique indexes and →⊂ J × J is a
precedence relation. We use the notation Ja ↛ Jb to indicate that there is no precedence relation
Ja → Jb. The precedence relation is well defined iff:

Ja →∗ Jb ⇒ Jb ↛ Ja

where →∗ is the transitive closure of →. The above condition imposes absence of cycles in the
precedence relation. An independent jobs set J can be seen as a special case of a task graph T = (J, ∅).

The criticality of a precedence constraint Ja → Jb is HI if χ(a) = χ(b) = HI. It is LO otherwise. For
each precedence constraint Ja → Jb, job Jb may not run until Ja terminates. Thus when scheduling
a task graph the additional condition for a job to be ready is when all its predecessors have signalled
their termination.

The reader may have noticed that we allow precedences from LO to HI jobs. Such a precedence
may be unusual and may be considered a bad practice, contrary to safety standards such as DO-178,
as it could make safety-critical, and hence highly trusted, functions dangerously dependent on non-
critical, and hence less trusted, functions. In [Bar12a,Bar13], it is proposed to ‘preprocess’ the task
graph such that the criticality of LO predecessors of HI jobs is changed to HI. Nevertheless we still
do not exclude the possibility of such precedences because in practice it is necessary to permit non-
critical functions to provide some data that is of secondary importance (and hence posing no risk of
impairing safety) but still useful. Let us consider a hypothetic practical situation illustrated in Fig. 2.
There we have a task graph of the localization system of an airplane, composed of four sensors (jobs
s1-s4) and the job L, that computes the airplane position. Data coming from sensor s4 is necessary
and sufficient to compute the plane position with a safe precision, thus only s4 and L are marked as
HI critical. On the other hand, data from s1, s2 and s3 may improve the precision of the computed
position, thus granting the possibility of saving fuel by a better computation of the plane’s route. So
we do want job L to wait for all the sensors during normal execution, but when the system switches
to HI mode we only wait for data coming from s4.

With the precedence constraints a schedule, to be feasible, needs to satisfy two additional condi-
tions:
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s1 s2 s3 s4

L

Fig. 2 The graph of an airplane localization system illustrating LO→HI dependencies.

Condition 3 When the system is in LO mode, all precedence constraints must be respected.

Condition 4 When the system is in HI mode, HI precedence constraints must be respected whereas
LO precedence constraints may be ignored.

2.2.2 Extending Fixed Priority to Precedence Constraints

To generalize the fixed-priority and FPM policies for precedence constrained problem instances recall
that in the previous section we redefined the concept of ready job, by adding the condition that all
the predecessors must have terminated. The use of fixed-priority in combination with the adopted
precedence-aware definition of ready job is called in literature List Scheduling. The generalization of
fixed priority is then straightforward, but it is important to note that list scheduling is not sustainable
on multiprocessor.

Sustainability is required to reason in terms of basic scenarios. We still use the list scheduling policy
offline, but in the case of multiple processors as online policy we use a time-triggered ‘sustainability
replacement’ policy, as explained in Sections 2.1.1 and 2.1.2.

Usually a priority table PT is required to be precedence compliant, i.e., the following property
must hold:

J → J ′ ⇒ J ≻PT J ′ (6)

The above requirement is reasonable, since we may not schedule a job before its predecessors termi-
nate. It is still possible to schedule using non precedence compliant tables, since the online policy will
just ignore high-priority jobs until all their low-priority predecessors signal their termination, but as
it will be clear in the next sections, precedence compliance can be convenient to analyze the schedule
properties.

2.2.3 Characterization of Problem Instances

In this work we will show how to adapt the metrics introduced in Section 2.1.3 for the case of
precedence constrained jobs.

First, we give some preliminaries. A mode graph is a graph that considers only single mode of
execution (either HI or LO) of T. Formally, a mode graph T = (χ,J,→) is defined by the criticality
level χ of the considered mode, a set of jobs J, and a precedence relation →.

For a problem instance T = (J,→) it is convenient to consider the following mode graphs:

HI-mode graph THI = (HI,JHI,→HI) considers mode HI and only HI-critical jobs JHI with HI-critical
precedences between them.

LO-mode graph TLO = (LO,J,→) is a mode graph that considers LO mode and all jobs and prece-
dences.

MIX-mode graph TMIX = (LO,JMIX,→) considers LO mode, all precedences, and the jobs JMIX ob-
tained from the original jobs J by modifying their deadlines to the new deadlines D′ which are
calculated from D′

i = Di − (Ci(HI)− Ci(LO)). Note, the same deadlines are used in LoadMIX.
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J3 J4 J5

(a) The task graph T
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(b) ASAP and ALAP times for TLO
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(c) ASAP and ALAP times for TMIX

J1

J2

J3 J4 J5

[0,8]

[2,10] [0,10]

(d) ASAP and ALAP times for THI

Fig. 3 Example of the various mode graphs

We define ASAP arrival times and ALAP deadlines, known in the task graph theory [KA99], but
so far mainly used to derive priority tables rather than to compute the load2.

Given a mode graph with execution times c that correspond to the considered mode, the ASAP
arrival times A∗ are the earliest times when jobs can possibly start:

A∗
j = max

i
(Aj , A

∗
i + ci | Ji are mode-graph predecessors of Jj)

Dually, ALAP deadlines D∗ are the latest times when jobs may terminate:

D∗
j = min

i
(Dj , D

∗
i − ci | Ji are mode-graph successors of Jj)

By analogy to static timing analysis in digital circuits, ASAP and ALAP values are obtained by
“propagation” of the arrival and deadline times through the mode graph by longest-path algorithm
that calculates the formulas above by visiting the nodes in topological or reverse topological order.

ASAP arrival and ALAP deadlines for the same job are mode-dependent. We extend the notion
of load and the necessary schedulability conditions in Lemma 8 for precedence-constrained jobs by
substituting ASAPs and ALAPs from TMIX into the formula for LoadMIX and (4) and from THI into
the formula for LoadHI and (5). It is trivial that substituting mode-dependent ASAP arrival time and
ALAP deadline to the job parameters does not change the schedulability of the task graph in the
given mode, so the necessary conditions in Lemma 8 remain valid, whereas the lemma becomes, in
general, stronger. Note that TMIX and THI may possibly have different precedence constraints, and, by
definition, we use the execution times c of two different modes for them: C(LO) for the MIX-mode
graph and C(HI) for HI-mode graph.

An example of ASAP and ALAP times calculation is given in Fig. 3. Fig. 3(a) shows the topology
of the task graph. For this graph consider that all jobs have A = 0, D = 10, C(LO) = 1. For
the HI jobs (colored in red in the figures) we have C(HI) = 2, and, thus, for TMIX we have D′ =
D − (C(HI) − C(LO)) = 9. Fig. 3(b) shows ASAP and ALAP times for graph TLO. The numbers
shown in the parenthesis give for each node, respectively, ASAP arrival time and ALAP deadline. In
the same way, Figures 3(c) and 3(d) show, respectively, ASAP and ALAP times for TMIX and THI.

In sequel, unless mentioned otherwise, we assume in the algorithms and analysis that the load
and stress values are computed using ASAP and ALAP values from the respective mode graph. Note
that for independent-job sets this modification has no effect, because then the ASAPs and ALAPs
are equal to the nominal arrivals and deadlines.

2 In literature the word ALAP is usually used for latest arrival
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Algorithm: AudsleyPriorityAssignment
Input: job set J
Output: priority table PT
1: J′ ← J
2: PT ← ∅
3: while J′ ̸= ∅ do
4: i← 1
5: JobFound = false
6: while i ≤ J′.size() ∧ ¬JobFound do
7: TT ← GetTerminationAtLeastPriority(J′[i],J′)
8: if TT ≤ J′[i].D then
9: JobFound← true
10: PT ← J′[i] ⌢ PT
11: J′ ← J′ \ {J′[i]}
12: end if
13: i← i+ 1
14: end while
15: if ¬JobFound then
16: return (FAIL)
17: end if
18: end while

Fig. 4 The Audsley algorithm

3 Related Work

Although our scope is finite set of jobs, most of the literature concerns with instances that have an
infinite set of jobs, generated by periodic or sporadic tasks. Periodic tasks are said to be synchronous
if the offsets between the first arrival of different tasks are statically known. (Most often, these offsets
are assumed to be zero.) The deadlines can be implicit (i.e., equal to the period), constrained (i.e., less
or equal to the period) or pipelined (i.e., larger than period). Systems allowing pipelined tasks are
known as arbitrary-deadline systems.

Our work can be applied for scheduling the hyperperiod of periodic synchronous non-pipelined
(i.e., implicit or constrained-deadline) tasks with precedence constraints. However, we also consider
general real-time policies that are not specifically designed for such systems, as they can be reused
in our context as well. We are particularly interested in policies tailored for global priorities assigned
to individual jobs. “Global” means that the priority controls the whole m-processor system.

3.1 Audsley Approach and its Limitations

A considerable part of the mixed-critical scheduling work in the real time literature uses the priority
assignment technique known as “Audsley approach” [Aud93]. The pseudocode of a generic implemen-
tation of this technique is shown in Fig. 4. At each step of the external loop the algorithm selects a
job to be the least-priority job from the working set of jobs J′, which initially includes all jobs. The
job is selected in the internal loop. For this, we pick a job and compute its termination time in the
case the job is selected for the least priority. If this time is less than its deadline the job is selected
and added in table PT . Then we remove the job from J′ and run a new iteration. If no job can be
selected the algorithm fails in finding a solution.

Audsley approach is based on the following assumptions:

1. The termination time of any job does not depend on the jobs having less priority
2. The termination time of any job does not depend on the relative priority of higher-priority jobs

If both assumptions are true, then Audsley approach is optimal. Unfortunately they are not always
true in mixed-critical scheduling. Assumption 1 usually holds for preemptive scheduling, while can-
not be guaranteed in the case of non-preemptive systems. Assumption 2 holds for single criticality
scheduling on single processor. In [BLS10] it is shown that that this assumption also holds for mixed-
critical scheduling in the case of the fixed-priority policy on a single processor system. Therefore,
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they proposed Audsley approach based algorithm “OCBP” and shown that it is optimal in this case.
However, as previously discussed, the FP policy is too restrictive for MCS problems, where FPM is
preferred. In the latter case Assumption 2 does not hold since the order of higher-priority HI and LO
jobs execution may determine whether the LO jobs get dropped or not in the case of a switch. Also,
Assumption 2 does not hold in multiprocessor systems.

Nevertheless Audsley approach is used also in the cases where these assumptions do not hold. In
that case the subroutine AudsleyPriorityAssignment may not compute the exact termination time,
and an upper-bound must be computed instead. In this case, however, the estimation is often too
pessimistic and/or computationally intractable.

In the rest of this subsection we illustrate this problem in the case of multiprocessor platforms.
An example of an upper-bound calculation for this case is present in the work of [Pat12], where
a schedulability analysis is given for sporadic tasks set. Using a similar technique we derive a for-
mula to estimate the termination time in the case of finite job sets and use it to implement the
GetTerminationAtLeastPriority subroutine of Fig. 4.

Consider a job Jk and assume that all the other jobs {Ji} have higher priority: Ji ≻ Jk. The time
interval in which a job Ji may preempt the job Jk is given by:

ιi,k = [Ak, TTk(χ)] ∩ [Ai, Di]

where TTk(χ) is a pessimistic estimation of the termination time of Jk in a scenario of criticality χ.
Then the interference of Ji on Jk, i.e., the cumulative length of the intervals in which Ji is executing
and Jk is ready but not executing, is at most:

Ii,k(χ) = min{|ιi,k|, Ci(χ)} (7)

thus TTk(χ) can be estimated by the following formula:

TTk(χ) = Ak + Ck(χ) +

⌊∑
i̸=k Ii,k(χ)

m

⌋
(8)

The last term in the above formula gives a pessimistic bound on maximal time duration where the
higher-priority jobs may keep all m processors busy, and it is based on assumption that the load of
these jobs is perfectly balanced between the processors.

We realized the algorithm of Fig. 4 implementing GetTerminationT ime subroutine using the
minimal fixed point of Equation (8) to estimate the termination time and we performed some ex-
periments. We randomly generated 181 450 instances of 30 jobs, at different values of StressLO and
StressHI, using a method similar to the one described in Section 8.2. The values of Stress ranged
uniformly from 0 to 2. We tried to schedule each instance first using FPM policy with EDF priority
and then with the priority computed by Audsley approach when applying Equation (8) for termi-
nation time estimation. Only 4.3% (7804) could be scheduled using Audsley approach, while 56.6%
(102690) could be scheduled by EDF.

The weakness of this approach is shown in the following example:

Example 9 Consider the following instance J:

Job A D χ C(LO) C(HI)

1 0 7 LO 3 3
2 0 8 LO 5 5
3 2 10 LO 5 5

It is easy to check that for m = 2 we have the following solutions for Equation (8):

TT1(LO) = 8, TT2(LO) = 9, TT3(LO) = 11

hence no job can be selected for the least priority. Note that this instance has a low load for a 2-
processor instance, in fact LoadLO(J) = 1.3. Also note that any priority assignment will lead to a
correct schedule for this instance.
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To understand the weakness of this approach, let us compute the value TT1(LO). We choose
a starting value of TT 0

1 (LO) = D1 = 7. From this we compute i2,1 = [0, 7] ∩ [0, 8] = [0, 7], thus
I2,1 = min{7, 5} = 5. Similarly we have that I3,1 = 5. Thus, applying Equation (8), we have that
TT 1

1 (LO) = 8, which is the fixed point for Equation (8). It is clear from the above computations that
when the execution windows of jobs are wide, the second term |ιi,k| of Equation (7) becomes too
pessimistic and thus we assume that job Ji runs entirely in the execution window of job Jk.

Though our experiments in Section 8 suggest that even if Audsley approach disposed of practical
perfect estimations, it would still be unlikely to significantly improve over our proposed multipro-
cessor algorithm. Nevertheless, we see that it could become a serious competitor to our algorithm.
We consider improving the estimations of fixed-job-set interference bounds on multiprocessors an
important subject of future work.

3.2 Multiprocessor Scheduling

Whereas for uniprocessor scheduling a fixed-job-priority algorithm (EDF) is optimal, for multiproces-
sor case, dynamic job priorities are essential for optimality[DB11]. Moreover, the EDF heuristic can
be very inefficient for multiprocessors. In seminal work of Dhall and Liu [DL78] it was shown that
the best, i.e., maximal load, at which we can be sure to have a schedulable job set for EDF on mul-
tiprocessors is no better than the same characteristic for single-processor platforms. For arbitrarily
small ϵ > 0 one can find a feasible job instance with load 1 + ϵ that is not schedulable by EDF. For
this, let us consider m small-deadline jobs with utilization ϵ/m each and one job with utilization 1
and a large deadline. If the last job, which has a large utilization, was given the highest priority then
the schedule would be feasible.

