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Abstract

This study introduces a comprehensive numerical model capable of simu-
lating the evaporation of suspended droplets under di↵erent gravity condi-
tions. Unlike previous studies, this work provides a detailed description of
the multicomponent evaporation process by integrating: i) interface-resolved
evaporation; ii) suspension by the action of the surface tension force, and iii)
variable physical properties. The model e↵ectively captures complex phe-
nomena such as thermal expansion, natural convective fluxes, and liquid in-
ternal recirculation, which cannot be directly resolved using more widespread
spherically-symmetric models. Validation against experimental data con-
firms the model’s accuracy in predicting the droplet evaporation dynamics,
and its utility in resolving discrepancies between prior numerical simulations
results and experimental data. The model was implemented in the Basilisk
framework; both the code and the simulations setups are freely available on
the Basilisk sandbox.
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1. Introduction

The evaporation of liquid droplets is ubiquitous in nature and in engineer-
ing applications. Understanding the dynamics of evaporating droplets has
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a direct impact on diverse fields, ranging from the analysis of wave break-
ing [1] to the combustion of liquid fuels [2]. Accurately designing burners
and other industrial equipment necessitates knowledge of the liquid droplets’
lifetime, which varies with the initial diameter, composition, and operating
conditions.

The fundamental importance of the problem pushed the experimental
investigation of droplet evaporation in di↵erent conditions. Nomura et al.
[3] studied n-heptane in microgravity at elevated pressure and temperature.
Verwey and Birouk [4] and Murakami et al. [5] studied the evaporation of
n-decane droplets suspended on a solid fiber in normal gravity, focusing on
the e↵ect of the initial droplet diameter on the consumption rate. Ghassemi
et al. [6] analyzed pure and binary droplets of n-heptane and n-hexadecane
at di↵erent ambient temperatures and pressures, while Daıf et al. [7] focused
on n-heptane/n-decane droplets in forced convection.

Despite the abundance of papers on the combustion of liquid droplets [8,
9, 10, 11], literature on droplet evaporation remains scarce. This may be due
to the inherent complexity of carrying out such experiments isolating the ef-
fect of droplet evaporation from additional physical phenomena. The typical
experimental configuration consists of a droplet, suspended by a solid fiber,
inside a furnace that is maintained at constant temperature. In these con-
ditions, the evaporation process can be strongly influenced by the radiation
from the furnace walls, the heat conduction through the solid fiber, and the
residual gravity (if the experiment aims to be in microgravity conditions).
These limitations call for detailed mathematical models, which describe the
evaporation of droplets at di↵erent operative conditions, in order to deepen
our understanding of the process by isolating and studying each physical
phenomenon separately. These models also serve as a tool to drive the ex-
perimental investigation and to explain discrepancies between the literature
data and simplified models.

Most of the current models for droplet evaporation rely on the spheri-
cal symmetry assumption: the droplet is assumed to be perfectly spherical
and the complex set of multidimensional equations reduces to a 1D model
[2, 12, 13]. This class of models is convenient for the limited computational
time requested, but it is unable to directly resolve multidimensional phenom-
ena, such as droplet deformation, buoyancy-driven flows, and liquid internal
recirculation. Furthermore, they can be used only for simulations of single
isolated droplets, and they are unable to resolve the interactions between
multiple droplets.

2



Due to these limitations, several models for the simulation of phase change
using multiphase CFD have been proposed during the last 20 years. These
models are based on di↵erent descriptions of the multiphase systems, such
as the front tracking model [14], the level set approach [15], and the volume-
of-fluid [16, 17, 18]. Most of these models are based on the assumption of
constant physical properties, which limits their applicability to benchmark
phase change simulations, used for the validation of the model itself. While
these simulations are essential to test the numerical methods, descriptions of
realistic droplets require extending these models including variable physical
properties and relaxing the hypothesis of incompressible flow. Especially in
low-Mach multicomponent systems, the thermodynamic and transport prop-
erties are strongly a↵ected by variations in temperature and composition.
To the author’s knowledge, the first attempt to combine a multiphase phase
change model with a variable-properties formulation was made by Wang et al.
[19], focusing on pure droplets in convective conditions. Scapin et al. [20]
used a variable properties formulation to study the evaporation of droplets
in turbulent conditions. More recently, Mialhe et al. [21] proposed a variable-
properties evaporation model, based on the level set approach, which focuses
on a variable surface tension formulation for the simulation of Marangoni
convection. During the last year, the extension of interface-resolved phase
change models to all-Mach formulations has been proposed by Wenzel and
Arienti [22] and Bibal et al. [23].

In this work, we extend a VOF-based multicomponent phase change
model [24], including variable thermodynamic and transport properties, low-
Mach compressibility e↵ects, and droplet suspension by the action of the
surface tension force. We propose the first detailed multidimensional model
for the simulation of realistic droplets both in microgravity and suspended at
di↵erent gravity conditions, resolving thermal expansion e↵ects, buoyancy-
driven flows, and liquid internal recirculation. The mathematical model and
its numerical discretization is presented in section 2, while the results ob-
tained from the numerical simulations are reported in section 3.

2. Numerical model

The numerical model presented in this work is the extension of an incom-
pressible Volume-Of-Fluid (VOF) based phase change model for multicom-
ponent evaporation [24]. The previous model assumes constant properties,
and focuses on the numerical methods for solving the transport equations
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Figure 1: Simulation setup for suspended droplets in normal gravity conditions. Schematic
representation of the droplet suspended on a solid fiber, with contact angle ✓, pinning
point xp, and gravity g (a); simulation setup for the axial-symmetric suspended droplet
configuration, using an adaptive grid (b).

that describe the system, including a proper way to enforce the gas-liquid in-
terface boundary conditions. Here we expand that model to include variable
thermodynamic and transport properties, low-Mach compressibility e↵ects,
interface radiation, and a strategy for achieving stable suspension of the
droplet on a solid fiber, mimicking the experimental configuration sketched
in figure 1. The solid fiber is considered just from the geometrical point of
view, meaning that the heat transfer between the solid and the gas-liquid
system is neglected. This approximation is valid for su�ciently thin solid
fibers. Although this work focuses on the evaporation of isolated droplets,
the model formulation is general and it can be used for generic phase change
in a two-phase system. The following sections introduce the assumptions
and the governing equations of the model, with the corresponding inter-
face boundary conditions (section 2.1 and 2.2); sections 2.3 and 2.4 describe
the details of the variable properties formulation and the droplet suspension
strategy, while the numerical solution is summarized in section 2.5.
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2.1. Mathematical formulation

The control volume over which the system of equations is solved comprises
two immiscible phases separated by a zero-thickness interface. The charac-
teristic function H is introduced to distinguish between the two phases:

H(x, t) =

(
1 if liquid phase

0 if gas phase
(1)

where x and t indicate the space and time coordinates, respectively. Drew
[25] demonstrated that the transport of the characteristic function by the
interface velocity u� obeys the condition:

DH

Dt
=

@H

@t
+ u� ·rH = 0 (2)

The governing equations for each phase derive from a set of conservation
laws on mass, momentum, chemical species, and enthalpy, which can be
written for each phase k in the general form [26, 27]:

@⇢k

@t
+r · (⇢kuk) = 0 (3)

@⇢kuk

@t
+r · (⇢kuk ⌦ uk) = �r · ⌧ k �rpd,k � g · xr⇢k (4)

@⇢k!i,k

@t
+r · (⇢k!i,kuk) = �r · ji,k (5)

@⇢khk

@t
+r·(⇢khkuk) = r·(�krTk)�r·

 
NSX

i=1

hi,kji,k

!
+
Dpk

Dt
�⌧ k : ruk (6)

where ⇢ is the density field, u is the velocity field, pd = p � ⇢g · x is the
dynamic pressure, g is the gravitational acceleration, !i is the mass fraction
of each chemical species i, and h is the sensible enthalpy. The viscous stress
tensor is computed neglecting the compressible part: ⌧ = �µ(ru+(ru)T ),
where µ is the dynamic viscosity. The heat conduction term is calculated
using Fourier’s law, while the species di↵usive flux ji is obtained from a
modified Fick’s law, as explained in section 2.3.

