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Abstract

We study the impact of the expansion of the universe on a broad class of objects,

including black holes, neutron stars, white dwarfs, and others. Using metrics that incor-

porate primordial inhomogeneities, the effects of a hypothetical “center of the universe”

on inflation are calculated. Dynamic coordinates for black holes that account for expan-

sions or contractions with arbitrary rates are provided. We consider the possibility that

the universe may be bound to evolve into an ultimate state of “total dilution”, wherein

stable particles are so widely separated that physical communication among them will be

impossible for eternity. This is also a scenario of “cosmic virtuality”, as no wave-function

collapse would occur again. We provide classical models evolving this way, based on the

Majumdar-Papapetrou geometries. More realistic configurations, instead, indicate that

gravitational forces locally counteract expansion, except in the universe’s early stages. We

comment on whether quantum phenomena may dictate that total dilution is indeed the

cosmos’ ultimate destiny.
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1 Introduction

In a scenario where the expansion of the universe is accelerating and the event horizon is

located at a finite comoving distance, i.e.,

d(t) =

∫ ∞

t

dt′

a(t′)
<∞, (1.1)

a(t) being the scale factor, an admissible state is the one where all the unstable particles

have decayed, and the stable ones are so distant from one another that they will be unable

to exchange physical signals for eternity. We label such a state “total dilution”. In a

hypothetical situation of this type, the particles are not actually “particles”, but just

wave functions that do not have the chance to be brought to reality again by means of

wave-function collapses, since they can no longer interact with macroscopic bodies, like a

detector, let alone meet an “observer”. Thus, the state of total dilution is also a state of

“cosmic virtuality”.

Whether the expansion of the universe will satisfy (1.1) forever or not is a topic of active

ongoing research. Here we assume that it will, and try to figure out if, in the long run,

total dilution is the final state for a generic set of initial conditions, i.e., there exists a time

tdis, such that, for every t > tdis, every pair of particles is separated by a comoving distance

larger than d(t). Is the expansion ultimately going to expand everything, including the

planetary systems, the celestial bodies, maybe even the atoms?

The common lore is that the expansion has a negligible impact on scales smaller than

galaxy clusters, such as within planetary systems, where the attractive force of gravity

prevails. Yet, there are various configurations where the gravitational force is compensated

by opposing forces, and the effects of the expansion are the only surviving ones. The

simplest example is a homogeneous distribution of matter at large scales. There, the

gravitational attraction exerted by a cluster A on a cluster B is compensated by the force

exerted on B by an opposite cluster C. If we add isotropy to the list of assumptions, we end

up with an FLRW metric, where objects preserve their positions in comoving coordinates:

the clusters drift far away from one another, till they are unable to physically communicate.

One may think that homogeneity is crucial to have this result, but this is not true: the

gravitational attraction can be compensated by forces of a different nature. A remark-

able example is provided by the Majumdar-Papapetrou system [1], which contemplates an

arbitrary distribution of extremal charged black holes, arranged so that the gravitational

attraction is balanced exactly by the electrostatic repulsion. The metric can be generalized

to incorporate a nonvanishing cosmological constant Λ, as shown by Kastor and Traschen
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in [2]. We obtain a nonhomogeneous system where the relative positions of the black holes

remain fixed in dynamic (comoving) coordinates: the black holes fall apart indefinitely.

This raises the question whether the expansion prevails any time the gravitational force

is compensated by an opposing force. We study systems like neutron stars, white dwarfs

and black dwarfs, where gravity is balanced by the fermion degeneracy pressure [3, 4]. We

demonstrate that these celestial bodies do not expand with respect to the event horizon.

They would have expanded in the early stages of the universe, when no stars actually

existed.

Precisely, the expansion of the universe adds a “centrifugal force” to the balance of

forces. Once this contribution is taken into account, one finds that the equations admit a

configuration of hydrodynamic equilibrium (which allows for the presence of white dwarfs

and neutron stars), only if the centrifugal force due to the expansion is smaller than the

gravitational force at the border of the star. This condition has been fulfilled since the

time of last scattering (and sometime before), but not during inflation.

So, although an expansion satisfying (1.1) makes total dilution an admissible state of

the universe, it is not enough to reach it classically. Quantum effects must be advocated for

that to happen. Generically speaking, an argument in favor is that the theory of quanta is

incompatible with the idea of absolute stability. Ways of escaping the gravitational attrac-

tion in the extremely long run are the black-hole evaporation [5], and possibly gravitational

analogues [6, 7, 8] of the (Sauter-Heisenberg-Euler-)Schwinger pair production mechanism

[9], which could even make “everything evaporate”. Still, the final verdict on whether total

dilution, or cosmic virtuality, is “the fate of every universe” awaits further investigations.

We hope that the results of this paper help assess the issue.

An accelerated expansion can be described by a positive cosmological constant Λ, or,

more generally, an inflaton field ϕ [10]. We study various systems of these types. For

example, we explore the possibility that the universe may have a “center”, or multiple cen-

ters, where perennial black holes are concentrated. By incorporating such inhomogeneities

into the history of the early universe, we show that their impact on the power spectra of

primordial fluctuations leaves room for black holes of masses up to 1043kg, when the total

mass of the observable universe is about 1053kg. We work in the context of the Starobinsky

scenario [11], but the arguments can be generalized to other types of inflation [12].

It is worth stressing that the primordial black holes we are talking about are different

from the ones commonly discussed in the literature [13]: ours may have been there forever,

before inflation as well as through it; instead, the ones considered in standard scenarios

are supposed to form in epochs that are posterior to inflation.

We also provide dynamic coordinates for static metrics. Among those, a family of
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coordinates for Schwartschild and Schwartschild-de Sitter black holes that account for

expansions and contractions with arbitrary rates.

The paper is organized as follows. In section 2 we begin with the last topic mentioned

above, the study of dynamic coordinates for non rotating black holes. In section 3 we

consider systems of the Majumdar-Papapetrou and Kastor-Traschen types and show that

they provide exact toy models for the evolution towards total dilution. In section 4 we study

Starobinsky inflation with inhomogeneities, which may consist of one or many primordial

black holes. In section 5 we discuss the fate of neutron stars, white dwarfs and similar

objects. In section 6 we discuss the fate of the universe in a broader sense. Section

7 contains the conclusions. Appendix A is devoted to higher-order corrections to the

black-hole metric of section 4. Appendix B contains a derivation of the equations of fluid

dynamics in general relativity. In appendix C we explain how to switch from a set of

particles to a fluid. In appendix D dust is discussed in detail. Finally, appendix E contains

derivations of the pressure and equations of state of an ideal degenerate Fermi fluid [4].

2 Dynamic coordinates for black holes

In this section we provide dynamic coordinates for black holes, accounting for expansions

or contractions with arbitrary rates1. We study the main physical properties and comment

on their significance for the investigation of this paper.

Consider the Schwartzschild metric

ds2 = gµνdx
µdxν =

(
1− rg

r

)
dt2 − dr2

1− rg
r

− r2(dθ2 + sin2 θdφ2), (2.1)

the Schwarzschild-de Sitter metric

ds2 =
(
1− rg

r
−H2r2

)
dt2 − dr2

1− rg
r
−H2r2

− r2(dθ2 + sin2 θdφ2) (2.2)

and the FLRW metric

ds2 = dt2 − a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2), (2.3)

at zero spatial curvature, where

a(t) = a0e
Ht, (2.4)

is the scale factor, rg is the Schwartzschild radius, H is the Hubble parameter, assumed to

be constant, and a0 is another constant. We search for a solution that

1For a review of the most popular coordinate choices for black holes, see [14].
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1) gives (2.3) in the limit rg → 0;

2) gives (2.1) for r > rg in the limit H → 0;

3) satisfies the Einstein equations

Rµν −
1

2
gµνR− Λgµν = 0. (2.5)

with a cosmological constant Λ = 3H2. The metric (2.2) satisfies 2) and 3), but not 1),

while (2.3) satisfies 1) and 3), but not 2).

If we introduce a scale factor aλ(t), such that

ȧλ(t) = λaλ(t),

where λ is an arbitrary constant, we can actually treat a larger class of metrics at once.

The factor aλ(t) can describe a physical expansion (when λ = H), or an artificial choice of

expanding or contracting coordinates.

Inserting the ansatz

ds2 = f(u)dt2 − aλ(t)
2dr2

f(u)
− aλ(t)

2r2(dθ2 + sin2 θdφ2) (2.6)

into (2.5), having defined u = u(t, r) ≡ aλ(t)r, we obtain the differential equation

uf ′

f
(f 2 + λ2u2) = f(1− f) + 3u2(λ2 −H2f)

for f(u). Its solutions are f(u) = f±(u), where

f±(u) = w(u)±
√
w(u)2 + λ2u2, w(u) =

1

2

(
1− rg

u
−H2u2

)
. (2.7)

The results,

ds2± = f±(u)dt
2 − aλ(t)

2

f±(u)
dr2 − u2(dθ2 + sin2 θdφ2), (2.8)

are related to the Schwarzschild-de Sitter metric (2.2) by the changes of coordinates

t′ = t+
λ

2

∫ r′ udu

w(u)f±(u)
, r′ = raλ(t), θ′ = θ, φ′ = φ,

where the primes refer to (2.2).

When λ = H the worldline element ds+ satisfies the points 1-3) listed above: the

function f+(u) is identically one for rg = 0, which gives the FLRW metric (2.3); moreover,

ds2+ returns the black-hole metric (2.1) for r > rg when H → 0.
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The metrics (2.8) have some interesting properties, which we now list.

The horizons of the metric (2.2) are located at distances r∗ where w(r∗) = 0. This

condition admits two solutions (event horizon and cosmological horizon) for Hrg < 2/34/3

and no solution for Hrg > 2/34/3 (see fig. 1). The metrics ds2± with λ ̸= 0 do not have

singularities away from r ̸= 0. In some sense, the parameter λ acts as a “regulator” of

the horizons. When λ = H, the regulator is the cosmological constant. When λ ̸= H, it

is an artificial choice of coordinates. The metrics ds2+ with H = 0, λ ̸= 0 can be used to

reach the interior region of a Schwartzschild black hole. See below for the amount of time

a falling body takes to cross the horizon.

Note that the function f+(u) is always positive, while the function f−(u) is always

negative: t and r exchange their roles in the metric ds2−.