In [Bar04] it was shown that implicit-deadline sporadic task sets under global fixed job priority have
the following best guaranteed utilization: (m+1)/2. Roughly speaking, this means that such policies
can be guaranteed to find a multiprocessor schedule only if the system is loaded by no more than one
half of its total capacity, and even this is only possible if job priorities are well calculated, e.g., plain
EDF cannot provide this guarantee, as explained earlier. Therefore, EDF modifications have been
proposed to provide this guarantee. The main idea of several such algorithms is so-called ‘separation’
of jobs, i.e., separating those that have low and high contribution to load. One of such algorithms is
fpEDF, formulated for implicit-deadline tasks [Bar04], and later on generalized to arbitrary-deadline
tasks under name EDF-DS, where DS stands for density separation (see [DB11] for references). In
our notation, this algorithm computes job density as δi = Ci/(Di − Ai) and it differs from EDF by
always giving the jobs with δi > th the highest priority, for a certain threshold th. Ties are broken
arbitrarily. For jobs below the threshold, the priority is the default EDF. Obviously, this strategy
resolves the Dhall-effect counterexample mentioned earlier. However this approach does not give any
schedulability assurance in the case of finite sets of jobs. Experiments shows that, compared to EDF,
schedulability can get even worse using a threshold th = 1/2. For finite job sets, our experiments
suggest that a higher threshold is better for schedulability.

3.3 Precedence-constrained Scheduling

The list scheduling can be seen as generalization of fixed-priority scheduling by handling precedence
constraints using synchronization between precedence-related jobs, i.e., including the condition of
waiting for predecessor termination into the condition of job ‘ready’ status. Synchronization is essen-
tial for multiprocessors, whereas for single processor systems it may be sufficient to require precedence
compliance of priority [F+10,Bar12b]. For assigning priorities in precedence-constrained instances, it
is generally recognized that the definition of EDF and related heuristics should be generalized to using
ALAP deadlines D∗ instead of the nominal deadlines. For example, the non-preemptive scheduling lit-
erature knows so-called ‘ALAP’ and b-level heuristics [KA99], based on a similar idea. Single-processor
scheduling uses this approach for priority assignment with adjusted deadlines [F+10]. Sometimes the
ALAP-adjusted EDF is a key ingredient of an optimal strategy, see [KA99] for further references.
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3.4 Mixed-critical Scheduling

3.4.1 Single Processor MC scheduling

One of the most notable results in MCS scheduling is OCBP algorithm, which is based on fixed
priority. By contrast, the algorithms we propose in this paper, MCPI and MCEDF, are based on a
more flexible policy: fixed-priority per mode (FPM). We show that this helps to make them dominant
over fixed priority algorithms. To the best of our knowledge, in the previous work no other FPM
algorithm [GESY11,BBD+12a,EY12] has been proven to theoretically dominate OCBP. The priority
assignment of [GESY11] applies OCBP to compute PTLO, thus having equivalent schedulability.
[BBD+12a] proposes an efficient online algorithm with the optimal scaling factor and [EY12] presents
a highly efficient priority computation method that dominates OCBP and several other algorithms
empirically. Note, however, that [BBD+12a,EY12] are not directly applicable to the problem studied
in this paper as they are designed for a sporadic job model with unknown arrival times. Nevertheless,
certain very recent non-FPM algorithms theoretically dominate OCBP [Guo16] and for another non-
FPM algorithm even a proof of dominance over MCEDF is presented in [BB17].

The FPM policy provides better results than the fixed priority one, but in general dynamic-priority
policies are necessary for optimality.

3.4.2 OCBP Single-Processor Algorithm

OCBP algorithm is based on Audsley approach, presented in Section 3.1. It recursively selects the
least-priority job Ji using the following criterion: even when having the least priority in the working
set, job Ji still meets its deadline in the scenario (ck) = (Ck(χi)) |k=1...K , i.e., the basic scenario with
the WCET at the criticality level χi, which is ‘own’ for Ji, hence the name of the algorithm. Whether
the job Ji fits for the least priority can be checked by fixed-priority scheduling simulation3 with any
priorities for the other jobs in the working set provided that they are higher than Ji. The correctness
of this check is due to the following lemma [BBD+12b]:

Lemma 10 On single processor, the termination time of a job Ji in a fixed priority scheduling al-
gorithm depends on the arrival and execution times of jobs Jj with a priority higher than Ji, but not
on their relative priority assignment.

As it will become clear later, this is so because the least priority job terminates at the end of so-called
“busy interval”, i.e., the interval where the processor is never idle, this interval is determined by jobs’
total workload, but not by their priorities. Thus we can compute the exact worst case termination
time for the last job in that interval and this is where the optimality of OCBP comes from. Note
that Lemma 10 confirms Assumption 2 of Audsley algorithm. Note also that this assumption holds
because OCBP does not drop LO jobs even if a HI job exceeds its LO WCET.

3.4.3 Multiprocessor MC Scheduling

Some of the first works made on multiprocessor MC scheduling are based on temporal isolation
techniques (Mollisonet al. [MEA+10], Herman et al. [HKM+12]). This approach provides good
isolation between criticality levels, but it gives worse performances compared to solutions that allows
jobs at different criticality to run concurrently. Li and Baruah [LB12] proposed a global multiprocessor
algorithm, fpEDF, with a theoretical analysis of schedulability. This approach, however does not
provide good utilization for high number of processors, and it was shown [BCLS14] that partitioned
solutions can provide better schedulability guarantees for implicit-deadline tasks.

There are only a few works on precedence-constrained mixed-criticality scheduling. In [Bar13],
multiprocessor list scheduling algorithm was proposed. However, it is restricted to jobs that all have
the same arrival and deadline times. Finally, [YKRB14] consider pipelined scheduling for task graphs.
However, they implicitly assume that the deadlines are large enough, such that they can be ignored

3 [BLS10] uses a more efficient procedure - makespan (see Section 4.4)



16 Dario Socci2 et al.

Algorithm: MC -ALGO
Input: job instance J
Output: priority table PT
1: SPT ← JobsOrderedByEDF (J);
2: if LOscenarioFailure(SPT,J) then
3: return (FAILURE-NON-SCHEDULABLE)
4: end if
5: PT ← ImproveHIJobs(SPT,J)
6: if anyHIscenarioFailure(PT,J) then
7: return (FAILURE-ALGO-CANNOT-SCHEDULE)
8: end if

Fig. 5 The algorithm for computing priorities

during the problem solving, as only period (throughput) constraints were considered and not deadline
(latency) ones.

3.4.4 Own Work

The present article unifies our results on MCEDF [SPBB13] and MCPI [SPBB15a] and adds a new
theoretical study of their common properties, equivalence, and optimality. The formulation of MCPI
given here contains some important improvements e.g., potential interference relation. The MCEDF
algorithmic complexity presented here is also noticeably improved compared to the original paper.

4 Preliminaries

In this section we will introduce the concepts of Priority DAG (P-DAG), busy intervals and potential
interference relation. We use these concepts to reason about how different jobs may interfere with
each other when they are executed by a priority-based scheduling policy.

4.1 P-DAG Motivation

Informally a P-DAG is a graph that defines a partial order on the jobs that yields sufficient priority
constraints needed to obtain a certain schedule. This structure makes it easier to reason on priorities
than a priority table, since the latter is a total order and thus contains also unnecessary priority
constraints. We will imply for the rest of this section that we are using preemptive list scheduling
and that the jobs execute by default in the basic LO scenario. Recall that a priority table PT defines
a total order on the set of jobs J. A priority table PT defines one and only one schedule S when
applying list scheduling on m processors, we indicate it with the following notation: PT ⊨m S.

Before defining the concept of P-DAG, we will show in this section the reason why such a structure
may be useful. Fig. 5 shows the pseudocode of an algorithm that computes priorities for the mixed
critical scheduling problem.

The idea is to start with a good mixed criticality-unaware priority order (in this case EDF),
referred to as “support priority table” SPT , and then to improve SPT by raising the priorities of
HI-critical jobs. All the priority-based algorithms proposed in this work are based on this template. In
terms of schedulability this procedure is constrained by meeting the LO scenario deadlines, postponing
the HI scenario checks until the final solution is obtained.

A ‘simplistic’ implementation of the HI job priority improvement is shown in Fig. 6. This procedure
increases the priorities of the HI jobs w.r.t. the LO jobs, while the relative priorities between the jobs
of the same criticality level, LO or HI, remain in the EDF order. This is done in a manner similar
to a bubble-sort (or an insertion sort) in the PT array. We visit the HI jobs in decreasing priority
order, and try to raise each HI job (‘raising a bubble’) by repeatedly swapping priority with the
adjacent priority LO job. Subroutine CanSwap(j, j − 1, . . .) simulates the fixed priority schedule PT
with entries j and j−1 swapped and returns whether all deadlines are met. Subroutine Swap performs
the actual swapping.
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Algorithm: SimplisticImproveHIJobs
Input: priority vector SPT
Output: priority vector PT
1: for i← 1 to k do
2: PT [i]← SPT [i]
3: j ← i
4: if PT [j].χ = HI then
5: while j > 1 ∧ PT [j − 1].χ = LO ∧ CanSwap(j, j − 1, PT,J) do
6: PT ← Swap(j, j − 1, PT )
7: j ← j − 1
8: end while
9: end if
10: end for

Fig. 6 Simplistic improvement procedure, keeping the EDF order between same-criticality jobs

HI-J1

LO

0 1 2 3 4 5 6

time

J1 J3 J2

J1 J2

(a) The Gantt chart of Example 11

HI-J2

LO

0 1 2 3 4 5

time

J2 J1 J3 J4

J2 J4 J2

(b) The Gantt chart of Example 12

Fig. 7 Gantt charts for two different examples. The colors indicate the criticality level.

This procedure is illustrated in the following examples:

Example 11 Let T be the independent-job instance defined by the following table:

Job A D χ C(LO) C(HI)

1 0 5 HI 2 4
2 3 6 HI 1 2
3 0 4 LO 2 2

The algorithm in Fig. 5 will first give EDF priorities to the jobs, thus generating the following priority
table:

PT = (J3, J1, J2)

Then the algorithm in Fig. 6 will be called to improve this priority table. First, since J1 is HI job and
J3 is LO job, it will check if the swap between them is possible by checking if, after being moved to
the second PT position, J3 will still met its deadline in the LO scenario. In this case J1 will execute
for 2 time units, thus terminating at time 2, and then J3 will execute for other 2 time units, thus
terminating at 4. Since there is no deadline miss, we will accept the swap, thus obtaining:

PT = (J1, J3, J2)

Then the algorithm will try to swap J2 and J3, but if it does so J3 will terminate at time 5, missing
its deadline. Since there are no other possible swaps, the algorithm terminates. Fig. 7(a) shows that
using this priority order all deadlines are met in all possible scenarios of the instance.

However, this ‘simplistic’ procedure may easily fail, as shown in the next example:

Example 12 Let T be the independent-job instance defined by the following table:

Job A D χ C(LO) C(HI)

1 0 3 LO 2 2
2 0 6 HI 1 4
3 3 4 LO 1 1
4 3 5 HI 1 1
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The algorithm of Fig. 6 will first give EDF priorities to the jobs, thus generating the following priority
table:

PT = (J1, J3, J4, J2) (9)

The only possible swap here is between jobs J4 and J3, but it will lead to a deadline miss of job
J3. The algorithm will therefore leave this priority table unchanged, not having improved any HI-job
priority. Thus the algorithm will fail, since, as the reader may check, the priority table of (9) will lead
to a non-feasible schedule in scenario HI-J2. In this case, a correct priority table is:

PT = (J2, J3, J4, J1) (10)

and its performance is shown in Fig. 7(b).

The problem encountered in this example can be explained as follows. In (9) we put the jobs in
a linear structure in the order of their deadlines and try to swap the neighbors in this structure.
However, as we can see in the LO schedule in Fig. 7(b), temporally these jobs are located differently,
as J1 is next to J2, so they are neighbors, even though deadline-wise, as in (9), they are not; this
is because even although they at the opposite sides on the scale of deadlines they still arrive at the
same time. This group of jobs – {J1, J2} – executes in LO scenario strictly inside interval (0, 3), no
matter what their relative priorities are. The other group, {J3, J4}, arrives at time 3 and execute at
the other interval: (3, 5). The jobs of different groups do not interfere with each other, therefore we
should swap the priorities in the two groups independently. Thus, by swapping J1 and J2 in (9) we
obtain a correct priority table (10).

To avoid similar problems we introduce the concept of Priority DAG (P-DAG), that is, intuitively,
a structure that represents how jobs interfere with each other and allows us to “swap” job priorities
in a DAG structure instead of a linear chain structure.

4.2 P-DAG Definition and Properties

Consider a task graph T = (J,→), a number of processors m and the graph G = (J,▷), where ▷ is
a partial order relation defined on J.

Definition 13 (P-DAG) We call PT(G) the set of all priority tables that can be obtained by a
topological sort of G(J,▷). In other words, we have J1 ▷ J2 ⇒ J1 ≻PT J2 for all PT ∈ PT(G).
We also say that edges ‘▷’ define relative priority constraints between jobs. G is a P-DAG on m
processors for schedule S iff:

∀PT, PT ∈ PT(G)⇒ PT ⊨m S (11)

We indicate the schedule generated by a P-DAG G as S(G). Two P-DAGs giving the same schedule
are called equivalent. Formally:

Definition 14 (Equivalent P-DAGs) Two P-DAGs G and G′ are equivalent on m processors iff:

S(G) = S(G′)

Lemma 15 A necessary condition for non equivalence between two P-DAGs, G(J,▷) and G′(J,▷′),
is

∃J1, J2 | J1 ▷ J2 ∧ J2 ▷′ J1 (12)

The above comes from the consideration that, to obtain a different schedule, at a certain time t the
fixed-priority scheduler must schedule one job instead of another. This may only happen if a pair of
jobs has opposite relative priority, so (12) must be true.

Also, the following is trivial:

Lemma 16 If adding an edge to a P-DAG G does not introduce a cycle, the resulting graph G′ is
still a P-DAG and it is equivalent to G. Also PT(G′) ⊆ PT(G).
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(a) Schedule (b) Canonical P-DAG

Fig. 8 The figures of Example 20.