The governing equations for each phase (equations 3-6) must be com-
bined with appropriate gas-liquid interface boundary conditions. Integrating
equations 3-6 over the interface we obtain a set of equations which are used
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to characterize the interface temperature, mass fractions, mole fractions, and
the vaporization rate per unit of surface ṁi for each chemical species. Intro-
ducing the jump notation for a generic quantity �: [�]� = �l � �g, the set of
gas-liquid interface jump conditions for velocity, pressure, mass, species, and
enthalpy, is obtained [28, 29]:

[u]� · n� = ṁ [1/⇢]� (7)

[p]� = �� ṁ [u]� · n� + [⌧ · n�] · n� (8)

ṁ [u]� · t� + [⌧ · n�] · t� = t� ·r�� (9)

[⇢ (u� u�) · n�]� = 0 (10)

[⇢!i (u� u�) · n� + ji · n�]� = 0 (11)

[�rT · n�]� =
NSX

i=1

[ṁihi] + q̇rad (12)

where n� is the interface normal, pointing outward from the liquid phase,
while t� is the interface tangent vector. The velocity jump (equation 7)
derives from the strong expansion due to the phase change, which leads to
the Stefan flow. The pressure jump in equation 8 contains the recoil pres-
sure term [21] and the surface tension contribution, where  is the interface
curvature while � is the surface tension coe�cient. The tangential momen-
tum jump (equation 9) contains the Marangoni e↵ect, which is characterized
by the operator r�, indicating the gradient along the tangential direction
of the interface [21]. Equations 10 and 11 are Rankine-Hugoniot relations
which express the total mass conservation, and the mass conservation for each
chemical species, across the interface. Equation 12 states that the thermal
conduction at the interface is balanced by heat removed by the evaporation
and by the radiation flux at the interface q̇rad. The radiation is computed as in
Thijs et al. [30]: q̇rad = ✏�SB(T 4

bulk � T̂
4), where �SB is the Stefan-Boltzmann

constant, ✏ is the emissivity of the liquid fuel, while Tbulk is the gas phase
bulk temperature. This set of jump conditions is closed by including the
thermodynamic equilibrium:

[fi]� = 0 (13)

[T ]� = 0 (14)

which indicate the equality of the fugacity fi of each chemical species in the
two phases, and the continuity of the temperature across the interface [31].
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2.2. Assumptions and final form of the governing equations

Di↵erent approaches can be used to enforce the jump conditions (equa-
tions 7-14) in the governing equations (equations 3-6). The choice mainly
depends on the numerical method used for the solution of the two-phase
system. The level set method employs a jump condition formulation, using
the Ghost Fluid Method [32] to impose the jump conditions directly in the
values of the fields being solved. The volume-of-fluid method, instead, intro-
duces the jump conditions directly into the governing equations in the form
of source terms, according to the whole domain formulation. The interested
reader can refer to [33], and to [34, pag. 37] for a detailed discussion about
the di↵erent methods.

Using the whole domain formulation, we rewrite equations 3, 5, and 6,
multiplying each equation by the respective characteristic function Hk, where
Hl = H and Hg = 1 � H, and introducing the relationship between the
interface surface density �� and the characteristic function: rH = �n���.
Following the procedure used by Yeoh and Tu [35] and exploiting equations
10 and 11 we obtain the two-field form of the governing equations:

@H

@t
+ ul ·rH = �ṁ

⇢l
(15)

@Hk⇢k

@t
+r · (Hk⇢kuk) = �ṁk�� (16)

Hk⇢k
D!i,k

Dt
= �r · (Hkji,k) + ṁk!i,k�� � ṁi,k�� (17)

where the total vaporization rate per unit of surface ṁ is the sum of the vapor-
ization rates for each chemical species ṁi. Note that the signs of the source
terms depend on the side of the interface as: ṁ = ṁl = �ṁg. Similarly,
we re-write the enthalpy equation (6) assuming Newtonian fluids, negligible
viscous e↵ects and pressure work term, and low-Mach number. According
to these assumptions, the enthalpy equation is written for the temperature
field as:

Hk⇢kCpk
DTk

Dt
= r · (Hk�krTk)�Hk

 
NSX

i=1

Cpi,kji,k

!
·rTk + q̇�,k�� (18)

where Cp is the mixture heat capacity, Cpi is the heat capacity of a single
species, � is the thermal conductivity, and q̇� is the interface heat conduction
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term, which is calculated for each phase from the interface gradient as: q̇�,k =
�krTk · n�. The sign depends on the side of the interface also in this case.

Conversely from the scalar transport equations, the Navier-Stokes equa-
tions are solved using a one-field formulation. Using this approach, a single
set equation is written for the whole control volume, with properties and vari-
ables weighted on the characteristic function [36]. Neglecting the Marangoni
convection from the jump condition (equation 9) the one-field Navier-Stokes
equations are written as follows.

r · u = �1

⇢

D⇢

Dt
(19)

⇢
Du

Dt
= �r · ⌧ �rpd � g · xr⇢+

�
�� ṁ

2 [1/⇢]�
�
n��� (20)

The velocity jump (equation 7) is not included in the continuity equation
because it is directly imposed in the velocity field. This strategy improves the
numerical solution of the system (see section 2.5 for details). The variables
appearing in the source terms of the governing equations (15-20) are obtained
by coupling the jump conditions in a non-linear system of equations [24]:

8
><

>:

ṁi = ṁ!̂i,l + ji,l · n� = ṁ!̂i,g + ji,g · n�PNS
i=1 ṁi�hev,i + q̇rad = �lrTg · n� � �grTl · n�

Px̂i,g = Pvap,i(T̂ )x̂i,l

(21)

where !̂i and x̂i are the interface mass fractions and mole fractions, respec-
tively, while T̂ is the interface temperature. The chemical equilibrium con-
ditions, i.e. equality of fugacity, is here simplified by assuming an ideal gas
phase, an ideal liquid mixture, negligible Poynting correction, and using An-
toine’s law to calculate the vapor pressure Pvap,i of each chemical species.