When λ tends to zero, the metric ds2+ tends to (2.2) for w(r) > 0, while the function

f+(u) tends to zero for w(r) < 0. The metric ds2− tends to (2.2) for w(r) < 0, while f−(u)

tends to zero for w(r) > 0.

From now on, we focus on ds2+. For w(u) > 0 we obtain the expansion

f+(u) = 2w(u)

[
1 +

u2λ2

4w(u)2
− u4λ4

16w(u)4
+O

(
λ6
)]

(2.9)

in powers of λ, which can be used away from the horizons. For w(u) < 0 the expansion is

2w(u) minus the right hand side of (2.9).

The function f+(u) tends to λ
2/H2 for u→ ∞. Its expansion around u = 0 reads

f(u) =
ûu2λ2

1− ū
+O(u6), û ≡ u

rg
,

which highlights the black-hole singularity.

2.1 Light propagation

Setting ds2+ = 0 and dθ = dφ = 0, we can study the radial propagation of light. We obtain

t =

∫ u du′

λu′ ± f+(u′)
. (2.10)

The plus sign in front of f+ gives the trajectory of an emerging ray (dr/dt > 0), while the

minus sign gives the trajectory of a ray moving towards the center (dr/dt < 0).

The denominator of the integrand can potentially vanish on the “regularized horizons”,

i.e., the values of u such that w(u) = 0. Precisely, the amount of time spent around

w(u) ≃ 0 is

δt ≃
∫ u du′

(λ± |λ|)u′ ± w(u′) +O(w(u′)2)
.
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When λ > 0, light takes an infinite amount of time to reach the regularized horizons from

the outside, while it escapes from the inside in a finite amount of time. The opposite

situations occur for λ < 0.

2.2 Motion of massive bodies

Now we consider the trajectory of a body of mass m. With no loss of generality, we

can restrict to the plane θ = π/2. We first describe the motion in the u variable. The

Hamilton-Jacobi equation

gµν(∂µS)(∂νS) = m2

for the action S is solved by

S = −Et+ Lφ+ F±(u),

where E is the energy, L is the angular momentum and the functions F±(u) have derivatives

F ′
±(u) =

1

2w(u)

[
±

√
E2 − 2w(u)

(
m2 +

L2

u2

)
− λEu

f+(u)

]
. (2.11)

The solutions of the equations of motion for the orbits are

t =
∂F±(u)

∂E
, φ = −∂F±(u)

∂L
. (2.12)

The limit m → 0 returns the propagation of light. For example, at L = m = 0 (E > 0)

the first equation of (2.12) gives back (2.10).

More generally, the following situations occur for E > 0, λ > 0:

1) du/dt is never singular and always positive away from r ̸= 0 in the case F+;

2) du/dt has the same sign as −w(u), and is singular only on the regularized horizons

in the case F−.

For E > 0, λ < 0 we have the following situations:

3) du/dt is never singular and always negative away from r ̸= 0 in the case F−;

4) du/dt has the same sign as w(u) and is singular only on the regularized horizons in

the case F+.

The potential singularities at w(u) = 0 disappear in the cases 1) and 3), because they

are canceled by the expression within the square brackets of (2.11).

When E < 0 we have the same classification with F+ ↔ F−.

Consider again the radial motion (L = 0). In fig. 1 we plot the function 2w(u), which

identifies the regularized horizons A and D, and the argument E2−2m2w(u) of the square
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Figure 1: Horizons and turning points for radially moving bodies

root of (2.11), which identifies the turning points B and C of the trajectory, if any. We

have chosen typical values of rg, H and m. Higher energies translate the second curve

upward and eventually eliminate the turning points.

Assuming λ > 0, consider the situation depicted in the figure. A massive body emerging

from the center r = 0 can be described by the solution with F− or the one with F+. In the

first case, it reaches the regularized horizon A in the infinite future. In the second case, it

crosses A in a finite amount of time. Then, it reaches the turning point B, where du/dt

vanishes, also in a finite amount of time. After that, its trajectory is no longer described

by the solution with F+: we need to switch to the solution with F−, where we see the body

falling from B towards the regularized horizon A, which it reaches in the infinite future.

A body coming from the regularized horizon D in the infinite past can either move away

to infinity in the infinite future (solution with F−) or first fall towards C (again solution

with F−), then turn, emerge from C, cross D in a finite amount of time and proceed to

infinity (solution with F+).

If E is large enough, there are no turning points B and C. Then an emerging body

(solution with F+) crosses the regularized horizons in finite amounts of time and proceeds

to infinity. The solutions with F− are: body from D in the infinite past to A in the infinite

future; body emerging from the origin and reaching A in the infinite future; body emerging

from D in the infinite past and proceeding to infinity.

We can switch to the description of the motion in the variable r by noting that the
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velocity dr/dt is related to du/dt by the formula

aλ
dr

dt
=

du

dt
− λu.

The solution with F+,

aλ
dr

dt
=

(
∂F ′

+(u)

∂E

)−1

− λu,

has an inversion point ū (where dr/dt = 0) if the condition E = m
√
f+(ū) admits solutions.

Although the radial variable is r, the main properties of the solutions involve u. For

example, the regularized horizons A and D, as well as the turning points B and C, as well

as the inversion points dr/dt = 0, occur for values of u that are solely determined by the

constants rg, H, E and m. It is also easy to derive circular orbits with u = constant (see

subsection 5.1). Since u = aλr, when aλ grows r decreases correspondingly. The story

does not change when the system is quantized. If we study the energy levels of a particle

in the black-hole field, we find that the average distance from the center is u = constant.

In particular, the physical case λ = H shows that a particle interacting with an attractor

remains bound to it indefinitely. The expansion of the universe does not make a significant

difference.

2.3 Dynamic coordinates for charged black holes

What said extends straightforwardly to charged black holes, where it is sufficient to take

w(u) =
1

2

(
1− rg

u
+G

q2

u2
−H2u2

)
, (2.13)

G being Newton’s constant. With this w(u), the solutions of the Einstein-Maxwell equa-

tions

Rµν −
1

2
gµνR− Λgµν = 8πGTµν , DµFµν = 0, (2.14)

in dynamic coordinates are given by the metrics (2.8) together with the vector potential

Aµ =

(
q√
4πu

, 0, 0, 0

)
,

where

Tµν = −FµρF
ρ

ν +
gµν
4
FαβF

αβ, Fµν = ∂µAν − ∂νAµ,

are the energy-momentum tensor and the field strength, respectively.

It is more challenging to arrange meaningful dynamic coordinates for rotating black

holes [15], since the rotation interferes with the dynamics of the coordinate system.
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2.4 Dynamic isotropic coordinates

In isotropic coordinates, the line element of the black hole without a cosmological constant

is [16]

ds2 =

(
1− rg

4r

)2(
1 + rg

4r

)2dt2 − (1 + rg
4r

)4
(dr2 + r2dθ2 + r2 sin2 θdφ2). (2.15)

One can switch from (2.1) to (2.15) by means of the change of variables

r′ = r
(
1 +

rg
4r

)2
, (2.16)

where the primes refer to the Schwartzschild side. To the first order in rg, the form (2.15)

of the metric gives the common Newtonian approximation

ds2 ≃
(
1− rg

r

)
dt2 −

(
1 +

rg
r

)
(dx2 + dy2 + dz2) (2.17)

at large distances.

It is surprisingly simple to promote (2.15) to a solution of the Einstein equations (2.5)

in the presence of a cosmological constant Λ: we just need to replace r with a(t)r and dr

with a(t)dr. This gives the McVittie metric [17]

ds2 =

(
1− rg

4ra(t)

)2
(
1 + rg

4ra(t)

)2dt2 − (1 + rg
4ra(t)

)4

a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2), (2.18)

where a(t) is the one of (2.4), with H =
√

Λ/3. The coordinate change from (2.2) to (2.18)

is

t′ = t+

∫ ra(t) Hudu

Υ(u)−H2u2
, r′ = ra(t)

(
1 +

rg
4ra(t)

)2

, Υ(u) =

(
1− rg

4u

)2(
1 + rg

4u

)6 ,
(2.19)

where the primes refer to (2.2).

The static isotropic coordinates are

ds2 =

(
1− rg

r′(r)
−H2r′2(r)

)
dt2 − r′2(r)

r2
(dr2 + r2dθ2 + r2 sin2 θdφ2), (2.20)

where the function r′(r) is the inverse of

r(r′) = exp

(∫ r′ dr̃√
r̃2 − rgr̃ −H2r̃4

)
. (2.21)

The change of variables that relates (2.20) to (2.18) is the composition of (2.19) and (2.21).

We see that the isotropic coordinates are better suited for an easy switch from the case

of vanishing cosmological constant to the case of nonvanishing cosmological constant. This

is going to be useful in the next sections.
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2.5 Multi black-hole systems

We can generalize the Newton approximation (2.17) by including an arbitrary distribu-

tion of inhomogeneities, described by a potential Φ(x, y, z) with vanishing Laplacian. In

isotropic dynamic coordinates, the result is

ds2 =

(
1− Φ(x, y, z)

a(t)

)
dt2 −

(
1 +

Φ(x, y, z)

a(t)

)
a(t)2(dx2+dy2+dz2) +O(Φ2), (2.22)

to the first order in Φ. Taking, for example,

Φ(x, y, z) =
∑
i

rig
|r− ri|

, (2.23)

where r = (x, y, z), ri are the black-hole positions and rig are their Schwartzschild radii,

formula (2.22) shows that the expansion does not affect the relative distances |ri − rj|.
Instead, it acts on the potential Φ(x, y, z) as a whole, by means on the scaling factor a(t)

that divides Φ.

This configuration aligns with our desired outcome, that is to say, a system expanding

along with the universe. However, it is not satisfactory, because it merely assumes the

result. The black holes do not stay fixed at r = ri by themselves: a force of unspecified

nature must be advocated to compensate for their gravitational attraction. In the following

section we present a system where the missing force is explicitly identified.

3 Multi extremal black-hole systems

The Majumdar-Papapetrou system contemplates an arbitrary distribution of extremal

charged black holes. The charges qi = rig/(2
√
G) are adjusted to counterbalance the

gravitational attractions by means of electrostatic repulsions. Referring to formula (2.13),

the parenthesis becomes a perfect square in the case of a single black hole at H = 0.