Definition 17 (Canonical P-DAG) A Canonical P-DAG for a schedule S is a P-DAG G such
that:

∀PT, PT ∈ PT(G)⇔ PT ⊨m S (13)

Definition 18 (Interference Relation ‘⊢’ between Jobs) Given two jobs J1 and J2 and priority
table PT , we say that a higher-priority job J1 interferes with a lower-priority job J2 (J1 ⊢PT J2) if
there is a point in time t where the list scheduler has to select a job to execute on one of m processors
from a list of ready jobs where both J1 and J2 are present and it selects J1 whereas J2 is not selected
until a later time.

It’s trivial that:
J1 ⊢S J2 ⇒ J1 ≻PT J2 (14)

Lemma 19 Given a task graph T = (J,→), a table PT and a number of processors m. Consider the
interference relation ⊢S , where S is such that PT ⊨m S. Then G = (J,⊢S) is a canonical P-DAG for
S.

Proof We need to prove that (13) holds. Let us first prove that G is actually a P-DAG (i.e., (11)
holds). This trivially comes from the observation that during the execution of the schedule S, we
only need to compare job priorities when one job interferes with another one. So the relative priority
constraints defined by relation ⊢S are sufficient to generate S.

To prove that the priority constraints defined by ⊢S are also necessary, let us suppose by contra-
diction that there exists a table PT ′ such that PT ′ ⊨m S and PT ′ /∈ PT(G). The latter means that
∃ J1, J2 such that J1 ⊢S J2 and J1 ⊁PT ′ J2. By the first statement and by (14), we have J1 ≻PT ′ J2
that contradicts the second statement. ⊓⊔
Example 20 Let us consider the task graph of Fig 2, where J is defined as follows:

Job A D χ C(LO) C(HI)

s1 0 2 LO 1 1
s2 0 2 LO 1 1
s3 0 2 LO 1 1
s4 0 3 HI 1 3
L 0 6 HI 1 3

consider the priority table PT = (s1 ≻ s2 ≻ s3 ≻ s4 ≻ L). On two processors this PT produces
the schedule S shown in Fig. 8(a). From this figure is easy to derive the interference relation ⊢S . We
have: s1 ⊢ s3, s2 ⊢ s3, s1 ⊢ s4, s2 ⊢ s4. Note that L never gets interfered, because, due to precedence
constraints, it is never ready until time 2, when all its predecessors terminate. From the interference
relation ⊢S , we can derive the canonical P-DAG G = (J,⊢S), shown in Fig. 8(b).

The following trivially follows from Lemmas 19 and 16:

Lemma 21 Consider a task graph T = (J,→) and a graph G = (J,▷). Let ▷∗ be the transitive
closure of ▷ and S be a schedule generated by a priority table PT ∈ PT(G). Then G is a P-DAG iff:

∀J ′, J ′′ ∈ J, J ′ ⊢S J ′′ ⇒ J ′ ▷∗ J ′′ (15)
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Algorithm: Forest PDAG
Input: task graph T(J,→)
Input: priority table PT
Input: processor count m
Output: P-DAG G(J′,▷)
1: G = (∅, ∅)
2: while PT ̸= ∅ do
3: JCurr ← PopHighestPriority(PT )
4: PT ′ ← TopologicalSort(G) ⌢ JCurr

5: G.J′ ← G.J′ ∪ {JCurr}
6: T′ ←MaximalSubgraph(T, G.J′)
7: ⊢ ← SimulateListSchedule(LO,T′, PT ′,m)
8: for all trees ST of G do
9: if ∃J ′ ∈ ST : J ′ ⊢ JCurr then
10: G. ▷ ← G. ▷ ∪ { (root(ST ), JCurr) }
11: end if
12: end for
13: end while
14: return G

Fig. 9 The forest P-DAG generation algorithm

4.3 Forest-shaped P-DAG generation

A P-DAG can, in general, be any kind of DAG. We are interested in generating P-DAGs that are
shaped like forests (i.e., a collection of unconnected trees) directed towards the roots. Please note
that in this paper by “tree” we mean a directed tree, where all paths from the leafs to the root
are directed paths. Also note that some authors use a different terminology by defining a directed
tree simply as a DAG whose underlying undirected graph is a tree, and use the term “arborescence”
to indicate the DAG that we defined as “tree”. The reason why we want such a structure will be
clear in the following sections, where we use the properties of forests to prove some properties of our
algorithm.

We propose in this section an algorithm that generates a forest-shaped P-DAG. We will first
explain the algorithm and then prove its correctness. The algorithm is shown in Fig. 9, it takes a
task graph and a priority table PT as input. Note that PT must be precedence compliant so that
the algorithm visits the task graph in a topological order and may always perform valid simulations,
which for every simulated job also simulates all its task-graph predecessors. The algorithm proceeds
as follows. The highest priority job JCurr is removed from the table PT and added to the graph
G. Then we simulate a LO-mode basic scenario run of the jobs J′ included so far in G and their
precedences, using as priority table a topological sort of G concatenated (by ‘⌢’) with JCurr at the
least priority position. We assume that the simulation is done by the list scheduling, whereby the
precedence edges are defined by the maximal subgraph of the task graph, which means that we take
not a subset but all precedence edges of graph T that join the jobs that have been included so far.
Since the PT is precedence compliant and we included the jobs starting from the highest priority, we
can guarantee that after a job is included all its precedence predecessors, the respective precedence
edges, and the higher priority jobs are taken into consideration in the subsequent simulation. The
simulation keeps track of jobs that interfere with JCurr and returns this information as a relation ‘⊢’.
Then for each tree of forest G that contains a job that interferes with JCurr we add a P-DAG edge
going from the tree root to JCurr. The algorithm terminates when all jobs have been handled.

Example 22 Consider the task graph and the priority table of Example 20. Now we construct a
forest P-DAG for it, using Forest PDAG . In the first step the algorithm picks up s1, the highest
priority job from PT , and adds it to the graph. In the second iteration, we pick up s2. Since it does
not get interfered by any job, we continue without adding any edge. Then we pick up s3, which gets
interfered by both s1 and s2, so we add the edges (s1, s3) and (s2, s3). At the next iteration we pick
up job s4, that also gets interfered by both s1 and s2, so we add an edge from the root of the tree
that contains the interfering jobs (i.e., s3) to s4. In the final iteration we pick up job L, that does not
get interfered by any job, thus we add it to the graph without joining any edges to it. The resulting
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Fig. 10 Forest P-DAG

graph is shown in Fig. 10, which can be compared to the canonical P-DAG for the same example
shown in Fig. 8(b).

Theorem 23 The graph G generated by the Forest PDAG algorithm is a P-DAG and a forest.

Proof We prove the theorem by induction, by showing that it is true for the subgraph Gn, obtained
after n-th iteration of the main loop while assuming the hypothesis that it is true for the subgraph
Gn−1. By construction, the nodes of Gn are composed of the first n elements of table PT provided
at the input. We denote by PTn the table composed of the first n elements of PT . In fact, Gn is a
P-DAG for the schedule obtained from priority table PTn, i.e., PTn ⊨ S(Gn) as shown below.

Basic step. The basic step for induction is trivial. We have a priority table PT1 = (J1) with
one element and a graph G1 = ({J1}, ∅). A graph of one element is a forest and the only possible
topological sort of G1 gives PT1.

Inductive step. We know by inductive hypothesis that Gn−1 is a P-DAG and PTn−1 ⊨ S(Gn−1).
Also we know that Gn−1 is a forest. Since we add edges to Jn only from the roots of unrelated subtrees,
this operation may only generate another tree, thus Gn is a forest.

Gn is a P-DAG by construction, since the ’for’ loop in Fig. 9 ensures property (15) of Lemma 21.
Also, since Jn gets no successors in Gn, during a topological sort of Gn we can give Jn the n-th
position in the topologically generated priority table, same position it has in PTn. For the other jobs,
the partial graph that we have to explore is exactly Gn−1, so we can generate PTn−1 from it. Since
by construction up to the (n − 1)-th element PTn and PTn−1 are equal, we can generate PTn by
topological sort of Gn. Thus PTn ⊨ S(Gn). ⊓⊔

4.4 Single-processor Job Interference and Busy Intervals

Whereas P-DAGs enable the reasoning about the interference between the jobs whose priorities are
known, in our incremental priority calculation algorithms we also need to reason about the subsets
of jobs whose priorities are not known or may be modified. In the single processor scheduling the
concept of busy intervals is a useful tool for this purpose.

Definition 24 (Busy Interval) Consider work-conserving policy and a task graph T. In the re-
sulting single-processor schedule S, we say that a job J is active at the given time if by this time
it has arrived, has not yet terminated, and for which it holds that all of its transitive predecessors
(i.e., {J ′ | J ′ →∗ J})} have arrived as well. A busy interval (BI) is a maximal open time interval
(τ1, τ2) where the set of active jobs4 is never empty.

The BI intervals do not depend on the selected work-conserving policy. They depend only on T
and scenario c. In a fixed priority policy neither the start time τ1 nor the length of a busy interval
τ2 − τ1 depends on the exact priority assignment. In fact this is so because the former is given by:

τ1 = min
Ji∈JBI

{Ai}

4 we do not say ‘ready’ jobs in order to also include jobs that are waiting for their predecessors to terminate
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and for the latter we have:

τ2 − τ1 =
∑

Ji∈JBI

ci (16)

where JBI ⊆ J is the subset of the jobs running in the busy interval.

By abuse of terminology, we apply the term ‘busy interval’ also to the subset JBI , and denote it
BI. In general, a job set J can be partitioned into multiple busy intervals, because some jobs in J
may arrive at or later than the end of a busy interval of some other jobs in J.

To compute the busy intervals for a given task graph, it is convenient to avoid the case where
Ja → Jb whereas Aa > Ab as an ‘irregular case’. For this we ‘regularize’ the job set.

Definition 25 (Regularized job set) Given a task graph T = (J,→), its zero-mode graph is
TLO-∅ = (LO,J∅,→) where J∅ is the set of jobs { (Ai, Di, χi, C

∅
i ) } obtained from the original set by

enforcing zero execution times: C∅ = (0, 0). Then the regularized job set J∗ is the set of jobs whose
arrival times are calculated as ASAP times A∗

j in zero-mode graph TLO-∅. i.e., using zero execution
times and considering the complete set of jobs and precedences.

Definition 26 (Makespan algorithm to compute BIs in LO mode) 5 To compute the busy
intervals one can use the makespan procedure, as suggested in [BLS10], which we adapt here for
precedences. Consider the regularized set of jobs J∗ = {J∗

i }. Assume that these jobs are ordered by
their arrival times (which are, in case of precedences, zero-mode ASAP times). Consider the sequence
f1, f2, . . . , fi of numbers defined by the following recurrence:

f1 = J∗
1 .A+ J∗

1 .C(LO)

fi = max(fi−1, J
∗
i .A) + J∗

i .C(LO) i > 1 (17)

Then the latest termination time (makespan) of a preemptive work-conserving schedule is given by
F = fn. To keep track of all busy intervals, we have to consider that whenever in Equation (17) we
have that fi−1 ≤ J∗

i .A the previous busy interval ends at time fi−1 and the new one starts at time
J∗
i .A.

The following holds trivially:

Lemma 27 (BI computation complexity) For a task graph T, makespan computation has linear
complexity in the number of jobs – O(K) – when the jobs are pre-sorted by (regularized) arrival times.

Lemma 28 (Single-processor schedules are the same with precedence or regularization)
For regularized set J∗ the schedule based on a precedence-compliant PT is the same when computed
with precedence constraints (J,→) and when computed for independent jobs J∗ are identical.

The latter lemma holds because in J∗ the satisfaction of precedence constraints is ensured due to
interference from higher-priority predecessors.

The following lemma is easy to prove:

Lemma 29 (Least priority in a busy interval) Given a task graph T and any of its busy intervals
BI (τ1, τ2). In a list scheduling or regularized fixed-priority scheduling with a precedence-compliant
table PT the least-priority job running in the given BI terminates at time τ2. It either gets interfered
by a higher-priority job in BI or gets delayed due to precedence from at least one other job in BI,
provided that BI contains some other jobs.

5 recall that by default we study LO-mode schedules in this section
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4.5 Multiprocessor Case: Potential Interference Relation

In this section we extend the concept of busy intervals for more general multiprocessor case. In fact,
in the single processor case two jobs are placed into the same busy interval if and only if they have
sufficiently close arrival times such that in some priority-based schedules they may delay each other
either by higher precedence or by higher priority. In the general case, we say that such two jobs are
in potential interference relation.

As indicated in Lemma 28, on a single processor both reasons of one job delaying another can be
modeled by interference relation ⊢. However, with m = 2 and larger, higher priority jobs that run in
parallel do not necessarily interfere with a given job. Therefore, to reflect the delaying of a job due

to their predecessors, we define the extended interference relation
−→
⊢ as follows:

Definition 30 (Extended interference relation) Given a task graph T (G,→) and a schedule for

it S we say that ∀J1, J2 ∈ G, J1
−→
⊢SJ2 iff J1 ⊢S J2 ∨ (J1 → J2 ∧ TT S

1 > A2).

Thus in the extended sense also predecessors may interfere with (i.e., delay) a given job if they
terminate after the job’s arrival.

Definition 31 (Potential Interference Relation) Given a task graph T(J,→), m processors and
a subset J′ ⊆ J that for each contained job also includes its predecessors, we say that an equivalence

relation
J′

∼ on set J′ is a ‘potential interference’ relation if it has the following property:

∀J1, J2 ∈ J′ :
(
J1 = J2 ∨ ∃PT : J1

−−→
⊢PTJ2

)
⇒ J1

J′

∼ J2

whereby we consider LO-mode m-processor list schedules with priority table PT applied to maximal
task subgraph with nodes J′.

In general, there exist multiple potential interference relations, as joining two equivalence classes
would lead to a new potential interference relation. Therefore, the (unique) maximal of such relations
is the total equivalence. The (unique) minimal potential interference relation can be obtained by
union of extended interference relations under all possible PT ’s, followed by transitive, symmetric,
and reflexive closure, however it is a costly computation due to exponential number of PT ’s. Instead of
computing this minimum, we over-approximate it by exploiting the following theorem (given without
proof).

Theorem 32 (Single-Processor Interference) In list scheduling a potential interference relation
for a single processor is also a potential interference relation for m processors.

The intuitive meaning of this theorem is that when only one processor is available the ‘competition’
between the jobs for a processor is strictly larger than when m > 1 processors are available.

The following theorem can be derived by induction using Lemma 29:

Theorem 33 (Busy intervals define minimal potential interference relation on single pro-
cessor) Given a task graph T and a subset of jobs J′ that for each contained job also includes its
predecessors. Let T′ be the maximal subgraph of T with nodes J′. The busy intervals BI of sub-instance

T′ are equivalence classes of the minimal potential interference relation
J′

∼ on single processor.