2.3. Challenges of the variable properties formulation

Extending the framework proposed by Cipriano et al. [24] with variable
properties involves the introduction of: i) equations and correlations which
allow the thermodynamic and transport properties to be computed; ii) ad-
ditional relevant terms in the governing equations; iii) corrections for the
di↵usive fluxes in order to enforce mass conservation. The properties of in-
terest were introduced in the previous sections. Given a generic property,
we can distinguish the one-field property � from the phase property �k. The
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one-field properties are used for the solution of the Navier-Stokes equations,
and they are computed by a simple arithmetic average, based on the charac-
teristic function:

� = H�l + (1�H)�g (22)

while the phase properties must be computed as a function of the thermo-
dynamic state of the mixture:

�k = f(P, Tk, xi,k) (23)

where P is the thermodynamic pressure of the system, which can be assumed
to be constant for low-Mach flows, Tk is the temperature of the phase k, while
xi,k are the mole fractions of the same phase. Each phase property is com-
puted using the OpenSMOKE++ library [37], which calculates the gas phase
properties using data from the CHEMKIN database [38], or following the pro-
cedures proposed by Wang and Frenklach [39]. Unavailable thermodynamic
data are estimated by group additivity methods [40]. The liquid properties
are obtained from correlations reported in engineering handbooks such as
Reid et al. [31]. This approach for the calculation of the variable properties
was previously adopted and validated by Cuoci et al. [41] for the simulation
of laminar flames and by Cuoci et al. [12] for spherically-symmetric droplet
combustion, including the liquid phase. The only properties which are kept
constant in space and time during the simulations are the emissivity ✏, used
for the interface radiation, and the surface tension coe�cient �, which is
considered to be constant because Marangoni convection is neglected. The
small variations in the shape of the droplet due to a time-variable surface
tension coe�cient do not a↵ect the results of this paper appreciably.

Among the physical properties that we compute as in Equation 23, den-
sity and di↵usivity require special care to avoid mass conservation issues. In
particular, the density changes must be counteracted by volume changes to
enforce mass conservation. This problem reduces to using a proper strategy
to compute the density Lagrangian derivative in equation 19. In this work
we use the same approach proposed by Pember et al. [42] for single phase
low-Mach reactive flows, which assumes that the pressure gradients are neg-
ligible with respect to the temperature and mass fraction gradients. This is a
common approximation for low-Mach systems, and it allows to significantly
simplify the system of equations removing the two-way coupling between
continuity and energy equations discussed by Saade et al. [43]. Therefore,
the density Lagrangian derivative for each phase is computed as:
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1

⇢

D⇢

Dt

����
k

= �k
DTk

Dt
+Mw,k

NSX

i=1

1

Mw,i

D!i,k

Dt
(24)

This equation is used in the one-field continuity equation (19) averaging
the contribution of the gas and the liquid phases using the same arithmetic
average used for any other one-field property (22). The term � in equation 24
is the thermal expansion coe�cient, which is obtained from the ideal gas
approximation in the gas phase, and computed directly from its definition in
the liquid phase:

�g =
1

Tg
�l = � 1

⇢l

d⇢l

dT
(25)

while Mw and Mw,i are the mixture molecular weight and the molecular
weight of the single chemical species, respectively. Equation 24 is used both
for the gas and for the liquid phase. However, in liquid phase we assume
that the density changes due to the temperature gradients dominate over
composition e↵ects [19]. Therefore, the last term on the RHS, which is
derived in equation 24 under the hypotesis of ideal gas, vanishes in liquid
phase. This is always true for pure liquid droplets, while it is generally valid
for multicomponent droplets as well.

The di↵usive fluxes ji,k in equation 11, 17 and 21 are computed using
Fick’s law, which is exact only for binary mixtures (and for multicomponent
systems with equal di↵usivities). When Fick’s law is applied to multicompo-
nent mixtures, it must be corrected in order to ensure that the sum of the
di↵usive fluxes of all the species is null. The di↵usivity of each species is
computed from the binary di↵usion coe�cient in each phase Dij,k using the
Hirschfelder and Curtiss approximation [44]:

Di,k =

P
j 6=i xj,kMw,j

Mw,k

P
j 6=i

xi,k

Dij,k

(26)

which results in di↵usivities which are di↵erent for every chemical species,
and molar based. According to this definition, the final form of the di↵usive
flux ji,k is:

ji,k = jFi,k � !i,kj
C
i,k = �⇢kDi,k

Mw,i

Mw,k
rxi,k + !i,k

NSX

i=1

⇢kDi,k
Mw,i

Mw,k
rxi,k (27)
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where jFi,k is the molar based di↵usive flux computes using the Fick’s law,
while jCi,k is the di↵usion correction term, which is redistributed based on the
mass fraction of each chemical species, following the same approach proposed
by Co↵ee and Heimerl [45]. By doing so, the sum of the di↵usive fluxes ji,k is
equal to zero. This form of the di↵usive flux can be directly used in equations
18 and 21. Conversely, since equation 17 is solved for the mass fractions, the
di↵usive flux in equation 27 is re-written in terms of mass fractions [see 26,
pag. 534 for the conversions] in order to preserve the implicit part of the
transport equation:

Hk⇢k
D!i,k

Dt
= r · (Hk⇢kDi,kr!i,k) +r ·

⇥
Hk

�
jMi,k + jCi,k

�
!i,k

⇤
+ ṁ!i�� � ṁi��

(28)
The additional term on the RHS is equivalent to an additional convective
flux, it includes the total di↵usive fluxes contribution jCi,k, and the correction
that arises due to the conversion from mole fraction gradients to mass fraction
gradients: jMi,j = ⇢kDi,krMw,k/Mw,k.

2.4. Droplet suspension strategy

From an experimental standpoint, droplets in normal gravity conditions
are investigated by suspending them on a solid fiber. In this work, we propose
a strategy to reproduce that configuration, combining the droplet suspension
method with the evaporation model discussed in the previous sections. Phys-
ically, the droplet remains suspended on a solid fiber due to the interaction
between the surface tension force of the liquid droplet and the surface of the
solid fiber. In our model, the surface tension force in equation 20 is com-
puted as f� = �rH, where � is the surface tension coe�cient, which is
constant, while the curvature  is obtained from the height function. The
combination of the resulting curvature and a well-balanced discretization of
the gradients lead to the accurate numerical description of the surface ten-
sion [46]. The concept of height function is closely related to the height of
the fluid interface. Therefore, knowing the height function is equivalent to
knowing the position of the interface, and vice-versa. In a droplet suspen-
sion problem we know the coordinate xp at which the interface must remain
throughout the simulation. Physically, this pinning point corresponds to the
gas-liquid-solid contact point. Therefore, we suspend the droplet by setting
a Dirichlet boundary condition on the height-function h at the contact point,
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and a Neumann boundary condition elsewhere:
(
h = xp if x = xp

@nh = 0 elsewhere
(29)

where @n denotes the derivative along the normal direction of the boundary.
The numerical implementation of the height functions on an adaptive com-
putational grid was described by Popinet [46]. According to that formalism,
the height function, in each interfacial cell, gives the distance of the closest
interface from the center of the cell. Therefore, implementing the bound-
ary conditions in equation 29 is achieved by setting the value of the height
function on the layer of ghost cells in contact with the droplet (figure 2):

(hx)ghost =

(
�(hx)c + 2(xp � x)/� if x � xp

(hx)c elsewhere
(30)

where the su�x c indicates a generic cell of the domain in contact with a ghost
cell where we apply the boundary condition, while � is the cell dimension.