The system is described by the solution [1]

ds2 =

(
1 +

Φ

2

)−2

dt2 −
(
1 +

Φ

2

)2

(dx2 + dy2 + dz2), Aµ =
1√
4πG

Φ

2 + Φ
(1, 0, 0, 0).

(3.1)

of the Einstein-Maxwell equations (2.14) without a cosmological constant, where, as above,

Φ = Φ(x, y, z) is a function with vanishing Laplacian2.

Following the strategy outlined so far, it is easy to generalize this system to a solution

of (2.14) with a nonvanishing cosmological constant Λ. It is sufficient to rescale dx, dy

2A rotating generalization is also known. It is given by the Perjés-Israel-Wilson metrics [18].

11



and dz by a(t) and Φ by a(t)−1, where the scaling factor a(t) is the one of (2.4), with

H =
√
Λ/3. We obtain

ds2=

(
1 +

Φ

2a(t)

)−2

dt2 −
(
1 +

Φ

2a(t)

)2

a(t)2(dx2 + dy2 + dz2),

Aµ=
1√
4πG

Φ

2a(t)

(
1 +

Φ

2a(t)

)−1

(1, 0, 0, 0). (3.2)

This extension was already noted by Kastor and Traschen [2]. To order one in G, the

metric coincides with (2.22), while the vector potential Aµ provides the compensating

force advocated in the previous section.

Choosing (2.23), we see, once again, that the relative positions of the black holes in

dynamic coordinates do not change during the expansion of the universe. More explicitly,

consider the motion of an object of mass m and charge q in the Maxwell/gravitational field

(3.2). Instead of solving the Hamilton-Jacobi equation, it is simpler to study the geodesics

dUµ

ds
+ Γµ

νρU
νUρ =

q

m

√
4πF µ

νU
ν , (3.3)

where Uµ = dxµ(s)/ds is the four-velocity, xµ(s) denotes the trajectory of the body and

ds =
√
gµνdxµdxν is the worldline element. It is easy to check that a solution of (3.3) is

Uµ = (1, 0, 0, 0)/
√
g00 = (dt/ds, 0, 0, 0), as long as the moving body is extremal as well,

i.e., q = m
√
G. Indeed, the equations (3.3) with µ = i give

−∂ig00
2g00

= −
q∂i

√
g00

m
√
G
√
g00

,

which is true for q = m
√
G. Instead, the equation (3.3) with µ = 0 gives the identity

d

ds

1
√
g00

+
∂0g00
2g200

=
1

√
g00

∂0
1

√
g00

+
∂0g00
2g200

= 0.

We conclude that an extremal black hole at rest in a system of extremal black holes

(also at rest) does not feel the presence of the others. Then the expansion prevails and the

system (assuming that it is made of hypothetical elementary particles) ultimately evolves

into the state of total dilution3. This raises the question whether the same fate awaits

3Strictly speaking, the singularities of Φ at r = ri make the physical distance between each pair of

centers infinite, even before reaching the state of total dilution. The reason is that we are considering

idealized pointlike objects. We can circumvent the difficulty by considering spheres of radii rig around the

black holes, and defining the state of total dilution as the one where such spheres can no longer physically

communicate with one another.
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any system where the gravitational attraction is balanced by an opposing force of different

nature.

In fact, the extremality condition q = m
√
G relating the mass m and the charge

q is not satisfied by the known elementary particles. For example, the electron has

q/(m
√
G) ≃ 1021. We can imagine almost neutral celestial bodies, each having a slight

excess of positively charged particles and such that its total mass M is indeed equal to

its total charge Q multiplied by
√
G. A system of such bodies evolves according to the

dynamics described here4.

To conclude, the solution (3.2) describes a toy model that embodies the proposal we

are advocating (the evolution towards the ultimate state of total dilution). However, it is

not realistic. In section 5 we discuss how general its dynamics is, within the context of

realistic systems.

4 Inflation with primordial inhomogeneities

In this section we consider the expansion due to an inflaton field ϕ. For concreteness, we

focus on the Starobinsky scenario, defined by the potential

V (ϕ) =
m2

ϕ

2κ̂2
(
1− eκ̂ϕ

)2
, (4.1)

where κ̂ =
√
16πG/3 and mϕ is the inflaton mass. Different potentials can be treated

along the same lines. The action is

S = − 1

16πG

∫
d4x

√
−gR +

1

2

∫
d4x

√
−g [(∂µϕ)gµν∂νϕ− 2V (ϕ))] , (4.2)

and the field equations read

Rµν −
1

2
gµνR = 8πGTµν ,

1√
−g

∂µ(
√
−ggµν∂νϕ) + V ′(ϕ) = 0, (4.3)

where

Tµν = (∂µϕ)(∂νϕ)−
1

2
gµνg

αβ(∂αϕ)(∂βϕ) + gµνV (ϕ)

is the energy-momentum tensor.

We start from the homogeneous solution and then work out the corrections that account

for the presence of primordial inhomogeneities, in the form of black holes or heavy massive

bodies.

4We are tacitly assuming that we can treat the bodies as pointlike. Corrections due to their extensions

are present, but they are not expected to change the ultimate outcome of the dynamics.
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In the homogeneous case, the FLRW metric is (2.3), but a(t) is not the one of (2.4).

Rather, the Hubble parameter H ≡ ȧ/a is time dependent, and so is the inflaton field

ϕ = ϕ0(t). The solution can be encoded into the “running coupling”

α =

√
4πG

3

ϕ̇0

H
=

√
− Ḣ

3H2
, (4.4)

of the “cosmic RG flow” [19], defined by the “beta function”

βα ≡ dα

d ln|τ |
= −2α2f(α), (4.5)

where τ denotes the conformal time,

τ = −
∫ +∞

t

dt′

a(t′)
,

d

dt
=

H

aHτ

d

d ln|τ |
, (4.6)

and f(α) is a known function of α. Here it is sufficient to expand f(α) in powers of α, as

it is for H and the other basic quantities:

f(α)= 1 +
5

6
α +

25

9
α2 +

383

27
α3 +

8155

81
α4 +O(α5),

H =
mϕ

2

(
1− 3

2
α +

7

4
α2 − 47

24
α3 +

293

144
α4

)
+O(α5),

−aHτ =1 + 3α2 + 12α3 + 91α4 +O(α5). (4.7)

The expansion of ϕ̇0 follows form (4.4) and the one of H. The scaling factor a(t) can be

derived from H. The expansion of ϕ0 is rarely needed.

Comparing the predictions on the scalar spectra with observational data, one finds

α ≃ 1/115, so in most situations it is enough to concentrate on the first corrections listed

above, or even set α ≃ 0.

The RG interpretation of inflation, where α is another way of encoding the usual

slow-roll parameter, has some advantages. For example, the power spectra satisfy Callan-

Symanzik equations in the superhorizon limit. The other advantage is that we can treat

the expansions in powers of α systematically (see for example [20]), which is going to be

useful in a moment.

We want to show that we can include inhomogeneities (in the form of a single black

hole, for now) into an extended metric and an extended inflaton field, still solving the

equations (4.3). We search for the solution in isotropic dynamic coordinates and work it

out as an expansion in powers of three quantities, that is to say,

α,
rg
u
,

1

m2
ϕu

2
, (4.8)
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where u = ra(t). As long as u is larger than the Schwartzschild radius rg, the parameters

(4.8) are small in the physical situations we have in mind.

We organize the expansion in multiple tiers. The primary expansion is in powers of rg/u.

Its coefficients undergo a second-tier expansion in powers of 1/(mϕu), whose coefficients,

in turn, undergo a third-tier expansion in powers of α.

The zeroth order in rg/u is just the metric (2.3) with the scaling factor a(t) and the

inflaton field ϕ0(t) implied by (4.7). The first order in rg/u is independent of 1/(m2
ϕu

2):

ds2=

(
1− 2rgH

mϕu

)
dt2 −

(
1 +

2rgH

mϕu

)
a(t)2(dr2 + r2dθ2 + r2 sin2 θdφ2) +O

(
r2g
u2

)
,

ϕ(t, r)=ϕ0(t) +

√
3

4πG

αrgH

mϕu
+O

(
r2g
u2

)
. (4.9)

The second order in rg/u is given in appendix A. It illustrates the main features of the

expansion described above.

In the infinite past, α tends to zero, H tends to mϕ/2 and ϕ tends to −∞, so the poten-

tial V tends to 3m2
ϕ/(32πG). Moreover, the kinetic terms of the ϕ Lagrangian disappear, so

the action (4.2) tends to the one of gravity with a cosmological constant Λ = 3m2
ϕ/4. Cor-

respondingly, the line element ds2 of formula (4.9) tends to the line element of a black hole

with a cosmological constant in isotropic dynamic coordinates, given by formula (2.18).

We also have

RµνρσR
µνρσ → 3

2
m4

ϕ +
12r2g
u6

(
1 +

rg
4u

)−12

,

which agrees with what we obtain by applying the change of coordinates (2.19) to (2.2).

Using the formulas of appendix A, it is possible to check these facts to the second order

in rg/u.

4.1 Arbitrary distribution of inhomogeneities

We can generalize the solution (4.9) to incorporate an arbitrary distribution of inhomo-

geneities, described by a potential Φ(x, y, z) with vanishing Laplacian. In isotropic dynamic

coordinates, the result is

ds2 =

(
1− 2H(t)Φ(x, y, z)

mϕa(t)

)
dt2 −

(
1 +

2H(t)Φ(x, y, z)

mϕa(t)

)
a(t)2(dx2+dy2+dz2) +O(Φ2),

ϕ(t, x, y, z) = ϕ0(t) +

√
3

4πG

α(t)H(t)

mϕa(t)
Φ(x, y, z) +O(Φ2), (4.10)

to the first order in Φ, where a(t), ϕ0(t) and α(t) are the same as before (formulas (4.4),

(4.5) and (4.6)).
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4.2 Impact on CMB anisotropies

It is common to study the primordial inhomogeneities in the “comoving gauge”, where the

ϕ fluctuation δϕ vanishes [10]. Ignoring the vector fluctuations, the metric is parametrized

as

gµν =diag(1,−a2,−a2,−a2)− 2a2
(
uδ1µδ

1
ν − uδ2µδ

2
ν + vδ1µδ

2
ν + vδ2µδ

1
ν

)
,

+2diag(Φ̃, a2Ψ, a2Ψ, a2Ψ)− δ0µδ
i
ν∂iB − δiµδ

0
ν∂iB. (4.11)

The curvature perturbation, often denoted by R, coincides with the field Ψ of (4.11). The

tensor fluctuations have Φ̃ = Ψ = B = 0, while the scalar fluctuations are those with

u = v = 0.