From this we conclude that computing the minimal potential interference on a single processor
can be done in linear time using the makespan procedure explained in Section 4.4. We also conclude
that the result of this computation can be used to over-approximate the minimal interference relation
on a multiprocessor. We apply these results later in our multiprocessor algorithm.
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Algorithm: MCEDF
Input: job instance J
Output: priority table PT
1: if LOscenarioFailure(J) then
2: return (FAIL-NON-SCHEDULABLE)
3: end if
4: G← MCEDF PDAG(J, ∅, ∅)
5: PT ← TopologicalSort(G)
6: if anyHIscenarioFailure(PT,J) then
7: return (FAIL-NON-SCHEDULABLE-BY-MCEDF)
8: end if

Fig. 11 The MCEDF algorithm for computing priorities

Algorithm: MCEDF PDAG
Input: job instance J′

Input: node Jparent

In/out: P-DAG G
1: BI← PartitionIntoBIs(J′);
2: for all BI ∈ BI do
3: J least ← SelectLeastPriorityJob(BI)
4: G.J′ ← G.J′ ∪ {J least}
5: if Jparent ̸= ∅ then
6: G. ▷ ← G. ▷ ∪ {(J least, Jparent)}
7: end if
8: J′′ ← BI \ {J least}
9: MCEDF PDAG(J′′, J least, G)
10: end for

Fig. 12 The MCEDF algorithm for computing P-DAG

5 Independent-Job Single Processor Scheduling – MCEDF

5.1 Mixed Critical Earliest Deadline First

Our proposed Mixed-Critical Earliest Deadline First (MCEDF) algorithm computes priority tables
PTLO and PTHI for FPM policy for independent jobs on single-processor platforms. After a switch to
the HI mode the scheduling problem becomes a standard non MC problem, for which EDF is optimal
in single processor case. So PTHI is assumed to be an EDF table. The problem is then reduced to
compute PTLO, which we will call just PT for the rest of this section. The algorithm is formulated
here for independent jobs, but it can be easily extended to support task graphs.

The algorithm to compute PT is shown in Fig. 11. Initially, we verify the schedulability of the LO
scenario in subroutine LOscenarioFailure, by running EDF. By optimality of EDF for single criticality
level we mean that if a job misses the deadline, then the instance is not schedulable. Thus the algorithm
establishes that MC schedulability Condition 1 (see Section 2.1) is satisfied, which remains invariant
for the algorithm. The algorithm applies a best-effort heuristic to ensure Condition 2, i.e., that the
deadlines of all HI jobs are met also in HI scenarios, by trying to ensure that the priorities of the HI
jobs are as high as possible, under the constraint that all jobs meet their deadlines in the LO scenario
(i.e., Condition 1 is still satisfied).

To compute the final priority table, MCEDF first calls subroutine MCEDF PDAG , which genera-
tes a P-DAG with HI job priorities improved w.r.t. the original EDF table. Subroutine TopologicalSort
employs the well-known topological sort algorithm to obtain the priority table PT from the P-DAG.
Finally, the subroutine anyHIscenarioFailure evaluates whether Condition 2 is met. In this case the
algorithm succeeds. The check could be done by a simulation over the set of job specific HI scenarios
HI-Jn in line with Theorem 3. However, we use a more efficient schedulability check, which does not
do exhaustive enumeration of scenarios but instead applies Theorem 7.

The core of the algorithm, i.e., procedure MCEDF PDAG that constructs the P-DAG G, op-
erates only in the LO mode. Therefore in our description of this procedure in the remainder of this
section we keep assuming that all jobs execute in the LO basic scenario.
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The subroutine MCEDF PDAG is defined in Fig. 12. The algorithm is based on the concept of
busy interval, which was defined in Section 4.4. The P-DAG construction algorithm splits the given
subinstance J′, J′ ⊆ J into BI’s and selects the least priority job in each BI (see Fig. 12, line 3).
Observe that by Lemma 29 in a busy interval (τ1, τ2), the selected job will terminate at time τ2,
which can be computed by Equality (16). Let J late

LO and J late
HI be the latest deadline 6 job among the

LO and the HI jobs of BI respectively. Subroutine SelectLeastPriorityJob selects the least priority
job according to the following rule.

– if ∃Jj ∈ BI : χj = LO ∧ J late
LO .D ≥ τ2

– then J least ← J late
LO

– else J least ← J late
HI

This rule prefers to assign the least priority to J late
LO if BI has LO jobs and if the latest-deadline one

among them would not miss its deadline. Otherwise the algorithm has no other choice but to select
a HI job. Thus, the algorithm greedily avoids assigning a HI job the least priority, and does so only
if otherwise it would break Condition 1. Let us now show that in a feasible problem instance this
rule makes a choice that is feasible for the LO scenario. In uniprocessor scheduling the choice of the
least-priority job can adversely affect the schedulability of that job only. Thus, we only need to ensure
that this job meets the deadline. The job selected by the described rule can only miss its deadline if
the latest-deadline job among all jobs in BI would also miss its deadline, which is only possible in an
infeasible instance.

The P-DAG G, as constructed by MCEDF, has multiple subtrees that correspond to the BI’s
of the complete problem instance J. Subroutine PartitionIntoBIs in Fig. 12 splits the currently
examined instance into BI’s. Then the subroutine MCEDF PDAG examines every busy interval BI
to select the least-priority job there. Afterwards the algorithm continues recursively with sub-instances
J′′ = BI \{J least}. Removing a job from a BI reveals further fragmentation into busy intervals, which
become direct tree-children of J least in the P-DAG. In those new BI’s the same algorithm is used to
find the least-priority job and to construct the subtree further from the roots to the leafs.

Example 34 Let the problem instance J be the same as defined in Example 6:

Job A D χ C(LO) C(HI)

1 0 30 HI 10 12
2 2 10 HI 2 8
3 1 8 LO 2 2
4 8 17 HI 2 7
5 7 11 LO 2 2

The priority table illustrated for the same example in Fig. 1 is, in fact, the one computed by
MCEDF algorithm: PTMCEDF = (2, 4, 3, 5, 1).

Let us demonstrate how MCEDF computes this table step-by-step. MCEDF starts by checking
whether the instance is schedulable in the ‘LO’ scenario by a simulation with PTEDF = (3, 2, 5, 4, 1).
Instead, Fig. 1 row ‘LO’ shows a simulation for the PTMCEDF ; no deadline is missed there, and hence
the same should hold for PTEDF as well.

Then MCEDF generates the P-DAG, see the end result in Fig. 13. When constructing the tree
roots we observe that there will be only one root, as instance J has only one busy interval BI, This is
visible from the LO-scenario simulation in Fig. 1, where processor remains continuously busy until all
jobs terminate, during the interval (0, 18). Thus for BI = J we should select the overall least-priority
job as the tree root. For the considered BI, the latest-deadline jobs are J late

LO = J5 and J late
HI = J1.

Since D5 = 11 < 18, we cannot select J5, so we select J1 as J least for the P-DAG root. Now we split
the subinstance J \ {J1} into BI’s, obtaining BI ′ = {J3, J2}, running in (1, 5) (again, see Fig. 1) and
BI ′′ = {J5, J4}, running in (7, 11). For these intervals we select, respectively, J3 (since D3 ≥ 5) and J5
(since D5 ≥ 11). The remaining subinstances have only one job, so the final P-DAG generation steps
are trivial (see Fig. 13). Priority table PTMCEDF satisfies the partial order of the resulting P-DAG.

6 for equal-deadline jobs we break the ties by selecting the job with minimal Cj(HI)−Cj(LO). This choice is explained
in Section 5.2.
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1

53

42 BI2 = (8,10)
PTEDF = (4)

BI1 = (2,4)
PTEDF = (2)

BI'' = (7,11)
PTEDF = (5,4)

BI' = (1,5)
PTEDF = (3,2)

BI = (0,18)
PTEDF = (3,2,5,4,1)

Fig. 13 The P-DAG for Example 34; each node is annotated by the selected job index (colors represent criticality).

Finally the algorithm checks the HI mode schedulability. We can do it by simulating all HI-job specific
scenarios (by Theorem teo:correctnessScenarios), as illustrated in rows ‘HI-Jj ’ in Fig. 1. Because, as
the reader can verify, the deadlines are met, the algorithm succeeds.

Lemma 35 The graph G generated by MCEDF PDAG is a forest and a P-DAG.

Proof Graph G = (J, ▷) is a forest by construction. To prove that it is a P-DAG, consider two jobs

J1, J2 such that J1 ⊢ J2 in the final PT obtained from G. This implies that J1
J∼ J2 and hence by

Theorem 33 J1 and J2 are in the same BI, and thus MCEDF should include them into the same tree
in G. Let Ja be their closest common tree ancestor, i.e., the root of a subtree that contains both of
them such that: (J1 ▷

∗ Ja ∨ J1 = Ja) ∧ (J2 ▷
∗ Ja ∨ J2 = Ja). It may not be that Ja = J1, because

then we would have that J2 ▷
∗ J1, which contradicts J1 ⊢ J2. Hence, we have Ja ̸= J1. Suppose that

also Ja ̸= J2. Then let ST a be the subtree of G rooted in Ja and Ja = ST a \ {Ja}. Since Ja is

the closest ancestor of J1 and J2, they will not have any ancestor in Ja, thus J1
Ja

≁ J2, which also
contradicts J1 ⊢ J2. Thus it may only be that Ja = J2, we thus we have shown that J1 ⊢ J2 ⇒ J1▷

∗J2
and hence the theorem statement is true by Lemma 21. ⊓⊔

Lemma 36 (MCEDF Complexity) MCEDF has an implementation with complexity O(K2) where
K = |J|.

Proof First of all, let us agree that we represent each subinstance J′ by a list that is initially pre-sorted
(in time O(K logK)) by arrival times. Note that when splitting subinstances into busy intervals to
obtain new subinstances they can stay sorted by arrival times without any additional sorting as they
are obtained by simple decomposition of a pre-sorted list into more lists. In LOscenarioFailure we
perform one fixed-priority schedule simulation. The total cost of one simulation is O(K logK) (see
[SPBB15b]).

Graph G, being a collection of trees, has K nodes and at most K − 1 edges. The complexity of
TopologicalSort for such graphs is O(K) [CLRS01].

We now analyze the complexity of MCEDF PDAG . Let ST i denote subtree of G rooted at node
Ji. The most time-costly procedure at each node Ji of graph G is the partitioning of the current
subinstance J′

i = ST i − {Ji} into busy intervals. Because the subinstance is previously sorted by the
arrival times, this can be done in a time linear in |J′

i| by the makespan procedure (see Lemma 27).
Next to splitting into BI’s, the other basic procedure at each P-DAG node is the selection of the
least-priority job Ji in J′

i, which is also linear in |J′
i|, as a selection of the maximal-deadline job in a

list of jobs.
Let us now assign every node in forest G to a tree level based on its distance to the roots. Now

observe that all ST i rooted at the same tree level together contain at most K jobs, with exactly K
jobs at the first level and removing some of them when going from the roots to the leafs. So, the
tree generation cost is O(K) per level. Because there are at most K tree levels, the total P-DAG
generation complexity is O(K2).

Finally, anyHIscenarioFailure can be done in O(K logK) time according to Theorem 7. ⊓⊔
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Fig. 14 The Gantt charts of Example 37

5.2 The Support Priority Table for MCEDF

As the candidates for getting the least priority, J late
LO and J late

HI , the MCEDF assigns the latest-deadline
jobs at the given criticality level. MCEDF, however, does not prescribe anything specific to break the
tie in case multiple jobs have the same deadline. Certain properties of MCEDF do not depend on how
the ties are broken. However, for better schedulability in HI mode and for certain other properties
this has to be specified. In this case, we assume that an additional input is provided to the MCEDF
algorithm, the so-called support priority table, denoted SPT , and that MCEDF selects the least
SPT -priority LO and HI jobs as the least-priority candidates. This table must be EDF-compliant:

J1.D < J2.D ⇒ J1 ≻SPT J2

To construct the SPT table the user may follow certain heuristics, to which we refer as support
algorithm. In our MCEDF implementation the following algorithm is used. In the case of equal-
deadline jobs we break the ties by selecting for the least priority the job with the least WCET
uncertainty ∆Cj (see Equality (2)). Our rationale for this stands in the observation that jobs with
a high WCET uncertainty are ‘more critical’, because the quantity of additional computation they
add in the case of a switch is higher. We will show the advantage of this heuristics in the following
example.

Example 37 Consider the instance J defined by the following table:

Job A D χ C(LO) C(HI)

1 0 7 HI 2 4
2 0 7 HI 2 3
3 0 4 LO 1 1

In the case of the uncertainty-based SPT MCEDF will generate the following priority table:

PT = J1 ≻ J3 ≻ J2

Using this priority table the jobs will meet the deadlines in all scenarios, as shown in Fig. 14(a). In
the case we would disambiguate the jobs differently MCEDF will generate the following solution:

PT ′ = J2 ≻ J3 ≻ J1

This table is not schedulable, since J1 misses the deadline in scenario HI-J1, as shown in Fig. 14(b).

5.3 Dominance over OCBP

In this subsection we provide a theoretical evidence that MCEDF dominates OCBP. Example 34 has
shown an MCEDF-schedulable instance which is, in fact, not OCBP-schedulable. The latter can be
shown as follows. Suppose one can select the least OCBP-priority job in this instance. It cannot be
a LO job, because, as shown earlier (see Fig. 1), instance J consists of a single BI that terminates
at time 18, when any LO job would miss its deadline. If we could select a HI job, then OCBP would
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evaluate its termination time by effectively extending the aforementioned LO-scenario BI into a longer
HI-scenario BI where all HI jobs take Cj(HI) − Cj(LO) extra time. Summing up these differences,
this adds 13 time units to the termination time 18. But the termination time 31 is beyond the latest
HI job deadline, D1 = 30.

Thus, the dominance is given by the following result:

Theorem 38 If an instance is OCBP schedulable, then it is schedulable by the MCEDF algorithm
as well, whereas the opposite (as already shown) is not true.

Proof Recall that, by P-DAG definition, the preference for one particular topological order to derive
the PT from the P-DAG generated by MCEDF does not impact its schedulability. Similarly, when
OCBP has multiple choices for the selection of the least priority job then preferring a particular choice
does not matter for the OCBP schedulability [BLS10]. So, we will show that if one follows certain
rules in making a choice in the MCEDF and OCBP, then both algorithms will construct the same
priority table PT for any OCBP-schedulable instance J.