After setting this boundary condition, the curvature is computed as a
function of the first and second derivatives of the height function:

 =
h
00

(1 + h02)3/2
+

1

|x|
p
1 + h02

(31)

The resulting curvature is a↵ected by the height function boundary condition,
and the contact angle is dynamically adjusted according to the coordinate of
the pinning point.

2.5. Numerical discretization details
The governing equations introduced in section 2.2 are discretized on an

adaptive Cartesian grid using the Finite Volume Method [47]. The charac-
teristic function, in the context of the volume-of-fluid approach, is discretized
using the volume fraction c, defined as:

c =
1

V

Z

V

HdV =
Vl

V
(32)

where Vl is the total volume of liquid in a computational cell, while V is the
volume of the cell itself. Applying this definition to the interface transport
equation (15), we obtain:

@c

@t
+

1

V

I

S

Hul · ndS =
1

V

Z

V

Hr · uldV � 1

V

Z

V

ṁ

⇢l
��dV (33)
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Figure 2: Schematic representation of the height function boundary conditions, where the
black line represents the solid fiber surface, the white point is the pinning point xp, while
✓ is the contact angle.

The purpose of the geometric volume-of-fluid is to directly discretize the
integrals in this equation, maintaining the sharp nature of the characteris-
tic function H by exploiting the explicit interface reconstruction [34]. For
the sake of simplicity, in this section we substitute this equation with the
notational form:

@c

@t
+r · (cul) = cr · ul �

ṁ

⇢l
�� (34)

although the actual discretization does not use the volume fraction values
directly in the divergence terms. The same logic applies to every other scalar
transport equation, where the phase volume fraction ck is introduced: cl = c,
cg = 1� c.

The governing equations (15-20) are decoupled and solved in a sequential
manner, using a time staggered scheme. Here, we briefly summarize the
integration order, using the same formalism adopted by Popinet [48], which
assumes that the scalar fields (liquid volume fraction, temperature, and mass
fractions) are known at the beginning of the time step at the time level
n � 1/2, i.e. lagging behind the velocity and pressure fields by half time
step. For brevity of notation, in the next steps, we do not indicate the time
level for the phase properties in the transport equations. These properties
are updated and known at time level n� 1/2.
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1. At the beginning of the time step, the interface jump condition (equa-
tion 21) is resolved using the same procedure explained by Cipriano

et al. [24], in order to obtain the vaporization rates ṁn�1/2
i , the inter-

face temperature T̂
n�1/2, and the interface mass fractions !̂n�1/2

i,k .
2. The phase properties are updated based on the thermodynamic pres-

sure, and the current temperature and mass fraction fields:

�
n�1/2
k = f(P, T n�1/2

k ,xn�1/2
k ) (35)

3. The divergence source term is computed for each phase and the one-
field divergence is obtained from the arithmetic average.

1

⇢

D⇢

Dt

����
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4. The advection of the volume fraction and of the scalar transport equa-
tions is solved, considering the generic scalar s = !i, T :

c
n+1/2 � c

n�1/2

�t
+r · (cu�)

n = cr · un
� (37)

(cksk)⇤ � (cksk)n�1/2

�t
+r · (ckskuk)

n = ckskr · un
k (38)

5. The mass fractions are updated including the additional term stemming
from the di↵usion correction and the conversion from mole fraction
gradients to mass fraction gradients:

(ck!i,k)⇤⇤ � (ck!i,k)⇤

�t
= r ·

⇥
ck

�
jMi,k � jCi,k

�
!i,k

⇤⇤
(39)

6. The di↵usion part of the chemical species and temperature equations is
solved in an implicit manner, including the phase change source terms:
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(40)
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(41)

7. The droplet suspension is applied by enforcing the height function
boundary conditions (equation 30), and then the curvature  is cal-
culated (equation 31).

8. The one-field properties ⇢ and µ are updated at the time level n+ 1/2
from the respective phase properties using an arithmetic average, and
the Navier-Stokes equations are solved for each phase:

⇢
n+1/2

✓
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k � un

k

�t
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◆
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k (42)
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⇢n+1/2
rp

n+1
d (45)

where the velocity jump (equation 7) is imposed directly to the velocity
fields ul and ug using the ghost velocity approach proposed by Tanguy
et al. [15]. As advocated by Long et al. [49], this method can be con-
veniently combined with a collocated Navier-Stokes equations solver,
limiting the oscillations in the velocity field that arise when including
a localized divergence source term directly in the Poisson equation.
This approach is based on the idea of Nguyen et al. [50] to use the
Ghost Fluid Method to populate the velocity values on each side of the
interface, obtaining two velocities ul and ug which are both continu-
ous across the interface and which respect the correct jump condition
(equation 7):

ul =

8
<

:

ul if liquid phase

ug � ṁ


1

⇢

�

�

n� if gas phase
(46)
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ug =

8
<

:
ul + ṁ


1

⇢

�

�

n� if liquid phase

ug if gas phase
(47)

with this condition enforced in the liquid and gas phase velocities after
every solution step of equations 42-45. Consequently, the divergence in
equation 44 reads:

r · u⇤⇤ =

(
r · u⇤⇤

l if liquid phase

r · u⇤⇤
g if gas phase

(48)

The resulting liquid velocity, used for the transport of the volume frac-
tion, is eventually corrected by additional projection steps in order to
guarantee the correct divergence, as proposed by Tanguy et al. [15].
For constant properties simulations, the divergence of the liquid veloc-
ity is null, while for the variable properties formulation developed in
this work, the divergence of the liquid velocity equals the Lagrangian
derivative of the density in liquid phase. If the additional projections
are neglected, the droplet evaporation problem cannot be solved accu-
rately, conversely from the boiling problem [51]. Note that this method
requires the vaporization rate ṁ, defined on the interfacial cells, to be
extended toward the gas and the liquid phases. For this operation,
we use PDE based extrapolation techniques [52], after converting the
volume fraction field to a signed distance function [53].

3. Numerical results

The numerical model described in the previous section was implemented
in the open-source code Basilisk [54]. The simulations performed using this
model aim at the validation of the droplet suspension strategy (section 3.1)
and the low-Mach compressibility e↵ects (section 3.2). The simulation of
n-heptane droplet evaporation in microgravity is presented in section 3.3,
comparing the model prediction with experimental data [3] and with the re-
sults from a well-validated spherically-symmetric model [12]. The e↵ect of
the introduction of gravity in the same test cases is presented in section 3.4,
focusing on the e↵ect of the natural convective fluxes on the droplet con-
sumption dynamics at di↵erent temperatures, pressures, and gravity values.
The natural convective fluxes are also a↵ected by the initial droplet diam-
eter, as shown in section 3.5, where our numerical model is compared with
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experiments of n-decane evaporation in normal gravity conditions [5]. The
source code developed in this work, as well as the simulation setups are freely
available on the Basilisk sandbox [55].