We study the impact of the inhomogeneities contained in (4.10) on the metric (4.11)

to the leading order around the de Sitter limit. This means that we can set α = 0 in

(4.10). Then, the expression of ϕ in that formula tells us that the system is already in the

comoving gauge δϕ = 0.

The metric gµν of (4.10) has u = v = 0, so the inhomogeneities incorporated in it are

of the scalar type. We find Ψ = −HΦ/(mϕa) = Φ̃, B = 0. To the lowest order in α, we

can write Φ̃ = −Ψ̇/H. This equation can also be obtained by keeping B arbitrary and

integrating it out.

For definiteness, we consider a situation where the pre-existing inhomogeneities are due

to a single “center of the universe” of mass m. This means that we just take Φ = 2mG/r,

as in (4.9). Fourier transforming the space coordinates to momenta k, we have (H ≃ mϕ/2)

Rk(τ) = Ψk(τ) = −4πmG

ak2
, (4.12)

where k = |k|.
In addition to these inhomogeneities, we have the usual primordial quantum fluctua-

tions,

Rk(τ) = ψk(τ)âk + ψ∗
−k(τ)â

†
−k (4.13)

which parametrize the most general solution of the linearized equations of motion on the

background (4.10), with the Bunch-Davies vacuum condition [21]. In (4.13) ψk(τ) denotes

the eigenfunctions, while â†k and âk are creation and annihilation operators, satisfying

[âk, â
†
k′ ] = (2π)3δ(3)(k− k′).

The total scalar perturbation is the sum

Rk(τ) = −4πmG

ak2
+ ψk(τ)âk + ψ∗

−k(τ)â
†
−k.
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Note that the first contribution is classical, because it is part of the background field. The

perturbation spectra are determined by the two-point function ⟨Rk(τ)Rk′(τ)⟩.
The mixed background/quantum terms of the product Rk(τ)Rk′(τ) are linear in â†k

and âk, so they do not contribute to ⟨Rk(τ)Rk′(τ)⟩. Since we are just interested in the

lowest orders here, we do not need to work out (4.13) in the background (4.10): we can

approximate the metric to the FLRW one for this purpose, i.e., use the G = 0 limit of

(4.10). We recall that when the corrections (4.12) are absent, one has [19]

⟨Rk(τ)Rk′(τ)⟩ = (2π)3δ(3)(k+ k′)
2π2

k3
PR, PR =

m2
ϕG

12πα2
,

where PR is the usual power spectrum to the leading order and α is the running coupling

determined by the beta function (4.5), calculated at a conformal time τ equal to −1/k.

When the pre-existing inhomogeneities (4.12) are included, the result is

⟨Rk(τ)Rk′(τ)⟩ =
[
(4π)2m2G2

a2k2k′2
+ (2π)3δ(3)(k+ k′)

πm2
ϕG

6α2k3

]
(1 + Õ(α,mGk)). (4.14)

The background metric we have been using is accurate to the first order in mG/r, so

the right-hand side is right up to corrections of orders mGk, mGk′, as well as further

corrections like the ones described in appendix A. We incorporate all of them into the

symbol Õ(α,mGk).

The background and quantum contributions appearing on the right-hand side of (4.14)

are very different, and it is not straightforward to compare them. To capture the full

complexity of the primordial fluctuations in models with pre-existing inhomogeneities,

additional measurements beyond the common power spectrum are probably needed. What

we can do right away is compare averages that place the two terms somehow on the same

footing.

We take the common “pivot” scale k∗ = 0.05 Mpc−1 and integrate on the range of

momenta C = {k such that kmin ≡ 10−4 Mpc−1 ⩽ k ⩽ 1 Mpc−1 = kmax}, which is the

most studied observationally. Using the data of [22], we find

α∗ = 0.0087± 0.0010, mϕ = (2.99± 0.37) · 1013GeV.

Approximating α to its pivot value α∗, we get∫
C

d3k

(2π)3

∫
C

d3k′

(2π)3
⟨Rk(τ)Rk′(τ)⟩ ≃ 4m2G2

π2a2
(kmax − kmin)

2 +
m2

ϕG

12πα2
∗
ln
kmax

kmin

. (4.15)

This result is valid up to the horizon re-entry. It must then be evolved up to the last

scattering surface by means of appropriate transfer functions, in order to relate it to the

CMB observations [10]. This is not an easy task.
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Observe that the terms appearing on the right-hand side of (4.15) are functions of k,

apart from a factor 1/a2 multiplying the background contribution. That factor must evolve

into 1/a2 ≃ 106, that is to say, the same factor calculated at the time of last scattering

(where a ≃ 10−3).

It remains to evolve the two functions of k. Since we are dealing with averages on k,

we expect that they will not be impacted in dramatically different ways. Then we can

argue that the contributions of the pre-existing inhomogeneities are comparable to the

usual anisotropies when the black-hole mass m is

m =
mϕa

4α∗(kmax − kmin)

√
π

3G
ln
kmax

kmin

≃ 4 · 1012M⊙ ≃ 1043kg. (4.16)

This m is ten thousand times heavier than the heaviest black holes known today.

The outcome is that there is room for interesting perennial inhomogeneities in the

universe without contradicting present knowledge.

5 The fate of neutron stars and white dwarfs

In this section we investigate the effects of the expansion of the universe, due to the cosmo-

logical constant Λ, on the equilibrium configuration of a neutron star, a white dwarf, or,

more generally, a system where the fermion degeneracy pressure opposes the gravitational

force. For simplicity, we work at zero temperature, which is, strictly speaking, the case of

a black dwarf. We want to determine whether the star remains in equilibrium with respect

to the event horizon (ra = constant), or contracts, or expands.

Mimicking (2.18), we assume an isotropic metric

ds2 = g00(u)dt
2 − a(t)2gr(u)(dx

2 + dy2 + dz2), (5.1)

where g00 and gr are unknown functions of u = ra(t), and a(t) is the one of (2.4), with

H =
√
Λ/3. The Lagrangian of a particle of mass m and its momentum read

L = −m
√
g00 − gra2v2, p =

∂L

∂v
= −m2a2gr

v

L
, (5.2)

where v = dr/dt is the velocity and v = |v|. The equations of motion are

dp

dt
=
∂L

∂r
=
am2r

2Lr
(g′00 − g′ra

2v2) ≡ fG. (5.3)

To inquire whether the star expands or contracts with respect to the event horizon,

we need to generalize the equations in several respects. First, we have to account for a
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(spherically symmetric) distribution of matter, rather than a pointlike mass placed at the

center. This means that we must work with the equations of fluid dynamics in general

relativity, derived in appendix B. Second, we need to include the effects of the degeneracy

pressure, due to the Pauli exclusion principle, and use the equations of state of degenerate

fermions (derived in appendix E). Third, at some point we need to switch to coordinates

u = ra, where the event horizon is stationary.

We start from the generalization of (5.3) to a fluid. The equations of motion (B.9) of

fluid dynamics, which we repeat here for convenience, are

(ε+ P )U νDνp
µ = m(gµν − UνUµ)DνP, (5.4)

where pµ = mUµ is the four momentum, P = P (t, r) is the pressure and ε = ε(t, r) is the

energy density (as defined in appendix B). The equation of state P = P (ε) obeyed by an

ideal Fermi fluid at zero temperature is given in appendix E. In most arguments we do not

need to specify it, but just assume that it exists and is such that P (ε)/ε tends to zero for

ε→ 0.

More explicitly, lowering the index µ in (5.4) and specializing to space indices µ = i,

(5.4) gives equation (B.10), which reads, in the case we are considering here,

∂p

∂t
+ (v ·∇)p = fG +

L

ε+ P
∇P − p

ε+ P

[
∂P

∂t
+ (v ·∇)P

]
≡ fG + fP . (5.5)

For a specific fluid, P and ε are scalars, and functions of another scalar density ρ,

which is related by formula (B.3) to the density of mass ρm(t, r) = dm/d3r = mρn(t, r),

where ρn(t, r) is the number of particles per unit volume in a given system of coordinates.

Constraints on ρm are the total mass

M = 4π

∫ ∞

0

r2drρm(t, r) (5.6)

of the fluid distribution and the continuity equation (B.2), which we rewrite here as well:

∂ρm
∂t

+∇ · (ρmv) = 0. (5.7)

Finally, the metric must obey the Einstein equations (B.5) with the energy-momentum

tensor T µν = (ε+P )UµUν−Pgµν . The complete set of equations is summarized in formula

(B.12).

5.1 Static coordinates

It is convenient to introduce “static” coordinates u = ra (as opposed to the “dynamic”

coordinates r), where the event horizon does not depend on time. This simplifies various
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expressions, since g00 and gr are just functions of u = ra. If P denotes the momentum

associated with u (not to be confused with the pressure P ), the switch (r,p) ↔ (u,P) is a

canonical transformation. Due to this, certain operations, like converting the quantization

rules from one choice of coordinates to the other, are straightforward. Note that the

definition of time remains the same in the switch.

In static coordinates, the Lagrangian, momentum and equation of motion of a single

particle read

L=−m
√
g00 − gr(u̇−Hu)2, P =

∂L

∂u̇
=

p

a
= −m

2

L
gr(u̇−Hu),

dP

dt
=
∂L

∂u
= −HP+

m2u

2uL
(g′00 − g′r(u̇−Hu)2) ≡ −HP+ FG. (5.8)

Before proceeding, we pause a moment to identify the circular orbits, which are those

with u = constant, u̇ ·u = 0. Contracting the equation of motion appearing in the second

line of (5.8) with u, and using u̇ · u̇ + ü · u = 0, it is easy to prove that ü · u is constant.