Let us first examine in detail how MCEDF constructs PT going in reverse topological direction
from less-priority roots of graph G to higher-priority leafs. At each step of the reverse topological sort
we select a job and add it to the head of PT . The job is selected from a ‘ready set’ (RS), i.e., the
set of jobs {JRS

i } that are that are roots of subtrees {STRS
i } which consist of jobs that have not yet

been selected and which correspond to busy intervals {BIRS
i }. Implicitly, there is a sub-instance J′ of

all such jobs, of which BIRS
i are the busy intervals and JRS

i are their respective J least jobs. MCEDF
select the J least job of any of those BIs as the least-priority job in sub-instance J′. What we have
to show is that if J′ is OCBP-schedulable then at least one BI will provide a job J least that can be
selected for the least OCBP priority as well.

– Case 1: There is a BIRS
i whose J least is a LO job.

In this case, OCBP can select the J least of any such busy interval. This is because when evaluating
whether a LO job can be assigned the least priority OCBP simulates the basic LO scenario,
effectively doing the same check as MCEDF.

– Case 2: The J least in every busy interval is a HI job
In this case, the MCEDF rule to select the J least in a BI implies that the end time of every BIRS

i

is later than the deadline of any LO job contained in it. Consequently, no LO job can be selected
by OCBP, because in an OCBP simulation a least-priority LO job will terminate at a time equal
to the end time of its BIRS

i , thus missing its deadline.

Therefore, because instance J′ is OCBP-schedulable, OCBP should be able to select a HI job.
Let us denote this job J ′ocbp. Let J ′least be the job selected by MCEDF for the BI that contains
J ′ocbp. Like J ′ocbp, J ′least must be a HI job. Because MCEDF selects the latest-deadline HI job
in the BI, we have: J ′least.D ≥ J ′ocbp.D.

The HI jobs are evaluated by OCBP using the HI scenario where no LO jobs are dropped and
the jobs have Cj(HI) execution times. Because these execution times are larger or equal to the

execution times in the basic LO scenario and no LO jobs are dropped we conclude that J ′ocbp

and J ′least must be located in the same busy interval not only in the LO scenario, but also in the
HI scenario evaluated by OCBP. The fact that J ′ocbp can be selected by OCBP means that if it
terminates at the end of this HI busy interval then it still meets its deadline. But because the
deadline of J ′least is not less than that of J ′ocbp, it is eligible to let J ′least terminate at the end of
that HI busy interval as well, and hence it can also be selected by OCBP.

Thus, for an OCBP-schedulable instance, both algorithms can construct the same PT . MCEDF uses
this priority table before the mode switch, thus having exactly the same behavior as OCBP under
these conditions. After the mode switch OCBP meets the HI job deadlines without dropping the LO
jobs, and hence MCEDF will surely be able to do the same because it drops the LO jobs and employs
EDF, an optimal strategy. ⊓⊔

To the best of our knowledge, so far MCEDF is the only FPM scheduler that exploits the freedom
to drop the LO jobs (or to reduce their priority) to perform, in theory, strictly better than OCBP, the
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optimal fixed-priority scheduler. Nevertheless, recently some non-FPM algorithms were proposed that
dominate OCBP, [Guo16], and for another non-FPM algorithm a proof of dominance over MCEDF
is presented in [BB17].

5.4 MCEDF and Splitting

In this section we will introduce splitting, a theoretical transformation7 of a job instance into a
new instance where a HI job is equally divided into a certain number (called split factor) of equal
smaller ‘sub-jobs’ with the same arrival time and deadlines as the original job and with execution
times Cj(LO) and Cj(HI) that add up to that of the original job. Obviously, the splitting does not
impact LoadLO and LoadHI, but it reduces the WCET uncertainty ∆Cj and LoadMIX. Recall from
Section 2.1.3 that ∆Cj reflects the amount of information that mode-switched policies get online
about the mode switch and the future workload based on the current mode. The less the uncertainty
the less information has to be learned by such policies from the jobs that have not yet signalled their
termination in order to make a proper scheduling decision.

Therefore, for mode-switched policies, such as MCEDF, the uncertainty reduction due to splitting
can translate a non-schedulable instance into a schedulable one. An infinitely extended splitting of all
HI jobs can bring the optimality of a mode-switched policy asymptotically close to that of (practically
impossible to realize) clairvoyant scheduling, which ‘knows’ all information on the future workload in
advance. For some instances, a finite splitting is enough to equate the clairvoyant scheduling.

On the other hand, mode-agnostic policies, such as OCBP, can never show any improvement due
to splitting, as they account only for splitting-agnostic maximal workload apriori and do not profit
from any online information aposteriori. This observation, for what concerns OCBP, are confirmed
in our experiments reported in Section 8.

The following example demonstrates the effect of splitting. It has LoadMIX = 1.166 . . .:

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5
2 0 12 HI 2 12

This instance is not schedulable because the necessary condition in Formula (3) is broken and due to
uncertainty of the execution time. If J1 executes first then J2 starts at time 5. In the LO scenario there
would be no problem, but J2 misses its deadline should it ‘decide’ to execute in the HI scenario, for
12 time units. Otherwise, if J2 starts first then even in the HI scenario it meets its deadline (whereby
the LO job J1 can be dropped), but there is a problem in the LO scenario, as J2 would delay J1 by
two time units, leading to a missed deadline. The clairvoyant scheduler would know the scenario in
advance and make the proper choice accordingly.

It is easy to check that after splitting J2 into two jobs, the instance becomes MCEDF-schedulable.

Job A D χ C(LO) C(HI)

1 0 6 LO 5 5
21 0 12 HI 1 6
22 0 12 HI 1 6

MCEDF produces the following priority table: PT = (J22, J1, J21). The schedule first executes J22
until termination, effectively getting from it the online knowledge of the execution scenario that was
missing in the previous case. If job J22 has executed in the LO scenario, J1 can follow, starting at
time 1, and then J21 can run from time 6 even until time 12 in the HI scenario. If job J22 has executed
in the HI scenario, J1 will be skipped, and J22 together with J21 meet the deadline. Compared to
the instance before the split, LoadMIX reduces from 1.166 . . . to 1, whereas LoadLO = 0.833 . . . and
LoadHI = 1 stay constant, thus not showing any advantage of the splitting.

Note that splitting, even being a theoretical transformation, may have some practical significance.
Its practicability depends on the WCET tools, in particular, by what extent the sum of WCETs may

7 it ignores the runtime overhead that would be incurred by fragmentation of tasks in practice
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Fig. 15 Proposed algorithm MCPI. T stands for task graph and SPT for support priority table. ST-BS stands for
static table per (job-specific) basic scenario. ST-M stands for static table per mode.

change by the splitting of jobs into sub-jobs. Note that despite the fact that the arrival times of all
sub-jobs are equal, they are not restricted to be data-independent of one another. This is due to the
fixed-priority per job scheduling policy, which has the property that the jobs with equal arrival times
never preempt each other but instead execute (on a single processor) in a sequential priority-driven
order whereas the sequential blocks of the job code can be assigned to the sub-jobs in the same order.

6 Multi Processor Scheduling – MCPI

We define here the Mixed Criticality Priority Improvement (MCPI) algorithm. It is, basically, an algo-
rithm to compute job priorities under list scheduling offline, while online for sustainable termination
times we use the sustainability replacement policy.

6.1 The Main Idea of MCPI

As previously discussed, our aim is to overcome the limitation of Audsley approach in multiprocessor
systems. Recall (see Sec. 3.1) that Audsley approach assigns the priorities starting from the least
one. This makes it problematic to compute the job termination times. In fact, MCEDF proceeds in
a similar way and hence extending it to multiprocessors would encounter the same obstacle.

MCPI proceeds differently and assigns priorities from the highest one. Thus, we can trivially calcu-
late exact termination times. However, a drawback of our approach is that, unlike Audsley approach,
just selecting a job that meets the deadline is not enough for optimality, as, unlike e.g., OCBP, the
selection made out of different alternatives does, in fact, have effect on the final outcome. Thus we
lose the property of Audsley approach that ensures optimality of the priority table while just making
an arbitrary valid job selection at each step.

Therefore, in MCPI we compensate for this by greedy priority-table improvement modifications,
which turn out to perform quite well. As we show in Section 7, on single processor MCPI is equivalent
to MCEDF, thus dominating Audsley algorithm (OCBP) in this case. On the other hand, experiments
(see Section 8) show that if an ‘ideal’ Audsley approach could find exact upper-bounds on termination
times then it would constitute a serious competitor to MCPI on multiple processors. Thus, we have
also encountered an interesting direction for future research.

Fig. 15 shows an overview of MCPI. The algorithm takes as input the task graph T, the number
of processors m and a priority table SPT. The latter may be generated by any known multiprocessor
algorithm. We call this algorithm support algorithm and the input priority table Support Priority
Table, by analogy to MCEDF. Our “priority improvement” algorithm MCPI tries to improve the
priority table generated by the support algorithm so that the termination times of HI jobs can be
improved and thus the mixed-critical schedulability criteria can be met for a larger set of problem
instances. Similarly to MCEDF, the algorithm is based on the concept of Priority Direct Acyclic
Graph, (P-DAG), but unlike MCEDF, we construct the P-DAG by adding at each step a job with
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Algorithm: MCPI
Input: processor count m
Input: task graph T
Input: priority table SPT , PTHI

Output: priority table PT
1: SPT ← PrecedenceComplianceTransform(SPT ,T)
2: CheckLOscenarioSchedulability(T,SPT ,m)
3: G← MCPI PDAG(T, SPT, ∅,m)
4: PT ← TopologicalSort(G)
5: if anyScenarioFailure(PT, PTHI,T,m) then
6: return (FAIL)
7: end if

Fig. 16 The MCPI algorithm

the highest priority (according to SPT) and not the least one. The idea of MCPI resembles the
SimplisticImproveHIJobs algorithm we have seen in Section 4.1. Each time we insert a HI job, we
apply a modification to the priority order given by table SPT, to improve the schedulability of HI
scenarios. The modification is done in a ‘insertion-sort ’ way, i.e., we fist put the job at the least
priority position and then try to raise its priority by repetitive swapping with the job at the previous
position. We only swap the HI job with a LO job (never with another HI job) and we accept the
swap only if the concerned LO job and the other jobs with less priority do not start missing their
deadlines. Note that we do not do a usual ‘insertion-sort’ on a linear array (i.e., the priority table), as
such a näıve approach may encounter some artificial hazards, as shown earlier in Section 4.1. Instead,
we move the HI job along the stem of a subtree in the P-DAG. When all jobs have been added to
the P-DAG (with an improvement attempt for each HI job), a priority table PTLO is obtained by
topological sort of the P-DAG.

The algorithm, in fact, takes two tables, SPTLO and SPTHI, from the support algorithm, which is
thus applied twice, for LO and HI modes, as explained later in Section 6.3. However, MCPI improves
only the SPTLO table to obtain PTLO, whereas it assumes that PTHI is just copied from SPTHI.
Therefore, we denote PTLO and SPTLO just as PT and SPT for convenience. When the PT table
construction is finished we know that the system is schedulable using PT in LO mode. Then, we also
test schedulability of all possible switches to HI mode, accompanied by switches from PT to PTHI.
For this, in line with Theorem 3, we test all job-specific scenarios ‘HI-Jj ’, whereas, unlike MCEDF,
we may not use a more efficient check from Theorem 7, reserved for the single-processor case.

As explained in Section 2.1.1, to ensure sustainability the final priority tables should be translated
into static tables for the STTBS policy (ST-BS in Fig. 15). In [SPBB15b] we describe alternative
approach, which for multiprocessors works only in a high percentage of cases but not always, which
consists in generating ‘static tables per mode’ (ST-M), which is more efficient because only two tables
need to be generated: a LO-mode table and a HI-mode table. Recall that the replacement of FPM
by STTBS policy is needed only in the case of multiple processors.

In the next subsections we describe the MCPI algorithm itself and our support algorithm for it.

6.2 MCPI Algorithm Specification

The pseudocode of MCPI is given in Fig. 16. The algorithm takes as inputs the support priority
table to improve, SPT , the table to use in HI mode, the task graph T and the number of processors
m. We update SPT to make it precedence compliant, and we ensure precedence compliance in the
intermediate tables obtained by improvements of SPT . Precedence compliance ensures that we handle
the jobs in a topological order of the job precedences, i.e., from task-graph sources to sinks. The
SPT is updated by PrecedenceComplianceTransform algorithm, which sorts SPT in the lexicographic
order, where the first criterion is whether the jobs are related by→∗ (i.e., the existence of a task-graph
path) and the second criterion is preserving the same relative order as the original SPT .

We then check LO scenario schedulability, by running the list scheduler with priorities SPT in
the LO mode. If the LO schedulability holds, it will be maintained invariant during the priority
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Algorithm: MCPI PDAG
Input: processor count m
Input: task graph T(J,→)
Input: priority table SPT
In/out: forest P-DAG G(J′,▷)
1: while G.J′ ̸= T.J do
2: Jcurr ← SelectHighestPriorityJob(T.J \G.J′, SPT )
3: J′′ ← G.J′ ∪ {Jcurr}
4: PT ′′ ← (TopologicalSort(G) ⌢ Jcurr)
5: T′′ ←MaximalSubgraph(T,J′′)
6: ⊢ ← SimulateListSchedule(LO, T′′, PT ′′,m)

7:
J′′
∼ ← EstimatePotentialInterference(LO, T′′,m)

8: G.J′ ← J′′

9: for all trees ST of G do
10: if Jcurr.χ = LO then
11: if ∃ J ′ ∈ ST : J ′ ⊢ J curr ∨ J ′ → Jcurr then
12: ConnectAsRoot(ST, Jcurr)
13: end if
14: else

15: if ∃ J ′ ∈ ST : J ′ J′
∼ J curr ∨ J ′ → Jcurr then

16: ConnectAsRoot(ST, Jcurr)
17: end if
18: end if
19: end for
20: if Jcurr.χ = HI then PullUp(Jcurr, G,T, SPT,m)
21: end while

Fig. 17 The algorithm for computing priority tree in MCPI

improvement. Otherwise the algorithm terminates with a failure (not shown in the pseudocode). The
schedulability is maintained by letting the algorithm accept priority swappings only if they do not lead
to a LO-scenario deadline miss when simulating the complete set of jobs. Subroutine MCPI PDAG
generates a (directed-forest shaped) P-DAG, based on the support priority table SPT and the HI-
job priority improvements. Then, similarly to MCEDF, we obtain a priority table from G by using
TopologicalSort procedure which traverses the trees in G from the leafs to the roots while adding the
visited nodes to the tail of PT . Finally, the subroutine anyScenarioFailure verifies schedulability in
the case of any possible switch to HI mode.