3.1. Equilibrium of a suspended droplet

This test case aims to validate the droplet suspension strategy. The
starting point for the validation of every numerical method for surface tension
is the analysis of a static isolated droplet, to verify that the numerical method
is able to recover the equilibrium solution for a static droplet in microgravity
(Laplace equation). Analogously, in this case we want to verify that the
droplet, suspended at a specific point of the domain, can relax to the correct
equilibrium position given by the balance between gravity and surface tension
force. At the equilibrium conditions, the momentum equation (20) reduces
to:

rpd =
�
�� ṁ

2[1/⇢]�
�
rc� g · xr⇢ (49)

Neglecting phase change, and considering a pure isothermal system, the one-
field density ⇢ is a function of the volume fraction only. Therefore, equa-
tion 49 can be rewritten as:

rpd = (�� [⇢]�g · x)rc (50)

which implies that, if the dynamic pressure and volume fraction gradients
are discretized in the same way, the numerical scheme is well-balanced, and
the equilibrium solution for the problem can be recovered [56].

The configuration used for this test case is depicted in figure 1 (b), where
half the droplet is initialized along a boundary of the domain. The initial
droplet diameter is D0 = 1 mm, and the physical properties are considered
constant and equal to: ⇢l = 1000 kg m-3, ⇢g = 1 kg m-3, µl = 1 ⇥ 10�3

Pa s, µg = 1 ⇥ 10�5 Pa s. These properties are selected to mimic air-water
properties, in order to test the suspension method using realistic density and
viscosity ratios. The square domain has dimensions equal to 4D0, and the
normal gravity value g = 9.81 m s-2 is used. The droplet is initialized at coor-
dinate (0, 0), and the pinning point corresponds to the coordinate (0.5D0, 0)
and it remains constant throughout the simulation. We use an adaptive grid
with maximum level of refinement 8 (28 cells along each domain dimension).
The simulation is performed in 2D and axial-symmetric (AXI) configura-
tions, considering a fiber diameter for the AXI case equal to Df = 0.15D0.
The simulation runs until the droplet reaches the equilibrium which, from
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Figure 3: Equilibrium shape for the 2D (a) and AXI (b) suspended droplets, with gravity
pointing leftward with respect to the figures.

the numerical point of view, was quantified by computing the total variation
of volume fraction between two consecutive time steps. When this variation
is smaller that the tolerance ✏ = 1 ⇥ 10�10, the equilibrium configuration is
reached and the simulation stops.

Figure 3 reports the stationary shapes of the suspended droplet, for dif-
ferent values of surface tension �. Increasing the surface tension, the droplet
tends to a spherical shape, both in the planar (2D) and axial-symmetric
(AXI) configuration. In the latter case, the droplet tends to always be more
spherical due to the e↵ect of the second curvature. Figure 4 (a) shows the
quantitative comparison between the contact angle of the stationary droplets
from the numerical simulation and the analytical solution, calculated from
the balance between surface tension force and gravity:

✓2D = arccos

✓
⇢lg⇡(0.5D0)2

2�

◆
✓AXI = arccos

✓
4⇢lg(0.5D0)3

3�Df

◆
(51)

From figure 4 (a) we can see that we obtain an excellent agreement between
the numerical and analytical contact angles, both for the planar and AXI
configurations, while figure 4 (b) reports the relaxation of the maximum
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Figure 4: Equilibrium contact angles, where the lines are the analytic solutions, while the
markers are the numerical results (a); relaxation of the maximum velocity for the 2D case
(b) (http://basilisk.fr/sandbox/ecipriano/test/pinning.c).

velocity toward null values for the cases with minimum surface tension co-
e�cient, which are those that lead to stronger oscillations. The oscillatory
behavior of the velocity field is due to the fact that, at the beginning of the
simulation, the droplet tends to falls due to the e↵ect of gravity and it is at-
tracted back to the pinning point by the surface tension. The droplet keeps
oscillating around the pinning position, until eventually reaching a steady
position. Figure 4 (b) is a zoom of the oscillations region, where we observe
that the AXI case takes more time to stabilize, but in both cases the velocity
eventually tends toward a null value.

This test case confirms the ability of the suspension strategy to simulate
droplets which relax toward an equilibrium position, respecting the analytical
contact angle value.

3.2. Thermal expansion of a liquid droplet

In this test case we simulate the thermal expansion of an initially cold
n-heptane droplet in a hot isothermal environment, neglecting the phase
change. This test case is useful to assess the convergence of the model pro-
posed in this work, with respect to the introduction of the density material
derivative in equation 24, which is responsible for the droplet expansion.
The droplet is initialized at the corner of a square domain, considering axial-
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Figure 5: Maps of the temperature (a) and velocity divergence (b) inside the liquid droplet,
for the thermal expansion test case at time 0.1 s. The divergence field embeds the AXI
metrics.

symmetry and neglecting the gravitational term. The properties of this sim-
ulations are variable, therefore we don’t initialize the material properties.
Instead, we exploit the OpenSMOKE++ [37] library to initialize and update
the properties according to the thermodynamic pressure, the temperature,
and the mass fraction fields, as explained in section 2.3. The droplet is con-
sidered to be pure n-heptane, while the gas phase is pure nitrogen. The
initial droplet diameter is D0 = 1 mm, while the domain length is equal to
1.5D0. Symmetry boundary conditions are used for the two boundaries in
contact with the droplet, while outflow boundary conditions for velocity and
pressure are used for the other boundaries. The temperature of the liquid
droplet is initialized at the value of 300 K, the thermodynamic pressure is
considered constant and equal to 1.0 MPa. The simulation runs at three
di↵erent ambient temperature: 350 K, 375 K, and 400 K, respectively. Each
simulation runs for 3 s, a time which is su�ciently large to reach steady state
conditions, and at four di↵erent levels of refinement (5, 6, 7, and 8).

At the beginning of the simulation, the droplet is heated by the isothermal
environment, establishing a spherically-symmetric temperature profile inside
the liquid droplet (figure 5 (a)). The temperature gradients inside the liquid
phase make the divergence source term (equation 24) non-null (figure 5 (b)),
leading to the droplet expansion which compensates for density changes. In
this simulation, not only the density changes, but also all the other properties
involved. Therefore, the solution of the temperature field is performed using
variable transport properties. Changing the properties a↵ects the dynamic
of the droplet expansion, but the droplet diameter at steady state Df can
easily be obtained by imposing that the mass of the liquid droplet must
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Figure 6: Evolution of the normalized square diameter for the droplet expansion problem at
di↵erent�T between the droplet and the environment (a); convergence rate for the droplet
expansion problem (b) (http://basilisk.fr/sandbox/ecipriano/run/expansion.c).

remain constant throughout the expansion process:

Df = D0

✓
⇢l(Tl)

⇢l(Tg)

◆1/3

(52)

In this simulation, the density depends solely on temperature because the liq-
uid is pure and the thermodynamic pressure is constant. Figure 6 (a) shows
the trend of the droplet diameter in time obtained from the numerical simu-
lation, and the steady state diameter for each initial �T between the droplet
and the environment. We can see that, for each resolution, the temperature
tends toward the steady-state value, as confirmed by the figure 6 (b), which
reports the relative errors on the droplet diameter at the four di↵erent levels
of refinement. The error between the simulation and the stationary value in-
creases with the initial temperature jump, but all three simulations converge
with the same rate, which is extrapolated from the data and is approximately
1st order for each case under investigation. This test case confirms the con-
vergence of the numerical schemes used to discretize the divergence source
term, which allows the expansion of the droplet to be predicted correctly.
This phenomenon is fundamental when studying the evaporation of liquid
droplets in hot environments as shown in the next sections.
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Figure 7: Maps of temperature (top) and n-heptane mass fraction (bottom) at di↵erent
ambient pressures in microgravity conditions at T ⇡ 750 K and time 0.6 s (http://
basilisk.fr/sandbox/ecipriano/run/microgravity.c).