Hence, u̇ · u̇ is also constant, and u̇ · ü = 0. This means that we can write ü = −ω2u,

where ω is the angular velocity, after which we infer |u̇| = ωu. Finally, the equation of

motion gives the relation

u(2gr + ug′r)(ω
2 +H2) = g′00, (5.9)

which determines the right ω for every distance u from the center. In the Newton approx-

imation of the metric (2.18), where

g00 ≃ 1− 2MG

u
, gr ≃ 1 +

2MG

u
, (5.10)

the condition (5.9) becomes

ω2 +H2 ≃ MG

u3
. (5.11)

Formulas (5.9) and (5.11) show that the expansion rate H and the angular velocity ω

are on the same footing, i.e., the “force” due to the expansion of the universe is similar

to a centrifugal force. Moreover, the orbits exist only within a certain maximum distance

from the center, which is equal to 3
√
MG/H2 in the approximation (5.11). Beyond this

region, the attractive force of gravity becomes too weak to counterbalance the centrifugal

force of expansion.

We have just learned that when the orbiting system exists, it does not expand. This

suggests that fluids might also admit equilibrium configurations that deplete the expansion

of the universe, as long as the expansion rate is not excessive. In the rest of this section

we show that it is indeed so.
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It is convenient to convert the fluid equations (5.5) to the variables u = ar. Noting

that p(t, r) = aP(t,u) and v = (u̇−Hu)/a, we have

∂p

∂t
+ (v ·∇)p = a

(
∂P

∂t
+ (u̇ ·∇)P+HP

)
, (5.12)

where ∇ is ∂/∂r on p and ∂/∂u on P. Equation (5.5) turns into

∂P

∂t
+ (u̇ ·∇)P=−HP+

m2u

2uL
(g′00 − g′r(u̇−Hu)2)

+
L

ε̄+ P̄
∇P̄ − P

ε̄+ P̄

[
∂P̄

∂t
+ (u̇ ·∇)P̄

]
≡ Fc + FG + FP , (5.13)

where we have defined ε(t, r) = ε̄(t,u) and P (t, r) = P̄ (t,u), so ∇P̄ = ∂P̄ /∂u.

The expression between the equal and equivalence signs in equation (5.13) is the sum

of the “centrifugal force” Fc = −HP due to the expansion of the universe, plus the

gravitational force FG, plus the pressure force FP . The last two coincide with the forces

fG and fP of formulas (5.3), (5.5) and (B.11) divided by a.

Further defining ρm(t, r) = a3ρ̄m(t,u), the continuity equation (5.7) gives

∂ρ̄m
∂t

+∇ · (ρ̄mu̇) = 0. (5.14)

5.2 Solution of the equations

We search for (spherically symmetric) hydrodynamic equilibrium configurations in static

coordinates. That is to say, we set u̇ = 0, which gives v = −Hr. Formula (5.14) tells us

that ρ̄m does not depend explicitly on time, so from now on we write ρ̄m = ρ̄m(u). Formula

(B.3) gives

ρ =
ρ̄m(u)

√
g00 − gru2H2

gr
√
g00gr

, (5.15)

which also depends just on u. This property extends to P and ε, which are functions of ρ

by the equations of state and the identity (B.8). Thus, we write ρ = ρ̄(u), P = P̄ (u) and

ε = ε̄(u). Finally, formula (5.8) shows that the momenta

P = − mHgru√
g00 − gru2H2

(5.16)

depend just on u.

Collecting these pieces of information, the fluid equation (5.13) gives

1

ε̄+ P̄

dP̄

du
= −g

′
00 − uH2(2gr + ug′r)

2(g00 − gru2H2)
= − d

du
ln
√
g00 − gru2H2. (5.17)
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Assuming the equation of state P = P (ε) and using (B.7) and (B.8) to express ρ as a

function of ε as well, we can integrate (5.17) to find∫ ε̄(u) dε

ρ(ε)

dρ

dε

dP

dε
= C − ln

√
g00 − gru2H2, (5.18)

where C is the integration constant. This formula gives ε̄(u) implicitly, wherefrom P̄ , ρ̄

and ρ̄m follow, hence ε, P , ρ and ρm.

In the case of an ideal degenerate Fermi fluid, the primitive on the left-hand side is

reported in formula (E.5) as a function of ρ. We find

ρ(u) =

(
ρ̂2/3

g00(u)− gr(u)u2H2
− ρ2/3∗

)3/2

, ρ∗ ≡
8πm4

3h3
, (5.19)

where ρ̂ is a constant.

We can distinguish two regions: u ⩽ umax and u > umax, where umax denotes the radius

of the star. Clearly, we must have umax < uhor, where uhor denotes the event horizon, which

is where g00(uhor) = gr(uhor)u
2
horH

2. Since ρ is proportional to ρm by (B.3), or (5.15), we

must have ρ = 0 outside the star. This fixes the constant ρ̂. The result is ρ(u) = ρ∗

(
g00(umax)− gr(umax)u

2
maxH

2

g00(u)− gr(u)u2H2
− 1

)3/2

for u ⩽ umax,

ρ(u) = 0 for u > umax.

(5.20)

The normalization condition (5.6), which becomes

M = 4π

∫ umax

0

u2duρ̄m(u), (5.21)

can be used to trade umax for M , or vice versa.

Equipped with the result (5.20), formula (B.3) gives ρm, the identity (B.8) gives ε and

the equation of state P = P (ε) gives the pressure.

Outside the star, we have ρm = ρ = 0. Having assumed that P (ε)/ε tends to zero for

ε → 0, which is true for an ideal degenerate Fermi fluid (as shown right below equation

(E.4)), formula B.8 implies that ε also vanishes when ρ = 0, so P vanishes as well. By

the same arguments, ρ, ρm, ε and P tend to zero when u tends to umax from the inside.

Finally, formula (5.17) implies that the gradient of the pressure (which encodes the force

FP due to it) tends to zero as well. This means that the star does not lose particles from

its exterior border.

It remains to determine the metric. It is easy to check that the Einstein equations

(B.5) lose the powers of a and provide the remaining equations for g00 and gr. In the
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end, we have five unknown functions of u, which are g00, gr, ρ, ε and P , three independent

differential equations (two from (B.5) plus (5.17) from (5.13)), an equation of state relating

ε and P , and a universal relation (B.8) between ε and ρ. With the boundary condition

ρ(umax) = 0, the system admits a solution under a certain condition that we specify in a

moment.

The functions g00 and gr can be worked out as expansions in powers of G. The results

to order one are

g00(u)= 1− 4GH2

u
µ2(ν1, u)−

2G

u
ν2(u) +

2G

3
(3ν1(u)− 2Gν1(umax)) ,

gr(u)= 2− g00(u)− 4GH2µ1(ν1, u), (5.22)

both inside and outside umax, having defined the moments

νk(u) = 4π

∫ u

0

wkε̃(w)dw

1− w2H2
, µk(f, u) =

∫ u

0

wkf(w)dw, (5.23)

where ε̃ is the sum ε + P , which can be derived recursively from (5.20), (B.8) and the

equation of state (E.4). Clearly, we must have umax < 1/H in the expansion.

The system does not admit a solution for an arbitrary mass M , or an arbitrary radius

umax < 1/H. A simple way to appreciate this fact is by comparing the cases G = 0 and

the nonrelativistic limit at H = 0.

When the Newton constant G is switched off, the Einstein equations (B.5) are solved

by the FLRW metric (g00 = gr = 1), so (5.20) gives

ρ(u) = ρ∗H
3

(
u2 − u2max

1− u2H2

)3/2

(5.24)

for u < umax < 1/H. The argument of the fractional power is negative, so the solution

is not acceptable, or we can say that it forces umax = 0. The only possibility to have

something mathematically meaningful at G = 0 is to renounce ρ(umax) = 0 (the condition

that the star has an exterior boundary) and take umax = 1/H. Switching back to (5.19),

we find the density

ρ(u) =

(
ρ̂2/3

1− u2H2
− ρ2/3∗

)3/2

, (5.25)

where the constant ρ̂ remains free, provided it is large enough. Formula (5.6) implies that

the total mass M is infinite.

The density (5.25) grows together with the distance from the center, and tends to

infinity when u approaches 1/H. This solution is not physically realistic, but serves to
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illustrate what is required to compensate for the centrifugal force Fc = −HP due to the

expansion of the universe in the absence of the gravitational force FG.

In the nonrelativistic limit (E.6) at H = 0, formula (5.20) and (5.22) give back the

known results [3], which describe the compensation between gravitational attraction and

fermion degeneracy pressure in objects such as neutron stars and white dwarfs. Precisely,

noting that u = r, ε̃ ≃ ε ≃ ρ and, to the lowest order in G, ρ ≃ ρm, we find

g00(r) ≃ 1 + 2G

∫ r

0

dw

w2
M(w)− 2G

3

∫ rmax

0

dw

w

dM(w)

dw
, gr ≃ 2− g00, (5.26)

and

P (r) ≃ G

∫ rmax

r

dw

w2
ρm(w)M(w) (r < rmax), (5.27)

where

M(r) = 4π

∫ r

0

w2ρm(w)dw

is the mass contained within r. The metric (5.26) is correct outside the star as well as

inside, while the pressure (5.27) is zero outside. The solution makes sense, because the

argument of the fractional power in formula (5.20) is positive. Actually, that formula gives

the integral equation (
ρm(r)

ρ∗

)2/3

≃ 8πG

∫ rmax

r

dw

w2

∫ w

0

z2ρm(z)dz,

which, together with the conditions ρm(rmax) = 0, determines ρm(r). This part of the

problem can be solved numerically. Here we content ourselves with the behavior of ρm(r)

for r ≲ rmax, which is

ρm(r) ≃ ρ∗

[
2GM

rmax

(
1− r

rmax

)]3/2
(r ≲ rmax).

We briefly comment on the nonrelativistic limit at G = 0, H ̸= 0, where (5.18) and

(E.6) give

ρ̄m(u) = ρ∗
[2C − ln(1− u2H2)]

3/2

√
1− u2H2

, (5.28)

the constant C being fixed by (5.21). In this case, M is finite and must exceed a minimum

value, obtained by choosing C = 0 in (5.28). The reason of this apparent contradiction

between the general case (5.25), whereM is infinite, and the nonrelativistic approximation

(5.28), whereM is finite, is that the configuration we are considering has velocity v =−Hr,

so it is impossible to have a meaningful nonrelativistic approximation everywhere: for

u ≃ 1/H the particles necessarily reach the velocity of light v = 1/a. Apart from this, the
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approximate configuration (5.28) exhibits the same unrealistic properties of the solution

(5.25).

The existence of opposite (unrealistic/realistic) cases G = 0, H ̸= 0 and G ̸= 0, H = 0,

shows that a certain condition must be fulfilled to make the solution encoded in (5.20)

and (5.22) acceptable. Specifically, the argument of the fractional power of (5.20) must

be nonnegative for every u < umax. In general, it is involved to unfold this requirement.