In Fig. 17 subroutine MCPI PDAG is shown. It combines elements from the ‘simplistic improve-
ment’ and ‘forest P-DAG’ subroutines, Fig. 6 and Fig. 9. It takes as inputs the task graph T, the
support priority table SPT , and the graph G generated so far (which is empty at the beginning). In
every iteration, the algorithm handles Jcurr, the highest-priority job of table SPT which is not yet in
G and eventually adds that job to G. The algorithm terminates when all jobs have been added to G.

First, the current job is added to a priority table at a position inferior to all previously handled
jobs, using priority-table concatenation operator ‘⌢’. List-schedule simulation is carried out to discover
which of the previous jobs would interfere with the current job when that job would have the least
priority. We say that the interference relation ‘⊢’ is thus calculated. Next to the actual interference

relation with job Jcurr, we also estimate the potential interference relation ‘
J′

∼ ’ between all jobs in
J′. For this we currently use the makespan algorithm to derive the single-processor busy intervals
as explained earlier (Theorem 32), though better approximations of potential interference are to be
investigated in future work, to take into account the number of available processors m.

After that:

if the current job criticality is LO we add an edge to Jcurr from all the roots of the trees ST present
in G where ∃ J ′ : J ′ ⊢ Jcurr. This makes Jcurr the new root of ST . This is needed to ensure that
the priorities derived from G are compliant to Equation (15). In addition we do the same for the
subtrees containing task-graph predecessors of Jcurr, to ensure precedence compliance, as defined
by Equation (6).

if the current job criticality is HI we do similar actions as in the case of a LO job, but instead of
the (actual) interference relation we use the potential interference relation. The reason for this
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Algorithm: PullUp
Input: job J
In/out: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT
1: DONE = ∅
2: while LOpredecessors(J,G) ̸= DONE do
3: J ′ ← SelectLeastPriorityJob( ( LOpredecessors(J,G) \ DONE), SPT )
4: DONE ← DONE ∪ {J ′}
5: if CanSwap(J, J ′, G) then
6: TreeSwap(J, J ′, G)
7: DONE ← DONE ∩ LOpredecessors(J,G)
8: end if
9: end while

Fig. 18 The pull-up subroutine

Algorithm: CanSwap
Input: HI job J
Input: LO job J ′

Input: forest P-DAG G
Input: task graph T(J,→)
Input: priority table SPT
1: if J ′ →∗ J then
2: return False
3: end if
4: TreeSwap(J, J ′, G)
5: PT ← (TopologicalSort(G) ⌢ (SPT |≺ J))
6: allDeadlinesMet ← SimulateListSchedule(LO, T, PT )
7: return allDeadlinesMet

Fig. 19 The subroutine for checking the feasibility of a priority swap

difference is that for HI jobs the final priority of Jcurr is not known apriori as for such jobs
‘insertion-sort’ priority improvements are applied.

Note that the difference between the two cases given above is that for a HI job we use the ‘
J′

∼’
relation instead of a smaller relation ‘⊢’. This is needed to ensure correctness of further modifications
of G. The modifications themselves are done by subroutine PullUp, which is the core of the algorithm.

Subroutine PullUp is described in pseudocode in Fig. 18. It modifies the P-DAG generated so far,
trying to raise the priority of the given HI job. This is done by ‘swapping’ its position in the graph
with LO jobs while preserving the schedulability of the LO scenario. This improves the schedulability
in the HI scenarios. Note that if this subroutine were not called then the algorithm would just generate
a P-DAG of the initial priority table SPT .

Procedure LOpredecessors(J,G) returns for node J the set of its direct P-DAG predecessors8

of LO criticality: {Js | Js ▷ J, χs = LO}. At each step in Fig. 18 we select the least SPT-priority
P-DAG predecessor from the working set LOpredecessors(J,G) \ DONE , where DONE is the set
of the LO jobs which we already tried to swap with the current job. Then, subroutine CanSwap
checks whether the current job and the selected job can swap priorities. If so, we apply the actual
swapping transformation to graph G, otherwise the selected job is added to DONE , to avoid trying
to perform the given swapping again. The subroutine proceeds until we have tried to swap with all
LO predecessors of J in the P-DAG.

As shown in Fig. 19, subroutine CanSwap uses a private copy of graph G to perform a tentative
swap modification and then evaluates its impact. To do so, it constructs a complete priority table
by concatenating the priorities obtained from the modified graph G with the trailer of SPT table
that contains the jobs that were not yet handled. This is the part of SPT table that follows after the
current job J , hence the notation (SPT |≺ J); more precisely, this is the priority table that consists
of the jobs whose SPT priority is less than that of J and which puts these jobs in the same relative
order as SPT . Thus, we check all jobs and not only those whose priorities have been modified. This

8 they are also tree-children of node J , as in a P-DAG forest the edges are directed from children to parents
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Fig. 20 The effect of a Swap.

is required because, unlike the single-processor case, modifying adjacent priorities of a pair of jobs on
a multiprocessor may impact not only their schedules but also the schedules of all jobs that have less
priority. We accept the swapping only if it does not directly lead to a deadline miss for any job. This
is how we maintain the schedulability in LO mode as invariant of the algorithm. Note that CanSwap
immediately rejects to swap J and J ′ if J ′ →∗ J , to maintain precedence compliance of priorities.

Subroutine TreeSwap(JHI, JLO, G) performs the ‘swap’ modification of graph G, defined as follows:

Definition 39 (Swap Modification) Let G = (J′,▷) be a forest P-DAG, let JLO ▷ JHI be the
edge between the two jobs to be swapped and let J′′ represent the subset of jobs whose priorities can
be possibly higher than or equal to JHI after the swap is performed:

J′′ = {JHI} ∪ {J ′ | J ′ ▷∗ JHI} \ {JLO}

Subroutine TreeSwap(JHI, JLO, G) performs the following ‘swap’ transformation on graph G:
1. JLO ▷ JHI is transformed into JHI ▷ JLO

2. ∀ tree ST such that: root(ST ) ▷ JHI ∨ root(ST ) ▷ JLO before swap:

(a) if ∃J ′ ∈ ST : J ′ J′′

∼ JHI ∨ J ′ → JHI

then in the new G: root(ST ) ▷ JHI

(b) else in the new G: root(ST ) ▷ JLO

3. if ∃Js : JHI ▷ Js before swap then JHI ▷ Js is transformed into JLO ▷ Js

The swap is illustrated in Fig. 20. In the original P-DAG the orange triangle marked with S
represents the P-DAG successors of JHI, while the triangles marked with P IJ

PHI, P
NIJ
PHI and P IJ

PLO, P
NIJ
PLO

are, respectively the P-DAG predecessors of JHI and JLO. More specifically, we assume in the figure
for P IJ

PHI and P IJ
PLO are subtrees where the condition ‘contains a job that either potentially interferes

with JHI or is its task-graph predecessor ’ is true, while it is false for PNIJ
PHI and PNIJ

PLO.
After the swap modification, the PullUp subroutine updates the set DONE and reiterates.

Example 40 Consider again the instance and the priority table of Example 20. Let us apply MCPI on
them. The table PT is already precedence compliant, so PrecedenceComplianceTransform will not
modify it. Then we check LO schedulability, by simulation. The result of this simulation is, in fact,
the Gantt chart in Fig. 8(a), where it is easy to check that no job misses its deadline.

Then we apply subroutine MCPI PDAG. The graph G obtained in the first few iterations before
the first PullUp is illustrated in the left side of Fig. 21. In the first iteration we add s1 to G. No job
interferes with it, so we proceed with the second iteration. s2 is added to G, again we do not have
any interference. Next we add job s3, and we have the following interference relations: s1 ⊢ s3 and
s2 ⊢ s3. Thus we add the following edges to G: s1 ▷ s3 and s2 ▷ s3. Then we add s4. Since it is a

HI job and s3
J′

∼ s4, we add the edge s3 ▷ s4, since s3 is the root of the only tree of G.
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Fig. 21 The effect of subroutine PullUp on job s4 in Example 40.

Fig. 22 The final P-DAG generated by MCPI in Example 40.

Fig. 23 The schedule obtained by MCPI in Example 40.

Since s4 is a HI job, we run PullUp on it. First we swap it with s3, after checking that after this
operation the jobs will still meet their deadlines. Then we swap it also with s1 and s2. The result of
PullUp subroutine is shown in Fig. 21. Finally we add job L to the graph and the edge s3 ▷ L. Since
s3→ L, we may not swap further, thus obtaining the P-DAG shown in Figure 22.

From topological sort we obtain the priority table PT = (s4 ≻ s1 ≻ s2 ≻ s3 ≻ L). The priority
table thus obtained leads to the LO schedule of Fig. 23. The reader may easily verify that using the
initial priority assignment, whose LO-scenario schedule is shown in Fig. 8(a), will fail if instead of
following the LO scenario job s4 will continue execution until C(HI) = 3 time units (which, in fact,
happens in scenario HI-s4). At the same time, using the table generated by MCPI , which results
in the LO-mode behavior shown in Fig. 23, s4, having the highest priority, starts earlier and would
meet its deadline even in this scenario.

Below we give two theoretical results for MCPI.

Lemma 41 The Graph produced by MCPI PDAG procedure is a forest P-DAG.

Proof MCPI PDAG proceeds similarly to Forest PDAG, whose correctness was already shown by
Theorem 23. There are only two differences of the former subroutine w.r.t. the latter:
1. more edges are added at each step
2. the swap modification is performed
Since, by Lemma 16, with extra edges added G still remains a P-DAG, we observe, by Theorem 23,
that MCPI PDAG ensures that G is a P-DAG at least until the first swap.

To complete the proof we have to show that after a swap operation G remains to be a P-DAG.
Let Js be the job that is pulled up and let TreeSwap(Js, Jp

k , G) be the k-th swap. Note that Js is
a HI job, and just before the first swap it has been root of some tree ST . By construction, all the
other trees, which have not been initially connected to Js, contain only jobs that are not in potential
interference relation with Js and any other job in ST , so their execution will not be influenced by
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Fig. 24 The effect of multiple Swaps on ST , k = 3.

any change in ST . Thus, without loss of generality, we can assume that G is composed of only one
tree (i.e., G = ST ).

After the first swap, G is still a tree, such that Jp
1 is the new root After multiple swaps, the

situation will be as illustrated in Fig. 24. On the left side of the figure we have the initial ST with HI
job Js as the root. After swapping Js with Jp

1 ,J
p
2 and Jp

3 (in this order), we obtain the tree on the
right side. We can distinguish three areas in the tree: a chain of LO jobs in the lower part (inside the
yellow box), connected to a subtree that has Js as root (the green box) and some subtrees connected
to the LO jobs in the chain that are not in potential interference relation with Js (the red box).

Let us assume by contradiction that after the k-th swap – TreeSwap(Js, Jp
k , G) – the resulting

graph G′ = (J′,▷) is no longer a P-DAG. By Lemma 21 and the contradicting hypothesis, we have
that G′ can generate a table PT ′ that leads to a schedule S such that:

∃J ′, J ′′ : J ′ ⊢S J ′′ ∧ J ′ ⋫∗ J ′′

For TreeSwap(Js, Jp
k , G) all the possible J ′ ⊢ J ′′ relations that were not present before the swap are

such that either J ′′ = Jp
k or Jp

k →∗ J ′′. This is because, by lowering Jp
k priority (i.e., shifting forward

its execution), it might enter in the execution window of another job and get interfered by it. The
same holds for its successors in T.

For J ′′ = Jp
k , we can rewrite our contradicting hypothesis as follows:

∃J ′ : J ′ ⊢S Jp
k ∧ J ′ ⋫∗ Jp

k

After the swap, Jp
k is the root of a subtree STk. So ∀J ∈ STk, J ▷∗ Jp

k . All jobs J ′ that are not in
STk are either the chain below Jp

k (yellow box) or in the side subtrees branched into them, included
in the red box. For the jobs J ′ in these subtrees we can show that: J ′ ⊬S Jp

k . This is so because by
properties of swap they are not in potential interference relation with Js and hence they also are
not in potential interference relation with Jp

k , as J
s is swapped only with jobs in the same potential

interference equivalence class. For jobs J ′ = Jp
1 , J

p
2 , . . . J

p
k−1 in the yellow box we have that they have

lower priority than Jp
k and hence: J ′ ⊬S Jp

k .
Let us now consider jobs J ′′ such that Jp

k →∗ J ′′. An invariant of our algorithm is precedence
compliance, i.e., Jp

k →∗ J ′′ ⇒ Jp
k ▷∗ J ′′. This means that all such J ′′ are among Jp

1 , J
p
2 , . . . J

p
k−1 in

the chain below Jp
k . The same reasoning as in the previous case holds. ⊓⊔

Theorem 42 Let K be the number of jobs in ‘J’, E the number of precedence edges in ‘→’ and m
the number of processors. The computational complexity of MCPI is

O(EK2 +K3(logK +m)) (18)
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Proof One of the main contributions to the computational complexity of the algorithm is given by the
high number of list schedule simulations. The complexity of one simulation is, according to [SPBB15b]:

O(E +K(logK +m)) (19)

Let us now analyze the algorithm of Fig. 16 line by line. Routine PrecedenceComplianceTransform
has a complexity of O(K2). This is because to prepare for sorting the jobs for precedence compliance
we have to compute the transitive closure of the precedence relation, which takes O(K2) time, because
the maximum number of predecessors for each job is O(K). CheckLOscenarioSchedulability does one
simulation, thus it has a complexity of (19). MCPI PDAG gives the highest contribution, and its
complexity will be discussed later. TopologicalSort of a forest has complexity O(K) [CLRS01]. Finally,
anyScenarioFailure, according to Theorem 3, does O(K) simulations, and thus its complexity is
O(K(E +K(logK +m))).

Let us now analyze subroutine MCPI PDAG . This is a recursive subroutine that is called exactly
K times. This subroutine, after some O(1) operations, performs a simulation, which gives a total
contribution of (19). Then for each subtree a ConnectAsRoot operation is performed. One such
operation has a linear complexity in jobs, because we have to find the root of a subtree. There are
O(K) subtrees, thus this operation yields a total contribution of O(K3). Finally we have to analyze
the complexity of PullUp (Fig. 18). In this subroutine there is a while loop that is executed once for
each LO predecessor of the current job in the P-DAG, thus a O(K) number of times inside PullUp and
O(K2) number of times per one execution of MCPI . All the operations performed in the subroutine
are O(1) except for CanSwap, which performs a simulation and thus it has complexity (19). Thus the
CanSwap subroutine gives the main total contribution to the complexity of the algorithm, executing
in total O(K2) simulations of complexity (19), which gives the result given in (18). ⊓⊔

Note that for large practical problem instances it can be expected that m ≪ K, and also m is
usually considered as a constant given by the platform. Also, even if in general E = O(K2), having a
quadratic number of precedence edges is unrealistic in parallel programs, as this situation is likely to
seriously restrict the possibility of parallel execution. If we consider only the cases where the number
of job inputs and outputs is bounded by a constant then the number of precedence edges would
grow linearly with the number of jobs. Under the assumptions mentioned here, the complexity can
be assumed as follows:

O(K3 logK)

Compared to O(K2) complexity of MCEDF, the higher complexity here can be explained by non-
applicability of some computation economizing properties, such as Theorem 7 and Lemma 29, to the
multiprocessor case.