3.3. Evaporation of a n-heptane droplet in microgravity

Droplets in microgravity conditions have been studied in several experi-
mental works, to isolate the evaporation phenomena from the influence of
buoyancy-driven flows. This configuration is studied using drop towers,
parabolic flights, or performing the experiment in orbiting spacecrafts [57]. In
this section, we simulate the microgravity evaporation of isolated n-heptane
droplets in nitrogen, and we compare the numerical results with experimental
data by Nomura et al. [3], and with the 1D spherically-symmetric model by
Cuoci et al. [12]. The experimental setup used by Nomura et al. [3] employs
a drop tower and parabolic flights to achieve the reduced gravity conditions.
The droplet is supported by an horizontal silica fiber with diameter of 150
µm, and experiments are performed at di↵erent ambient temperatures (from
⇡ 450 K to ⇡ 750 K), and at di↵erent pressure values ranging from 0.1 to 5
MPa. The droplet initial diameter is comprised between 0.6 and 0.8 mm. We
simulate this configuration by placing the droplet at the corner of a square
domain, considering a constant average initial diameter of 0.7 mm, and a do-
main length equal to 40 times the initial diameter, whose value is su�ciently
large to avoid the influence of the boundaries on the dynamics of the droplet
evaporation process. In these simulations, the use of an adaptive grid allows
the large simulation domain to be maintained while limiting the computa-
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tional burden. All the simulations presented in this section were performed
at a maximum level of refinement equal to 11, using symmetry boundary
conditions for the boundaries in contact with the liquid droplet, and outflow
boundary conditions for the other sides of the domain. The experimental
data provided by Nomura et al. [3] are known to be a↵ected by radiation
from the electric furnace walls to the surface of the droplet. This e↵ect was
studied by Yang and Wong [58], and it was included in these simulations
according to equation 12, using an emissivity value for the n-heptane droplet
which is constant and equal to ✏ = 0.93, which is the same value used by
Yang and Wong [58]. The surface tension coe�cient is constant as well, and
equal to � = 0.03 N m-1, while every other thermodynamic and transport
property changes as described in section 2.3. Initially, the environment is
considered at rest, the liquid phase is made of pure n-heptane, while the gas
phase is pure nitrogen. Among the experiments performed by Nomura et al.
[3], we focus on the cases at 0.1 MPa, 0.5 MPa, 1 MPa, and 2 MPa, since
experiments at 5 MPa are in supercritical conditions. For each pressure value
we run 4 di↵erent simulations at 4 di↵erent ambient temperatures, ranging
from ⇡ 450 K to ⇡ 750 K (the exact temperature values are reported in
Figure 8). Initially, the liquid phase temperature is equal to 300 K for every
case under investigation.

The qualitative behavior of these simulations is similar for all the test
cases: at the beginning of the simulation the hot environment heats the
droplet, increasing the temperature of the liquid phase and causing ther-
mal expansion. During this phase, the droplet diameter increases, leading to
(D/D0)2 > 1, as shown in Figure 8. As the interfacial temperature increases,
the vaporization mass flow rate increases as well, until reaching a situation
where the droplet consumption due to the evaporation process overtakes the
droplet expansion with consequent decrease of the droplet diameter. After
this transient, the squared diameter decay proceeds almost linearly, as pre-
dicted by the d2 law, with a slope which is called vaporization rate constant.
The intersection between the line that approximates the steady evaporation
region, and the value (D/D0)2 = 1 defines a time coordinate called heat-up
period, which measures the unsteadiness of the evaporation process [3]. From
the knowledge of these two parameters, correlations that correct the classic
d2 law can be obtained, which are useful for sizing of engineering devices, or
for simplified multiphase flow models.

Figure 8 shows the comparison of the numerical model described in this
work, with the experiments by Nomura et al. [3] and with the spherically-
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Figure 8: Square diameter decay at di↵erent pressure and temperature for the micro-
gravity evaporation of n-heptane. Comparison with experiments from Nomura et al. [3]
(filled markers), and with the spherically-symmetric 1D model by Cuoci et al. [12] (empty
markers) (http://basilisk.fr/sandbox/ecipriano/run/normalgravity.c).
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symmetric model by Cuoci et al. [12]. This model was chosen because it was
extensively validated under di↵erent operative conditions, in pure evapora-
tion cases but also in combustion simulations [12, 59, 60]. The simulation
results show that, for each pressure and temperature under investigation, the
agreement between this work and the 1D model is always very good. These
comparisons demonstrate the correct implementation of the variable proper-
ties extension to the multidimensional model proposed in this work. These
results also highlight the role of temperature and pressure on the evaporation
process in microgravity. For every ambient pressure, increasing the environ-
ment temperature increases the importance of the thermal expansion, which
is observed from the higher peak of the square diameter. At the same time,
higher temperatures reduce the heat-up period and increase the vaporiza-
tion rate constant, leading to faster droplet consumption. The e↵ect of the
ambient pressure on the droplet consumption rate is less predictable and it
depends on the ambient temperature. At the lower temperature (T ⇡ 470K),
increasing the pressure leads to stronger thermal expansion and an increased
heat-up period, after which the vaporization rate constant is comparable for
every pressure value. The ambient pressure increases the boiling point of
the liquid droplet, which is allowed to reach higher temperature, as shown
in the maps of figure 7. In these conditions, the ratio between the heat-up
period and the total evaporation time remains approximately constant with
pressure. Therefore, at lower temperature, an increase of pressure increases
the droplet consumption time. At higher temperature (T ⇡ 750K in this
case), we observe that the vaporization rate constant increases with pressure
and the final droplet consumption times are almost independent from the
ambient pressure value. In these conditions, the ratio between the heat-up
period and the total evaporation time increases with pressure.