Yet, once we insert (5.22) into (5.20), we can simplify the condition, in the nonrelativistic

limit and to the first order in G, by replacing ε̃ with the average density M/V , where

V = 4πu3max/3 is the volume of the star. The result is that the solution is acceptable if

u2maxH
2 ≲

GM

umax

≪ 1. (5.29)

The right inequality is the condition to have a meaningful expansion in powers of the

Newton constant. The left inequality says that the expansion of the universe cannot be

too rapid.

Precisely, formula (5.16) gives Fc ≃ mH2u at G = 0 (assuming u2maxH
2 ≪ 1), so

|Fc| ∼ mH2umax at the border of the star. The left inequality of (5.29) says that the

star cannot exist unless the centrifugal force Fc due to expansion is smaller than the

gravitational force FG at the border (|FG| ∼ GmM/u2max). If the inequality is violated, we

get into the phase where the solution does not make sense mathematically, as in (5.24).

With the present value of the Hubble parameter, ordinary stars, as well as elementary

or fundamental particles, fulfill the left condition (5.29) by tens of orders of magnitude.

The sun turned into white dwarf has r ≡ GM/(u3maxH
2) ≃ 1034, while the proton has

r ≃ 1043. Given that H has not changed significantly since the time of last scattering, the

same conclusion has been valid since then, long before the formation of stars. However, the

condition is violated (r ≃ 10−75 and 10−66, respectively) by the value ≃ mϕ/2 of H during

inflation. This means that there has been a time when the hydrostatic equilibrium was

impossible, because the centrifugal force due to the expansion of the universe was superior

to the gravitational force. We could say that no elementary particles existed, at that time,

because they would have been “dismembered” by the expansion.

It is worth to stress that the realistic, physical solution at G = 0 is not (5.24), or (5.28),

but the homogeneous one, where the metric is still the FLRW one (g00 = gr = 1), but the

particles are at rest in the dynamic variables r (v = 0). Then the density ρm is constant

by the continuity equation (5.7), the scalar ρ = ρm/a
3 depends only on t by (B.3), P and

ε depend only on t as well, by the equation of state and (B.8). Finally, p ∝ v = 0 by (5.2)

and fG = 0 by (5.3), so the fluid equation (5.5) is satisfied. By homogeneity, the total mass

M is infinite.
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Explicitly, the solution

r = r0 −
p0

aHp20

√
p20 +m2a2,

of the equations of motion (5.3) of a single particle in the G = 0 limit, where r0 and p0

are the integration constants, shows that the state of equilibrium (t→ ∞) is the one with

r = constant = r0 −mp0/(Hp
2
0). Clearly, this state of equilibrium has little to do with a

star.

6 The fate of the universe

In about five billion years, the sun will expand into a red giant. Over the course of millions

of years after that, it will shed its outer layers and transform into a white dwarf. At

that point, the gravitational force will be balanced by the electron degeneracy pressure,

preventing further gravitational collapse. In the rest of time, the white dwarf will slowly

lose its heat by radiating. There is theoretical speculation that, in a hugely extended

timeframe, the white dwarf will eventually cool down completely and become a “black

dwarf”. In that process, the balance between gravity and the fermion degeneracy pressure

will remain in place.

The black dwarf is considered to be stable. The results of the previous section confirm

that it is stable even when we take into account the expansion of the universe.

The event horizon is u = ra = constant. The Schwartzschild radius is also given by

u = ra = constant, as emphasized by (2.18), (2.19) and (2.20). To simplify as much as

possible, we face three possibilities: a) if a celestial body expands in the u variables, its

constituents eventually reach the state of total dilution; b) if it stays in equilibrium, it

resists the veer towards that fate; c) if it contracts, it collapses to form a black hole.

Eventually, the black hole evaporates, emitting particles and radiation. The emitted

particles are expected to move away and disperse into space, traveling indefinitely and

becoming increasingly diluted. This way, more and more particles eventually reach the

state of total dilution. So, the cases a) and c) lead to the same outcome. Only the

intermediate situation of equilibrium b) can resist the drift towards the ultimate fate.

In some sense, black-hole evaporation is a way to counteract the gravitational attraction

and make the expansion of the universe prevail. In addition, an event horizon may not be

necessary to have emission of radiation [8], and evaporation. A system could produce pairs

and lose energy through a gravitational analogue [6, 7, 8] of the Schwinger pair production

mechanism [9]. If so, the equilibrium b) would just be temporary. Nature would host a

more “democratic” process (in the sense that it would not be just the prerogative of a
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privileged class, such as black holes) to counteract gravitational attraction and sustain

expansion over time, towards the final state of total dilution. This scenario aligns with the

idea that quanta do not favor stability but uncertainty, providing avenues for escape. At

any rate, further study is needed before reaching a verdict on the fate of the universe.

Because mechanisms like the ones just mentioned must be advocated, the evolution

towards the candidate ultimate state may take an inordinate amount of time. For reference,

Cygnus X-1, a “light” black hole with mass M equal to 15 solar masses M⊙, takes about

7·1070 years to completely evaporate5. While time spans of this magnitude are exceptionally

lengthy, physicists are undeterred in the exploration of the phenomena that require them.

Once the state of total dilution is reached, say at time tdis, the isolated particles are not

actually particles, but wave functions, bound to remain so forever, because they cannot

collapse at later times. Particles may receive signals from other particles after tdis, coming

from their past histories. However, those signals are just radiation. Even if particle A

starts a journey towards particle B before tdis, it is unable to reach B at t > tdis, because

it would have to overcome the dilution occurred at tdis. We do not know of wave-function

collapses triggered by radiation only.

The “irony” is that virtuality, which has no classical counterpart and is normally con-

fined to microscopic physics, may be destined to ultimately embrace the vast immensity

of the universe. In fact, the investigation carried out in this paper was inspired by this

very idea. In quantum mechanics, virtuality plays a key role, by mathematically filling

the gap between two subsequent measurements on a system. Entanglement is a striking

manifestation of the virtual nature of quantum states. The “predominance” of virtuality

over reality is also apparent in quantum field theory, where a propagator is almost every-

where virtual, the sole exception being its (relatively tiny) on-shell contribution. Another

place where virtuality plays a crucial role is quantum gravity, where it is possible to intro-

duce “purely virtual” particles by tweaking the usual diagrammatics in a certain way [23].

The concept leads to a unitary and renormalizable theory of quantum gravity [24], whose

main prediction (in the realm of current or planned observations [25]) is a very constrained

window for the value of the tensor-to-scalar ratio r [26] of primordial fluctuations. It is

delimited from above by the prediction of the Starobinsky R+R2 model, and from below

by the properties of the purely virtual particles themselves6.

The significance of virtuality in quantum physics suggests that maybe the entire uni-

verse will one day become purely virtual, de facto. As far as we can tell today, the only

5The general formula for the Hawking evaporation time is tH ≃ 2 · 1067(M/M⊙)
3 years.

6This is also the reason why we have concentrated on the Starobinsky scenario in discussing inflation.

It is apparent that high-energy physics favors that option over the others.
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possibility to make “virtuality win over reality” is to envision scenarios where mechanisms

like the ones mentioned above make the accelerated expansion of the universe prevail.

Then, at some point, the relatively tiny on-shell contributions to the particle propagators

will become devoid of practical consequences.

7 Conclusions

We have investigated the effects of the expansion of the universe in several systems, and

inquired whether the ultimate fate of the universe is to reach a state of “total dilution”,

where all the unstable particles have decayed and the stable ones are so widely separated

from one another that, due to the accelerated expansion, they are unable to exchange

physical signals for the rest of time. Then they remain virtual forever, and likely entangled,

since they cannot interact with macroscopic objects that can collapse their wave functions.

Evocatively, we could call the final state “cosmic virtuality”, or “eternal entanglement”.

Homogeneity is not necessary for the expansion to prevail. The Majumdar-Papapetrou

geometries provide nonhomogeneous systems where the gravitational force is balanced by

the electrostatic repulsion. The Kastor-Traschen extension to a nonvanishing cosmological

constant illustrates the evolution towards cosmic virtuality through an unlimited expan-

sion. This raises the question whether the expansion prevails any time the gravitational

attraction is balanced by an opposing force. We have shown that it is not so. In white

dwarfs and neutron stars, for example, the degeneracy pressure stops the gravitational

collapse. However, it is not powerful enough to trigger an unlimited expansion. It would

have been in the early universe, when no celestial bodies existed.

Precisely, once the expansion of the universe is taken into account, the equilibrium

configuration that allows for the presence of stars exists only if the centrifugal force due

to the expansion is smaller than the gravitational force (at the border of the star, for

definiteness). This has been true since the time of last scattering, but not during inflation.

The question remains: will the universe end in a leopard spot pattern consisting of iso-

lated regions (e.g., galaxy clusters) that cannot physically communicate, yet within which

macroscopic objects will continue to exist forever, possibly exhibiting intriguing internal

dynamics? Or will those isles also undergo “dismemberment” from within, akin to the

evaporation of black holes? While classical physics tends to favor the former possibility,

quanta are notorious for defying absolute stability, potentially leading to the latter sce-

nario. In any case, we must defer the final verdict to further investigations, as a definitive

conclusion eludes us at present.
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The metrics we have studied can also be used to treat perennial inhomogeneities, such

as primordial black holes amidst the cosmic background radiation. A hypothesis worth

exploring is the idea that the universe might have one or more “centers”, meaning, celestial

bodies that have existed “forever”. Studying the impact of these options on inflation, we

have shown that there is room for nontrivial inhomogeneities without contradicting the

established knowledge on primordial cosmology.
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Appendices

A Higher-order corrections in inflation with primor-

dial black holes

In this appendix we give the corrections of order r2g/u
2 to the solution (4.9) of the equations

(4.3) for inflation with a pre-existing black hole. We find

ds2 : −
r2g
u2

(
h1 +

h2
m2

ϕu
2
+

h3
m4

ϕu
4

)
(dt2 + a(t)2dr2 + a(t)2r2dθ2 + a(t)2r2 sin2 θdϕ2)

+
r2gH

2

2m2
ϕu

2

(
7− 3α2

)
dt2 +O

(
r2g
u2

1

m6
ϕu

6

)
+O

(
r3g
u3

)
,

ϕ(t, r) :
r2g

4
√
3πGHαu2

(
h4 +

3h2H − ḣ2
m2

ϕu
2

+
5h3H − ḣ3
m4

ϕu
4

)
+O

(
r2g
u2

1

m6
ϕu

6

)
+O

(
r3g
u3

)
,

where

h4 = h1H − ḣ1 −
3H2

2m2

(
2αα̇ +H(1 + 5α2 − 6α4)

)
,

and h1,2,3 are functions of α that solve certain second order differential equations. We do

not report those equations here, since they are quite involved. We just point out that they

can be solved by expanding in powers of α. The lowest orders of the solutions read

h1=
3

8

(
1− 3α +

15

4
α2 − 19

6
α3

)
+O

(
α4
)
,

h2=−α
2

4

(
1 +

4

3
α

)
+O

(
α4
)
, h3 = −2

5
α2

(
1 +

77

15
α

)
+O

(
α4
)
.
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B Equations of fluid dynamics in general relativity

In this appendix we define a fluid and give its equations in general relativity.