6.3 The Support Algorithm for MCPI

Based on related-work analysis, by default for MCPI we assume that the support algorithm is EDF
with modified deadlines and density threshold (EDF-DS). To adapt this algorithm to precedences and
mixed criticality we compute the ALAP deadlines D∗

j (χ) in mode graphs TMIX and THI for modes
χ = LO and χ = HI respectively. The ALAP deadlines are used to compute SPTLO and SPTHI.

The support priority table in mode χ is generated by sorting jobs in the lexicographic order
according to two criteria. The first criterion employs the notion of job density. Adapting the formula
from related work, the job density in mode χ is δj(χ) = C(χ)/(D∗

j (χ)− Aj). The jobs are split into
two groups: high-density jobs, with δj(χ) > thr, and low-density jobs, the rest. We determined the
best density threshold thr experimentally, thr = 0.8. According to the first criterion of EDF-DS, the
high-density jobs have higher priority. Thus, this criterion corresponds to ‘density separation’ (DS).

The second criterion, applied to the jobs in the same group, is EDF-based. A job with a smaller
deadline D∗(χ) has a higher priority. Note that the described support algorithm for MCPI has in
common with that of MCEDF (see Section 5.2) that it also takes the WCET uncertainty ∆Cj into
account, though in a different way. Recall that in mode graph TMIX the job uncertainties are subtracted
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from the deadlines. Since we compute the LO-mode table using this graph, among two jobs with the
same deadline this algorithm will also prioritize the one with a higher uncertainty.

To indicate explicitly that we are using a support algorithmALG we use the notation MCPI(ALG).
Thus we use notation MCPI(EDF-DS) to indicate the use of MCPI with the above described support
algorithm, while we will use MCPI(EDF) if we use the EDF policy without density separation.

Note also that in our MCPI experiments in Section 8 a support algorithm serves not only as
part of MCPI but also as a reference point to evaluate the advantage of MCPI, being considered as
a ‘competitor’ heuristics to calculate the FPM priority tables. As such, it serves as a ‘state-of-the
art’ representative for our problem formulation. Indeed, the described algorithm has mixed-criticality
‘awareness’, as it gives HI jobs higher priority by reducing their deadlines (as we do in TMIX).

7 The Properties Common for MCEDF and MCPI

In this section we give some theoretical properties of MCEDF and MCPI for independent jobs on
single processor. The main result is the optimality of MCEDF and MCPI in the class of scheduling
algorithms where the HI jobs are in relative EDF order. Also, we show that MCEDF and MCPI
are equivalent. Note that because these algorithms use LO-mode schedules to construct the priority
tables, under the ‘scheduling’ we always mean the LO-mode scheduling unless mentioned otherwise.

In this section we assume that both algorithms use the same EDF-compliant support priority
table SPT , that the jobs are independent and m = 1.

The following lemma establishes for MCPI a property that is true for MCEDF by construction.

Lemma 43 (Subtrees and BIs) In MCPI, as in MCEDF, for any subtree ST at any level of the
P-DAG holds that the sub-instance composed of the jobs of ST consists of only one busy interval.

Proof (sketch) For MCPI, we argue that this property is true by demonstrating that it is maintained
at each basic step of the algorithm, i.e., the initial connection of a new job to the P-DAG and the
swapping. When a LO-job is connected to a P-DAG, the criterion is to connect it to the trees that
interfere with the given job when it has the least priority. Since they interfere with the given job then
they must be in the same busy interval. When a HI job is initially connected, the property holds by

construction since in this case MCPI evaluates the
J′

∼ relation which on single processor corresponds
to busy intervals.

Now consider the swap modification according to Definition 39. After the swapping, the current
HI job forms the same busy interval with the subtrees connected to it as connecting these subtrees is

also based on relation
J′′

∼ . The LO job which was swapped forms one busy interval with the current
HI job and the whole job set J′′ by the observation that this was already the case before the swapping
and the busy intervals do not change when priority assignment changes. ⊓⊔

Lemma 44 (Per-criticality EDF Compliance of P-DAG) In the P-DAG G of MCPI(EDF)
or MCEDF, consider any P-DAG path between two jobs of the same criticality: Ji ▷∗ Jj. This
path can only join Ji and Jj in the direction that is compliant with their relative priority in SPT .
Mathematically:

∀i, j . χi = χj ∧ Ji ▷
∗ Jj ⇒ Ji ≻SPT Jj (20)

Proof (sketch) For MCEDF the Property (20) holds by construction, as it requires that Jj be the
root of a subtree that contains Ji and MCEDF PDAG assigns the least SPT -priority job of a given
criticality as the root of the subtree.

For MCPI, as P-DAG construction evolves, the property can only be potentially broken by the
swap operations. However, for criticality level HI it is not broken because we never swap two HI jobs.
For criticality LO it can be only invalidated if a call to CanSwap returns ‘false’ and then a subsequent
call returns ‘true’ in the same PullUp subroutine call. This is so because the LO jobs are evaluated
for swapping in an order compliant with reverse SPT and the sequence of swapped LO jobs forms a
P-DAG chain in the same order as the swapping is done. The job for which CanSwap would return
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‘false’ would stay as P-DAG predecessor of the current HI job and the job with ‘true’ would become
successor, thus forming a pair of LO jobs connected inconsistently with SPT . However, this cannot
happen if SPT is EDF-compliant, as the first ‘false’ result from CanSwap will be necessarily followed
by other ‘false’ results. To show this, recall that by Lemma 43 the HI job forms one busy interval
(τ1, τ2) with its subtree. When CanSwap evaluates different LO jobs for the least priority it evaluates
for the possibility that the swapped job can terminate at time τ2 while meeting its deadline. The
jobs are evaluated in reverse EDF order, so the jobs with the larger deadline will be evaluated first.
Therefore, if a job misses its deadline at time τ2 then the other jobs will fail as well. ⊓⊔

By the above lemma, for MCEDF and MCPI(EDF), it is always possible to find a topological sort
of graph G such that the resulting priority table satisfies the following property:

Definition 45 (HI-criticality EDF Compliance of Priority Table) Given an EDF-compliant
SPT priority table, a priority table PT is said to be HI-criticality EDF-compliant according to table
SPT if the HI jobs appear in PT in the same order as in SPT , that is:

∀i, j . χi = χj = HI ∧ Ji ≻PT Jj ⇒ Ji ≻SPT Jj ∧ Di ≤ Dj

Consider a problem instance J with h HI jobs. We can partition an EDF-compliant priority table
into the following sequence of job sets:

PT : JLO
1 ≻PT {JHI

1 } ≻PT JLO
2 ≻PT {JHI

2 } ≻PT . . . JLO

h ≻PT {JHI

h } ≻PT JLO

h+1 (21a)

HI jobs : JHI
1 ≻SPT JHI

2 ≻SPT . . . JHI

h−1 ≻SPT JHI

h (21b)

where subscripts LO and HI indicate criticality level of jobs in the sets and relation ‘≻’ between two
job sets means that any job in the first set has a higher priority than any job in the second set.

Let us denote by ▷∗LO a relation between two jobs that are joined in the P-DAG by a path that
may have only LO jobs as intermediate nodes. The following is trivial:

Lemma 46 (Compliant Tables from MCEDF/MCPI) There always exists a priority table PT
obtained from a topological sort of P-DAG G of MCEDF or MCPI(EDF) that has the structure shown
in Formulas (21) where, in addition, the LO job sets JLO

i are related to JHI
i by ▷∗LO :

for i = 1..h . JLO
i = {Jj | χj = LO ∧ Jj ▷

∗LO JHI
i } (22a)

JLO

h+1 = {Jj | χj = LO ∧ ̸ ∃i : Jj ▷∗LO JHI
i } (22b)

Corollary 47 (Compliance and Sustainability) The above lemma implies that MCEDF(EDF)
and MCPI(EDF) can generate a priority table where HI jobs are put in the same relative priority
order in PTLO and PTHI. Hence, by Corollary 5, for those algorithms, the FPM policy is sustainable
per mode for any independent-job single-processor problem instance.

Definition 48 (Least LO-Job Priority Table) Given a P-DAG G that is generated my MCEDF
or MCPI(EDF) with support priority table SPT . A priority table obtained from graph G that can
be partitioned as shown in Formulas (21) and (22) is called a least LO-job priority table.

The reason to give a priority table this name is that such a table puts each LO job at the highest-i
(and hence also the least-priority) set JLO

i . The following lemma states that one cannot give any LO
job even less priority w.r.t. a HI job while keeping HI-criticality EDF compliance.

Lemma 49 (Inviolability of Least LO-Job Priority) Let J be a problem instance where MCEDF
or MCPI(EDF) generates a P-DAG based on an EDF-compliant SPT , let JLO

i characterize its least
LO-priority table. Let PT ′ be some HI-criticality SPT -compliant priority table where some LO jobs
in some job sets JLO

i ‘violate the least LO-job priority constraint’ in the sense that they have less
priority than the corresponding HI job JHI

i . Then at least one of such jobs will miss its deadline.
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Proof Let i′ be the smallest-index i of the job sets JLO
i that contain LO jobs that in table PT ′ ’violate’

the least priority constraint. Let Jj be the least-priority violating job from the respective set JLO

i′ .
Let us show that it will miss its deadline. The part of the priority table PT ′ that contains jobs of
priority higher or equal to Jj can be represented by (dropping the curly braces for singleton sets):

PT ′ |⪰j : J′
1 ≻ JHI

1 ≻ . . . ≻ J′
i′−1 ≻ JHI

i′−1 ≻ J′
i′ ≻ JHI

i′ ≻ J′′
i′ ≻ Jj

where J′
1,J

′
2, . . . ,J

′
i′ are sets of LO jobs, whereas J′′

i′ may also contain HI jobs. Observing that in
single processor scheduling the relative priority order of higher-priority jobs does not matter for the
least priority job, let us reorder the priority of the last HI job and obtain a new table PT ′′, which
should result in the same termination time for job Jj :

PT ′′ : J′
1 ≻ JHI

1 ≻ . . . ≻ J′
i′−1 ≻ JHI

i′−1 ≻ J′
i′ ≻ J′′

i′ ≻ JHI

i′ ≻ Jj

Let us now relate PT ′′ to the least LO-job priority tables obtained from MCEDF or MCPI(EDF).
From the definition of violating jobs and from the assumption that the sets JLO

m for m ≤ i′−1 contain
no violating jobs (i′ being the lowest ‘violating’ index) we have:

for 1 ≤ m ≤ i′ − 1 :

m⋃
i=1

JLO
i ⊆

m⋃
i=1

J′
i

Also because, by our assumptions, Jj is the least priority violating job in set i′ we have that J′′
i′

contains all other violating jobs from JLO

i′ , and hence:

i′⋃
i=1

JLO
i ⊆

 i′⋃
i=1

J′
i ∪ J′′

i′ ∪ {Jj}


By the job-set inclusion relation above, the following priority table PT ′′′ when compared to PT ′′ has
at most the same but possibly less jobs of higher-priority than Jj :

PT ′′′ : JLO
1 ≻ JHI

1 ≻ . . . ≻ JLO

i′−1 ≻ JHI

i′−1 ≻ (JLO

i′ \ Jj) ≻ JHI

i′ ≻ Jj

This table differs from the one obtained from MCEDF or MCPI(EDF) only in that it puts Jj and
not JHI

i′ at the last position.
By properties of MCEDF resp. MCPI(EDF) we have that job JHI

i′ forms one busy interval BI
with the higher subtrees connected to it and by observation that Jj ▷∗LO JHI

i′ we have that Jj also
belongs to the same busy interval BI. Now observe that the reason why MCEDF resp. MCPI(EDF)
assigned JHI

i′ the least priority in the given BI is because the highest-deadline LO job belonging to
the same interval would miss the deadline. Jj , by construction, cannot have a higher deadline, so it
should also miss its deadline as the least-priority job in BI. Therefore it will also miss its deadline in
PT ′′′, and hence also in PT ′′ and PT ′. ⊓⊔

We can now prove the following claim.

Theorem 50 (Optimality Property) For a given EDF-compliant SPT , MCEDF and MCPI(EDF)
are optimal among the FPM algorithms that are HI-criticality EDF-compliant according to SPT .

Proof Consider an instance J that is MC-Schedulable. The MCEDF and MCPI(EDF) algorithms will
never fail in LO mode . This is so because, firstly, both algorithms are based on iterative improve-
ment of an EDF table, which is optimal in the LO mode. Secondly, at every improvement step the
LO-schedulability of the problem instance is maintained as invariant. This leads to two important
conclusions:
1. The only possible schedulability failure that MCEDF or MCPI(EDF) can have is when a HI job

misses its deadline in a HI scenario.
2. For MC-schedulable instance, even if we see the failure presented in Point 1, both algorithms

manage to construct a LO-schedulable P-DAG that satisfies all lemma’s and properties presented
in this section.
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Consider an instance J with h HI jobs. Suppose by contradiction to the theorem statement that
MCEDF (resp. MCPI(EDF)) fail to produce a feasible schedule due to a failure in a HI scenario,
whereas the optimal EDF-compliant algorithm can. By lemma’s above, we can structure the failing
solution in the form shown in Formulas (21) and (22).

By our assumptions the optimal priority table PT ′ is also HI-criticality EDF-compliant according
to SPT and hence it can also be presented in a similar form:

PT ′ : J′
1 ≻ {JHI

1 } ≻ J′
2 ≻ {JHI

2 } ≻ . . . J′
h ≻ {JHI

h } ≻ J′
h+1

By Lemma 49 we should have:

for 1 ≤ m ≤ h :

m⋃
i=1

JLO
i ⊆

m⋃
i=1

J′
i

where JLO
m are the least LO-job priority job sets of MCEDF resp. MCPI(EDF).