Although the comparison between this work and the 1D model shows good
agreement, the comparison with the experimental data is not as good. At
ambient pressure, the consumption curve of the numerical models is compa-
rable with the experiments. Increasing the ambient pressure, the numerical
models are systematically slower than the experiments, for every ambient
temperature, and the displacement increases with pressure. Similar results
were observed by other literature works [58, 61, 62]. In the next section, we
propose possible explanations to this discrepancy, exploiting the capability
of this numerical model to simulate the influence of buoyancy-driven flows
on the droplet evaporation phenomena.
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3.4. E↵ect of gravity on the evaporation of n-heptane droplets
The experimental data by Nomura et al. [3] were used by several authors

for the validation of their droplet evaporation models. Some of them use just
the low pressure results. Some other authors, such as Harstad and Bellan
[61], Yang and Wong [58], and Gogos et al. [62], analyzed the trend of the
droplet consumption at di↵erent pressure values. These authors obtained
discrepancies between their models and the experimental data, which are
similar to those shown in the previous section, and they propose possible
explanations to these gaps based on the e↵ect of the interface radiation, the
heat conduction between the gas-liquid system and the solid fiber [58], and
the initial droplet positioning procedure [61, 62]. Using the model proposed
in this work, we can relax the hypothesis of spherical droplets and resolve the
e↵ect of buoyancy directly, demonstrating for the first time that the e↵ect of
residual gravity on the droplet evaporation results is non-negligible.

The simulations performed in this section combine the variable properties
evaporation model with the droplet suspension strategy. Half the liquid
droplet is initialized on the boundary of the domain corresponding to the
axis of symmetry, and simulations exploit axial symmetry (valid for small
Reynolds numbers) to limit the computational time. The simulation setup
is depicted in figure 1 (b), while the problem dimensions and the operative
conditions are those used for the microgravity cases in section 3.3. The only
di↵erence with respect to the microgravity cases is that we replicate those
test cases using di↵erent gravity values: 1/100 g, 1/10 g, and 1 g, where g
is the Earth’s normal gravity. Note that the value of 1/100 g corresponds to
the maximum values of residual gravity measured by Nomura et al. [3] for the
parabolic flight experiments. The boundary of the domain in contact with the
liquid droplet corresponds to the solid fiber surface, where no-slip boundary
conditions are imposed, together with the height function boundary condition
for the droplet suspension (section 2.4). On the other sides of the domain
we set zero pressure outflow boundary conditions for the velocity and the
dynamic pressure fields.

At the beginning of the simulation, the droplet is heated by the hot
environment, causing the thermal expansion of the droplet and increasing
the vaporization rate. The phase change process cools down the interface
and increases the amount of (cold) n-heptane in the gas phase, which is
heavier than the hot nitrogen environment. Consequently, the gas phase
density around the droplet increases with respect to the bulk gas density.
The resulting density gradients promote buoyancy-driven flows, which create
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Figure 9: Maps of temperature (top) and n-heptane mass fraction (bottom) at di↵er-
ent ambient pressures in normal gravity conditions at time 0.6 s (http://basilisk.fr/
sandbox/ecipriano/run/normalgravity.c).

a downward wake that transports temperature and mass fraction fields as
shown in figure 9. The importance of the buoyancy driven flows can be
quantified using the Grashof number, defined as:

Gr =
(⇢s � ⇢b)

⇢b⌫
2
b

gD
3 (53)

where ⇢s is the density of the gas phase at the interface, ⇢b is the bulk density,
while the bulk kinematic viscosity is defined as ⌫ = µ/⇢. The Grashof num-
ber is directly proportional to P 2, it increases with the gravity value and with
the droplet diameter, and it decreases non-linearly with increasing ambient
temperature. The mixture molecular weight of the gas phase increases the
Grashof number as well, which becomes more important for heavier liquid
droplets. Increasing the Grashof number, the acceleration of the fluid pro-
moted by natural convective fluxes becomes larger. Figure 9 clearly shows
this e↵ect: the image displays the maps of temperature and n-heptane mass
fractions at the same simulation time (0.6 s) for di↵erent pressure values.
Increasing the pressure, the Stefan flow contribution is lower, while the gas
phase velocity transports the scalar fields downward more quickly, the bound-
ary layer around the droplet becomes thinner, and these phenomena influence
the droplet consumption dynamics. Figure 10 (a) shows the squared diameter
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Figure 10: Squared diameter decay at di↵erent pressure and temperature, and at 4 di↵erent
gravitational acceleration values. The triangles are experiments from Nomura et al. [3]
(a); Normalized total evaporation times (b) (http://basilisk.fr/sandbox/ecipriano/
run/normalgravity.c).

decay for the Nomura et al. [3] droplets at di↵erent values of residual gravity.
For improved readability we only included results at two temperature values
for each pressure analyzed in the previous section. We observe that, in every
simulation, the introduction of gravity increases the droplet consumption
rate, with di↵erent magnitude depending on the operative conditions. At
ambient pressure, gravity does not significantly a↵ect the simulation results,
especially for low residual gravity. However, at higher pressure the gap be-
tween the microgravity results increases quickly, and even a residual gravity
of just 1/100 g decreases the droplet lifetime considerably. We observe from
the results in Figure 10 that this e↵ect is more important at high pressure
and low ambient temperature, as predicted by the functional dependency of
the Grashof number. Figure 10 (b) reports the normalized total evaporation
time for every pressure and temperature analyzed in this study, and for the
three gravitational values. The total evaporation time is extracted from the
plots by reconstructing the line describing the squared diameter decay in the
steady region. Therefore, the total evaporation time is computed as the in-
tersection between the reconstructed line and the coordinate corresponding
to the complete droplet consumption ((D/D0)2 = 0). The normalized total
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evaporation time plotted in figure 10 (b) is finally obtained as the ratio be-
tween the total evaporation time with gravity and the total evaporation time
in microgravity, at the same conditions of temperature and pressure. By do-
ing so, the resulting figure allows the displacement between the microgravity
case and the gravity cases with increasing ambient temperature and pressure
to be easily observed.

From the results in this section we can draw interesting conclusions that
complete the analysis began by Yang and Wong [58]. In that work, the au-
thors show that including radiation and the thermal e↵ect from the solid
fiber reduces the gap between the numerical results and the experiments.
They show that the solid fiber e↵ect is more important at low temperature,
while the e↵ect of the radiation is dominant for the high temperature sim-
ulations. The two e↵ects tend to increase the droplet consumption rate in
every simulation, and while they approximate the experimental data well at
ambient pressure and su�ciently well at 0.5 MPa, they are not su�cient to
explain the discrepancies at higher pressures. This work clearly shows that
the discrepancy at higher pressure is due to the e↵ect of the residual gravity,
which is non-negligible for high pressures especially at the lower tempera-
tures. It is worth mentioning that the axial-symmetric model proposed by
Gogos et al. [62] was used by the authors to re-simulate the experiments by
Nomura et al. [3] using normal gravity conditions, and obtaining a droplet
consumption rate which is faster than the microgravity case and closer to the
experimental data. The di↵erence with that work is that here we tested the
e↵ect of small residual gravity values, and that our model directly resolves
the interface deformation and is more generally applicable to any gas-liquid
system with phase change. Moreover, Gogos et al. [62] indicated the pro-
cedure used to move the droplet from the droplet generator to the testing
position as a possible additional explanation to the delay of the numerical
results. The authors quantified this process stating that it induced droplet
motion with an average velocity of 0.375 m/s for 0.16 s. To try to mimic the
e↵ect of this process, we initialized the velocity field of the droplet using a
Hill’s vortex considering a bulk velocity of 0.375 m/s. However, this proce-
dure did not change the droplet dynamics, compared with the cases where
the initial velocity is null everywhere (which is the initial setup for the results
presented in this section).