Consider a system of particles labeled by some index a. We denote their positions and

velocities by ra(t) and va(t) = dra(t)/dt, respectively. When we switch to the continuum,

va(t) becomes a field of velocities v(r, t). Precisely, v(r, t) stands for the velocity of the

fluid element located in r at time t.

It is convenient to define the particle trajectories xµa(t) = (t, ra(t)) in spacetime. The

spacetime velocity vµa (t) = dxµa(t)/dt = (1,va(t)) becomes vµ(x) ≡ (1,v(t, r)) in the con-

tinuum limit. The four velocity Uµ
a (t) = vµa (t)/σa(t), where σa(t) =

√
gρσ(t, ra)v

ρ
a(t)vσa (t),

becomes a four vector Uµ(x) = vµ/
√
gρσvρvσ that satisfies the condition gµνU

µUν = 1.

A fluid is described by the fields of velocities vµ and Uµ, certain densities ε, ρ of energy

and mass (defined below) and a pressure P , such that the current of mass Jµ and the

energy-momentum tensor T µν read

Jµ = ρUµ, T µν = (ε+ P )UµUν − Pgµν . (B.1)

These definitions show that ρ = JµU
µ, ε = TµνU

µUν and P = (ε− T µ
µ )/3 are scalars.

Let ρm = dm/d3r denote the density of mass in a given reference frame. The conser-

vation of mass gives the continuity equation

∂µ (ρmv
µ) =

∂ρm
∂t

+∇ · (ρmv) = 0. (B.2)

Identifying the scalar ρ with

ρ = ρm

√
gµνvµvν√
−g

, (B.3)

(B.2) can be written in a manifestly covariant form as the conservation of the current Jµ:

DµJ
µ =

1√
−g

∂µ
(√

−gρUµ
)
=

1√
−g

∂µ (ρmv
µ) = 0. (B.4)

Focusing on an infinitesimal fluid element, it is sometimes convenient to switch to the

“proper” frame, where the fluid element is at rest. There, vµ = (1,0), so (B.1) and (B.3)

give J0 = ρ/
√
g00 = ρm/

√
−g. This means that ρ can be defined as the scalar that coincides

with the density of mass ρm multiplied by
√
g00/

√
−g in the proper frame.

As a consequence of the Einstein equations

Rµν −
1

2
gµνR− Λgµν = 8πGTµν , (B.5)

the energy-momentum tensor T µν is also conserved (DνT
µν = 0). The conservation of T µν

encodes the equations of motion of the fluid, as we show below.
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What distinguishes a specific fluid from another is the “equation of state” P = P (ε),

or ε = ε(P ), which relates ε and P . Given the equation of state, the compatibility between

the continuity equation (B.4) and the conservation of T µν gives a general formula relating

ρ to ε. Precisely, using UµDνU
µ = 0, which follows from gµνU

µUν = 1, we find

UµDνT
µν =

dε

dρ
DµJ

µ +

(
ε+ P − ρ

dε

dρ

)
(DµU

µ), (B.6)

wherefrom it is evident that (B.4) and DνT
µν = 0 imply

ε+ P = ρ
dε

dρ
. (B.7)

Assuming the equation of state ε = ε(P ), this relation can be integrated to give

ρ(ε) = ρ0 exp

(∫ ε

ε0

dε′

ε′ + P (ε′)

)
, (B.8)

where ρ0 is the value at some reference energy ε0.

It is important to note that (B.8) is not an equation of state, specific to the fluid,

but a universal formula. Ultimately, the fluid is solely identified by its equation of state

P = P (ε). Formula (B.8) can be viewed as the definition of ε from ρ.

Using UµDνU
µ = 0 again and pµ = mUµ, the identity DνT

νµ − UµUρDνT
νρ = 0 gives

(ε+ P )UνDνp
µ = m(gµν − UνUµ)DνP. (B.9)

These are the equations of motion of the fluid, derived from the conservation of T µν . Note

that only three equations are independent, since contracting with Uµ gives 0 = 0.

To obtain a more explicit form of the equations, we multiply (B.9) by
√
gρσvρvσ, divide

by ε + P , lower the index µ, use7 pµ = mUµ = (p0,−p) and finally specialize to a space

index µ = i. The result is

∂p

∂t
+ (v ·∇)p = vµ∂µp = fG + fP , (B.10)

where

fG = −vνΓµ
νρpµ∇xρ, fP = −

m
√
gµνvµvν

ε+ P
∇P − p

ε+ P
vµ∂µP (B.11)

are the gravitational force and the force due to the pressure, respectively, while ∇xρ are

just the vectors having components δρi .

7Since p = ∂L/∂r and r has upper space indices, r = (xi), the vector p has lower space indices:

p = (pi). The minus sign in front of p in pµ = (p0,−p) is easily checked in flat space.
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In the next appendix we perform the switch from a set of particles to a fluid in detail.

We show that (B.10) is the fluid version of the equation of motion dp/dt = f obeyed by

each particle individually: the left-hand side is the fluid version of dp/dt and the right-hand

side is the fluid version of the total force f .

Gathering the pieces of information learned so far, the (Einstein E, continuity C and

motion M) equations of fluid dynamics in general relativity are

(E): Rµν −
1

2
gµνR− Λgµν = 8πGTµν , T µν = (ε+ P )UµUν − Pgµν ,

(C): Dµ(ρU
µ) = 0, (M): εU νDνU

µ = DµP − U νDν(PU
µ), (B.12)

(M) just being an alternative way of writing (B.9).

C From a set of particles to a fluid

In this appendix we explain how to switch from a set of particles to a fluid. As before, the

particles are labeled by some index a, with positions ra(t), velocities va(t) and momenta

pa(t) = ∂L/∂ra(t). They are subject to forces fa(t) and obey the equations of motion

dpa(t)

dt
= fa(t). (C.1)

We do not need to specify the Lagrangian here, since the arguments apply to an arbitrary

L.

When we switch to the continuum, va(t) becomes the field of velocities v(r, t), and

pa(t) becomes a field of momenta p(r, t). The formula relating p(r, t) to v(r, t) and r

is obtained by performing the conversion on the formula that holds for single particles,

pa(t) = ∂L/∂ra(t).

We want to switch from (C.1) to the equations of motion of the fluid. Let ρn(t, r) =

dn/d3r denote the number of particles per unit volume (in a generic reference frame, which

we do not need to specify). Consider a set of particles surrounded by a closed surface S.

We denote the interior of S by V and assume that S deforms in time so that no particle

exits from S nor enters into it. The total momentum of the particles contained in S is

pS =

∫
V

ρnpd
3r. (C.2)

Its derivative with respect to time is the force acting on V . We have

dpS

dt
=

∫
V

(
∂ρn
∂t

p+ ρn
∂p

∂t

)
d3r+

∫
S

(ρnv · n̂)pdσ, (C.3)
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where dσ is the surface element on S. The last integral arises from the assumption that S

encloses the same set of particles as time passes: the variation of the volume V is locally

dV = v · n̂dσdt due to the deformation of the surface S that surrounds it.

Converting the surface integral of (C.3) to a volume one by means of Gauss’ theorem,

we obtain

dpS

dt
=

∫
V

ρn

(
∂p

∂t
+ (v ·∇)p

)
d3r+

∫
V

(
∂ρn
∂t

+∇ · (ρnv)
)
pd3r. (C.4)

En passant, note that the continuity equation (B.2) follows from the same line of

reasoning. Consider a fluid composed of particles of the same mass, m. If we set p → m

in (C.2), pS is replaced by the mass MS contained in V (due to ρm = mρn), which is

constant. Then the left-hand side of (C.4) and the first integral on the right-hand side

vanish. Being the volume V arbitrary, the remaining integral with p → m gives (B.2).

We can repeat the argument with anything we want in (C.2), instead of p. The outcome

is a general rule stating that when we switch from a set of particles to a fluid, the total

derivative with respect to time undergoes the replacement

d

dt
→ ∂

∂t
+ v ·∇ = vµ∂µ. (C.5)

For example, if we apply this rule to xµa(t) → xµ, we find vµa (t) = dxµa(t)/dt→ vν∂νx
µ = vµ,

as expected.

Finally, from (C.1), the force acting on the volume V is∑
a∈V

fa =

∫
V

ρnfd
3r. (C.6)

Equating this expression to (C.4), using the continuity equation, and recalling that the

volume V is arbitrary, we obtain the equation of motion

∂p

∂t
+ (v ·∇)p = f , (C.7)

which is just (C.1) with the replacements pa(t) → p(t, r), fa(t) → f(t, r) and (C.5). In

the cases of interest to us, the total force f on the right-hand side is the sum of the forces

given in formula (B.11) (plus the centrifugal force due to the expansion of the universe, if

we use static coordinates).

D Dust

In this appendix we study the fluid equations (C.7) and (B.9) in the simpler case of zero

pressure (dust). In the next appendix we switch to the Fermi fluid.
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Dust is a set of particles of mass m described by the action

S = −
∫

dt
∑
a

m
√
gµν(t, ra(t))v

µ
a (t)vνa(t) = −

∫
d4x

∑
a

mδ(3)(r−ra(t))
√
gµν(x)v

µ
a (t)vνa(t).