This means that, compared to MCEDF or MCPI(EDF), for every HI job JHI
m the optimal algorithm

puts at least the same but possibly a larger set of jobs as higher-priority w.r.t. to JHI
m . On a single

processor this can only reduce the progress made by each HI jobs up to any given point in time in the
LO mode. Therefore, after a mode switch, all the HI jobs in the optimal algorithm will have at least
the same or possibly more workload to terminate than in MCEDF or MCPI(EDF). Therefore, if the
latter would fail in some HI scenario all the more so the former would also fail in the same scenario,
therefore the optimal algorithm would fail and thus we have a contradiction. ⊓⊔

The next theorem follows as a corollary of Theorem 50:

Theorem 51 (Algorithm Equivalence) When using the same EDF-compatible SPT table MCEDF
and MCPI(EDF) are equivalent.

It can be easily shown that OCBP can also be restricted to be HI-criticality EDF-compliant, thus
Theorem 38 can be seen as corollary of Theorem 50.

8 Implementation and Experiments

We evaluated the schedulability performance of MCEDF and MCPI in experiments with randomly
generated job instances. The instance size was restricted due to the computation delays of job gen-
eration algorithm and our intention to evaluate a large number of points. The generated jobs had
integer timing parameters, simulating CPU clock cycle count of some imaginary machine. Every job
instance was generated for a target pair of values – LO and HI – of load or stress.

The method to generate a job instance worked as follows. First we randomly generated a tentative
instance, not paying attention to the target loads. This was done by repeatedly generating a new
sporadic task, i.e. sequence of jobs arriving one after another at random arrival intervals. For every
job, both the job deadline and the arrival interval were uniformly distributed in a range 5K-25K
(kilocycles), and the job’s criticality level was set to HI (i.e., χ = HI) with a probability 50%. Every
sporadic task produced just enough jobs to fill a random interval from 0 to a bound in range 15K-100K.
The WCET Cj(LO) of each job was uniformly distributed between 0 and the relative deadline, each
HI job had a Cj(HI) obtained by scaling the value Cj(LO) by a random factor [1..1000]. For MCEDF
new sporadic tasks were invoked until all tasks together have produced more than 20 jobs, and then
jobs were randomly removed until only 20 remained. For MCPI, instead of 20, we produced 30, 60 or
120 jobs in a similar way for processor counts m = 2, 4, 8. To finalize the job instance generation, the
algorithm calculated the loads of the tentative instance and scaled the execution times to obtain the
target load in the final instance.

When scaling the loads, we took care that when Cj(HI) would have to be scaled below Cj(LO),
it is instead set to Cj(LO). This could result in imprecise final LoadHI. As a result, there was a load
scaling problem, as the scaling sometimes failed to approximate the target load with the specified
precision. In this case we cancelled the generated instance and made another attempt to generate it
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Fig. 25 The contour graphs of random instances; the horizontal axis is LoadLO, the vertical is LoadHI.

until multiple attempts produced no satisfactory load scaling result within a timeout. Due to this,
and due to high complexity of load calculations the job generation process itself took a considerable
time in the experiments.

8.1 MCEDF Experiments

We ran multiple job generation experiments, ranging each target of LoadLO and LoadHI from 0.0025
to 1 with step 0.0025. Per each target, ten experiments were run, generating the points lying near the
target with tolerance 1%. We only selected the ‘overloaded’ targets i.e., those lying at or above the
parabola Load2LO(T) + LoadHI(T) = 1, yielding instances where OCBP could potentially fail [LB10].
By looking at the loads below 1 we compare both OCBP and MCEDF to the clairvoyant scheduler,
which can schedule all such points and which gives an upper bound on the best scheduling perfor-
mance. Fig 25(a) gives the contour graph of the distribution of the generated points in grayscale.
The grid follows the parabolic lines of equal Load2LO(T) +LoadHI(T). The total number of trials was
537460.

Around 14% (75203) of points showed failure for OCBP. In those 14%, roughly 2.1% (11316)
were not schedulable by MCEDF as well, whereas 11.9% (63887) were schedulable by MCEDF. Thus,
MCEDF proved to reduce the set of non-schedulable instances by a factor 6-7. The distributions in
Fig. 25 suggest that MCEDF is less sensitive to high loads.

For the 2.1% (11316) non-MCEDF schedulable jobs we ran additional experiments. We considered
splitting (see Section 5.4), a transformation of a job instance into a new instance where a HI job is
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Fig. 26 The measured computation times of OCBP and MCEDF

m jobs arcs step δ σs instances

2 30 20 0.005 0.01 3.2 128800
4 60 40 0.02 0.05 6 50500
8 120 80 0.05 0.125 12 31575

m EDF EDF-DS MCPI(EDF) MCPI(EDF-DS) diff(%) diff-DS(%)
2 20924 21023 27375 27467 30.83% 30.65 %
4 6839 6887 8263 8310 20.82% 20.66 %
8 3065 3082 3521 3538 14.88% 14.80%

Table 1 Experimental results for MCPI. The upper part gives characteristics of the problem instance generation
process, including the total number of instances generated. The bottom part specifies how many of those instances
were schedulable by the support algorithms (on the left) and by the MCPI applied to the support algorithms (in the
middle). It also gives (on the right) the percentage of the difference between the MCPI and the respective support
algorithm.

equally divided into a certain number (called split factor) of equal smaller jobs, whose total execution
times Cj(LO) and Cj(HI) add up to that of the original job. Recall that splitting reduces the WCET
uncertainty of jobs and that for mode-switched policies, such as MCEDF, this can lead to improved
schedulability, whereas mode-agnostic policies, such as OCBP, cannot take any advantage of splitting.

We split all HI jobs by factors 2, 3, and 4. This kept the load the same but reduced the WCET
uncertainty. As expected, after splitting the instances remained to be non-OCBP schedulable but the
number of non-MCEDF schedulable instances has reduced, coming to 1.25% (6735). So if we could
accept this load-preserving transformation, we would go from 14% non-schedulability of OCBP to
the 1.25% non-schedulability of MCEDF. Note that 0.85% (4581) were gained due to the splitting,
whereby in the most of cases, 0.55% (2961), split factor 2 was sufficient. So assuming that in practice
we could split the HI jobs into a few sub-jobs such that both WCET values scale, then we could in
many cases obtain a schedulable instance. That the fragmentation of jobs would preserve the same
total WCET is likely to be an overly optimistic assumption for the WCET tools, but still doing this
is worth a try.

We also performed some experiments to evaluate the computation times of both algorithms,
implemented using the same software library. Every point was obtained as the average computation
time for 20 different randomly generated instances with LoadLO = LoadHI = 0.8. The results are
shown in Fig. 26. They confirm our expectation of almost one order of magnitude of difference, as we
estimate the best direct implementation of OCBP to be O(K3) and the best MCEDF to be O(K2)
for K jobs, according to Lemma 36.

8.2 MCPI Experiments

We evaluated the schedulability performance of MCPI comparing it with the performance of its
support algorithm. We restricted our experiments to “hard” task graphs, i.e., those whose points in
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Fig. 27 The contour graphs of random task graphs for 2 processors. The horizontal axis is StressLO, the vertical is
StressHI.

the (LO,HI) stress space lie above a certain line:

StressLO(T) + StressHI(T) ≥ σs (23)

The values of σs were adjusted such that task graphs under that line would be relatively easy to
schedule. We ran multiple job generation experiments, ranging the target of StressLO and StressHI in
the area defined by (23) with a fixed step s. Per each target, ten experiments were run, generating the
points lying near the target with a certain tolerance δ. All points satisfied StressMIX ≤ m. The result
of the experiments are shown in Table 1. We ran experiments for 2, 4 and 8 processors. For each
generated task graph, we checked the schedulability of EDF, EDF-DS, MCPI(EDF), MCPI(EDF-
DS). For EDF-DS we used a threshold of 0.8. All algorithms were ‘mixed-criticality aware’ in the
sense that they used FPM for evaluating schedulability and the modified WCET-uncertainty aware
deadlines; see Section 6.3 for the details. From the result we can see that MCPI gives a significant
improvement in schedulability compared to the support algorithm, reaching a maximum of 30.83%.

Fig. 27 and Fig. 28 give the contour graph of the distribution of the generated points in grayscale,
where black is the maximum value and white is 0. The horizontal axis is StressLO, the vertical
is StressHI. Figures from Fig. 27(a) to Fig. 27(d) refer to the experiments made for 2 processors.
In particular Fig. 27(a) shows the distribution of the generated task graphs, Fig. 27(b) shows the
distribution of instances schedulable by EDF-DS among the generated ones. Likewise Fig. 27(c) shows
the distribution of task graphs schedulable by MCPI (EDF-DS) and Fig. 27(d) shows the distribution
of task graphs schedulable by MCPI (EDF-DS) and not schedulable by EDF-DS. As expected the
schedulability decreases while the distance from the axis origin increase. Fig. 27(d) is particularly
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Fig. 28 The contour graphs of random task graphs for 4 processors. The horizontal axis is StressLO, the vertical is
StressHI.

interesting, because it shows how MCPI increases its effectiveness over the support algorithm when
the load increases. Note that approximately around point (1.7, 1.7) the distribution density is the
highest, suggesting that around this point MCPI is the most effective.

Figures from Fig. 28(a) to Fig. 28(d) show respectively the same information of figures from
Fig. 27(a) to Fig. 27(d), but referred to experiments on 4 processors. From those graph we have
confirmation of the conclusions made above. Also in Fig. 28(d) we have an area where MCPI is
particularly effective, approximately around point (3.3, 3.1).

8.2.1 Comparison with Audsley approach on multiple processors

One of the main motivations for this work was to overcome the limitations of Audsley approach, as
discussed in Section 3.1. In this section we show through experiments that we successfully reached
our goal, by comparing MCPI with Audsley approach.

First we compared with two ’ideal’ implementations of Audsley approach, named AUD FP and
AUD FPM. In both of them we implemented an exact version of function GetTerminationT ime of
Fig. 4. To achieve this, to test if we can assign the least priority to a job J , we compute its worst
case termination time by simulating all possible combinations of relative priority of jobs with higher
priority. In AUD FP we assumed to use a fixed priority scheduling, i.e., we did not consider the
possibility of dropping LO jobs. Thus when computing the worst case termination time we simulate
a scenario where all jobs Ji run for Ci(HI). Note that this algorithm is equivalent to OCBP on single
processor. Conversely in AUD FPM we assumed to use a fixed priority per mode scheduling, i.e., we
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Fig. 29 Comparison of MCPI with Audsley approach

drop LO jobs when a mode switch happens. In this case when computing the worst case termination
time we simulate all basic scenarios for all possible combination of job priorities. Note that both
algorithms have an exponential complexity and easily become computationally intractable.

Finally we also compared the results using a computationally tractable termination-time estima-
tions in Audsley approach, AUD RC, which is based on Formula (8) given in Section 3.1.

We tested the algorithms on 1000 randomly generated instances of 8 jobs on 2 processors. The
instances had a target StressLO = StressHI = 1.8. MCPI Solved 487 instances, AUD FP 480,
AUD FPM 493 and AUD RC only 71. The experimental results are shown in Fig. 29. Note that
if we could, similarly to MCEDF, perform splitting9 we would probably see the advantage the mode-
switched MCPI and AUD FPM versus the mode-agnostic AUD FP, be analogy to MCEDF versus
OCBP. For the small-size instances which we could practically evaluate this advantage is not visible,
hypothetically due to non-uniform WCET uncertainty of a few random jobs. Also, the experiments
show that MCPI does not strictly dominate AUD FP as in some cases the exhaustive exploration of
priority tables can help the latter to better deal with the Dhall effect.

Even if the experiments were not extensive, due to the computational complexity of AUD FP
and AUD FPM, we can state that MCPI behaves “competitively” to an “ideal” implementation
of Audsley approach that is computationally intractable, and clearly outperforms its “reasonable”
implementation. This demonstrates superiority of our P-DAG insertion-sorting based improvement
compared to what Audsley approach can currently offer.

9 Conclusions

In this paper we studied the problem of fixed job priority scheduling of dual criticality systems. Our
study was focused on finite sets of job instead of more general task models. We motivate this by
the observation that reasoning on tasks is more complex, and thus the finite job set model, when
applicable, potentially allows for better processor utilization. It also enables support of precedences
between jobs with different arrival times and deadlines.

We have considered one of the most common approaches to schedule mixed critical systems: Auds-
ley approach. This approach has, however, some serious limitations for mode switched scheduling and
multiprocessors. To overcome these limitations we introduced new priority assignment heuristics. To
equip these heuristics with means of formal reasoning of how jobs influence each other we introduced
the concepts of Priority-DAGs (P-DAGs) and potential interference relation. We oriented our heuris-
tics towards Fixed Priority per Mode (FPM) scheduling policy, as an improvement over the usual
Fixed Priority (FP) policy, commonly assumed in Audsley approach. Unlike FP, FPM policy aborts

9 in this case we would need to put precedence edges between sub-jobs
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non-critical jobs in emergency mode (mode HI) and performs better when the WCET uncertainty
gets more uniformly distributed between the jobs e.g., due to job splitting.

In Section 5, we presented the Mixed Critical EDF (MCEDF), an FPM algorithm for single
processor. This algorithm was compared with the Own Criticality Based Priority (OCBP) algorithm,
which is the optimal FP algorithm, based on Audsley approach. We formally proved dominance of
MCEDF over OCBP, and hence over all FP algorithms, and showed its better algorithmic complexity
than that of a direct implementation of OCBP.

The Mixed Criticality Priority Improvement (MCPI) algorithm was then discussed in Section 6.
It is an FPM scheduling algorithm that supports multiprocessors and job precedences. To the best of
our knowledge, in the literature there are no other multiprocessor mixed-criticality algorithms that
support precedences, if not under very restrictive assumptions.

In Section 7 we show some theoretical properties that are common for MCEDF and MCPI. We
formally proved that when applied on single processor with no precedences they both are optimal
among the FPM policies that keep the priorities safety-critical jobs in relative EDF order. From the
above property, we also deduce their equivalence.

We concluded the paper with experimental results (Section 8) where we show noticeable improve-
ment over OCBP and other heuristics using randomly generated benchmarks. We also showed an
empirical comparison between MCPI and Audsley approach on multiprocessors, from where we de-
duce that our approach gives comparable results to the “ideal case” of Audsley approach, i.e., the
case where it would dispose of an exact bound on job termination times. We also showed that a much
more precise bound is required that the one that could be directly deduced from the literature.

In future work we are planning to extend MCEDF to precedence constraints and to prove equiv-
alence with MCPI also in this extended case. MCPI currently uses a weak method to estimate the
potential interference relation. Finding a more precise technique should increase its performance.
A related issue is finding good upper bounds of termination times for Audsley approach. Also, an
alternative way of handling Dhall effect beyond density separation would be desirable.

Finally, we would like to extend both algorithms to non-preemptive case and to multiple levels of
criticality. The latter is important for most standards, like DO-178B, but addressing it is not trivial.
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