An additional reason for the discrepancy between the numerical results
and the experiments might be the use of an average initial diameter, which
is equal for every simulation, since Nomura et al. [3] did not provide a
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specific initial diameter value for every simulation. However, when buoyancy
is present, the initial diameter is an additional parameter that changes the
importance of natural convective fluxes. This e↵ect is studied in the next
section.

3.5. E↵ect of the initial diameter on the evaporation of n-decane droplets

In the previous section, we studied the e↵ect of the Grashof number on
the evaporation of n-heptane droplets. We analyzed the influence of the am-
bient temperature, pressure, and the gravitational acceleration on the square
diameter decay, and we compared the results with experiments of droplets in
reduced gravity conditions. In this section, we study the e↵ect of the initial
diameter on the consumption of n-decane droplets in normal gravity condi-
tions. This configuration was studied with experiments by Murakami et al.
[5], providing the experimental data that we use here to verify the validity
of our model’s predictions.

The simulation setup is the same used in the previous section, and it is
depicted in figure 1 (b): it consists in initializing half the liquid droplet along
the boundary corresponding to the axis of symmetry. The initial ambient and
droplet temperatures are equal to 773 K, and 328 K, respectively. The droplet
is pure n-decane, while the environment is initially pure nitrogen. Symmetry
boundary conditions are imposed on the boundary in contact with the liquid
droplet, while constant pressure outflow boundary conditions are used for
the other boundaries. The initial diameter of the droplet varies in the range
between 0.4 and 0.8 mm, and simulations are performed at 4 di↵erent values
of initial diameter, each at ambient pressure and at 0.5 MPa.

The numerical simulation results are compared with the experimental
data in normal gravity conditions by Murakami et al. [5], and the comparison
is shown in figure 11 (a). The results indicate that an increase in the droplet’s
initial diameter enhances the significance of buoyancy-driven flows, making
the vaporization rate constant steeper. This e↵ect can be easily predicted
by looking at the Grashof number (equation 53). Increasing the pressure
(figure 11 (b)), the e↵ect of the initial diameter on the vaporization rate
is magnified. The numerical results obtained using this model are in good
agreement with the experimental data at atmospheric pressure, while at 0.5
MPa the numerical results display an increased heat-up period. In both cases,
the distances between the curves atD0 = 0.4 mm andD0 = 0.8 mm in normal
gravity are similar to the experimental data. The temperature profiles are
reported just for the case with D0 = 0.52 mm, but they are similar for every
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Figure 11: Normalized squared diameter and temperature profile for the n-decane evap-
oration in normal gravity conditions (ng) and in microgravity (µg). Comparison with
experiments by Murakami et al. [5] (http://basilisk.fr/sandbox/ecipriano/run/
normalgravity.c).

simulation since the initial droplet diameter, in these conditions, does not
influence the droplet temperature substantially. The trends of the droplet
temperature profiles shows that, as expected, the high pressure droplets reach
higher temperatures, due to the increased boiling point. We capture the
increased gap in the consumption rates for the higher pressure simulations,
and the bigger distance between case D0 = 0.4 mm in microgravity and
the same case but in normal gravity, which shows that the introduction
of gravity has a stronger e↵ect on the vaporization rate constant, in these
conditions, with respect to the increased initial diameter. Understanding the
larger gap between experimental data and model at 0.5 MPa would require
insights from other authors’ simulation results. The discrepancy might be
due to neglecting the thermal e↵ects of the solid fiber or to the increased
complexity of conducting experiments at higher pressure. In any case, the
model predicts the correct trends at di↵erent pressure values. This test case
emphasises the ability of the numerical model to predict the consumption
rate of liquid droplets suspended in normal gravity conditions with good
accuracy, capturing the correct experimental trends.
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4. Concluding remarks

This work proposes and validates a numerical model that significantly ad-
vances our understanding of the evaporation dynamics of suspended droplets
in various gravitational conditions.

1. The model integrates interface-resolved evaporation, surface tension ef-
fects, and variable physical properties. This comprehensive approach
allows for the accurate simulation of complex phenomena such as ther-
mal expansion, natural convective fluxes, and internal liquid recircu-
lation, which are not addressed by traditional spherically-symmetric
models.

2. The model’s capability to simulate realistic droplet evaporation in any
gravity condition has been demonstrated. For simulations involving
gravity, a droplet suspension model was proposed that leverages sur-
face tension without introducing fictitious forces. This model was val-
idated by comparing the equilibrium contact angle with the analyti-
cal solution. Additionally, the variable properties evaporation model
was benchmarked against experimental data in both microgravity and
normal gravity conditions, as well as against a simplified spherically-
symmetric model, showing very good agreement and validating the
implementation of this work.

3. Comparisons with experimental data reveal discrepancies increasing
with ambient pressure, consistently with findings from other studies
in the literature. This study elucidates that such discrepancies can
largely be attributed to the e↵ects of residual gravity, in addition to
thermal conduction from the solid fiber and interface radiation, as dis-
cussed by other researchers. The model also successfully compared
with experimental data for suspended droplets in normal gravity con-
ditions, enhancing predictive capabilities crucial for designing systems
in aerospace and industrial manufacturing.

4. Future research will focus on extending the model to more complex
fluids and environmental conditions, aiming to broaden its applicability
and refine our ability to predict droplet behavior across a range of
operational scenarios.
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Saclay, 2021.

[35] G. H. Yeoh, J. Tu, Computational techniques for multiphase flows,
Butterworth-Heinemann, 2019.

[36] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct numerical simulations
of gas–liquid multiphase flows, Cambridge university press, 2011.

[37] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Opensmoke++: An
object-oriented framework for the numerical modeling of reactive sys-
tems with detailed kinetic mechanisms, Computer Physics Communica-
tions 192 (2015) 237–264.

[38] R. Kee, F. Rupley, J. Miller, Chemkin: The chemkin thermodynamic
database. rep. sand87-8215, Sandia National Laboratories, Livermore
(CA), USA (1987).

[39] H. Wang, M. Frenklach, Transport properties of polycyclic aromatic
hydrocarbons for flame modeling, Combustion and flame 96 (1994) 163–
170.

[40] S. Benson, Thermochemical Kinetics (2nd Edition), Wiley, New York,
1976.

[41] A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, A computational tool for
the detailed kinetic modeling of laminar flames: Application to c2h4/ch4
coflow flames, Combustion and Flame 160 (2013) 870–886.

36



[42] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield,
W. Fiveland, J. Jessee, An adaptive projection method for unsteady,
low-mach number combustion, Combustion Science and Technology 140
(1998) 123–168.

[43] Y. Saade, D. Lohse, D. Fuster, A multigrid solver for the coupled
pressure-temperature equations in an all-mach solver with vof, Jour-
nal of Computational Physics 476 (2023) 111865.

[44] J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, The molecular theory of
gases and liquids, John Wiley & Sons, 1964.

[45] T. Co↵ee, J. Heimerl, Transport algorithms for premixed, laminar
steady-state flames, Combustion and Flame 43 (1981) 273–289.

[46] S. Popinet, An accurate adaptive solver for surface-tension-driven inter-
facial flows, Journal of Computational Physics 228 (2009) 5838–5866.
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