The density of mass is

ρm = m
∑
a

δ(3)(r− ra(t)),

while the energy-momentum tensor reads

T µν(x) = − 2√
−g(x)

δS

δgµν(x)
=
∑
a

mδ(3)(r− ra(t))v
µ
a (t)v

ν
a(t)√

−g(x)
√
gρσ(x)v

ρ
avσa

.

When we switch to the fluid (vµa (t) → vµ(x)), we find

T µν → εUµUν , ε = ρm

√
gµνvµvν√
−g

= ρ, P = 0,

having used (B.3). The identity (B.7) is trivially satisfied, since ε = ρ, P = 0.

The a-th particle moves according to the geodesic equation

dUµ
a (t)

dt
+ Γµ

νρ(t, ra(t))v
ν
a(t)U

ρ
a (t) = 0, (D.8)

from which we can read the force fa of (C.1). Repeating the procedure applied for deriving

(B.10), i.e., using pµ = (p0,−p) = gµνp
µ, which implies pi = −giµpµ, and specializing to a

space index µ = i, we find

dpa(t)

dt
= −Γµ

ρν(t, ra(t))paµ(t)v
ν
a(t)∇xρ = fa(t).

Switching from a set of particles to a fluid by means of (C.5), we obtain (C.7) with f = fG,

the gravitational force given in (B.11). Dividing (C.7) by
√
gρσvρvσ, we find the spatial

components of UνDνpµ = 0, which is (B.9) at P = 0.

In particular, the equations of motion of dust, UνDνU
µ = 0, are just the geodesic

equations (D.8) switched to the continuum.

E Ideal Fermi fluid at zero temperature

In this appendix we consider a fluid of fermions at zero temperature, assuming that the

interactions among the particles are negligible. We derive the degeneracy pressure P and

the equation of state. We also show how to switch from the equations of a system of

particles to the ones of a fluid in a certain limit, where it is possible to proceed in a direct

way. For more details, see [3, 4].
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E.1 Degeneracy pressure and equation of state

A Fermi fluid at zero temperature consists of particles with nonzero energies, filling the

Fermi surface. By interpreting those energies as internal, and viewing a fluid element as a

whole, we can determine whether it is at rest or in motion, and define the field of velocities

v(t, r), as well as ε, ρ and the pressure P .

Referring to the formulas (B.1), we recall that ρ, ε and P are scalars, so it is enough to

work out their relations in flat space. Moreover, we can focus on a particular fluid element

and switch to its proper frame, where vµ = Uµ = (1,0). Then ρ coincides with the density

of mass ρm, by formula (B.3). We can read ε and P from the energy-momentum tensor

T µν = diag(ε, P, P, P ). Specifically, ε is the energy density.

The interval is ds2 = dt2 − dr2, the space momentum of the fluid element is p =

∂L/∂r = (pi) and the commutation relations are [p̂i, x̂
j] = −iδji . The number of quantum

states per unit phase-space volume is

dn = (2s+ 1)
d3pd3r

h3
θ(pF − p),

where s is the particle spin and pF is the Fermi momentum. For neutrons, protons and

electrons, the phase space density ρph(p) and the density ρ are

ρph(p) =
dn

d3pd3r
=

2

h3
θ(pF − p), ρ = ρm =

dm

d3r
= m

∫
ρph(p)d

3p =
8πmp3F
3h3

, (E.1)

respectively.

The energy density ε is obtained by summing the energies
√
m2 + p2 of each particle,

which gives

ε =

∫ √
m2 + p2ρph(p)d

3p =
8π

h3

∫ pF

0

p2dp
√
m2 + p2. (E.2)

To calculate the degeneracy pressure P , we proceed as follows. A particle of momentum

p colliding on an infinitesimal surface dS transfers a momentum ∆p = −2p · n̂ to it, where

n̂ is the normal to the surface. The number of particles of momentum p colliding per

unit time is dnc/dt = −ρph(p)d3p(v · n̂)dS. Integrating on the hemisphere H of incident

particles, we obtain

P =

∫
H

∆p
dnc

dSdt
= 2

∫
H

(p · n̂)(v · n̂)ρph(p)d3p =
8π

3h3

∫ pF

0

p4dp√
m2 + p2

. (E.3)

Finally, we find the relations

ε+P =
8πp3F
3h3

εF , P =
π

3h3

[
εFpF (2ε

2
F − 5m2) + 3m4 ln

εF + pF
m

]
, εF =

√
m2 + p2F ,

(E.4)
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which give the equation of state P = P (ε) implicitly. Similarly, using (E.1) to eliminate

pF , we can also find ε as a function of ρ. We stress again that these relations are valid in

an arbitrary frame and with an arbitrary metric, since ρ, P and ε are scalars.

The integral formulas (E.2) and (E.3) show that ε and P tend to zero if and only if pF

tends to zero. Moreover, the ratio of the integrals shows that P (ε)/ε tends to zero when

ε tends to zero, which was assumed in section 5.

Now we check the identity (B.7). Comparing the first formula of (E.4) with the second

of (E.1), we obtain ε+P = ρεF/m. Moreover, (E.2) and (E.1) give mdε/dpF = εFdρ/dpF ,

which implies dε/dρ = εF/m. Combining these results, we find ε(ρ)+P (ε(ρ)) = ρdε(ρ)/dρ,

which is (B.7).

A useful formula for the arguments of section 5 is obtained by combining (E.1), (E.2)

and (E.3) to work out the primitive

∫
dρ

ρ

dP

dρ

(
dε

dρ

)−1

=

∫
dpF
ρ

dP

dpF

dρ

dpF

(
dε

dpF

)−1

= ln
εF
m

= ln

√
1 +

(
3h3ρ

8πm4

)2/3

, (E.5)

up to an arbitrary additive constant.

In the nonrelativistic limit (pF ≪ m) we obtain

ε ≃ 8πmp3F
3h3

= ρ, P ≃ 8πp5F
15mh3

≃ ε5/3

20

(
3h3

πm4

)2/3

≪ ε,

∫
dρ

ρ

dP

dε
≃ 1

2

(
3h3ρ

8πm4

)2/3

,

(E.6)

and the identity (B.7) is a consequence of ε ≃ ρ, P ≪ ε.

E.2 Fluid equations in the nonrelativistic Newtonian limit

We consider the fluid equations (B.10) in the nonrelativistic limit, where P ≪ ε ≃ ρ,

and in the Newtonian approximation (2.17), where fG is just Newton’s gravitational force.

Using (B.3), we find, to the lowest nontrivial order in G, P and the velocity,

fP ≃ −m∇P

ρm
. (E.7)

It is straightforward to derive this expression geometrically. Consider again a set of

particles surrounded by a closed surface S, V denoting its interior. The force exerted by

the degeneracy pressure on V is

−
∫
S

P n̂dσ = −
∫
V

∇P d3r. (E.8)

36



Equating (C.4) to (C.6) with f → fG plus (E.8), using the continuity equation and recalling

that the volume V is arbitrary, we obtain

∂p

∂t
+ (v ·∇)p ≃ fG − m∇P

ρm
, (E.9)

in agreement with (E.7). The total force is the sum of two forces fG and fP that do not

talk to each other. Said differently, the superposition principle holds.

Away from the limit we have just considered, the superposition principle does not hold,

which is why in general relativity we have the more involved expressions (B.10) and (B.11),

derived from the covariant equation (B.9).
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[9] F. Sauter, Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach

der relativistischen Theorie Diracs, Z. Physik 69 (1931) 742;

W. Heisenberg and H.H. Euler, Folgerungen aus der Diracschen Theorie des Positrons,

Z. Physik 98 (1936) 714 and arXiv:physics/0605038;

J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951)

664.

[10] S. Weinberg, Cosmology, Oxford University Press, 2008;

V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Phys. Rept. 215 (1992) 203;

D. Baumann, TASI lectures on inflation, arXiv:0907.5424 [hep-th].

[11] A.A. Starobinsky, A new type of isotropic cosmological models without singularity,

Phys. Lett. B 91 (1980) 99.

[12] R. Brout, F. Englert and E. Gunzig, The creation of the universe as a quantum

phenomenon, Annals Phys. 115 (1978) 78;

D. Kazanas, Dynamics of the universe and spontaneous symmetry breaking, Astro-

phys. J. 241 (1980) L59;

K. Sato, First-order phase transition of a vacuum and the expansion of the universe,

Monthly Notices of the Royal Astr. Soc. 195 (1981) 467;

A.H. Guth, Inflationary universe: A possible solution to the horizon and flatness

problems, Phys. Rev. D23 (1981) 347;

A.D. Linde, A new inflationary universe scenario: A possible solution of the horizon,

flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B108

(1982) 389;

38

https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1103/PhysRevLett.85.5042
https://arxiv.org/abs/hep-th/9907001
https://doi.org/10.1142/S0217732306019980
https://doi.org/10.1142/S0217732306019980
https://arxiv.org/abs/hep-th/0512121v2
https://doi.org/10.1006/aphy.1994.1046
https://doi.org/10.1103/PhysRevLett.130.221502
https://arxiv.org/abs/2305.18521
https://doi.org/10.1007/BF01339461
https://doi.org/10.1007/bf01343663
http://arxiv.org/abs/physics/0605038
https://doi.org/10.1103/physrev.82.664
https://doi.org/10.1103/physrev.82.664
https://arxiv.org/abs/0907.5424
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0003-4916(78)90176-8
https://doi.org/10.1086/183361
https://doi.org/10.1086/183361
https://doi.org/10.1103/PhysRevD.23.347
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9


A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively

induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220;

A.D. Linde, Chaotic inflation, Phys. Lett. B129 (1983) 177;

V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe,

JETP Lett. 33 (1981) 532, Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549;

V.F. Mukhanov and G. Chibisov, The Vacuum energy and large scale structure of the

universe, Sov. Phys. JETP 56 (1982) 258;

S. Hawking, The development of irregularities in a single bubble inflationary universe,

Phys. Lett. B115 (1982) 295;

A.H. Guth and S. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett.

49 (1982) 1110;

A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe sce-

nario and generation of perturbations, Phys. Lett. B117 (1982) 175;

J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-

free density perturbations in an inflationary universe, Phys. Rev. D28 (1983) 679;

V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field

JETP Lett. 41 (1985) 493.

[13] Ya.B. Zeldovitch and I.D. Novikov, The hypothesis of cores retarded during expansion

and the hot cosmological model, Soviet Astron. 10 (1996) 602;

S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. R. Astron.

Soc. 152 (1971) 75;
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